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Abstract: Packet processing offloads are increasingly needed by high-speed networks. This paper 
proposes a high throughput, low latency, scalable and reconfigurable Match-Action Table (MAT) 
architecture based on the open source FPGA-based NIC Corundum. The flexibility and capability 
of this scheme is demonstrated by an example implementation of IP layer forwarding offload. It 
makes the NIC work as a router that can forward packets for different subnet and virtual local area 
networks (VLAN). Experiments are performed on a Zynq MPSoC device with two QSFPs and the 
results show that it can work at line rate of 8 × 25 Gbps (200 Gbps), within a maximum latency of 76 
nanoseconds. In addition, a high-performance MAT pipeline with full-featured, resource-efficient 
TCAM and a compact frame merging deparser are presented. 
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1. Introduction 
With the exponential growth of Internet traffic, pure software network stacks with 

traditional ASIC NICs can hardly handle all incoming packets at high throughput. Hard-
ware offloading has become an efficient way to catch up with the growing throughput 
and latency demands of modern applications in data centers [1]. A variety of protocols 
and jobs can be offloaded on hardware devices, which provide higher throughput up to 
line rate and lower latency down to sub-microsecond. Fast packet processing serves as an 
infrastructure for various types of offloading engines that require the processing of pack-
etized data. 

However, there are few solutions for packet processing on open-source prototyping 
platforms, and there is no way to support multiple connection ports while achieving 200 
Gbps line rate processing. To meet the need for packet processing on an open-source plat-
form for 200 Gbps network, we present a compact MAT-based offloading scheme for an 
open-source NIC named Corundum [2] and present an example implementation called 
MAToC that can perform time-to-live (TTL) decrement, MAC replacement, check sum-
ming, encapsulation of VLAN tag, and packets forwarding according to the destination 
IP address. The proposed scheme is scalable to multiple channels of either the transmit, 
the receive side or both. It is capable of working at realistic line rate in a link mode of 8 × 
25G with two QSFPs. The delay of the processing scheme is tens of nanoseconds, which 
is low enough to meet the latency critical applications. The primary contributions in this 
paper are as follows: 
• A MAT-based offloading scheme with throughput up to 200 Gbps is presented. It can 

handle traffic from multiple channels, processing and forwarding them to the desig-
nated ports according to reconfigurable matching tables. 

• A resource efficient, low update latency, full featured TCAM with search-prior mech-
anism is implemented. The proposed TCAM offers decoupled search input and 
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match output interfaces, along with read and write interfaces for match rules. The 
delay for writing a rule is reduced to 32 × 2 clock cycles, whose preparation time is 
eight times reduced compared to the initial implementation. It utilizes the 32-deep 
LUT RAM to implement a 5-bit TCAM unit, achieving a small SRAM/TCAM bit ratio 
of 32:5 that can guarantee an efficient resource utilization. The search-prior mecha-
nism guarantees the search performance. 

• A compact frame merging deparser is proposed for merging of the processed header 
and payload. It can handle the concatenation of two traffic sources with different in-
terface widths and variable lengths at run time. Moreover, the compact design 
achieves better timing performance than a straightforward implementation. 

2. Background 
There are many kinds of network interface controller (NIC) cards for high speed net-

works. They can generally be divided into dedicated ASIC NICs, network processors and 
reconfigurable NICs. We mainly focus on programmable devices that can be further di-
vided into three categories. First is pure FPGA NIC, which contains solely FPGA for 
MAC/PHY and PCIe transmit and receive engines, such as Xilinx Alveo series SmartNIC 
[3]. Second is AFU NIC, which uses a conventional net device for MAC/PHY and PCIe 
engines while using FPGA or reconfigurable ASIC as acceleration function units (AFUs). 
Examples include Intel FPGA Programmable Acceleration Cards (PAC) [4] and Xilinx 
8000 series Ethernet adapters [5]. Third is SoC NIC, which is much like the first kind but 
equipped with a multi-functional system-on-chip (SoC) that contains not only FPGA, but 
also general processors, graphic processing unit (GPU), memory subsystem, etc. Examples 
include Xilinx Zynq MPSoC and VERSAL [6].  

Generally, AFU NIC provides hardware frameworks for packet processing, which 
saves labor on implementations of the complicated data path and packet transceiver en-
gines, etc. Most of them are equipped with dedicated software packages, for example, the 
powerful user-space driver DPDK is provided for Intel PACs [4] and an application accel-
eration software named Onload [5] was developed for Xilinx 8000 series FPGA. However, 
these designs have limitations in flexibility for programming and extensibility for protocol 
design. For example, the XL710 net device on N3000 PAC [4] will filter out the malformed 
packets that do not comply with the Ethernet protocol. For exploration purposes, we turn 
to the other programmable NICs, and SoC NICs specifically. SoC NICs are much more 
functional than pure FPGA NICs and have more expansibility, providing a broader space 
for exploration. 

Corundum [2] is an open-source FPGA-based NIC, which has splendid programma-
bility, remarkable performance and efficient resource utilization. It is equipped with a vast 
amount of transmit and receive queues along with precise timing protocol (PTP) offload-
ing, by which means it is capable of providing precise time division multiple access 
(TDMA) in the optical switch. It is also a wonderful prototyping platform for NIC func-
tions and on-board packet processing applications development. With a framework mod-
ule provided, substantial data and control interfaces are exposed to user logic. There are 
a few explorations of the potential of Corundum’s flexibility. PANIC [7,8] is a multi-tenant 
isolation NIC equipped with a switch-based offload network that are all implemented on 
Corundum. Menshen [9] is an isolation extension for Reconfigurable Match Tables (RMT) 
packet processing pipeline, using Corundum as verification platform. Here, we will ex-
plore more interesting tasks performed on multiple Ethernet connection ports. 

PANIC [7,8] uses switches and schedulers for chaining multiple offloads, running 
different applications simultaneously in multi-tenant servers. This is a novel way to sup-
port offloads with different throughput, by which means head-of-line blocking can be 
avoided in some ways. However, PANIC is not suitable for fast packet processing when 
the purpose is offloading certain simple functions or protocols. Besides, those tasks run-
ning below the line rate should be placed on host machines because they would not cause 
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significant CPU overhead when the traffic amount is rare. Otherwise, PANIC will not help 
in any way if many packets are passing through these inefficient offloads. 

Our example implementation of MAToC is basically a programmable router. Cerovi 
et al. [10] divided the work of fast packet processing on routers into fast path and slow 
path in terms of the required speed and latency. They summarized most of the jobs in both 
paths. General operations in the fast path include validity checks, TTL decrement, packet 
forwarding and classification, most of which are also offloaded in our MAT pipeline. 
Complicated operations such as fragmentation, error packet handling and offloading for 
certain protocols like ARP and ICMP are put in the slow path. Their survey of the fast 
packet processing solutions mainly focuses on the Click modular router and lacks a per-
spective from register transfer level (RTL). In their cases, only limited offloads can be de-
ployed yet without an insight into resources and timing. 

The proposed packet processing scheme is based on MAT, which is a primitive in-
vention in Programming Protocol-Independent Packet Processors (P4) [11]. P4 architec-
ture is the most popular fashion for packet processing framework with its higher abstrac-
tion in design procedures, independence from specific protocols, and most importantly, 
merchant chips and devices, along with vast amounts of compilers, testers and optimizers. 
But unfortunately, P4 associated tools can hardly be applied to FPGA. Although there are 
some attempts [12] to map P4 into RTL or directly into netlist, those methods are either 
with poor performance or obscure the synthesized results, while there are needs for ar-
rangement of resources and optimization of timing performance [13]. Nevertheless, MAT 
has become a paradigm for packet processing. Pat Bosshart etc. [14] extended this idea to 
a reconfigurable match tables (RMT) model in their powerful switch chip, supporting the 
match on arbitrary header fields with fairly large match table capacity. More research on 
packet processing based on RMT has emerged. FlowBlaze [15] replaces MAT with an ex-
tended finite state machine (EFSM) table, which can match on several subsets of a search 
key. They add an extra table and global registers with corresponding update logic to sup-
port stateful packet processing. PANIC [7,8] also uses RMT pipeline as the spin of its on-
chip network message processing architecture, and achieves 100 Gbps throughput. 
FlowBlaze [15] and many other MAT solutions [12,14] design the customized ALUs as 
execution units along with compact instruction sets to support all possible packet process 
operations. However, general ALUs are not the best way to exploit the parallelism of 
FPGAs. A better method is customizing offload engines for target functions, which would 
result in a system with less latency. 

Packet processing always requires several types of match tables in different condi-
tions, such as masked match (MM) tables for broadcast, exact match (EM) tables for in-
put admission of gateway entry, longest prefix match (LPM) tables for IP address lookup, 
also known as a routing table, and multi-field matching for packet classification and re-
ceive side scale (RSS). Most of these tables can be implemented based on the ternary con-
tent address memory (TCAM), except EM tables that can be simplified as Binary CAM. 
Therefore, there is a huge need for efficient and scalable TCAM in fast packet processing. 
TCAM can be divided in terms of the resources used in FPGA; for example, Xilinx offers 
intellectual property (IP) cores of several kinds of CAMs that use block RAM (BRAM), 
Ultra RAM (URAM) [16]. IITCAM [17] is also a BRAM-based TCAM targeting Intel Al-
tera’s platform. It uses two layers of hierarchical indexing to reduce the storage resource. 
More variants such as [18] optimize power by bank selection and filtering. They can be 
classified as the first kind that are characterized by a large memory unit (generally 36K-
bit for BRAM and 288K-bit for URAM). Besides, D-TCAM [19] and its improved variant 
FracTCAM [20] utilize dual-port distributed LUT RAM that has a medium unit size of 64 
× 4 bits. In addition, there are TCAMs that make use of a shift register look-up table (SRL) 
[16], LUT [21], and flip-flops [22–24]. 

Generally speaking, BRAM-based TCAM has longer update latency and lower re-
source efficiency as its SRAM/TCAM bit ratio is at least 29/9 [20]. FF-based TCAM is only 
suitable for shallow TCAMs where update latency is critical [22]. The differences between 
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these designs are directly related to their unit sizes. For instance, Altera’s synthesis cook-
book [22] provides the earliest FF-based (Flip-Flop) TCAM that makes use of general-pur-
pose flip-flops (registers). The later G-AETCAM [23–25] makes improvements in variant 
metrics such as power, resource efficient, and update latency. However, none of these 
could improve scalability, as FFs scatter over the FPGA chip, and managing large amounts 
of these units would lead to a failure in timing closure or even an inability to complete the 
routing process. Among all these TCAM designs, FracTCAM [20] is adopted as the infra-
structure of our proposed MAT pipeline after the trade-off between resource utilization 
and scalability. 

In the next pages, Section 3 presents the details of the proposed scheme and submodules, 
as well as its advantages. Section 4 summarizes the optimization of resource utilization and 
makes an analysis of throughput and timing performance. Section 5 lists and analyzes the 
experimental results. Section 6 concludes this paper and discusses future work. 

3. Implementation 
3.1. Overview 

Corundum [2] can be configured to different link modes depending on the boards’ 
capability. For the purpose of exploiting the maximum throughput with as many ports as 
possible, the 8 × 25G link mode is adopted in our implementation of MAToC. A block 
diagram in Figure 1 illustrates the proposed packet processing scheme. The top-level 
module of MAToC mainly contains infrastructure that constructs data paths for channels. 
Firstly, all the receive (RX) channels are adapted to the same data width of 512 bits, which 
is important to maintain the original throughput. This will be explained in Section 4.3. 
Then, the parsers would separate the packet into two parts. One part includes metadata 
that needs to be processed, which would be transferred to the MAT pipeline via a multi-
plexer. The other part includes the remaining payloads, which are saved in packet buffers 
and wait to be merged by the deparsers. The red lines in this figure marking the data are 
transmitted in AXI4-Stream protocol, while the green lines are in AXI4-Lite and the black 
lines are self-defined for certain uses, such as transferring of table config messages. The 
labels above the line mark different flows. For example, TX means transmitting from host 
to Ethernet ports, while RX means receiving in the opposite direction. The other labels 
will be explained in related modules. 

 
Figure 1. The proposed MAT architecture. 

The MAT block undertakes most of the packet processing jobs. This block contains a 
number of offload engines implemented as reconfigurable match-action tables. They are 
cascaded with each other and the metadata is processed stage by stage in these submod-
ules. Offloads could be either interdependent or not. For examples, the latter offload could 
take the destination MAC address (DMAC) as search key in its match table, while the 
DMAC could be replaced by a previous offload. Alternatively, the latter offload could be 
activated or disabled by the processing result from the previous ones. The exact structure 
of our proposed offload is shown in Sections 3.3 and 3.4. In addition, there are control and 

PL APP

MAT
MMIO

M
U

X

Packet BufferPacket BufferPacket BufferPacket Buffer

MAT_0

CSR

MAT_1

DEM
U

X

Deparser
+

Adapter

PS APP

Switch

TX

PKTIN

TX&RX

Adapter
+

Parser

Adapter
+

Parser

Adapter
+

Parser

Adapter
+

Parser
RX

Deparser
+

Adapter

Deparser
+

Adapter

Deparser
+

Adapter

MMIO

PKTOUT

AXI4-Stream
AXI4-Lite



Appl. Sci. 2022, 12, 8734 5 of 16 
 

status registers (CSRs) to provide functions of the control plane, i.e., inserting, removing 
and querying table entries in MATs. The specific procedures of configuring are as follows. 
At first, user calls a utility to config an offload with certain match and action rules. Then 
the utility writes the config data into CSRs via the miscellaneous device provided by the 
driver module. This mechanism is called memory-mapped IO (MMIO) and the related 
buses are indicated with labels above in Figure 1. These labels show the path from 
host/controller to CSRs. The config data includes match table entries, action instruction 
and operation code (opcode). In the third step, the modification of opcode registers would 
trigger the config process of read/write logic, which will be introduced in Section 3.3. 

Each MAT offload could be divided into match stage and action stage. The former is 
responsible for extracting some of the metadata as search key to the match table, and then 
fetching the matched opcode with operands from an instruction table. The latter stage is 
used to execute these operations, such as modifying some packet fields. Moreover, the 
modified metadata is transferred to deparsers on its original channel via a demultiplexer. 
The deparser is responsible for reconstructing packets from the processed metadata and 
the buffered payload. Last but not least, packets are forwarded by a switch according to 
the channel ID set in the metadata. The transmitted packets form PCIe to Ethernet MACs 
are also involved in this switch, but keeping its original channel ID. Therefore, they are 
actually transmitted transparently but have bandwidth competition with other channels. 
Apart from receive and transmit channels, there is another channel to the processing sys-
tem (PS) of the Zynq SoC [6] on which Petalinux programs and bare metal applications 
are running. 

As the survey in [10] has analyzed, a packet process should be divided in two ways. 
The first is called the fast path, where all the processes need to be carried out at line rate. 
The other, called slow path, involves complex protocol processes with more latency and 
lower speed, such as Address Resolution Protocol (ARP) reply. In our design, almost all 
blocks are contained in the fast path, except the PS block shown on the top right of Figure 
1. The PS block is used for procedures in the slow path that are not time critical. Similar 
to an SDN design in [26], the input and output of PS could be defined as packet-in (PKTIN) 
and packet-out (PKTOUT). It is worth mentioning that the PKTIN is actually a separate 
channel from all the other channels, so it would not occupy the bandwidth of the fast path. 
In this case, there is no packet that goes through the entire fast path more than once. 

Stephens, etc. [7] classified NICs according to the arrangement of offload engines. 
They pointed out that pipeline designs would increases latency for packets that do not 
need to be processed and the reconfigurable MAT designs are lacking support for complex 
offloads that would stall the pipeline, such as compression and encryption. In the pro-
posed scheme, however, those packets that are not processed by a MAT can be bypassed 
using control signals transferred with the metadata to reduce latency. Besides, complex 
offloads that cannot run at line rate can be implemented in the PS block or simply put on 
the host machine, as the DMA RAM is large enough to buffer some packets. Even so, when 
the traffic that needs to be processed by the complex offloads are continually transferred 
in, there is no other way to handle all of them than to replace the offload engines with 
higher performance versions. 

3.2. Parser 
The parser’s duties normally include packet resolution, validation checks and 

metadata generation [10,27]. In MAToC, metadata generation is substituted with the sep-
aration of header frames. The first transmitted frame of 512 bits width is defined as the 
packet header, which would be transferred separately to the MAT pipeline. The original 
frames are stored in packet buffers at the same time. The IPv4 destination address used as 
the search key in MAT would be contained in this header frame, as its offset is generally 
26 bytes, i.e., within the interface width. The resolution logic of the parser simply identifies 
whether packets are IPv4 or IPv6 and whether they contain a VLAN tag, then forms a 
user-defined tag named pkt_type [3:0], transferring it along with the header frame. What 
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it does is wait until the correct receiving cycles of certain protocol fields and then stores 
them in the output registers. 

3.3. Match Stage 
The primary jobs in match stage include fetching certain fields in header as search key in 

TCAM, reading out an instruction from the table entry indicated by the TCAM output match 
line, where the TCAM match table could be the bottleneck of the whole scheme. An earlier 
attempt of MAT mapped on FPGA [12], implementing BRAM-based TCAM with several cy-
cles’ response delay which causes pipeline bandwidth cut down by more than a half. Improve-
ment in throughput is sought by duplicating tables, and as a result, the more BRAM they used, 
the more throughput they obtained. Therefore, a TCAM design with enough throughput is 
important, i.e., its response speed should be at least equal or larger than the input rate in pack-
ets per second (pps). To sum up, the point is that all modules on fast path should not stall 
while there is no backpressure signal asserted. In other word, bubbles in the pipeline should 
not exist because they can waste bandwidth and even cause frame drops when the input is 
not ready to accept incoming frames. 

MAToC adopts FracTCAM [20] to build its match tables mainly because of its high 
efficiency in resource utilization and low latency of match rule update. As mentioned be-
fore, the SRAM/TCAM bit ratio of FracTCAM is 25:5, which means it consumes 32 bits in 
memory resources to implement a 5-bit wide TCAM. By contrast, this metric of BRAM-
based TCAMs is at least 29:9 [20], around nine times that of the former. Even with the 
surrounding update logic, LUTRAM-based TCAM is a better choice in terms of resource 
utilization. Besides, Corundum also uses many BRAMs in transmit and receive data paths 
together with descriptor and completion modules when configured with many PCIe in-
terfaces, which can hardly be decreased and will be further discussed in Section 4.2. In 
this case, BRAM becomes much rarer than other memory resources. FF-based TCAM is 
good choice for shallow tables and is easy to realize. However, the routing complexity 
will increase sharply with deeper configuration. LUT RAM is in the middle of BRAM and 
register in term of unit size and it is spared nearly 86% of total LUTRAM in the ZU19EG 
chip, apart from those used by Corundum and PS block design. Therefore, it is well suited 
for TCAM in our implementation. This is one of the reasons for adopting FracTCAM [20]. 

The original implementation example of FracTCAM [20] provided is not para-
metrized nor practical, i.e., one cannot config width and depth of TCAM tables easily at 
synthesis time. The initial update logic has not provided functions for inquiry, nor config-
uring rules for masked search key. Besides, its write operation costs 33 × 9 cycles to com-
plete, which is absolutely unnecessary and would lead to a performance decrease of 
search operations as the two operations would compete for address channels. In our 
match stage, we proposed a parametrized and full-featured TCAM based on the genius 
idea of FracTCAM [20]. Our TCAM modules use Verilog instantiation parameters to gen-
erate the table at an arbitrary width and depth, and offers independent search and match 
interfaces with backpressure signals. Furthermore, we implemented a compact read/write 
logic for match rules. It takes 32 + 1 cycles to response a read operation and 32 × 2 + 1 
cycles to write, and the latency is only one cycle for matching of the search key. The extra 
32 cycles of write operations come from the 32-bit shift right register, which is used to 
buffer the calculated match rules. Last but not least, according to the principle in [10], the 
search operations in the fast path always take precedence over write or read operations of 
match rules, by which means it can eliminate the search performance decrease caused by 
update or query of rules mentioned in [24]. In other words, the reconfiguring of our 
TCAM might be stalled by query or search operations, while the packet processing would 
never be stalled. This is applicable in the assumption that the total input rate would not 
rise to the upper bound of the pipeline’s capability, which is 250 Mpps at 250 MHz clock 
domain. The assumption is always true as long as packet length is larger than 76 bytes. In 
that case, there are spare clock cycles for update logic to write match rules. 



Appl. Sci. 2022, 12, 8734 7 of 16 
 

Figure 2 shows how the surrounding logic is designed for a single TCAM unit. A 
large TCAM is combined from many of these units instantiated from Xilinx configurable 
logic block (CLB) primitive RAM32M. This element is a 32-bit deep by 8-bit wide random-
access memory implemented using the LUT memory resources, named SelectRAM. To 
clarify, match rules are the actual data stored in LUT RAM, which has a mapping rela-
tionship with the masked search key in the form of data bits and care bits, e.g., a five bits 
width search key of 5′b00001 maps to a 32 bits match rule of 32′h00000002, and 5′b0000X 
maps to 32′h00000003, where X is a ‘don’t care’ bit. The read and write logic blocks are 
responsible for this mapping work. 

 
Figure 2. The proposed TCAM update logic. 

The write process contains two parts: first is preparation of the match rules, then 
storing the rules into the quad of 32-deep LUT RAMs. More specifically, its logic uses a 
counter, counting from 0 to 31 to calculate the 32-bit match rules from given data and care 
bits. The calculated match rules are buffered in a 32-bit shift right register, then written 
into the LUT RAM with its counter counting one more round. The counting cycle is lim-
ited to the address space of a single LUT RAM unit, which is 32 in our case. Read logic 
needs no preparation, so the response latency is the time it takes to traverse the LUT RAM, 
which is 32 cycles, plus one more cycle to register the output. Logic in the first write count-
ing cycles is isolated from search or read logic, which means that either of them can be 
processed at this temporal interval. 

The match process is straightforward. Take a 10-bit wide TCAM with a depth of 32 
as an example. It is composed of eight units shown in Figure 2, and it is arranged in two 
columns and four rows. It is able to store 4 × 8 = 32 match rules and match for keys in 2 × 
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whether all the segmented pieces are matched. In this example, the input of AND gate is 
32 × 2 matrix, and the output is a 32-bit deep vector. The final output is called the match 
line, which is an array indicating valid entries in the instruction table. One indicator is 
selected as priority and used to fetch an entry from the instruction table, then the fetched 
instruction is sent to the action stage in our scheme. 
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3.4. Action Stage 
There are all kinds of functions that can be offloaded onto the NIC, e.g., checksum, 

PTP, and various protocol offloading; even data moving engines such as DMA and RDMA 
could be counted as offloads. Unlike FlowBlaze [15] and the other MAT solutions 
[11,12,14] whose execution units are ALU based implementations, here we use straight-
forward processing of packet headers to efficiently exploit the programmability of FPGA, 
and achieve a lower latency, as ALU based implementations require more cycles. Cerovi 
et al. in [10] conclude the essential steps for the fast path in a router, which we adapt in 
our action stage, including decrement of time to live (TTL), rewriting of the destination 
and source mac address, and changing the output port according to a route table. The 
three steps are included in the proposed pipeline as the first, second and fourth actions. 
Furthermore, MAToC also offloads the virtual local area network (VLAN) extension of 
IEEE 802.1Q, operations including VLAN tag insertion, modification and removal. This is 
enabled by the capability of the variable length header merging of the deparser. 

As shown in Figure 3, the first action of the pipeline is TTL decrement. In the cases 
of IPv4 and IPv6, with and without VLAN, the position of TTL is separately handled ac-
cording to the packet type information resolved from the parsers. The second action is the 
replacement of the destination and source MAC address, which is controlled by the oper-
ation code from the match stage. The third action is the operation of the VLAN tag. The 
fourth action is forwarding the packet to a corresponding channel, which might be one of 
the eight MAC ports or that to the slow path, i.e., the applications running on the pro-
cessing system of SoC. 

 
Figure 3. Match-Action pipeline. 

Technically, the exact actions could be any packet processing offload engine in any 
order dedicated by users. As long as it does not block any incoming header frame while 
there is no backpressure signal asserting in the output, the throughput will not be affected. 
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parser in the proposed scheme is simplified to concatenate the processed header and pay-
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is usually implemented using multiplexers. This is a simple job, but due to its own 
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complexity and its position as the last stage of the fast path, its timing performance is 
highly critical. 

In MAToC, the main challenge of deparser is in reducing the delay in concatenate 
logic. As MATs demand variation in header length, a deparser needs to merge a longer or 
shorter header frame with other payload frames. With a longer header as an example, the 
deparser ought to store the excess part into a temporary buffer, and then concatenate it 
with the lower part of the payload frame in the next transfer cycle, while the remainder of 
the payload frame is stored in the same temporary buffer. The concatenating is carried out 
over and over again until the packet transfer comes to an end. The variable length concat-
enating could be straightforwardly implemented using a logic shifter and bitwise OR gate, 
but that would result in an unacceptable timing performance. This is because the synthe-
sizer always maps these shifting as multiplexers with input of all the bits along the header 
frame, the current payload frame, and the temporary buffer. The number of inputs as well 
as routing complexity increase with the variation range in header length, which could be 
too complex to achieve timing closure. 

In our implemented deparser, we reduce the candidate bits of the multiplexers from 
the whole frame to a limited number according to a given variation range. Based on the 
fact that the shifting displacement is a multiple of byte width, its candidate bits should 
only contain the corresponding position in every eight bits. As an example, when setting 
the frame size to 16 bytes and limiting the header’s variation range to ±4 bytes, the ac-
cepted header’s size should range from 12 to 20 bytes. The example concatenation design 
is illustrated in Figure 4. The whole process begins with storing the shifted header frame 
into a temporary buffer, while the lower 16 bytes would be transferred out if the header 
length is increased or unchanged. After the first transfer cycle, the buffer would continue 
to store the payload frames, and its output would concatenate with the incoming pay-
loads. There are 16 multiplexers in the last shaded block, generating all possible concate-
nations and being controlled by a select signal. The select signal is calculated according to 
the variation of header length (var) and the state of the finite state machine (FSM) defined 
in the Concat Logic block. 

 
Figure 4. Concatenation design in deparser. For brevity, indexes here refer to bytes instead of bit, 
except for the Select signal. 

All the possible concatenated outputs are listed in the select table in Figure 5, which 
explains the inner logic of the 16 multiplexers in Figure 4. The bottom row is the lower 
part of the header frames, which is selected as the first output frame when header length 
is increased or unchanged (select signal is 0, i.e., sel = 0), and it can be selected once at 
most. The top row is the initial payload data and would be selected if the header length is 
unchanged (var = 0, sel = 9). The others are the concatenation of the buffered data and the 
incoming payload, in which circumstance the select single varies from 1 to 8 depending 
on the variation of packet length. By carefully designing the multiplexer for each output 
data byte, our deparser achieved better resource and timing performance than the 
straightforward implementation, because the selection candidates are reduced. 
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Figure 5. Select table for concatenated output. 

4. Implementation 
The example implementation of the proposed scheme is tested on a commercial off-

the-shelf SmartNIC Stargate F1000 with a Zynq MPSoC chip produced by ResNIC Co., 
Shanghai. We have ported Corundum of 10G and 25G link mode onto the board with 
most of the management features disabled for convenience. The 100G mode is provided 
by the vendor. The board can operate as a normal NIC without any user application. 

4.1. Simulation 
For verification purposes, the Cocotb [28] is used. This is a python verification frame-

work with adequate support on bus interfaces and a capacity for wide test coverage. The 
functional verification and stress tests are performed separately for match stage, action 
stage, MAToC top module and at PCIe level. The simulation at PCIe level is done using a 
simulating driver in python provided by Corundum. 

The implementation is coded in Verilog. Many of the components come from the 
Corundum library, including the multiplexer that constructs the packet processing data 
path. A few improvements have been made. For example, the original multiplexer intro-
duces a bubble between packets when there is only one single channel that keeps entering. 
This is because the arbiter excludes the channel granted for its decision, so the channel 
would not be granted again until the transfer of the current packet was completed. In 
order to eliminate bubbles without adding extra delays, a prediction grant result is as-
signed to the currently granted channel by the arbiter. 

4.2. Resource Utilization Analysis 
As mentioned earlier, the only resource that matters in MAToC is BRAM, as the prim-

itive Corundum allocates several buffers in the data path, together with consumption of 
DMA RAM for packet data, descriptor and completion in both receive and transmit direc-
tion of each independent channel. This has already slightly exceeded the BRAM capacity 
of this part (984 for zu19eg-ffvc1760-2e) in the 8 × 25G mode, leading to failure in place-
ment. Even if resources are reduced below capacity, the heavy use of distributed resources 
in a centralized design will lead to the increase of propagation time in all paths, resulting 
in an unacceptable drop of maximal clock frequency. In this section, we collect some ar-
chitecture parameters that should be carefully analyzed and set in order to achieve opti-
mal resource utilization and meet the timing constraints. 
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In order to reduce the use of BRAM, we disabled functions such as PTP timestamp 
and statistics gathering. We also managed to set parameters for buffers and DMA RAM. 
The instantiations of block RAM can be configured as 36 × 1024 or 64 × 512 (Width × 
Depth). In some cases, improper parameters can lead to waste in space utilization. For 
example, let the size parameter of a buffer with data width of 16 bytes equal 8192 bytes; 
its depth is resolved as 8192 ÷ 16 = 512 and it would be synthesized as two BRAM config-
ured as 64 × 512. If the SIZE is larger than 8192, then the synthesis could result in four 
BRAM as 32 × 1024, which is double that of the former one. If it is 4096 bytes, the synthe-
sizer would result in the same numbers of instantiated BRAM as the original setting, wast-
ing half of its address space. By carefully setting the buffer size, BRAMs would be config-
ured to the width of 64 as much as possible, and making full use of the memory space, i.e., 
letting the buffer depth equal 512 can benefit to the utilization result. As for the packet 
buffer for each channel, their depths are preset according to the delay cycles in the MAT 
pipeline and the maximum frame length. Specifically, it should be the larger one of the 
maximum frame length and the internal data size multiplies the delay cycles. Based on 
this result, trade-off between resources and performance is then to be considered by the 
designer. 

4.3. Thoughput Analysis 
Throughput is the main metric in our experiments. The physical limitation in optical 

modules is called the line rate, which is around 8 × 25 = 200 Gbps in our case and it is also 
the target throughput. The throughput of the internal data path depends on data width 
and clock frequency. Parameters such as data width are automatically calculated to ensure 
sufficient bandwidth of the on-board data path. For example, the data width is bound to 
512 bits for 100G link mode and 64 bits for 10G, 128 for 25G with the same clock frequency 
of 250 MHz. Therefore, the original infrastructure modules would not be a restriction. As 
we mentioned earlier, when traffic from all eight channels is merged into a single pipeline 
for processing purposes, the pipeline becomes a bottleneck for the entire application. This 
is why we emphasize that modules in the fast path should not stall packets when the 
backpressure signal is not asserted. In addition, to maintain a throughput margin, data 
width adaptation is necessary. 

In MAToC, data width adapting is performed for the MAT pipeline, from 128 bits in 
the ingress and egress, to 512 bits internally, in order to ensure the headers are transferred 
as one frame per packet. The working frequency is 250 MHz, which means the total 
throughput is limited to 250 Mpps. We will show that this choice is a trade-off between 
routing complexity and performance. 

With eight channels combined, the total throughput seems to be 200 Gbps. However, 
the actual data rate varies with packet length (PL) due to the bandwidth consumption of 
interframe gap (IFG, normally 12 bytes), preamble (abbreviated as P, 7 bytes), and start 
frame delimiter (SFD, 1 byte). The maximum receive rate can be calculated by formula (1), 
which is coincident with the actual traffic rate from the IXIA generator, tagged as transmit 
rate upper bound (TX UB) in Figure 3. 

Rx Rate =  PL
PL+IFG+P+SFD

× Line Rate,  (1) 

4.4. Timing Analysis 
As mentioned before, the timing performance is critical for deparsers, so an analysis 

on the logic delay of deparsers is necessary. In the logic level, multiplexers (MUXs) are 
implemented using look up tables (LUTs) and dedicated multiplexers in CLB. Each Ul-
trascale architecture CLB has eight 6-input LUTs (LUT6), four F7MUX, and two F8MUX. 
One LUT6 can be used to implement a 4:1 MUX. Combining with the adjacent LUT6 and 
their F7MUX, an 8:1 MUX can be implemented. With all of the LUTs in one CLB, the 
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widest multiplexer it can implement is a 32:1 MUX. A lower bound of logic delay can be 
calculated from this perspective. 

For example, the proposed deparser is configured to fit the variation range of 15 
bytes, which means 32 (=15 × 2 + 2) candidates are arranged for each output bit. In the case 
of the lowest logic delay, only one CLB is utilized for one-bit output, and its logic delay 
includes one LUT6, one F7MUX, one F8MUX and one F9MUX. However, for a general 
barrel shifter that takes the header, payload and temporary buffer as candidates, the num-
ber of inputs is 1656 (=632 + 512 + 512). Hence, at least 54 CLBs constructed into three 
layers of 32:1 MUXs are needed for one single output bit. 

5. Result 
The function verification and performance tests are performed in a DELL PowerEdge 

R740 server machine with a PCIe gen 3.0 x16 slot supported. On the client side, a traffic 
generator named IXIA Network is used, which can generate dedicated traffic to provide 
performance and stress tests. 

Throughput is measured using uniform traffics with different search keys equally 
distributed to achieve peak performance. Tests are done in variable packet lengths to draw 
a curve of throughputs versus frame lengths. Those ingress packets from IXIA would go 
through the whole pipeline and all the actions are performed, among which VLAN en-
capsulation is specified. Results in the figure below show that the proposed scheme can 
process packets at line rate when packet lengths are larger than 76 bytes. It should be 
noted that curves are printed according to the ingress frame size, while the egress frame 
sizes are actually enlarged by the encapsulation of VLAN tags. 

Figure 6 shows some performance decrease for small packet lengths compared with 
the egress throughput upper bound as a red line drawn from formula (1). This is because 
of the deficiency of single pipeline designs, whose total processing rate in packet per sec-
ond (pps) is limited to their working frequency. In the case of small packets, the actual 
egress throughput can be estimated by formula (2), where PL stands for packet length 
from ingress and the extra four bytes come from encapsulated VLAN tags. The intersec-
tion of the two formulas (1) and (2) implies a minimal packet length that makes the total 
throughput reach its upper bound, which is 76 bytes in our proposed scheme. To wipe 
out the performance decline for small packets, solutions can be increasing the clock speed 
or instantiating another pipeline to discharge the heavy traffic, i.e., making two identical 
pipelines of 512 bits for every four 128 bits wide input channels, either increasing routing 
complexity or design complexity. 

 
Figure 6. Throughput in reference to frame size.  

Tx Rate =  Freq × (4B + PL) = 250 MHz × (4 + PL) × 8 bit (2) 
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The latency time is 19 clock cycles as shown in Table 1 where detailed timing for each 
stage is given. The overall latency is 76 nanoseconds in the 250 MHz clock domain and it 
shows that MAToC is capable of meeting the latency requirements of most applications. 
Most of the modules in MAToC only introduce one cycle delay as skid buffers are gener-
ally used. Adapters before parsers take four cycles to generate one 512 bits output trans-
action from four 128-bit input transactions. The multiplexer adopts a round-robin arbiter, 
whose latency depends on the number of inputs when they are all asserting for transmis-
sion, which is at most eight in MAToC. The four delay cycles of the match stage are sepa-
rately from search key preparation, TCAM response, instruction data fetch, and at the last 
registered output. The instruction table is made of block RAM and its latency comes from 
the inner output registering in RTL’s view. It is a fairly compact design, but it can still be 
improved with a more integrated design, which would be a future work. The latency of 
action stages depends on these internal offload engines. The time needed to pass through 
the switch is variable depending on the competition conditions. It would be only one cycle 
in a uniform test traffic with search keys equally distributed. In addition, traffic in the 
latter adapters could be buffered with a FIFO to avoid the throughput reduction caused 
by pipeline stalling in the switch. 

Table 1. Latency. 

Module Latency (Cycle) 
Adapter ahead 4 

Parser 1 
Multiplex 1 

Match Stage 4 
Action Stage 5 

Demultiplexer 1 
Deparser 1 

Adapter after 1 
Switch 1 
Total 19 

The resource utilization of MAToC is listed in Table 2. There is still a large number 
of unused LUT resources to ensure the future development of more offload engines. The 
TCAM size is 35 × 1024 here, and it is the only module that consumes the LUT RAM (LUT 
as Memory). Block RAM is used for packet FIFO buffers (8.5 for each channel) and the 
instruction table (4 in this config). 

Table 2. Utilization. 

Resources Number Percentage % 
LUT as logic 76453 14.63 

LUT as Memory 3640 1.64 
Block RAM 72 7.33 
Flip-Flops 73537 7.03 
CARRY8 57 0.09 
F7 Muxes 6595 2.52 
F8 Muxes 2406 1.84 

A series of experiments are designed to evaluate the hardware cost of the deparser. 
Deparsers are implemented in different configs and resources utilization reports are gen-
erated. The Figure 7 below shows that the logic cost in terms of some common types of 
resources increase along with the variation range of header length. 
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Figure 7. Utilization of deparsers in different variation range. 

6. Conclusions 
In this paper, we propose MAToC as a high throughput, low latency, MAT-based 

packet processing scheme for 200 Gbps network based on the open source NIC Corun-
dum. Moreover, we also design a full-featured, low latency TCAM based on FracTCAM 
and a compact frame merging deparser, supporting the merger of two variable length 
frames. Performance and resource utilization are also analyzed in detail. The throughput 
test shows that MAToC has realized line rate processing and IP forwarding for packets 
larger than 76 bytes. The overall latency of the processing pipeline is 19 clock cycles that 
results in 76 ns using a 250 MHz clock signal. 

There are two major limitations to this design. One is that the processing capability 
cannot cope with small packets. One possible solution is to increase the clock rate for the 
entire application block, which would also bring the challenge of timing closure. The asyn-
chronous crossing between different clock domains is addressed by an asynchronous 
FIFO buffer in this project. It is built from the dedicated logic in block RAM, which can 
provide two accessing ports for asynchronous read and write. The speed should be high 
enough that the pipeline can handle the smallest packets of 64 bytes at line rate. For a 
board with eight ports in 25GBASE-R, the total throughput is about 200 Gbps. The lower 
bound on the clock rate is the total throughput divided by the sum of IFG, preamble and 
packet length, which is approximately 300 MHz. The other limitation is that TCAM cannot 
be implemented in a larger size due to limited resources and timing issues. We plan to 
design a multi-layer match table that uses on-board DDRs, which have much more capac-
ity and longer latency than the memory for FPGA. This will be a future work. 
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