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ABSTRACT 
Nonlinear partial discriminational equations are extensively studied in Applied Mathematics 

and Physics. The generalized Burgers- Huxley equations play important places in different 

nonlinear drugs mechanisms. In this paper, we presented numerical solution of generalized 

Burgers-Huxley equations by Lifting schemes using different wavelet filter coefficients. The 

numerical solution obtained by this scheme is compared with the exact solution to 

demonstrate the accuracy and also faster convergence in lesser computational time as 

compared with existing scheme. Some of the problems are taken to demonstrate the 

applicability and of validity the scheme. 
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Introduction 

Non-linear partial differential equations 

usually occur in modeling of various 

phenomena in most of the engineering and 

physical science branches. In the spatially 

homogeneous media, behavior of 

bifurcations and periodic trawling waves 

in excitable media are different. This 

difference cause by the strongly non-

linearity and singular characteristics of the 

local reaction kinetics play considerable 

role. Indeed, singular perturbation theory 

utilizes the mentioned characteristics of 

excitable media. We recall that KKP-

Fisher [1] equation can be utilized 

successfully in modeling the diffusion 

phenomena which admits a traveling front 

solution involving the two steady-states. 

Among possible conceptions of the Fisher 

equation, the Burgers-Huxley (BH) 

equation is most important one. It is well-

known that a large class of physical 

phenomena such as the interaction 

between convection effects, reaction 

mechanism, and diffusion transports can 

be described by the BH equation [2].  

However, with the advent of modern 

computers and sophisticated software, we 

are now able to solve such kind of 

problems using approximate analytical or 

numerical methods [3].   Some of the 

iterative methods are used for the 

numerical and analytical solutions of 

generalized Burgers-Huxley equations.  

For example, Spectral Collocation method 

[4], New exact solutions [5], Haar wavelet 

method [6] etc. 

 

Beginning from 1980s, wavelets have been 

used for solution of partial differential 

equations (PDEs). The good features of 

this approach are possibility to detect 

singularities, irregular structure and 

transient phenomena exhibited by the 

analyzed equations.  "Wavelets" have been 

very popular topic of conversations in 

several scientific and engineering 

gatherings these days. Some of the 

researchers have decided that, wavelets are 

new basis for representing continuous 

functions, as a technique for time-

frequency analysis, and as a new 
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mathematical subject.  Of course, 

"wavelets" is a versatile tool with very rich 

mathematical content and great potential 

for applications. However, wavelet 

analysis is a numerical concept which 

allows one to represent a function in terms 

of a set of bases functions, called wavelets, 

which are localized both in location and 

scale [7]. 

 

In recent times, some of the works on 

wavelet based methods are the discrete 

wavelet transforms (DWT) and the full 

approximation scheme (FAS) were 

introduced recently in             [8 - 9]. The 

wavelet based full approximation scheme 

(WFAS) has exposed to be a very efficient 

and favorable method for numerous 

problems related to computational science 

and engineering fields [10]. These styles 

can be either used as an iterative solver or 

as a preconditioning fashion, offering in 

numerous cases a better performance than 

some of the most innovative and living 

FAS algorithms. 

 

Due to the efficiency and potentiality of 

WFAS, researches further have been 

carried out for its enrichment. In order to 

realize this task, work build that is 

orthogonal/biorthogonal discrete wavelet 

transform using lifting scheme [11]. 

Wavelet based lifting technique is 

introduced by Sweldens [12], which 

permits some improvements on the 

properties of existing wavelet transforms. 

Wavelet grounded numerical result of 

elasto- hydrodynamic lubrication problems 

via lifting scheme was introduced by 

Shiralashetti et al. [13] .The technique has 

some numerical benefits as a reduced 

number of operations which are 

fundamental in the context of the iterative 

solvers. Evidently all attempts to simplify 

the wavelet solutions for PDE are 

welcome.  In PDE, matrices arising from 

system are dense with non-smooth 

diagonal and smooth away from the 

diagonal. This smoothness of the matrix 

transforms into smallness using sea 

transfigure and it leads to design the 

effective ripples grounded lifting scheme.  

 

Lifting scheme is a new approach to 

construct the so-called second generation 

wavelets that are not necessarily 

translations and dilations of one function. 

The latter we refer to as a first generation 

wavelets or classical methods.  The lifting 

scheme has some fresh advantages in 

comparison with the classical ripples. This 

transfigure workshop for signals of an 

arbitrary size with correct treatment of 

boundaries. Another point of the lifting 

scheme is that all constructions are 

deduced in the spatial sphere. This is in 

discrepancy to the traditional approach, 

which relies heavily on the frequency 

sphere. The two major advantageous are:  

 

o It leads to a more intuitively appealing 

treatment better suited to those in 

interested in applications than 

mathematical foundations.  

o It makes a computational time optimal 

and sometimes increasing the speed of 

calculations.  

 

The lifting scheme starts with a set of 

well-known filters, thereafter lifting steps 

are used an attempt to improve (lift) the 

properties of a corresponding wavelet 

decomposition. This procedure has some 

fine benefits as a reduced number of 

operations which are essential in the 

environment of the iterative solvers. In 

addition to this, the present paper 

illustrates that the application of the lifting 

scheme for the numerical solution of 

generalized Burgers-Huxley equations. 

 

The present paper is organized as follows: 

In section 1, Preliminaries of wavelet filter 

coefficients and lifting scheme.  The 

method of solution describes in section 2. 

In section 3 provides numerical results of 

the illustrative problem and finally, in 
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section 4 conclusion of the proposed work 

is given. 

  

1. Preliminaries of  wavelet filter 

coefficients and Lifting scheme 

The lifting scheme starts with a set of 

well-known filters; thereafter lifting steps 

are used in attempt to improve the 

properties of corresponding wavelet 

decomposition.  

 

Now, we have discussed about different 

wavelet filters as follows: 

 

a) Haar wavelet filter coefficients 

We know that low pass filter coefficients  0 1

1 1
, ,

2 2

T

T
a a

 
  
 

and high pass filter 

coefficients  0 1

1 1
, ,

2 2

T

T
b b

 
  
 

play an important role in decomposition.  

 

b) Daubechies wavelet filter coefficients 
Daubechies introduced scaling functions having the shortest possible support. The scaling 

function N  has support  0, 1N  , while the corresponding wavelet N  has support in the 

interval 1 / 2, / 2N N .  

We have low pass filter coefficients  0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T
a a a a

    
  
 

 

and high pass filter coefficients  0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T
b b b b

    
   
 

 

c) Biorthogonal (CDF (2,2)) wavelets 

Let’s consider the (5, 3) biorthogonal spline wavelet filter pair, the low pass filter pair 

are 1 0 1

1 1 1
( , , ) , ,

2 2 2 2 2
a a a

 
  
 

 and 
2 1 0 1 2

1 1 3 1 1
( , , , , ) , , , ,

4 2 2 2 2 2 2 2 4 2
a a a a a 

  
  
 

. 

But, we have 1 1( 1) and ( 1)k k

k k k kb a b a    
, 

the high pass filter pair are  

0 1 2

1 1 1
, ,

2 2 2 2 2
b b b


     &  

1 0 1 2 3

1 1 3 1 1
, , , ,

4 2 2 2 2 2 2 2 4 2
b b b b b


    

 

Foundations of lifting scheme: 

 Consider to numbers a, b as two neighboring samples of a sequence and then these have 

some correlation which we would like to take advantage. The simple linear transform which 

replaces a and b by average s and difference d   i.e.     

 

&
2 2

a b a b
s d

 
  . 

 

The idea is that if a and b   are highly 

correlated, the expected absolute value of 

their difference d will be small and can be 

represented with fever bits. In case that a = 

b, the difference is simply zero. We 

haven't lost any information because we 

can always recover a and b from the gives 

s and d as 
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&
2 2

d d
a s b s   

 
Finally, a wavelet transform built through lifting consists of three steps: split. Predict and 

update as given in the Figure 1 [14].  

 

 
       Fig. 1.  Steps in lifting scheme   

 
Split: Splitting the signal into two disjoint 

sets of samples.
 Predict: If the signal contains some 

structure, then we can expect correlation 

between a sample and its nearest 

neighbors.  i. e. 
1 1 1odd P(even )j j jd    

 
Update: Given an even entry, we have 

predicted that the next odd entry has the 

same value, and stored the difference. We 

then update our even entry to reflect our 

knowledge of the signal. i.e. 

1 1 1even U( )j j js d   
 

 
 The detailed algorithm using different 

wavelets is given in the next section. The 

general lifting stages for decomposition 

and reconstruction of a signal are given in 

Figure 2. 
 

 

                 

 
Fig. 2. Lifting wavelet algorithm 

 

 

The detailed algorithm using different wavelets is given in the next section. 

 

2. Method of solution 

        The generalized Burgers-Huxley equation is investigated by Satsuma [15] as:  

  1 , 0 1 & 0t x x x

n n nu u u u u u u x t            (3.1) 

Where , 0    are real constants, n is positive integer and  0 , 1  . 
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After discretizing the equation (3.1) through the finite difference method (FDM), we get 

system of algebraic equations. Through this system we can write the system as  

 

                                                                    A u b                                                          (3.2) 

where A  is N N  coefficient matrix, b  is N N  matrix and u  is N N  matrix to be 

determined.  

 

where 2JN  , N  is the number of grid points and J  is the level of resolution. 

 

Solve Eq. (3.2) through the iterative 

method, we get approximate solution.  

Approximate solution containing some 

error, therefore required solution equals to 

sum of approximate solution and error. 

There are numerous styles to minimize 

similar error to get the accurate result. 

Some of them are HWLS, DWLS BWLS 

etc.  

 

Now we are using the advanced technique 

based on different wavelets called as 

lifting scheme. Lately, lifting schemes are 

useful in the signal analysis and image 

processing in the area of wisdom and 

engineering. But currently it extends to 

approximations in the numerical analysis 

[10]. Here, we are discussing the algorithm 

of the lifting schemes as follows:  

2.1. Haar wavelet Lifting scheme 

(HWLS) 

      Daubechies and Sweldens have shown 

that every wavelet filter can be 

decomposed into lifting steps [11]. More 

details of the advantages as well as other 

important structural advantages of the 

lifting technique can be available in [12]. 

The representation of Haar wavelet via 

lifting form presented as;  

 

Decomposition: 

Consider approximate solution jS P  like 

as signal and then apply the HWLS 

decomposition (finer to coarser) procedure 

as, 

 

       

 

1 1 1 1

2 2 1 2 1 1

1

1
, , 2

2

1
and

2

j j jd S S s S d S s

D d

 


     





                   (3.3) 

In this stage finally, we get new approximation as, 

                                            1[ ]S S D                                                                                 (3.4) 

Reconstruction: 

 Consider Eq. (3.2) and then apply the HWLS reconstruction (coarser to finer) procedure as, 

       

 

1 1 1 1

1 2 1

1

2 2 1

1 1
2 , ,

22

and   

j

j j

d D s S S s d

S d S






    


  

                   (3.5) 

which is the required solution of the given equation. 

 

2.2. Daubechies wavelet Lifting scheme 

(DWLS) 

As bandied in the former section3.1, we 

follow the same procedure but we used 

different sea i.e., Daubechies 4th order sea 

measure. The DWLS procedure is as 

follows; 
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Decomposition: 

  

       

       

 

1 1 1 1

2 1 2 2 1

2 1 1 2

1 1

1

3 3 2
3 , ,

4 4

3 1
, and

2

3 1

2

j

j j j

j

s S S d S s s

s s d S s

D d







 
       

 


 
   







             (3.6) 

Here, we get new approximation as, 

1[ ]S S D                                                                   (3.7) 

Reconstruction: 

Consider Eq. (3.5), then apply the DWLS reconstruction (coarser to finer) procedure as, 

                                     

 

 

     

     

 

1

2

1

2 1

1 1

1 1

2 1 1

1

2 1 2

2
,

3 1

2
,

3 1

,

3 3 2
and

4 4

3

j j

j j

j

j j

d D

s S

s s d

S d s s

S s S








 

 



 


  


   



  



                               (3.8) 

which is the required solution of the given equation. 

 

 

2.3. Biorthogonal wavelet Lifting 

scheme (BWLS) 

As discussed in the previous sections 3.1 

and 3.2, we follow the same procedure 

here we used another wavelet i.e., 

biorthogonal wavelet (CDF(2,2)). The 

BWLS procedure is as follows;  

 

 

Decomposition:         

                                             

 

     

 

 

1

2 2 1 2 2

1 1 1

2 1 1

1

1

1

1
,

2

1
,

4

1
,

2

2

j j j

j j

d S S S

s S d d

D d

S s

 

 


     


     



 

 

                                     (3.9) 

 

In this stage finally, we get new signal as, 

1[ ]S S D                                                                   (3.10) 

Reconstruction: 

Consider Eqn. (3.10), then apply the DWLS reconstruction (coarser to finer) procedure as 
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 

 

     

 

1

1

1

1 1 1

2 1 1

1

2 2 1 2 2

1
,

2

2 ,

1

4

1
) ,

2

j j

j j j

s S

d D

S s d d

S d S S

 

 


 






     



      

                                    (3.11) 

which is the required solution of the given equation. 

 

 

The coefficients  
1

j
s  and  

1

j
d  are the 

average and detailed coefficients 

respectively of the approximate solution 

au  .  

The new approaches are tested through 

some of the numerical problems and the 

results are shown in next section. 

 

3. Numerical illustration 
In this section, we applied Lifting scheme 

for the numerical solution of Cahn-Allen 

equations and also show the capability and 

applicability of HWLS, DWLS and 

BWLS.  The error is computed by  

 

   max , ,ma x e au x t u x tE   , 

where  ,eu x t  and  ,au x t  are exact and approximate solution respectively. 

 

Problem 4.1: Consider the generalized Burgers-Huxley equation    In Eq. 3.1 2 ,     

1 , 1 & 3n    i.e. 

     2 1 3 , 0 1 & 0t x x xu u uu u u u x t              (4.1) 

subject to the I.C.:     
3 3 3 3 3

, 0 tanh
2 2 4

u x x
  

     
   

                             (4.2) 

 and     B.C.s:        

 

 

3 3 3 3 3 5 3
0 , tanh

2 2 4 2

3 3 3 3 3 5 3
1 , tanh 1

2 2 4 2

u t t

u t t

    
       

     


     
        

      

      (4.3) 

Which has the exact solution  
3 3 3 3 3 5 3

, tanh
2 2 4 2

u x t x t
    

       
    

 [16].   

 

By applying the methods explained in the 

section 3, we obtain the numerical 

solutions and compared with exact 

solutions are presented in table 1 and 

figure 3. The maximum absolute errors 

with CPU time of the methods are 

presented in table 2. 
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Table 1. Comparison of numerical solutions with exact solution of problem 4.1. 
 

x t FDM HWLS DWLS BWLS EXACT 

0.2 

0.2 

1.077612 1.077612 1.077612 1.077612 1.077884 

0.4 0.931885 0.931885 0.931885 0.931885 0.931344 

0.6   0.797815   0.797815   0.797815   0.797815 0.796470 

0.8 0.676108 0.676108 0.676108 0.676108 0.674757 

0.2 

0.4 

0.84454 0.84454 0.84454 0.84454 0.844367 

0.4 0.719072 0.719072 0.719072 0.719072 0.717719 

0.6 0.607077 0.607077 0.607077 0.607077 0.604738 

0.8 0.507707 0.507707 0.507707 0.507707 0.505602 

0.2 

0.6 

0.645863 0.645863 0.645863 0.645863 0.644477 

0.4 0.543007 0.543007 0.543007 0.543007 0.540296 

0.6 0.453129 0.453129 0.453129 0.453129 0.449741 

0.8 0.374734 0.374734 0.374734 0.374734 0.372067 

0.2 

0.8 

0.483895 0.483895 0.483895 0.483895 0.481341 

0.4 0.403008 0.403008 0.403008 0.403008 0.399064 

0.6 0.333209 0.333209 0.333209 0.333209 0.329013 

0.8 0.272973 0.272973 0.272973 0.272973 0.269983 
 
 

 

  
a) 8 8N N                                           b)    16 16N N    

Fig. 3. Comparison of numerical solutions with exact solution of problem 4.1 for 

a) 8 8N N    and b)   16 16N N   . 
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Table 2. Maximum error and CPU time (in seconds) of the methods of problem 4.1. 
 

N N  Method maxE  Setup time Running time Total time 

 

4 4  

FDM 4.1961e-03    4.1486 0.0019 4.1505 

HWLS 4.1961e-03    0.0009 0.0029 0.0038 

DWLS 4.1961e-03    0.0003 0.0098 0.0101 

BWLS 4.1961e-03    0.0004 0.0041 0.0045 

 

16 16  

FDM 1.8461e-03    5.3062 0.0022 5.3084 

HWLS 1.8461e-03    0.0009 0.0029 0.0038 

DWLS 1.8461e-03    0.0003 0.0097 0.0100 

BWLS 1.8461e-03    0.0003 0.0041 0.0044 

64 64  

FDM 4.8834e-04    9.6336 0.0042 9.6378 

HWLS 4.8834e-04    0.0009 0.0030 0.0039 

DWLS 4.8834e-04    0.0003 0.0098 0.0101 

BWLS 4.8834e-04    0.0004 0.0041 0.0045 
 

 

Problem 4.2: Consider the generalized Burgers-Huxley equation    In Eq. 3.1 1 ,     

1 , 1 & 1n    i.e. 

     1 1 , 0 1 & 0t x x xu u uu u u u x t             (4.4) 

subject to the I.C.:     
1 1

, 0 tanh
2 2 4

x
u x

 
   

 
                                               (4.5) 

 and     B.C.s:                

 

 

1 1 3
0 , tanh

2 2 8

1 1 1 3
1 , tanh 1

2 2 4 2

u t t

u t t

 
    

  


           

                            (4.6) 

Which has the exact solution  
1 1 1 3

, tanh
2 2 4 2

u x t x t
  

    
  

 [17].   

 

By applying the methods explained in the 

section 3, we obtain the numerical 

solutions and compared with exact 

solutions are presented in table 3 and 

figure 4. The maximum absolute errors 

with CPU time of the methods are 

presented in table 4. 
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Table 3. Comparison of numerical solutions with exact solution of problem 4.2. 
 

 
 

 

x t FDM HWLS DWLS BWLS EXACT 

0.2 

0.2 

0.437838 0.437838 0.437838 0.437838 0.437823 

0.4 0.413440 0.413440 0.413440 0.413440 0.413382 

0.6 0.389458 0.389458 0.389458 0.389458 0.389361 

0.8 0.365956 0.365956 0.365956 0.365956 0.365864 

0.2 

0.4 

0.401242 0.401242 0.401242 0.401242 0.401312 

0.4 0.377515 0.377515 0.377515 0.377515 0.377541 

0.6 0.354405 0.354405 0.354405 0.354405 0.354344 

0.8 0.331908 0.331908 0.331908 0.331908 0.331812 

0.2 

0.6 

0.365683 0.365683 0.365683 0.365683 0.365864 

0.4 0.342835 0.342835 0.342835 0.342835 0.342990 

0.6 0.320798 0.320798 0.320798 0.320798 0.320821 

0.8 0.299501 0.299501 0.299501 0.299501 0.299432 

0.2 

0.8 

0.331570 0.331570 0.331570 0.331570 0.331812 

0.4 0.309794 0.309794 0.309794 0.309794 0.310025 

0.6 0.288973 0.288973 0.288973 0.288973 0.289050 

0.8 0.268990 0.268990 0.268990 0.268990 0.268941 

 
b) 8 8N N                                           b)    16 16N N    

Fig. 4. Comparison of numerical solutions with exact solution of problem 4.2 for 

b) 8 8N N    and b)   16 16N N   . 

c)  
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Table 4. Maximum error and CPU time (in seconds) of the methods of problem 4.2.  
 

N N  Method maxE  Setup time Running time Total time 

 

4 4  

FDM 2.4213e-04    3.7477 0.0025 3.7502 

HWLS 2.4213e-04    0.0011 0.0049 0.0060 

DWLS 2.4213e-04    0.0005 0.0135 0.0140 

BWLS 2.4213e-04    0.0005 0.0053 0.0058 

 

16 16  

FDM 1.1017e-04    5.7200 0.0024 5.7224 

HWLS 1.1017e-04    0.0009 0.0029 0.0038 

DWLS 1.1017e-04    0.0003 0.0098 0.0101 

BWLS 1.1017e-04    0.0005 0.0040 0.0045 

64 64  

FDM 3.3808e-05    7.6697 0.0040 7.6737 

HWLS 3.3808e-05    0.0010 0.0030 0.0040 

DWLS 3.3808e-05    0.0003 0.0097 0.0100 

BWLS 3.3808e-05    0.0003 0.0042 0.0045 
 

 

 

Problem 4.3: Consider the generalized Burgers-Huxley equation    In Eq. 3.1 1 ,    

2
, 2 & 0

3
n 


   


i.e. 

    2 3 22
1 , 0 1 & 0

3
t x x xu u u u u u x t            (4.7) 

subject to the I.C.:     

1
21 1

, 0 tanh
2 2 3

x
u x

  
    

  
                                       (4.8) 

and     B.C.s:                

 

   

1
2

1
2

1 1
0 , tanh

2 2 9

1 1 1
1 , tanh 3

2 2 9

t
u t

u t t


       

  

  

     
   

                         (4.9) 

Which has the exact solution    

1
21 1 1

, tanh 3
2 2 9

u x t x t
  

    
  

 [18].   

 

By applying the methods explained in the 

section 3, we obtain the numerical 

solutions and compared with exact 

solutions are presented in table 5 and 

figure 5. The maximum absolute errors 

with CPU time of the methods are 

presented in table 6. 
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Table 5. Comparison of numerical solutions with exact solution of problem 4.3. 
 

 
 

 

x t FDM HWLS DWLS BWLS EXACT 

0.2 

0.2 

0.735341 0.735341 0.735341 0.735341 0.737785 

0.4 0.758032 0.758032 0.758032 0.758032 0.759708 

0.6 0.779505 0.779505 0.779505 0.779505 0.780587 

0.8  0.799788 0.799788 0.799788 0.799788 0.800347 

0.2 

0.4 

0.742238 0.742238 0.742238 0.742238 0.745202 

0.4 0.764466 0.764466 0.764466 0.764466 0.766788 

0.6 0.785675 0.785675 0.785675 0.785675 0.787301 

0.8 0.805805 0.805805 0.805805 0.805805 0.806674 

0.2 

0.6 

0.749341 0.749341 0.749341 0.749341 0.752512 

0.4 0.771136 0.771136 0.771136 0.771136 0.773748 

0.6 0.791999 0.791999 0.791999 0.791999 0.793889 

0.8 0.811847 0.811847 0.811847 0.811847 0.812868 

0.2 

0.8 

0.756414 0.756414 0.756414 0.756414 0.759708 

0.4 0.777804 0.777804 0.777804 0.777804 0.780587 

0.6 0.798306 0.798306 0.798306 0.798306 0.800346 

0.8 0.817822 0.817822 0.817822 0.817822 0.818929 

   
c) 8 8N N                                           b)    16 16N N    

Fig. 5. Comparison of numerical solutions with exact solution of problem 4.3 for 

d) 8 8N N    and b)   16 16N N   . 
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Table 6. Maximum error and CPU time (in seconds) of the methods of problem 4.3.  
 

N N  Method maxE  Setup time Running time Total time 

 

4 4  

FDM 3.2939e-03    2.9781 0.0019 2.9800 

HWLS 3.2939e-03    0.0009 0.0028 0.0037 

DWLS 3.2939e-03    0.0003 0.0096 0.0099 

BWLS 3.2939e-03    0.0003 0.0042 0.0045 

 

16 16  

FDM 3.9987e-04 3.1827 0.0024 3.1851 

HWLS 3.9987e-04 0.0009 0.0028 0.0037 

DWLS 3.9987e-04 0.0003 0.0097 0.0100 

BWLS 3.9987e-04 0.0003 0.0040 0.0043 

64 64  

FDM 6.4417e-05    7.3539 0.0041 7.3580 

HWLS 6.4417e-05    0.0010 0.0028 0.0038 

DWLS 6.4417e-05    0.0003 0.0097 0.0100 

BWLS 6.4417e-05    0.0003 0.0042 0.0045 
 

 

4. Conclusions 

In this paper, we applied wavelets based 

Lifting schemes for the numerical solution 

of generalized Burgers-Huxley equations 

using different wavelet filters.  From the 

above figures (3-5) and tables (1, 3, 5), we 

observe that the numerical solutions 

obtained by different Lifting schemes are 

agrees with the exact solution.  

 

Also from the tables (2, 4, 6), the 

convergence of the presented schemes i.e. 

the error decreases when the level of 

resolution N increases. In addition, the 

calculations involved in Lifting schemes 

are simple, straight forward and low 

computation cost compared to classical 

method i.e. FDM.  

 

Hence the presented Lifting schemes in 

particular HWLS & BWLS are very 

effective for solving non-linear partial 

differential equations. 
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