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Abstract: The purpose of this study is to propose a practical formula for estimating the maximum load
bearing capacity of partially concrete-filled steel tubes (PCFST) without using complicated numerical
analysis and estimation procedures. This study focused on four parameters (radius thickness ratio R,
slenderness ratio λ, axial force ratio n, and concrete filling ratio Lc/L) used in numerical analysis to
determine horizontal load bearing capacity and buckling position in PCFST with diaphragms under
monotonic loading. Based on the results, an equation for estimating the horizontal load bearing
capacity of PCFST was obtained by nonlinear regression analysis. The estimation equation that did
not consider different buckling positions predicted the horizontal load bearing capacity with an error
of approximately ±10% from the numerically analyzed values, but the estimation equation that took
the different buckling positions into consideration could predict the horizontal bearing capacity to
within a margin of error of about 5% from the numerical value by determining the buckling position
in advance.

Keywords: partially concrete-filled tubes; circular section tubes; estimation equation; horizontal load
bearing capacity

1. Introduction

A partially concrete-filled steel tube (PCFST) structure is a steel tube of circular or
rectangular cross-section that is partially filled with concrete at the bottom part. The in-
filled concrete prevents the steel plate from buckling into the steel tube, and the restraint of
the steel tube increases the compressive strength of the concrete, resulting in a significant
improvement in strength, toughness, and stiffness compared to hollow steel tubes with
no concrete.

In Japan, the PCFST structure was focused on after the Kobe Earthquake occurred in
1995, which caused severe infrastructure damage. The results of a survey of the damage
from that earthquake [1] showed that PCFST structures have excellent seismic performance,
and research on PCFST structures, whether circular or rectangular in cross-section, are
actively conducted. For example, for PCFST structures with circular cross-sections, exper-
iments have been conducted to define the limit state [2,3], to clarify their behavior with
the diagram under static and dynamic loadings [4,5], and to develop accurate numerical
models [6,7]. In addition, Iura et al. proposed an estimation method for the horizontal load
bearing capacity of concrete-filled circular section piers [8]. They proposed an equation
for estimating the maximum horizontal load bearing capacity of concrete-filled circular
piers under cyclic horizontal loading, using experimentally obtained maximum bending
moment and plastic section coefficients. Although their equation agreed well with experi-
mental data, it required numerical integration of the cross-sectional data, and the maximum
load bearing capacity cannot be easily obtained using only parameters obtained during
pier design.
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Therefore, the purpose of this study is to propose a practical formula for estimating
the maximum load bearing capacity of tubes without using complicated numerical analysis
and estimation procedures. To clarify their effects on horizontal load bearing capacity and
buckling position, the parametric analysis on concrete-filled circular section tubes with
diaphragm under monotonic loading was conducted focusing on design parameters such
as thickness ratio, slenderness ratio, axial force ratio, and concrete filling ratio. Furthermore,
an equation for estimating the horizontal load bearing capacity of concrete-filled tubes was
discussed by nonlinear regression analysis.

2. Numerical Finite Element Model
2.1. Outline

The numerical model is outlined in Figure 1. It uses a circular section without stiffeners
in the vertical direction, with a diaphragm placed directly above the concrete inside the
steel tube. The diaphragm has the effect of smoothly transferring compressive forces to
the concrete and preventing the progression of buckling even after the maximum bearing
capacity. L, Lc, D, and t in the figure indicate the height of the steel tube, the height of the
concrete, and the diameter and thickness of the steel tube, respectively.
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The specifications of each numerical model are shown in Table 1. The radius thickness
ratio parameter R and the slenderness ratio parameter λ in the table are expressed by the
following equations by Specifications for highway bridges in Japan [9]:

R =
√

3(1− µ2
s)

fs

Es

D
2t

(1)

λ =
KL
r

1
π

√
fs

Es
(2)

where µs, fs, Es, K, and r are Poisson’s ratio, yield stress, Young’s modulus, the effective
buckling length factor of the cantilevered beam, and the secondary radius of the section
of steel tube, respectively. Based on the parameter limits defined in the Japanese Speci-
fications for Highway Bridges [9], R (0.03 ≤ R ≤ 0.12) is set to 0.06, 0.09, and 0.12, and
λ (0.2 ≤ λ ≤ 0.4) is set to 0.2, 0.3, and 0.4. The axial compressive force acting on the column
head ranged from 10% to 50% of the yield axial force of the steel tube only, excluding the
in-filled concrete.
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Table 1. Numerical model specifications.

Model C-006-
020

C-006-
030

C-006-
040

C-009-
020

C-009-
030

C-009-
040

C-012-
020

C-012-
030

C-012-
040

Diameter of steel tube
D [mm] 900

Thickness of steel tube
ts [mm] 18 12 9.3

Height of steel tube
L [mm] 2550 3850 5100 2600 3850 5100 2600 3850 5100

Radius thickness ratio
parameter R 0.06 0.09 0.12

Slenderness ratio
parameter λ

0.20 0.30 0.40 0.20 0.30 0.40 0.20 0.30 0.40

Axial force ratio n 0.1, 0.2, 0.3, 0.4, 0.5
Concrete filling ratio Lc/L 0.2, 0.4, 0.6

The stress-strain curve of the steel is shown in Figure 2. Young’s modulus Es, Poisson’s
ratio µs, and yield stress fs were set to 206 GPa, 0.3, and 308 MPa, respectively, based
on material tests obtained from a report on cyclic load testing of concrete-filled circular
section bridge piers conducted at the Public Works Research Institute [10]. The von Mises
yield condition was adopted as the yield criterion. For the concrete, the uniaxial compres-
sive strength fc was set to 22.0 MPa, Young’s modulus Ec = 4730√fc = 21.0 GPa, and
Poisson’s ratio µc was set to 0.2 according to ACI Committee 318 [11]. For the concrete,
the stress-strain curve (Figure 3) was referred to the Popovics model and made into a
multilinear form [12]. For the yield condition, the Drucker–Prager failure criterion was
used as expressed in the following equation:

fc = αI1 +
√

J2 (3)
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Here, I1 is the first invariant of the stress tensor, J2 is the second invariant of the
deviatoric stress tensor, and the material constant α is assumed to be 0.2 based on Balmer’s
triaxial compression test [13]. Cracking due to tensile stress in concrete was taken into
account by assuming cracking locations as described below.

2.2. Finite Element Model

Figure 4 shows the numerical model with a mesh partition. MSC’s commercial FEM
software (Marc2016) was used for the numerical analysis. Four-node shell elements were
used for the steel tube and diaphragm, and eight-node brick elements were applied to
model the concrete. A two-node beam element was employed to the top of the column in
order to reduce the number of degrees of freedom and act axial load on centroid of tube.
As mentioned above, we adopt linear elements in our discretization of the FE model. This
is to reduce the effect of element aspect ratio degradation under the large deformation
and to stabilize the contact normal between steel tube and concrete. A gap of 0.1 mm was
provided between the steel tube and diaphragm elements and the concrete elements to
allow for drying shrinkage of the concrete inside the steel tube.
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2.3. Numerical Conditions

Figure 5 shows the boundary conditions of the numerical model. The base has a
fixed support, and the top of the column is subjected to axial compressive force N and
horizontal displacement δ. When the concrete-filled steel tube is subjected to a load, contact,
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separation, and friction occur between the steel members and the concrete. In this study,
these behaviors are considered to be contact problems. The Coulomb friction law is used to
model the behavior between the steel members and the concrete (Figure 6). The coefficient
of friction between them, µSC was set to 0.2 based on Johansson’s research [14].
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As to the concrete’s cracking behavior, Ngo et al. analyzed reinforced concrete beams,
assuming the location of cracks and inserting a nonlinear spring into the assumed crack
surface [15]. The advantage of this method is that a convergent solution can be obtained
even when the deformation of the concrete becomes large. In this study, the location where
the cracks in the concrete occur is assumed to be the bottom of the column because the
bending moment is the largest at the bottom of the column under the horizontal load, and
this crack is treated as the contact problem between the concrete interface and the rigid
body inserted at bottom. This crack, that is the distance between the concrete interface
and rigid body, becomes large when the bending moment acting on the column becomes
large. The friction coefficient µCC between the two is set to 0.5. Note that the validity of
these modeling methodologies in PCFST with circular cross-sections between the numerical
model and the experiments has been confirmed in our previous study [5].

3. Behavior of Partially Concrete-Filled Steel Tubular (PCFST) Columns

In this section, model C-009-030 is used as a representative example to show the failure
modes and load-displacement curves of the PCFST to understand the behavior of PCFST
under horizontal loads.

3.1. Load-Displacement Curve and Equivalent Stress Distribution

For the range of models used in this study, three types of failure modes were observed
in the PCFST as shown in Figure 7. Each model in the figure has the same radius thickness
ratio and slenderness ratio, with only the axial force ratio being varied. In Figure 7a,
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out-of-plane deformation occurred in the steel tube at the base of the column, while in
Figure 7b, out-of-plane deformation occurred at two locations: in the steel tube at the base
of the column and just above the concrete. In Figure 7c, out-of-plane deformation occurred
in the steel tube directly above the concrete.
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Figure 8 shows the load-displacement curves of the PCFST for each axial force ratio.
The slope of the curves decreased as displacement increased for all the models. However,
no obvious strength degradation can be seen, and load bearing capacity remained almost
constant for models with failure modes shown in (a) and (b). On the other hand, for
model (c), where the steel tube just above the concrete deformed out of plane, the horizontal
load fell sharply after a horizontal displacement of 60 mm, similar to hollow steel tubes.
These results show that there are different load bearing mechanisms for the model with
out-of-plane deformation in the steel tube just above the concrete and other models with
different failure modes.
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Figure 9 shows the equivalent stress distribution of the PCFST at the horizontal
displacement of 60 mm. The right side of the figure shows the steel tube, and the left side
shows the concrete filling. At this stage, the steel tube had high equivalent stress at the base
or just above the diaphragm. The concrete filling had high equivalent stress at the interface
with the diaphragm and at the base on the compression side. In addition, high equivalent
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stresses were observed on the top surface of the concrete filling around the periphery of
the diaphragm. This is a similar trend to that observed in the authors’ study of PCFST’s
diaphragms [5].
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Figure 9. Equivalent stress distribution for steel tube and concrete filling at horizontal displacement
of 60 mm (C-009-030, Lc/L = 0.4): (a) n = 0.1; (b) n = 0.2; (c) n = 0.3.

Figure 10 shows the normalized axial load on the steel tubes and concrete. Here, the
normalized axial load is obtained by dividing each axial load by the acting axial force N.
The axial load of the steel tube and concrete in the figure was calculated from the sum
of the axial reaction forces on the base elements. Similar to the load-displacement curve,
the hysteresis of the model where out-of-plane deformation occurred in the steel tube at
the base of the column and the model where out-of-plane deformation occurred in two
locations, in the steel tube at the base of the column and just above the concrete, are very
similar, with the axial compressive force in the steel tube decreasing and turning into axial
tensile force as displacement increased. In contrast, the axial compressive force acting on
the concrete increased as shown in (a) and (b) of Figure 10. Meanwhile, for model (c) in
Figure 10, where the steel tube directly above the concrete is deformed out of plane, the
axial compressive force acting on the concrete grew larger while the axial force in the steel
tube decreased, which is similar to other failure modes at the start of loading. However, the
axial force in the concrete decreased and the steel tube shouldered a larger portion of the
axial compressive force after a displacement of 60 mm. This is because the concrete did not
bear the force after out-of-plane deformation occurred just above the concrete, as shown in
Figure 10c.
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(b) n = 0.2; (c) n = 0.3.

The results above indicate that load bearing capacity can be maintained even after
out-of-plane deformation of the steel tube occurs due to increasing horizontal load. This
is because the concrete bears the axial compressive force in the model where out-of-plane
deformation occurs in the steel tube at the base of the column and the model where out-of-
plane deformation of the steel tube occurs in the two locations discussed above. On the
other hand, for the model where the steel tube directly above the concrete deformed out of
plane, only the steel tube bore the axial force, which was not transmitted to the concrete
because out-of-plane deformation occurred on the unfilled part of the steel tube. This may
have caused the sudden degradation in strength.

3.2. Buckling Pattern

Table 2 shows the failure modes of all models, as demonstrated by model C-009-030
discussed in the previous section. Table 2a–c show the results for models with radius
thickness ratios R = 0.06, 0.09, and 0.12, respectively. In the table, black sections show cases
where out-of-plane deformation occurred in the steel tube at the base of the column, gray
sections show cases where out-of-plane deformation occurred in both locations, and white
sections show cases where out-of-plane deformation occurred in the steel tube just above
the concrete.

The table shows that both the concrete filling ratio and axial force ratio affect the failure
mode of the column when the models have the same radius thickness ratio parameter R and
slenderness ratio parameter λ. Increasing the concrete filling ratio tended to cause buckling
at the base of the steel tube, while higher axial force ratios tended to increase buckling
of the steel tube directly above the concrete. Moreover, with the same radius thickness
ratio parameter R and different slenderness ratio parameter λ, the buckling positions for
concrete filling ratios Lc/L and axial force ratios n are almost the same, with no apparent
effect from the slenderness ratio parameter λ. On the other hand, with the same slenderness
ratio parameter λ and different radius thickness ratio parameters R, buckling occurred in
the steel tube directly above the concrete under smaller axial forces for models with larger
radius thickness ratio parameters.
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Table 2. Relationship between buckling position and design parameters: (a) Model with R = 0.06;
(b) Model with R = 0.09; (c) Model with R = 0.12.

(a)

λ 0.2 0.3 0.4
n 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Lc
L

0.2
0.4
0.6

(b)

λ 0.2 0.3 0.4
n 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Lc
L

0.2
0.4
0.6

(c)

λ 0.2 0.3 0.4
n 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Lc
L

0.2
0.4
0.6

4. Estimation Equation for Maximum Load Bearing Capacity
4.1. Proposed Estimation Equation

Based on the results of the numerical analysis, an equation for estimating the maximum
load bearing capacity was obtained by nonlinear regression analysis using the statistical
analysis software R. The equation for estimating the maximum load bearing capacity is
as follows:

P
Pu

=

(
7.1× Lc

L

0.68
× R1.04 × λ−0.07

)
−
(

4.45× Lc

L

−0.65
× R0.72 × λ0.3 × n1.43

)
+ 1.01 (4)

Here, Pu is the maximum bearing capacity at Lc/L = 0 and n = 0 for each model.
In other words, the maximum load bearing capacity of the PCFST can be estimated ac-
cording to the concrete filling height Lc/L, axial force ratio n, radius thickness ratio R and
slenderness ratio λ, as long as Pu can be obtained for a steel tube without complicated
contact problems.

4.2. Applicability of Estimation Equation
4.2.1. Results for Varying Slenderness Ratios

Figure 11 shows the maximum load bearing capacities for the numerical and estimated
values for models with slenderness ratios λ of 0.2 and 0.4, respectively. The vertical axis
shows the non-dimensionalized horizontal load bearing capacity P/Pu, and the horizontal
axis shows the axial force ratio n. Open and closed dots in the figure show the results of
the numerical analysis. Open dots indicate buckling just above the concrete, and closed
dots indicate buckling at the base of the steel tube and in both locations, at the base of the
steel tube and just above the concrete. The estimated values are indicated by dashed lines
in the figure.
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Figure 11. Maximum load bearing capacity and estimation equation for each model: (a) Model
C-006-020; (b) Model C-006-040; (c) Model C-009-020; (d) Model C-009-040; (e) Model C-012-020;
(f) Model C-012-040.

Firstly, focusing on Figure 11a. When the concrete filling ratio was 0.2, the buckling
position changed as the axial force ratio increased. On the other hand, when the concrete
filling ratio was 0.4 or 0.6, buckling occurred at the base of the steel tube. With Lc/L = 0.2,
the estimation equation gives a good approximation of the maximum bearing capacity in
the numerical analysis. On the other hand, there was a difference between the numerical
and estimated values for the model with Lc/L = 0.4 at low axial force ratios and for the
model with Lc/L = 0.6 in general. These results were similar in Figure 11b–f, where the
slenderness ratio varied, and the difference between the numerical and estimated values
tended to increase as the concrete filling ratio increased.
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4.2.2. Results for Varying Concrete Filling Ratios

Figure 12 plots the horizontal load bearing capacity for each concrete filling ratio and
the value obtained by the estimation formula. The vertical axis shows the estimated value
of P/Pu and the horizontal axis shows the numerical value of P/Pu. The open and closed
dots in the figure show the numerical results.
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Figure 12. Difference between maximum load bearing capacity from numerical analysis and estima-
tion equation: (a) Lc/L = 0.2; (b) Lc/L = 0.4; (c) Lc/L = 0.6.

In the model with Lc/L = 0.2, the difference between the numerical value and the
estimated equation is generally within 5% in all cases, and the horizontal load bearing
capacity of the model can be obtained by the estimated equation. For Lc/L = 0.6, the errors
of most of the models ranged between 5% and 10%. From Sections 3 and 4.2, we believe
these errors were generally between 5% and 10% because the estimated equations could
not capture the increasing trend of the difference in horizontal load bearing capacity due to
the differences in buckling position. In other words, although the least-squares method
could be used to express the horizontal bearing capacity in a single equation, it was not
possible to take into account the different tendencies of the horizontal bearing capacity
arising from differing buckling positions.

5. Estimation Equation for Maximum Load Bearing Capacity Considering
Buckling Position

Using the results of the previous sections, the location of buckling in PCFST is pre-
dicted by their design parameters. We studied the conditions for buckling at the base of
the steel tube, buckling in two locations (at the base of the steel tube and just above the
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concrete), as well as for buckling just above the concrete alone, and we propose an equation
for the maximum load bearing capacity for each case.

5.1. Prediction of Buckling Position

A formula for estimating the position where buckling deformation will occur in
PCFST is proposed, using the radius thickness ratio R, slenderness ratio λ, concrete filling
ratio Lc/L , and axial force ratio n as parameters. The formula was obtained by linear
discriminant analysis using the free statistical analysis software R, release 3.6.2, similar to
the process of deriving the equation for estimating horizontal load bearing capacity. The
formula for estimating buckling position using the various parameters and obtained by
linear discriminant analysis is as follows:

f = 25× R + 0.40× λ + 3.97× n− 8.88× Lc

L
+ 0.04 (5)

Here, it is predicted that buckling occurs only at the section just above the concrete
if f is positive and that buckling occurs at the base, or at two locations, at the base and
immediately above the concrete, if f is negative. Thus, the relationship is as follows:

f


> 0 . . . buckling only at section just above concrete

< 0 . . . at base, or at base and just above concrete

(6)

As representative examples, Figure 13 shows the relationship of the buckling position
in the steel tube and the estimation formula for models C-009-020 and C-009-040. In the
figure, open dots indicate cases where buckling occurred only at the section directly above
the concrete and closed dots indicate cases where buckling occurred at the base, or at two
locations as described above. The dashed line shows values from the formula for estimating
buckling position. The figure shows that the buckling position is adequately classified. If
the point is above the dashed line, buckling is predicted to occur at the base, or in the two
locations noted earlier. Alternatively, if the point is below the line, buckling is predicted to
occur only at the section directly above the concrete. The same tendency was also observed
under other conditions, showing that the position where buckling of the steel tube occurs
can be classified using this estimation formula.
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Figure 13. Buckling position relationships with n and Lc/L: (a) Model C-009-020; (b) Model C-009-040.

5.2. Proposed Estimation Equation

Nonlinear regression analysis was performed using the statistical analysis software
R release 3.6.2 for each group of buckling positions in the PCFST discussed above. The
estimation equation for the group where the steel tube buckled at the base, or in two
locations, is shown in Equation (7). For the group where the steel tube buckled at the
section just above the concrete, the estimation equation is shown in Equation (8).
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P
Pu

=

(
2.91× Lc

L

0.06
× R0.27 × λ0.01

)
−
(

0.15× Lc

L

−0.31
× R−0.72 × λ0.84 × n0.95

)
(7)

P
Pu

=

(
2.02× Lc

L

0.41
× R−0.06 × λ−0.03

)
−
(

3.61× Lc

L

0.37
× R0.05 × λ0.15 × n1.34

)
(8)

Pu indicates the maximum bearing capacity at Lc/L = 0 and n = 0 for each model.

5.3. Applicability of Estimation Equations

In this section, the applicability of the estimation equations for maximum load bearing
capacity taking the position where buckling occurs into account is evaluated by comparing
their predictions with numerical analyses and experimental results.

5.3.1. Comparison with Numerical Analyses

As representative examples, Figure 14 shows the results of the numerical analysis and
the values obtained from the estimation equations accounting for buckling locations for
models C-009-020 and C-009-040. The vertical axis, horizontal axis, and legend are the
same as in Figure 11. It can be seen that using the two estimation equations that consider
buckling position yields better estimates of the maximum load bearing capacity than shown
in Figure 11c,d, which use one estimation equation for the same conditions.
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Figure 14. Maximum load bearing capacity and modified estimation equations for models C-009-020
and C-009-040: (a) Model C-009-020; (b) Model C-009-040.

Figure 15 plots the results from the numerical analysis and the estimation equations
for all cases. The vertical axis shows the estimated value of P/Pu, while the horizontal
axis shows the numerical value of P/Pu. The solid line in the figure indicates an error
of 0%. The dashed lines indicate a range of error within ±5%, and the red dashed lines
indicate a range of error within ±10%. Figure 15 shows that the difference between the
numerical and estimated values was about 5% in all cases. Moreover, it can be seen that the
errors that exceeded 10% in Figure 12, based on one estimation equation, have improved.
Therefore, the maximum load bearing capacity can be accurately estimated within the
scope of this study by using two estimation equations that account for the position where
buckling occurred.
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Figure 15. Difference between maximum load bearing capacity from numerical analysis and modified
estimation equations: (a) Lc/L =0.2; (b) Lc/L = 0.4; (c) Lc/L = 0.6.

5.3.2. Comparison with Static Loading Experiments

The estimation equations were tried to apply to the horizontal load bearing capacity
obtained in static loading experiments on concrete-filled steel tubes. Four models from
experimental samples of concrete-filled steel tubes with circular cross-sections was used,
based on studies by Iura et al. [8] and Morishita et al. [4] in the comparison. These samples
were in the range of design parameters of Table 1, 0.03 ≤ R ≤ 0.12, 0.2 ≤ λ ≤ 0.4,
0.1 ≤ n ≤ 0.5, and 0.2 ≤ Lc/L ≤ 0.6.

Table 3 shows the various properties of each model. Note that these experiments were
performed using cyclic loading, rather than monotonic lateral loading. According to Chap-
ter 20 of the Guidelines for Stability Design of Steel Structures [16], the difference between
monotonic and cyclic loading is not significantly large until maximum lateral loading is
reached, but the number of cycles after peaking has been shown to have a large effect on the
behavior of the members. Hence, the equations proposed in this study are deemed to also
be applicable for estimating the maximum load bearing capacity under cyclic loading. To
obtain the normalized horizontal load bearing capacity P/Pu, the horizontal load bearing
capacity of the steel tube at Lc/L = 0 and n = 0 must be calculated. Since this property
was tested in this study, Pu was obtained using the following equations [16,17].

Pu

Py
=

0.02

(Rλ)0.8 + 1.10 (9)
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Py =

(
My

h

)(
1− N

Ny

)
(10)

Table 3. Experimental model specifications for comparison.

Reference Iura et al. [9] Morishita et al. [6]
Model C-008-030 C-009-032 C-1.5D-S C-2D-S

Diameter of steel tube D [mm] 400 318.5
Thickness of steel tube ts [mm] 5.73 5.77 6.90

Height of steel tube L [mm] 1750 1800
Radius thickness ratio

parameter R 0.08 0.09 0.058

Slenderness ratio parameter λ 0.30 0.32 0.407
Concrete filling ratio Lc/L 0.34 0.27 0.35

Axial force ratio n 0.15 0.20
Buckling position Bottom part Bottom part

Here, Equation (9) shows the horizontal yield strength Py calculated taking the effect
of axial force into account. The applicable range of Equation (9) is 0.03 ≤ R ≤ 0.11 and
0.25 ≤ λ ≤ 0.5.

In Iura et al. [8], static cyclic loading tests were conducted for varying diaphragm
locations, concrete filling ratios, and loading methods in order to show their effects on
horizontal bearing capacity and buckling position. Among the tested specimens are two
models with diaphragms directly above the concrete, C-008-030 and C-009-032, which
fit within the range of application of Equation (9), the horizontal load bearing capacity
estimation equation for steel tubular columns with circular cross-sections. Model C-008-030
was subjected to three cyclic loadings and had a concrete filling ratio Lc/L of 0.34. Buckling
occurred at the base of the steel tube. Model C-009-032 was subjected to one cyclic loading
and had a concrete filling ratio Lc/L of 0.34. Buckling occurred at the base of the steel tube
in that case as well. In Morishita et al. [4], quasi-static cyclic loading tests were conducted
on concrete-filled circular steel tubular columns to show the effects of concrete filling
ratio and the presence of a diaphragm installed directly above the concrete on the bearing
capacity and deformation performance of the steel tubes. Among the tested specimens are
two models with diaphragms, C-1.5D-S and C-2D-S, which satisfy the range of application
of Equation (9), the horizontal load bearing capacity estimation equation for steel tubular
columns with circular cross-sections. The concrete filling ratio Lc/L was 0.27 for C-1.5D-S
and 0.35 for C-2D-S. Both models were subjected to three cyclic loadings and buckling
occurred at the base of the steel tube.

Figure 16 summarizes the estimated and experimental values. Figure 16a plots the
results when buckling position is not considered, while Figure 16b plots the results when
buckling position is taken into consideration. The vertical axis shows the estimated values
of P/Pu, while the horizontal axis shows the experimental values of P/Pu. The legend is
the same as in Figure 12. Taking the buckling position into account, the estimate was smaller
than the experimental value by 2% for C-008-030, but larger by 6% for C-009-032, by 3% for
C-1.5DS, and by 6% for C-2D-S. The errors were within 10% for all cases regardless of the
loading method, showing that the equations can provide estimates with high accuracy. On
the other hand, if the buckling position is not taken into account, the estimation may result
in errors as large as 10% as in C-008-030. This shows that the accuracy of the estimation
equations improved, and the maximum load bearing capacity can be estimated with an
error of about 5% when buckling position is taken into account. It was also found that
without performing numerical analysis, the estimation formula shown in Equation (9) can
be used to obtain the required Pu to estimate maximum load bearing capacity and can give
maximum load bearing capacity estimates without producing large errors.
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6. Conclusions

This study focused on four parameters (radius thickness ratio R, slenderness ratio λ,
axial force ratio n, and concrete filling ratio Lc/L) used in numerical analysis to determine
horizontal load bearing capacity and buckling position in concrete-filled circular section
tubes with diaphragms under monotonic loading. Based on the results, an equation for
estimating the horizontal load bearing capacity of concrete-filled tubes was obtained by
nonlinear regression analysis and its applicability was evaluated. The results of this study
are described below.

(1) Three buckling modes were identified: buckling at the base of the steel tube, buckling
just above the concrete, and buckling in both locations. The mode depends on the
radius thickness ratio R, the slenderness ratio λ, axial force ratio n, and concrete
filling ratio Lc/L. When buckling at the base of the steel tube or buckling in both
locations occurred, the horizontal load bearing capacity did not decrease significantly
with the increase in the axial force ratio n, but with buckling just above the concrete,
the horizontal load bearing capacity decreased rapidly.

(2) Although the slenderness ratio λ did not affect the buckling position of the steel
tube, buckling just above the concrete was more likely to occur as both the radius
thickness ratio R and the axial force ratio n increased in tubes with small concrete
filling ratios Lc/L.

(3) The estimation equation that did not consider different buckling positions predicted
the horizontal load bearing capacity with an error of approximately ±10% from the
numerically analyzed values, but the error between the estimated and numerical
values increases as the concrete filling ratio Lc/L increased from 0.4 to 0.6. On the
other hand, the estimating equation that took the different buckling positions into
consideration could predict the horizontal bearing capacity to within a margin of
error of about 5% from the numerical value by determining the buckling position
in advance.

(4) The accuracy of the estimating equation was verified based on previous experimental
studies. The accuracy of the estimating equation was found to be within a margin of
error of approximately±10% from the experimental value when the buckling position
was not taken into account, and approximately ±5% when the buckling position was
taken into account.

In future work, it will be necessary to analyze models with different conditions such
as diaphragms, stiffeners, and loadings in circular and rectangular cross-sections to clarify
the effects of horizontal load bearing capacity and buckling position. Based on these results,
a more comprehensive equation for estimating buckling position and horizontal bearing
capacity will be studied.
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