
Practical guide to Software
Management Plans

1. About this Document
This document provides guidance to create a Software Management Plan (SMP) template. It is
intended for anyone who is involved in the development, support, and/or management of
research software, including researchers, research software engineers, research supporters,
funders, and policy makers in fields involving research software as a scholarly output.

An SMP is a document that describes how a specific software project is developed, maintained,
and curated. The goal of an SMP is to ensure that the software is usable and maintainable in
the long term. An SMP is written by the maintainers, developers, and other stakeholders of a
software project.

An SMP template is a document that prescribes which information is required or expected in an
SMP, in the form of specific questions to be answered by the project maintainers. An SMP
template can be provided by, for example, research groups, research organisations, and funding
agencies to ensure that researchers consistently adhere to certain software management
standards and policies when developing research software.

The document is divided into seven sections. The introduction in Section 2 provides relevant
context. Section 3 discusses the definition of research software used in this guide, followed by
Section 4, which highlights the benefits of SMPs. Section 5 describes core requirements for
SMPs and provides resources to guide researchers and research support staff in fulfilling these
requirements. Section 6 provides a framework for implementing the core requirements into
SMPs. It also guides the reader in choosing suitable subsets of requirements to create SMP
templates for different types of software that require different levels of management (low,
medium, and high). This section also includes an example SMP template for each of the three
management levels. Finally, Section 7 describes open questions which are out of scope for this
document.

2. Introduction
Researchers increasingly rely on software in their research.1,2 Research software takes many forms
and applications, from scripts that generate and collate data to large libraries that build complex
reports.3,4 Research software is used in nearly all research domains, from astronomy5 to theology6,
and in all phases of research.

Many significant scientific discoveries strongly rely upon the use of software. For example:

● In 2016, a three-dimensional geographic information system (3D GIS) was used to
generate virtual reconstructions of architecture along the Via Appia, contributing to
researchers’ ability to understand and reconstruct complex archaeological sites.

● In 2019, the first ever image of a black hole was created by the Event Horizon Telescope.
This breakthrough was made possible by means of software that combined data from a
network of telescopes around the globe.7

● In 2020, the deep learning programme AlphaFold was used to predict the 3D structure of
proteins based on their amino-acid sequence for the first time with an accuracy that
approaches experimental structure determinations. This has been called the
breakthrough of a lifetime for its field.8

.

2.1. Research software supports Open Science
There is growing consensus across different stakeholders, from research performing organisations
to research funders, that research software must be recognised as an important output of research.9

Stimulated by technological innovations and the democratisation of science, researchers, funders,
and governments have launched initiatives to advance transparency under the broad umbrella of the
Open Science movement. In its most basic form, Open Science urges researchers to make all
outputs of research, including primary and the intermediate outputs, publicly accessible.

Software creators should be encouraged to extend or expand upon existing software instead of
creating (yet another) stand-alone piece of software

The ability to reproduce results10 in order to assess the reliability of findings is an integral part of the
research process, as is the possibility of building upon those results. For the sake of research
transparency, reproducibility, reuse, and recognition, research software should be shared by the
authors of a study in such a way that it can be used to obtain the same results as in the original work
or extend that work.

Open Source software has a long history of contribution to the advancement of research. The values
of quality and integrity, and principles of transparency and reproducibility, sit at the heart of the
UNESCO Recommendations on Open Science.11 The same Recommendation identifies Open
Source software as one of the key elements of open scientific knowledge. Open Source software,
alongside practices laid out in the FAIR principles,12 advanced intercommunication among
researchers, stakeholders, and the public.

Multiple initiatives are looking into improving research software management, reusability, and
sustainability13,14 with the aim of contributing to Open Science. Meanwhile, research institutions and
funders are working on the necessary policies,15 provision of support,16 and guidance to include

research software as part of the rewards and recognition system; and to facilitate the adoption of
good practices.

Openness is not a requirement for research software or Software Management Plans. The
composition of SMPs can support open research as well as contribute to all forms of research
software. Ideally, research software should be as open as possible, but as closed as necessary.

3. What is Research Software?
There are ongoing efforts to define what research software is.1,2,3,4 Creating a formal definition of
research software is beyond the scope of this document. For the purposes of this document, we
will utilize the definition of research software from the FAIR for Research Software Working
Group:5

“Research Software includes source code files, algorithms, scripts, computational
workflows and executables that were created during the research process or for a
research purpose. Software components (e.g., operating systems, libraries,
dependencies, packages, scripts, etc.) that are used for research but were not created
during or with a clear research intent should be considered software in research and not
Research Software.”

This is admittedly a broad definition of what research software can include and is provided as a
starting point for people involved in research software projects. Scripts, notebooks, source code,
executables, containers all may be considered research software by an organisation, but there
is no universal agreement. The readers of this guide may decide for themselves whether this
definition suits their purposes.

4. Benefits of a Software Management Plan
Research software is an integral part of the research process and several aspects of its
development, maintenance and curation should be planned for. Data Management Plans
(DMPs) have been used for many years to ensure that good data management practices are

5Defining Research Software: a controversial discussion https://doi.org/10.5281/zenodo.5504015

4 Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)
http://doi.org/10.4230/DagMan.6.1.1

3The Research Software Encyclopedia: A Community Framework to Define Research Software
http://doi.org/10.5334/jors.359

2 On the evaluation of research software: the CDUR procedure
https://doi.org/10.12688/f1000research.19994.2

1 The Four Pillars of Research Software Engineering https://doi.org/10.1109/MS.2020.2973362

https://doi.org/10.5281/zenodo.5504015
http://dx.doi.org/10.4230/DagMan.6.1.1
http://doi.org/10.5334/jors.359
https://doi.org/10.12688/f1000research.19994.2
https://doi.org/10.1109/MS.2020.2973362

followed.6,7 In recent years, Software Management Plans (SMP) have also become increasingly
common.8, 9, 10

An SMP is a document detailing how research software will be managed, usually as part of a
project. An SMP makes explicit what research software does, who it is for, what the outputs are,
who is responsible for the release and to ensure that the software stays available to the
community (and for how long).

An SMP can help to set up a structured way of developing research software. By asking the
relevant questions, an SMP can also help to ensure that the research software is accessible
and reusable.

More specifically, an SMP can help to:

● Explain why developing new software is needed. New software should not be developed
when it would be more cost-efficient and beneficial for the overall community to
contribute to already-existing software.11

● Make the research software re-usable and sustainable. An SMP encourages software
developers to, for example,think about technical choices for the programming language,
operating system dependencies, and also whether developers have the right
documentation and metadata associated with the software to allow its creator or
someone else to reproduce or extend the analysis; and to ensure that the software is
findable and adequately licensed for reuse for an extended period of time.

● Plan for the necessary resources. Resources can be of many types: financial, human,
infrastructure, etc. Whenever reusing, creating or building upon research software in a
research project, additional resources might be needed. The questions in a SMP can
help to think in advance which resources will be needed for developing and maintaining
the software (e.g., hiring Research Software Engineers (RSEs), training), for making the
software available to others (e.g., infrastructure) and for making and keeping the
software accessible over time.

● Allow for verification of work that went into software implementation. When a project is
funded to build software, the funders and the larger community should be able to know
if the project's plans regarding the software have been carried out.

11 A Guide for Publishing, Using, and Licensing Research Software in Germany,
https://doi.org/10.5281/zenodo.4327147

10ELIXIR Software Management Plan for Life Sciences, https://doi.org/10.37044/osf.io/k8znb
9Netherlands eScience Center Software Sustainability Protocol, https://doi.org/10.5281/zenodo.1451750
8Checklist for a Software Management Plan, https://doi.org/10.5281/zenodo.1422656

7Data Management Plan Catalogue,
https://libereurope.eu/working-group/research-data-management/plans/

6Practical Guide to the International Alignment of Research Data Management,
https://doi.org/10.5281/zenodo.4915861

https://doi.org/10.5281/zenodo.4327147
https://doi.org/10.37044/osf.io/k8znb
https://doi.org/10.5281/zenodo.1451750
https://doi.org/10.5281/zenodo.1422656
https://libereurope.eu/working-group/research-data-management/plans/
https://doi.org/10.5281/zenodo.4915861

Ideally an SMP should be drafted at the beginning of a research project. However, even for
existing projects, it is valuable to create an SMP as it helps to summarise established practices
and stimulate reflection and evaluation in software development.. Drafting an SMP with multiple
stakeholders in larger projects can help develop or strengthen common ways of working.

5. Core Requirements for Developing a Software
Management Plan
In this section we provide the core requirements for developing SMP templates. Depending on
their specific context (e.g. institutional policies and regulations), the creators of SMP templates
may choose which of these requirements will help them to adequately manage the research
software that they are responsible for. Different levels of management will need different sets of
requirements (See Section 6 for further details).

5.1. List of core requirements
This section lists the requirements that an SMP should include. These requirements cover
different aspects that research software needs in order to fulfil its purpose.

The requirements for an SMP are:
● Purpose - clearly state the purpose of the software. Provide general information such

as: what problem does it solve, who is the intended audience, what are its advantages
and limitations, etc. A clear explanation of the purpose of the software helps focus on its
specific needs.

● Version control - use a version control system. Adequate versioning of research
software facilitates management of research software, allowing for the identification of
specific versions of the software.

● Repository - deposit releases of your software in an appropriate repository. This should
preferably be a publicly accessible repository, providing globally unique, persistent, and
resolvable identifiers to each release.12 The most important consideration is that potential
users of the software are able to get a copy they can use.13

● User documentation - explain clearly what the software does and how it should be
used.

● Software licensing and compatibility - assign a licence specifying conditions of use for
your software, including patenting information (if relevant). Preferably the licence should
be as open as possible, and as closed as necessary. Software licences must be
compatible with the licence of external components (dependencies, libraries, etc.) that
the software uses.

● Deployment documentation - explain system requirements (e.g. dependencies) for
deploying the software and instructions for installation and testing.

13 This satisfies the F1.1, F1.2 and A1.1, A1.2 FAIR principles for Research software

12A Persistent Identifier (PID) policy for the European Open Science Cloud (EOSC)
https://doi.org/10.2777/926037

https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://www.rd-alliance.org/system/files/FAIR4RS_Principles_v0.3_RDA-RFC.pdf
https://doi.org/10.2777/926037

● Citation - include relevant information indicating how your software should be cited.
● Developer documentation - explain how the software can be modified (docstrings,

in-line comments, etc.),tested, and contributed to (governance, code of conduct,
contributing guidelines, etc.).

● Testing - incorporate tests to ensure your software continues to work as intended.
Different types of testing (unit, functional, integration, linting, typing, regression, etc.)
could be used. Tests in turn should also be documented. Coverage tools should also be
used to assess the extent of the tested code.

● Software Engineering quality - make sure your software adheres to relevant code
quality standards (styling, modularity, etc.) and uses tools for collaborative development
to measure code quality.

● Packaging - use appropriate package managers to allow users to install/deploy your
software with ease.

● Maintenance - make sure there are arrangements in place for the maintenance and
reuse of your software. This could be through a community of developers who will
continue to maintain it, or by including the maintenance of software as part of future
projects, or by increasing the user base. Whenever suitable, develop a retirement
strategy for your software.

● Support/Resources (during the project) – planned resources for support-related
activities such as training, hiring RSEs, infrastructure, hardware, etc. The level of support
should be in line with promises made regarding the level of service provided by your
software (e.g. service level agreements).

● Risk analysis - consider other factors that could have an impact on your software. For
example compliance with privacy policies, security considerations, reliability
requirements, portability / vendor lock, etc.

These requirements are not presented in any particular order. There are many ways of ordering,
grouping, and prioritising them; that is a task left to the creators of SMP templates.

Image 1 - Software Management Plan requirements grouped by their focus.

5.2. Guidance
Detailed guidance on how to fulfil these requirements may depend on the specific needs of each
research domain or institution. For example, each institution may have a specific licensing
policy. The following table provides some useful resources, but it is only meant as a starting
point and it should be adapted to the specific needs of each SMP.

Requirement Reference resources

Purpose No specific guidance provided

Version control Version Control

Repository and registries List of software registries, Software Heritage

Licensing Free Software Foundation, Software licences,
choose a licence and Licence Compatibility

Citation Software citation

User documentation
Writing documentation, How to Respond to
Code of Conduct Reports and Code of
Conduct Facilitators

Deployment documentation

Developer documentation

Testing Code testing

https://the-turing-way.netlify.app/reproducible-research/vcs.html
https://github.com/NLeSC/awesome-research-software-registries
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://www.fsf.org/licensing/
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-software.html
http://choosealicence.com
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://the-turing-way.netlify.app/communication/citable/citable-cff.html#cm-citable-cff
https://guide.esciencecenter.nl/#/best_practices/documentation
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://malvikasharan.github.io/blogs/coc-facilitators/
https://malvikasharan.github.io/blogs/coc-facilitators/
https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html

Packaging Packaging systems (language specific
guidance such as Python Packages and R
Packages), containers

Support (during the project) No specific guidance provided

Long-term maintenance No specific guidance provided

Risk assessment No specific guidance provided

Table 2. Reference resources for different SMP requirements.

Other resources:
Cookiecutter Data Science, Productivity and Sustainability Improvement Planning, Five
Recommendations for FAIR Software.

5.3. SMP rubric
In addition to the SMP template, it is recommended to produce an “SMP rubric." Here you give
examples of acceptable responses and not acceptable responses, per question. Rubrics
provide guidance and an opportunity to reach out for support and/or learn about the subject. It
takes effort to make a rubric (also because it must match a template 1:1), but they are very
helpful as guidance for researchers and for SMP evaluators. Examples of rubrics (for data
management plans) can be found in the Science Europe Guide14 and NWO DMP rubric.15

6. Implementation Examples

6.1. Using subsets of the core requirements to define customised
SMP templates
In Section 5 we defined a set of core requirements that are important in the software
development process and that can, in principle, be included in any SMP. However, software
exists in many forms - from single purpose scripts to mission critical frameworks - which means
that not all requirements are necessarily applicable to every category of software. In practice, it
may become necessary to define SMPs based on subsets of the core SMP requirements
(Section 5.1). In the following sections we show an example of how to create such SMPs using
software management levels.

15 https://zenodo.org/record/3629157#.Yw5o8HZBwuU

14

https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-d
ata-management/

https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://py-pkgs.org/
https://r-pkgs.org/
https://r-pkgs.org/
https://the-turing-way.netlify.app/reproducible-research/renv/renv-containers.html
https://drivendata.github.io/cookiecutter-data-science/
https://bssw-psip.github.io/
https://fair-software.eu/
https://fair-software.eu/
https://zenodo.org/record/3629157#.Yw5o8HZBwuU
https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-data-management/
https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-data-management/

A software management level consists of a set of the core requirements that should be
considered when developing a certain type of software. These requirements can be applicable
before, during, and after the formal software development (project) period. Software
management levels provide a recipe for grouping the core requirements into subsets and
generating an appropriate SMP template. To determine which set of core requirements are
relevant to a software management level, three important factors should be considered:

1. Purpose. What is the current reason or expected end-use for developing the software?

2. Reliability. The effect of software failure and/or non-maintenance on:
○ Risk of harm to self or others. This includes injury, privacy violation, bias, and

inappropriate content.
○ Reputation. For example to self, institution or other.
○ Research, either your own or of others. This effect could be due to an obvious

software failure (“crash”) or a hidden one, for example, returning inconsistent
numerical results on different operating systems.

3. Maintenance. The long-term effort needed to maintain the software as long as it might
be used as a standalone tool or dependency. This includes maintenance functions that
can extend beyond the lifespan of the original development project and includes fixing
bugs, dependency management, operating system compatibility, and security issues.

Using these factors we define three typical management levels (low, medium, high) that underlie
the software examples (Section 6.2) and example SMP templates (Section 6.3).

It should be noted that, in practice, each institution/organisation is responsible for defining its
own management levels16 and as a software project evolves, so can the management level that
applies to it.

6.1.1. Management level: low
Purpose. This software is typically developed for a specific analysis (e.g. drawing a graph) or
one-off project (e.g. practical examples in a course). The developer is the primary user and it is
not intended to be used beyond a defined period or in a different context.

Reliability. This software is generally smaller in terms of lines of code and due to its restricted
scope the output can easily be judged to be correct, either by eyeball (the graph looks correct)
or basic input/output testing (it gives an expected output for a defined input). Good software
practices (e.g. version control and user documentation) are highly recommended. For example,
daily versioning of file/folders by hand coupled with a cloud sync backup is an inefficient but
easy-to-implement version control system.

16 Examples of alternative software classifications include the German Aerospace Center’s guidelines
https://doi.org/10.5281/zenodo.1344611 and Konrad Hinsen’s scientific software stack
https://hal.archives-ouvertes.fr/hal-02117588.

https://doi.org/10.5281/zenodo.1344611
https://hal.archives-ouvertes.fr/hal-02117588

Maintenance. As this software is not intended to be used by others, either directly or as a
dependency, it has a relatively low influence outside the scope for which it was intended. While
measures to enable its reuse (documentation, versioning, archiving) are appropriate, no
additional maintenance planning is required.

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.

4 Deployment documentation How will you document the installation requirements of your software? Please provide a
link to the installation documentation if available.

5 Software licencing and
compatibility

What licence will you give your software?
Does your software respect the licences of libraries and dependencies it uses?

Table 1. Core requirements of an SMP and examples of associated questions for a low level of
software management.

6.1.2. Management level: medium
Purpose. This software has typically been developed as part of a research project or is the
primary output of a research project. Although typically developed for a single purpose, it
incorporates functionality that may be of use to others, either as a standalone tool, library, or
module in an existing tool.

Reliability. This software may have a direct influence on other researchers (e.g. project,
research group) and/or software even if this was not the primary intention when it was
conceptualised. As the software is more complicated and/or larger, in terms of lines of code,
than those in the lower management level, good software practices such as version control
using a system such as Git and user/technical documentation is now essential. More advanced
requirements, such as code auditing, automated testing of major functionality, software
packaging, and distribution now need to be considered.

Maintenance. This software’s functionality is useful to researchers both in and outside the
project and it can be distributed. It will have a lifespan longer than the project in which it was
developed and therefore long-term sustainability becomes more important. Software
management requirements now include providing information on software archiving and citation
as well as strategies for post project maintenance and support.

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 Repository How will you make your software publicly available? If you do not plan to make it
publicly available you should provide a justification.

4 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.
How will you document your software’s contribution guidelines and governance
structure?

6 Software licencing and
compatibility

What licence will you give your software?
How will you check that it respects the licences of libraries and dependencies it
uses?

7 Deployment documentation How will the installation requirements of your software be documented? Please
provide a link to the installation documentation if available.

8 Citation How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9 Developer documentation How will your software be documented for future developers?

10 Testing How will your software be tested? Please provide a link to the (automated) testing
results.

11 Software Engineering quality Do you follow specific software quality guidelines? If yes, which ones?

12 Packaging How will your software be packaged and distributed? Please provide a link to
available packaging information (e.g. entry in a packaging registry, if available).

13 Maintenance How do you plan to procure long term maintenance of your software?

Table 2. Core requirements of an SMP and examples of associated questions for a medium
level of software management.

6.1.3. Management level: high
Purpose. There are various types of software that require a high level of management, for
example software developed and distributed for users other than the developers or software that
has a direct (or systematic) impact on something it interacts with. Research results could be
directly affected by the functioning of simulation software or training of AI models while physical
effects could occur from the use of medical or engineering control software.

Reliability. As this software has been designed, or evolved, to be “mission critical,” reliability is
of utmost importance. All possible actions should be taken to ensure reliability, which includes
software architecture design, code standards, the use of comprehensive cross-platform
automated unit and functional testing frameworks, dependency management, and code
auditing. In addition, legal development requirements, such as traceability, right to use, right to
inspect, right to distribute, etc., and process documentation should be implemented as required
(for example, software medical devices may require ISO or EC certified management
processes).

Maintenance. There is no defined maintenance period associated with this class of software as
it must be maintained as long as it is in use. In order to maintain a high level of reliability,
maintenance strategies, including funding and/or community development plans, should be in

place. Build and release pipelines should be put in place so that not only source code
availability but compiled software is maintained on evolving software/hardware platforms, OS,
CPU, GPU etc.

Core requirement (Section 5.1) Example SMP question(s) (Section 6.1)

1 Purpose Please provide a brief description of your software, stating its purpose and intended
audience.

2 Version control How will you manage versioning of your software?

3 Repository How will you make your software publicly available? If you do not plan to make it
publicly available, you should provide a justification.

4 User documentation How will your software be documented for users? Please provide a link to the
documentation if available.
How will you document your software’s contribution guidelines and governance
structure?

6 Software licencing and
compatibility

What type of licence will your software have?
How will you check that it respects the licences of libraries and dependencies it uses?

7 Deployment documentation How will the installation requirements of your software be documented? Please provide
a link to the installation documentation if available. This documentation should include
a complete and unambiguous description of dependencies to other software, datasets,
and hardware.

8 Citation How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9 Developer documentation How will your software be documented for future developers?

10 Testing How will your software be tested? Please provide a link to automated testing results

11 Software Engineering quality Do you use a software quality checklist, such as
https://bestpractices.coreinfrastructure.org/en or equivalent?

12 Packaging How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13 Maintenance What level of support will be provided for users of the software and how will this
support be organised?

14 Support/Resources How do you plan to procure long term maintenance of your software?

15 Risk analysis Describe the main external factors that should be considered by developers and users
of the software. These could include data privacy, information security, etc.

Table 3. Core requirements of an SMP and examples of associated questions for a high level
software management.

6.1.4. Summary of SMP templates developed for three management levels

Core requirements (Section 5.1) Software management level (Section 6.1)

Management level: Low
(6.1.1)

Management level: Medium
(6.1.2)

Management level: High
(6.1.3)

https://bestpractices.coreinfrastructure.org/en

Purpose X X X

Version control X X X

Repository X X

User documentation X X X

Software licencing and compatibility X X X

Deployment documentation X X X

Citation X X

Developer documentation X X

Testing X X

Software Engineering quality X X

Packaging X X

Maintenance X X

Support/Resources X

Risk analysis X

Table 4. Core requirements of an SMP for software grouped by management level.

6.2. Types of software that require different levels of management
This section highlights a selection of arbitrarily selected software types and groups them
according to the software management levels as defined in Section 6.1.

6.2.1. Software that requires low level management
● A script that is used to create and format a single figure for a publication, for example,

when using a plotting package such as ggplot2 (R) or Matplotlib (Python).
● Software written as part of a project to automate an administrative or routine process,

e.g. monitoring a process or generating document templates.
● Software written specifically for the analysis of a single experiment, data processing, and

presentation of its results.17

6.2.2. Software that requires medium level management
● Software that implements a new or higher performance algorithm and can be applied to

different input data.

17 If this is a pipeline usable by others for different experiments it likely requires medium level
management.

● Simulation software that implements one or more models and/or numerical methods, e.g.
computational fluid dynamics, chemical interactions, planetary evolution, partial
differential equation solvers, numerical integration, etc.

6.2.3. Software that requires high level management software
● Software used in production on which an institute, department, or instrument depends on

for their operation, e.g. software that is used for pre-processing all data coming from a
particular telescope.

● Software that cannot be rewritten during a project’s lifetime. If one requires functionality
from high-impact software, replacing it may threaten a project.

6.3. SMP templates generated for three software management
levels
This section contains examples of SMP templates that match the software management levels
defined in Section 6.1. These templates should be adjusted to match the specific needs of an
organisation using this guide.

6.3.1. Sample SMP template for Management level: low
This SMP template is for software with low management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will your software be documented for users? Please provide a link to the
documentation if available.

4. How will you document the installation requirements of your software? Please provide a
link to the installation documentation if available.

5. What type of licence will your software have?

6. Does your software respect the licences of libraries and dependencies it uses?

6.3.2. Sample SMP template for Management level: medium
This SMP template is for software with medium management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not plan to make it publicly
available you should provide a justification.

4. How will your software be documented for users? Please provide a link to the
documentation if available.

5. How will you document your software’s contribution guidelines and governance
structure?

6. What licence will your software have?

7. How will the installation requirements of your software be documented? Please provide a
link to the installation documentation if available.

8. How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to the automated testing results.

11. How will you check that your software respects the licences of libraries and
dependencies it uses?

12. How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13. How do you plan to procure long term maintenance of your software?

6.3.3. Sample SMP template for Management level: high
This SMP template is for software with a high management level.

1. Please provide a brief description of your software, stating its purpose and intended
audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not plan to make it publicly
available you should provide a justification.

4. How will your software be documented for users? Please provide a link to the
documentation if available.

5. How will contribution guidelines and governance structure of your software be
documented?

6. What licence will your software have? Please provide a valid SPDX-License-Identifier.

7. How will the installation requirements of your software be documented? Please provide a
link to the installation documentation if available.

8. How will users of your software be able to cite your software? Please provide a link to
your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to automated testing results.

11. How will you check that it respects the licences of libraries and dependencies it uses?

12. How will your software be packaged and distributed? Please provide a link to available
packaging information (e.g. entry in a packaging registry, if available).

13. What level of support will be provided for users of the software and how will this support
be organised?

14. How do you plan to procure long term maintenance of your software?

15. Describe the main external factors that should be considered by developers and users of
the software. These could include data privacy, information security, etc.

7. The Way Forward
Although a variety of resources exist to help implement the SMP categories above, it is
important to acknowledge that there are gaps in software support for many of these activities.
Designers and implementers of an SMP should consider the available options, decide what is
most suitable for their project, and document their choices.

Some known areas creating recurring difficulties in long-term software management include:
lack of canonical package repositories for compiled languages, missing support for
backwards-compatibility in package managers, multiple source formats for software
documentation, unclear processes for reviewing and accepting community contributions,
insufficient resources (contributions and financial) to sustain projects, and inability to contact
development teams, for example for licensing queries, after project end-of-life.

