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Executive summary 

The contents of this deliverable are presented to demonstrate the proof-of-principle of the application of 
uncertainty quantification and sensitivity analysis to both aortic valve stenosis and heart failure patients. 
Sensitivity analysis will be used extensively in SIMCor for two specific objectives: 1) assessment/ranking of 
relevant model parameters for the output(s) of interest, and 2) design of the selection criteria for filtering during 
virtual cohort creation. 

This deliverable starts with the formal definition of uncertainty and sensitivity analysis that we adopted from 
literature. Thereafter, we will briefly explain the envisioned sensitivity analysis strategies and we will show 
preliminary results when applying these techniques to models with different levels of complexity and 
computational demands. These preliminary results demonstrate the feasibility of applying our sensitivity tools 
to relevant use cases. As uncertainty and sensitivity analysis are strongly related concepts, the uncertainty in 
model predictions follows almost directly from the sensitivity analyses applied. 
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Definitions 

In this section we first introduce the definitions of uncertainty and sensitivity analysis that we are 
using in SIMCor. These definitions are adopted from the definitions given by Saltelli et al.1,2 (see also 
Figure 1). 

Uncertainty analysis: Quantification of the uncertainty in the output(s) of interest due to 
uncertainties in model assumptions, parameters, and/or initial and boundary conditions, collectively 
referred to as model input factors. 

Sensitivity analysis: In this type of analysis each fraction of the total uncertainty in model outputs will 
be attributed to uncertainties of the input factors and/or the interactions between uncertain input 
factors. 

 

Figure 1: Definition of uncertainty and sensitivity analysis. Based on Saltelli et al.1,2 

Nonintrusive methods: The algorithm of the (deterministic) model under consideration does not need 
to be adjusted to be able to perform the sensitivity analysis. In SIMCor we use these types of methods 
to avoid the need for reprogramming our models when aiming to introduce stochasticity due to model 
input uncertainties. Nonintrusive methods make our sensitivity analysis tools more widely applicable 
but unfortunately also requires multiple evaluations of the deterministic model to quantify 
uncertainties and to identify the most important model input factors. Here the need for fast to 
evaluate surrogate models comes up again. 

Local versus global sensitivity analysis: In local sensitivity analysis only one factor is varied at the time 
and the subsequent effect on the model response is determined. These types of models might fail as 
soon as the relation between model response and the input factors is non-monotone, nonlinear 
and/or non-additive (i.e., interactions are present). In these cases, global sensitivity analyses are 
needed as these models vary input factors over the input domain simultaneously, hereby also 
considering interactions. Since the relation between output(s) and input factors is complex, multiple 

 
1 Saltelli et al., 2019, https://doi.org/10.1016/j.envsoft.2019.01.012 
2 Saltelli et al., 2004, Sensitivity analysis in practice: a guide to assessing scientific models, ISBN 0-470-87093-1 
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interactions are involved, and often not known a priori, in the physiological models used in SIMCor, a 
global sensitivity analysis is indispensable. 

Regionalized sensitivity analysis: This method, also called Monte Carlo filtering, is used to determine 
which model assumptions, structures or combination of model parameters are responsible for model 
output realisations in specific areas of the output space (i.e., the realisations that are within a region 
classified as acceptable according to predefined acceptance criteria). The schematic in Figure 2 depicts 
the basic idea of this type of sensitivity analysis. An alternative for Monte Carlo filtering is Bayesian 
analysis. 

In the context of SIMCor this approach will be used during virtual cohort generation for defining the 
filter setting, i.e., the criteria to determine whether a virtually created patient is realistic or not. 

 

Figure 2: Schematic representation of the regionalized sensitivity analysis that is used to identify selection criteria of the 
filter. 
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Envisioned strategy 
In SIMCor we will apply two different types of sensitivity analysis and uncertainty quantification.  
The first type is a variance-based technique that is used to identify the model input factors 
(parameters, assumptions and/or boundary conditions) that are most relevant to measure patient- 
specifically, and the factors that can be based on population values. This method is indispensable for 
model personalization, and thus essential during our efforts to demonstrate that our physiological 
models (virtual cohort generators) can accurately mimic patient-specific situations. 
The second type that we will apply is specifically used to optimize the filter settings of the filter used 
during virtual cohort generation. In fact, here we aim to identify the model input factors that are 
responsible for model realisations in specific regions of the output space (i.e., relevant regions in the 
real population distribution). In SIMCor we will use a method based on Monte-Carlo filtering as this 
nicely fits into our approach for virtual cohort generation. During the project, also Bayesian 
inference/identification techniques might be considered. 

Uncertainty and sensitivity analysis for realistic physiological models 

The sensitivity analysis techniques used in this project to assess the model factors (assumptions 
and/or parameters) are considered the gold standard and based on decomposition of the total output 
variance3, i.e., the metric to quantify output uncertainty. These variance-based sensitivity analysis 
techniques attribute each fraction of the total output variance to individual factors and their 
uncertainty, or to the interactions between input factors. To quantify these relative contributions both 
the main and total Sobol sensitivity indices are estimated.  

The main Sobol index of an input factor can be interpreted as the expected reduction in total output 
variance if the exact value of the factor would have been known. This main index is therefore very 
useful to decide which model input is most relevant to estimate more accurately (factor prioritization), 
hereby providing guidance to define a measurement protocol for model personalization. The total 
Sobol sensitivity index of a specific input represents the expected variance that will remain if all other 
inputs are set on their true value. This index does consider interactions and is typically used to decide 
which inputs can be set to a constant population value (factor fixing). The connotation of these indices 
is commonly used in sensitivity analysis research but implicitly assumes that the inputs are statistically 
independent. Later in this document we present the connotation and estimation of these indices when 
statistical dependencies (correlations) are present between model inputs. 

The Sobol indices introduced above are calculated by integrating the model output over multi-
dimensional (sub)spaces spanned by input uncertainties. In nonintrusive methods this is done by 
strategically sampling the input (sub)space and subsequently evaluating the model for each generated 
sample. When the computational demand of a single model evaluation increases, the practical 
applicability of nonintrusive methods decreases. The application of sensitivity analysis is further 
hindered when the dimensionality of the input space increases (i.e., the “curse-of-dimensionality”). In 
the remainder of this section, we will therefore briefly explain the methods that we will apply to 
estimate the Sobol indices in case of computational demanding models and/or models with high 
numbers of input factors. 

 
3 Saltelli et al., 2004, Sensitivity analysis in practice: a guide to assessing scientific models, ISBN 0-470-87093-1 
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Adaptive polynomial chaos expansion method  
To estimate the Sobol indices we will use the nonintrusive adaptive generalized polynomial chaos 
expansion (agPCE) method, that was first introduced by Blatman et al.4, and later applied to 
computationally expensive cardiovascular models by Quicken et al.5 

The agPCE method is based on (generalized) polynomial chaos expansion in which the stochastic 
model output space is spanned by orthogonal polynomials that depend on the stochastic model 
inputs. When applying the agPCE method, the real model is first evaluated for different samples that 
are properly distributed throughout the input space. Second, orthogonal polynomials, with increasing 
polynomial and interaction order, are adaptively added or removed to construct a metamodel 
(surrogate model) that captures the relation between the model outputs and input samples. As soon 
as the expansion coefficients of the metamodel are found by means of regression (or spectral 
projection), the Sobol indices and output variance can be calculated analytically.  

Strategies for reducing the required computing resources 
Though agPCE using regression is very efficient4,5, even for computationally demanding models, its 
practical applicability will decrease for large numbers of inputs (>30) as the maximal required 
polynomial order and the maximal required interactions order increase. In these cases, more input 
samples (and thus the number of model evaluations) are needed to create the metamodel.  

The decreased applicability of the agPCE due to the “curse-of-dimensionality” could be tackled by first 
applying Morris screening6 to eliminate all irrelevant model inputs, and consecutively applying agPCE 
on the reduced input space. Donders et al.7 demonstrated that this two-step approach significantly 
reduced the number of model evaluations when using generalized PCE (i.e., agPCE with a full basis, 
which means that all basis functions up to the maximal polynomial order are included). Alternatively, 
we might consider other sparse PCE methods. 

Hoeijmakers et al.8 applied statistical shape modelling to reduce the geometric input space and then 
conducted UQ and SA using agPCE. Principal component-like analysis techniques might also be 
considered for reducing parameter input spaces.  

Alternative strategies that will be considered in SIMCor to reduce computing resources in case of 
computationally demanding models (e.g., 3D FSI models) are the development of reduced-order 
models (0D/1D), reduced-basis models, and/or data-driven emulators (e.g., kernel-based methods). 
These less computationally demanding models can then be used to generate the output samples 
needed for agPCE. However, in this case we still need to evaluate the computational demanding 
models to develop simplified models. In fact, we need to assess for each application whether first 
developing a simplified model and subsequently using it for sensitivity analysis is more efficient than 
directly performing sensitivity analysis on the full model.   

Different strategies to efficiently conduct sensitivity analysis on the SIMCor applications will be 
demonstrated in the section that describe our preliminary results. 

  

 
4 Blatman et al., 2010, https://doi.org/10.1016/j.ress.2010.06.015 
5 Quicken et al., 2016, https://doi.org/10.1115/1.4034709 
6 Morris et al., 1991, https://doi.org/10.2307/1269043 
7 Donders et al., 2015, https://doi.org/10.1002/cnm.2727 
8 Hoeijmakers et al., 2020, DOI: 10.1002/cnm.3387 
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Sensitivity analysis to guide filter settings 

The Regionalized Sensitivity Analysis (RSA) introduced previously is sensitivity in the context of factor 
mapping, which means that we aim to determine the region of the input space defined by specific 
output values that fulfill some specifically defined behavior/constraints9,10 (e.g., outputs above a 
certain threshold or not).  

In SIMCor, we will use this type of sensitivity analysis to guide the settings of our filter that determine 
whether a set of model inputs and its corresponding model output realization is included in our virtual 
cohort or not. In fact, we identify the input region that gives us the desired outputs and decide which 
inputs we need for filtering, and the corresponding thresholds.  

Regionalized sensitivity analysis  
To perform RSA, we first need to specify our complete input space. The input space is created based 
on a priori estimates of the input distributions (often uniform marginals are used). Latin Hypercube 
sampling is used to create a set of input samples that are properly divided throughout the input space 
(full coverage) and are used for Monte Carlo simulations. Then, a binary classification of the input 
space is created based on the outputs of the Monte Carlo simulations and specific constraints that 
define whether the output is in the desired output region or not. This results in a binary set for each 
input independently: one behavioral set Xi|B where outputs lie within the constraints and one non-
behavioral set Xi|𝐵 ̅ otherwise. The distributions of both sets are now tested under the null hypothesis 
that they are identical using Smirnov two-sample test (two-sided version). If a significant difference 
between the distributions is found, it can be said that input Xi is of key importance in producing the 
desired behavior. The sensitivity is quantified by the Kolmogorov-Smirnov distance that is given by:  

𝑑 = 𝑠𝑢𝑝𝑦‖𝐹(𝑋𝑖|𝐵) − 𝐹(𝑋𝑖|�̅�)‖, 

which is the supremum of the vertical distance between the cumulative distributions of the behavioral 
and non-behavioral set. 

RSA shows some similarities with the variance-based methods in a sense that they consider the whole 
range of input factors and that all factors are varied at the same time. In fact, the importance 
classification of the inputs is related to the main Sobol effects. However, RSA does not search for the 
(higher order) interactions between inputs, and correlation structures cannot be identified either. 
Furthermore, the Smirnov test is only a sufficient test if the null hypothesis is rejected (important 
factor) and is not able to ensure non-importance. These limitations11, and the fact that higher-order 
interactions are not considered, imply that further inspection, using for example variance-based 
methods, is still needed for the factors taken as unimportant by the Smirnov test. 

In addition to RSA, we will also consider Bayesian techniques in SIMCor as they can help by identifying 
the input ranges that result in model realizations in specific outputs regions by analyzing the inverse 
problem. 

  

 
9 Pianosi et al., 2016, DOI: 10.1016/j.envsoft.2016.02.008 
10 Saltelli et al., 2004, Sensitivity analysis in practice: a guide to assessing scientific models, ISBN 0-470-87093-1 
11 Saltelli et al., 2004, Sensitivity analysis in practice: a guide to assessing scientific models, ISBN 0-470-87093-1 
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Preliminary results aortic valve disease patients 

Towards sensitivity analysis of an aortic valve FSI model 
The FSI or SSI models to simulate aortic valve stenosis with and without TAVI are still under 
construction, and/or will be optimized, during SIMCor. The existing models are currently so 
computationally demanding that we will apply the agPCE method to an in-vitro Mock circulation setup, 
which is (and will be) used for verification of the in-silico models and allows for fast evaluation of the 
effect of different input settings on hemodynamic output metrics. It serves as one of the possible 
surrogate models considered in SIMCor. 

The in-vitro approach used in this deliverable already demonstrates the importance of specific inputs 
on valve-related hemodynamic metrics but also provides insights that can help by better defining the 
design of future sensitivity analyses on the computationally expensive in-silico models. For example, 
it can help by reducing the input space by identifying non-important inputs before we conduct the 
actual sensitivity analyses on the expensive in-silico models. 

Study setup 

A picture of the mock loop circulation is given in Figure 3. Simply said, the mock loop circulation 
consists of a pump that mimics the heart, a TAVI device placed to replace the pathological valve, a 
realistic aortic root and sinus, and a Windkessel model that represents the systemic circulation. The 
mock loop circulation is setup by consortium partner IIB and represents an integrated part of their 
state-of-the-art laboratory of device evaluation. The setup can easily be extended so that particle 
image velocimetry can be performed. However, this is not reported in this document. For more details 
regarding the circulation setup, we refer to Deliverable 7.2 - First version of the simulation models 
(TUE, M9) on model templates, as well as Deliverable 8.2 – TAVI model (IIB, M12) on the TAVI model. 

 

Figure 3: Schematic representation of the experimental setup. Photo provided by the Bioflow lab from the Institute of 
ImplantTechnology and Biomaterials e.V. (Rostock, Germany). 

The input space for our sensitivity analysis is spanned by the uncertainty ranges of the heart rate, 
aortic mean pressure, percentage systolic time of complete cycle, cardiac output (Table 1), which are 
all parameters that can be set by the operator. Subsequently, we have randomly sampled the input 
space by using a low-discrepancy Sobol sequence, i.e., the function sobolset in Matlab (MathWorks 
Version 2021a). Subsequently, we have randomly sampled the input space by using a low-discrepancy 
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Sobol sequence, i.e., the function sobolset in Matlab (MathWorks Version 2021a). In total 70 samples 
are generated and the Sobol sequence guarantees that they are properly divided throughout the input 
space. 

Input parameter Ranges 

Heart rate [bpm] 50 – 120 

Aortic mean pressure [mmHg] 80 – 120  

Percentage systolic time of complete cycle [%] 35 – 75 

Cardiac output [l/min] 2 – 10  

Table 1: Input ranges for the in vitro analysis. 

The 70 input samples generated are used as different input settings for the in-vitro experiments. Since 
it was impossible to mimic the generated samples exactly in the experiment, we performed the 
experiments with samples as closely as possible to the sampled ones. The sample values that were 
really used in the experiments are also fed to our agPCE method during the sensitivity analysis.  

For the sensitivity analysis we have defined fourteen different outputs of interest (Table 2). Figure 4 
supports the definition of the output metrics. 

Output of interest Definition 

TransAortic mean pressure 
[mmHg]:  

Averaged pressure difference between the ventricular and aortic pressure.  

TransAortic max pressure 
[mmHg]:  

Maximum pressure difference occurring between the ventricular and aortic 
pressure. 

TransAortic pressure at peak flow 
[mmHg]:  

Pressure gradient between aortic and ventricular pressure during maximum 
measured forward flow in systole.  

Aortic positive pressure time [s]:  Time period during which ventricular pressure exceeds aortic pressure in systole.  

Aortic minimum pressure 
[mmHg]:  

Maximum aortic pressure within the entire cycle.  

Aortic maximum pressure 
[mmHg]:  

Minimum aortic pressure within the entire cycle.  

Pump stroke volume [ml]:  Volume pushed forward by the pump during compression of the ventricular 
membrane.  

Aortic forward flow time [s]:  Time period during which a positive flow volume is measured in systole.  

Aortic forward volume [ml]:  Volume ejected during systole in forward flow.  

Aortic closing volume [ml]:  Volume that flows back into the ventricle during the closing process.  

Aortic leakage volume [ml]:  Volume that flows back into the ventricle transvalvulary or paravalvulary during 
diastole.  

Aortic leakage rate [ml/s]:  Volume per second flowing into the ventricle during diastole.  

Aortic regurge fraction [%]:  Percentage of the sum of leakage volume and closure volume in relation to the 
forward volume.  

Aortic orifice area [cm2]:  Effective orifice area calculated from the following formula:  

𝐸𝑂𝐴 =  
𝑄𝑟𝑚𝑠

51.6√
∆𝑝

𝜌

  with 𝑄𝑟𝑚𝑠 =  √
∫ 𝑄(𝑡)2𝑑𝑡

𝑡2

𝑡1

𝑡2−𝑡1
 

Table 2: Definition of the fourteen outputs of interest. 
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Figure 4: A schematic figure that supports the output definitions in Table 2. 

For each output of interest, we have created a metamodel (agPCE) based on the 70 available input 
samples. The quality of the metamodel is assessed by means of a cross-validation coefficient Q2, which 
is preferably as closely as possible to 1. 

Results and discussion 
For four out of fourteen outputs of interest, it was not possible to fit an accurate meta-model (𝑄2 <
0.85), because the number of samples was not sufficient. This was the case for the transaortic 
pressure at peak flow, the aortic closing volume, the aortic leakage volume, and the aortic leakage 
rate. The sensitivity analysis results for these outputs are not reliable. Therefore, only for the 
remaining ten outputs of interests the sensitivity analysis results are shown.  

Figure 5: Transaortic mean pressure (𝛥𝑝𝑚𝑒𝑎𝑛) (a), and aortic maximum pressure (𝑝𝑎𝑜,𝑚𝑎𝑥) (b) as a function of the 4  inputs 

heart rate (HR), mean aortic pressure (MAP), percentage systolic time of full cycle (SystTime), and cardiac output (CO).  

A typical example of the experimental results for the mean pressure drop across the valve and the 
maximal aortic pressure as function of the four input parameters, is given in Figure 5. You can observe 
different trends in the data, (partly) obscured by scattering of points, which results from the influence 
of other inputs. The agPCE sensitivity analysis is performed on this kind of data. 
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The main sensitivity indices are visualized in Figure 6. It is visible that the pressure drop across the 
aortic valve is mainly sensitive to the systolic time duration, and slightly sensitive to heart rate and 
cardiac output (Figure 6a). These sensitivities correspond with the relations between the input 
parameters and the mean pressure drop as visualized in Figure 5a. For the transaortic mean pressure 
there is a negative relation with the systolic time duration (Figure 5a, bottom left). This relation is 
caused by the fact that the pressure difference between the left ventricle and the aorta is decreased 
during the systolic phase. As a result, the mean pressure drop decreases with increasing systolic time. 
A slight dependency of the mean pressure drop on the heart rate (top left) and the cardiac output 
(bottom right) is visible in Figure 5a as well. The high sensitivity of the minimum and maximum aortic 
pressure to the mean arterial pressure, is confirmed by the strong relation that is visible in Figure 4b 
(top right).  

The pump and forward flow volume are only sensitive to heart rate and cardiac output (Figure 6c), 
which makes sense, because stroke volume is equal to cardiac output divided by heart rate. 
Furthermore, the positive pressure time, and forward flow time are only sensitive to heart rate and 
systolic time duration (Figure 6b). Finally, Figure 6d shows a high sensitivity of the regurgitation 
fraction and the aortic orifice area to the cardiac output. This sensitivity can be explained by the form 
of the definitions used for regurgitation fraction, and the aortic orifice area, that both strongly depend 
on cardiac output.  

Figure 6: Main sensitivity indices of multiple outputs of interest for the four different input parameters heart rate (HR), 
mean aortic pressure (MAP), percentage systolic time of complete cycle (SystTime), and cardiac output (CO): (a) Pressures: 

transaortic mean pressure (𝛥𝑝𝑚𝑒𝑎𝑛), transaortic maximum pressure (𝛥𝑝𝑚𝑎𝑥), aortic minimum pressure (𝑝𝑎𝑜,𝑚𝑖𝑛), and 

aortic maximum pressure (𝑝𝑎𝑜,𝑚𝑎𝑥). (b) Times: positive aortic pressure time (𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒), and aortic forward flow time 

𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑙𝑜𝑤). (c) Volumes: pump stroke volume ( 𝑉𝑃𝑢𝑚𝑝 𝑠𝑡𝑟𝑜𝑘𝑒), and aortic forward volume (𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑). (d) Other outputs of 

interest: Regurgitation fraction, and aortic orifice area. 

In Figure 7 the differences between the main and total sensitivity analysis are shown. The difference 
between the main and total index quantifies the contribution of a specific input to the total output 
variance via interactions with other inputs. The percentage of systolic time of complete cycle and the 
heart rate are significantly involved in interactions with other inputs when considering the outputs 
transaortic mean pressure drop (respectively 7% and 8%) and the positive aortic pressure time (both 
about 10%). The cardiac output has also a significant interacting effect on the positive aortic pressure 
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time (about 7%). All other visible interactions are smaller than 5%. Though the effect of interactions 
needs to be considered, the overall effect on the outputs is relatively small. 

 

Figure 7: The differences between the main and total sensitivity indices, which are representative for the contribution of 
inputs on the output variance via interactions with other inputs.  

This sensitivity analysis provides insight towards which parameters can be set to a population-based 
constant (non-important on itself and not via interactions), and which parameters must be set to a 
patient specific value, to obtain precise model simulation results of the aortic valve with TAVI. More 
specifically, the main indices can be used to rank which model inputs are most rewarding to measure 
as accurate as reasonably possible. Outputs that are important for TAVI are for example the 
regurgitation fraction, and the pressure drop across the aortic valve, because they are both related to 
paravalvular leakage. To be able to obtain accurate values for the regurgitation fraction, the 
uncertainty in the cardiac output should be as small as possible. For the pressure drop, the mean 
arterial pressure could be set to a constant, but the patient specific heart rate, cardiac output, and 
especially the systolic time duration, should be known very accurately.  
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Sensitivity analysis for filter design 
In this section we will present the preliminary results of the RSA technique applied to a model of aortic 
valve stenosis patients, and its corresponding input space, that is used for virtual cohort generation. 
The model on which we apply the sensitivity analysis is an emulator of a computationally demanding 
CFD model that can estimate the peak systolic pressure drop across an aortic valve stenosis, and was 
previously described in Deliverable 7.3 - First version of the definition of the input space (TUE, M12) 
and the publication of Hoeijmakers et al. The inputs of the models are the peak systolic aortic flow, a 
scaling parameter and five shape mode coefficients of a statistical shape model (i.e., geometric 
parameters), resulting in a seven-dimensional input space. 

Study setup 
For the sensitivity analysis in this deliverable, we only focused on the geometric subspace of the full 
7D input space.  Subsequently, we have generated multiple input samples from this input space by 
means of Latin Hypercube sampling. Thereafter, we used the input samples to construct the 
corresponding aortic valve geometries, and for these geometries we quantified the cross-sectional 
areas of the left ventricular outflow tract (LVOT), the aortic valve opening (AV), the ascending aorta 
diameter (AA), the sinus (SIN), the sinotubular junction (STJ) and the annulus (ANU). These geometric 
metrics constitute the input space used for the regionalized sensitivity analysis. The input ranges 
defining the boundaries of the input space are given in Table 3. 

Input parameter Ranges 

LVOT [cm2] 1.58 – 5.94 

AV [cm2] 0.0 – 4.59 

AA [cm2] 2.23 – 10.89 

SIN [cm2] 3.33 – 11.56 

STJ [cm2] 2.19 – 10.41 

ANU [cm2] 2.12 – 7.13 

Table 3: Input ranges of the geometric inputs used for the sensitivity analysis. 

To demonstrate the feasibility of the RSA in identifying the inputs that are mostly responsible for 
output realizations in specific regions of the output space, we have introduced a threshold for the 
peak systolic pressure drop across the aortic valve stenosis. This threshold was set to 300 mmHg, and 
all output realizations larger than this threshold are considered non-behavioral (i.e., non-physiological 
outputs).  

Results and discussion 
Figure 8 shows the scatter plots and cumulative distribution functions (CDF) of two different inputs, 
i.e., the areas of the LVOT and the AV. Figure 8a and 8b show the differences between the behavioral 
and non-behavioral distributions based on the chosen threshold. As can be seen, in Figure 8a there is 
no real difference in spread of the behavioral and non-behavioral points, resulting in the CDFs in Figure 
8c. Here it can be seen that both the behavioral and non-behavioral distribution are almost equal. On 
the contrary, when looking at Figure 8b a nonlinear, monotone decreasing relation can be observed. 
Because of this distribution, a second observation can be made which is that the spread of the non-
behavioral points is a lot smaller than the spread of the behavioral points. As a result, there also is a 
bigger difference between the CDFs of the behavioral and non-behavioral sets (Figure 8d). 
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(a) (b) 

 

 

 (c) (d) 

Figure 8: The top figures represent the scatterplot where input is plotted against the logarithmic output of the pressure 
drop. Where the behavioral points are in blue, and the non-behavioral points are in orange. The bottom figures show the 

cumulative distribution function of the behavioral and non-behavioral samples, the yellow line shows the cumulative 
distribution of the full distribution, prior to splitting the data into two groups. 
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The observations made in the previous figure can be quantified by means of the Kolmogorov-Smirnov 
distance and the p-value after statistical hypothesis testing. The results in Figure 9 show that the LVOT 
AA, ANU, SIN and STJ all have relatively low Kolmogorov-Smirnov distances (< 0.2), whereas the AV 
has a large distance (0.9). The LVOT, AV, ANU and SIN have low p-values that indicate that there is 
sufficient evidence to reject the null hypothesis, i.e., the inputs do have a significant effect on 
producing desired (physiological) behavior. For the other two inputs the statistical evidence of 
rejecting the null hypothesis is insufficient. 

 

Figure 9: The Kolmogorov-Smirnov (K-S) distances and the p-values of the Smirnov test. 

An important remark to be made is that the ranking of the inputs was found to be affected by the 
number of of data samples that were used. This could be due to difference in the number of samples 
in the behavioral or non-behavioral sets. To prevent this from happening input sample set should be 
sufficient large to ensure enough statistical power and accurate input ranking. 

  

LVOT (cm 2 
AV (cm ) 2 

AA (cm ) 2 
ANU (cm ) 2 

) SIN (cm 2 
) STJ (cm 2 

) 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
Distance K-S  
lue P-Va 



 

D7.4 – Sensitivity and uncertainty quantification toolbox  SIMCor – GA No. 101017578 

    

18 

 

Preliminary results for heart failure patients 

Sensitivity analysis of a pulmonary artery CFD model 
In this section we will apply the agPCE method on a 3D CFD model of the main, left and right pulmonary 
arteries. Three-element Windkessel models, mimicking the distal vasculatures, are coupled at the 
outlets of the left pulmonary artery (LPA) and the right pulmonary artery (RPA). At the inlet of the 
main pulmonary artery (MPA) a typical inlet flow waveform is applied by means of a transient plug 
velocity profile. The 3D computational domain consists, after mesh convergence analysis, of 1.3 
million tetrahedral volumetric mesh elements with an average quality of 0.68. Blood flow was 
considered as a laminar, incompressible, and Newtonian fluid. Dynamic blood viscosity and density 
are set to 1065 kg/m3 and 3.5∙ 10−3 𝑃𝑎 ∙ 𝑠, respectively. The 3D transient pressure and velocity fields 
within the computational domain are calculated by using COMSOL Multiphysics. 

 

Figure 10: The differences between the main and total sensitivity indices, which are representative for the contribution of 
inputs on the output variance via interactions with other inputs.  

The input space for the sensitivity analysis is spanned by four uncertain inputs: stroke volume, heart 
rate, flow ratio (RPA/LPA), and the total distal arterial compliance. The input ranges are defined as 
presented in Table 4. The input is subsequently sampled within these physiological ranges using the 
low-discrepancy Sobol sequence via the built-in Matlab function sobolset (MathWorks Version 2021a). 
Based on an a priori estimation a database of 30 samples is created.  

Input parameter Ranges 

𝑸𝑹𝑷𝑨 to 𝑸𝑳𝑷𝑨 ratio [-] 45 – 65 12  

Stroke Volume [ml] 50 – 150 13  

Total Compliance [ml/mmHg] 1 – 4 14  

Heart Rate [bpm] 60 -120 15  

Table 4: Input ranges for the sensitivity analysis. 

The CFD model is now executed for all thirty input samples and the model outputs of interest are 
derived from the simulations. Mean pulmonary artery pressure (MPAP) and the mean time-averaged 

 
12 Wehrum et al., 2016, DOI: 10.1186/s12968-016-0252-3 
13 Van Ooijen et al., 2012, DOI: 10.1148/rg.322115058 
14 Guigui et al., 2020, DOI: 10.21037/jtd.2020.02.20 
15 Jose et al., 1970, DOI: 10.1093/cvr/4.2.160 

MPAP 
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wall shear stress (MTAWSS) are our outputs of interest. By constructing and testing a large set of meta-
models, the meta-model with the highest 𝑄2 was selected as final model for each output of interest. 
The metamodel with  𝑄2 = 0.9995 is used for the analysis. Both of our outputs of interest are 
sensitive to stroke volume (main index of respectively 68% for MPAP and 62% for MTWSS) and heart 
rate (main index of respectively 30% for MPAP and 34% for MTWSS). It seems that there is not any 
meaningful sensitivity from total compliance and flow distribution for both MPAP and MTAWSS (main 
indices < 0.1%). Similar ranking is found for the total sensitivity indices for MPAP (stroke volume: 70%, 
heart rate: 32%) and MTWSS (stroke volume: 65%, heart rate: 38%). For both outputs the variance 
contributions of interactions are small (<4%).  

 

Figure 11: The main and total sensitivity indices as function of the quality of the polynomial chaos expansion for the MPAP 
(top) and the MTWSS (bottom). Blue dots are for stroke volume, purple for heart rate, green for total compliance and yellow 

for the flow distribution. 
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Two-step approach for sensitivity analysis using a surrogate model 
The model for our SIMCor application of heart failure patients consists of a 3D domain of the 
pulmonary arteries (region of interest) coupled to a closed-loop lumped parameter model of both the 
pulmonary and systemic circulation (Figure 12, left). The lumped parameter can generate proper 
boundary conditions for the 3D region of interest in pathological heart conditions, both before and 
after PAPS implantation. Though the boundary conditions are more realistic and automatically 
respond to changes in pre- and afterload (PAPS insertion), the number of model parameters 
significantly increases. The latter will make the sensitivity analysis (“curse-of-dimensionality”) almost 
impossible as it requires an enormous number of CFD evaluations (>1000), and thus computing 
resources, to feed the agPCE. 

Therefore, we envision another, two-step strategy. In the first step a reduced-order lumped 
parameter (0D) model that mimics the (nonlinear) pressure-flow relation (impedance) of the 3D region 
of interest will be derived and integrated in the closed-loop circulation model (Figure 12, right). 
Subsequently, the inputs of the now full 0D model will be varied and the model will be evaluated 
(closely to real-time) for all input samples. This leads to a set of pressure and flow waveforms at the 
inlet and outlets of the pulmonary arteries. Thereafter, the agPCE method can be applied to identify 
the inputs that have a significant influence on these in- and outlet conditions. Our hypothesis is that 
this first step of the sensitivity analysis will significantly reduce the total number of inputs, i.e., the 
parameter input space will be reduced. In the second step, we will then apply sensitivity analysis using 
agPCE on the 3D/0D model but not by exploring the reduced input space. 

 

Figure 12: The closed-loop lumped parameter model of the systemic and pulmonary circulations.  

In this deliverable we will present our first approach to derive a lumped parameter model that 
accurately represents the impedance of the rigid 3D domain (in future a moving domain may be 
considered). The MPA, RPA and LPA are each modelled with a resistance and an inertance. The 
numerical values are first estimated using respectively the mathematical expressions of a Poiseuille 
resistance and the inertance, fed by geometric information, blood density and dynamic viscosity. 
Thereafter, they are further optimized based on CFD simulation results with different inlet flows. 
Below you can see the preliminary results of the lumped parameter model for different pressure drops 
from the inlet to different outlets as function of time. These results show the feasibility of deriving an 
accurate lumped model for the 3D pulmonary arteries. In future work we will also explore another 
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approach that was introduced by Mirramezani et al.16 and showed reasonably accurate results for 
different cardiovascular applications purely based on geometric information and blood properties. 

Figure 13: Simulated pressure drops, using both the 3D and 0D model, from the inlet to different outlets.  

  

 
16 Mirramezani et al., DOI: 10.1007/s10439-020-02545-6 
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Future work 
In future project activities, we will also use sensitivity analysis techniques that are able to consider 
statistical dependencies between model inputs when the physiological model under investigation 
advocates for this and the statistically dependencies are known. If the dependencies are not exactly 
known, we will evaluate different correlations to examine how possible correlations will affect our 
conclusions regarding input parameterization and fixing. These new sensitivity analysis techniques will 
also provide us information whether future efforts to find correlation structures are rewarding or not.  

In the next subsection we will present our current implementation of a sensitivity analysis technique 
that considers statistical dependencies between model inputs and that was introduced by Li et al.17 
Thereafter, we will briefly explain how we are planning to apply our sensitivity tools (also the 
correlated ones) in future project deliverables. 

Sensitivity analysis with statistical dependent input parameters 

Background and methodology 
Both the connotation and estimation of the Sobol sensitivity indices described above are derived 
under the assumption of statistically independent model inputs. In case of statistically dependent 
model inputs the connotation18 of these indices change and, in addition, we need to adapt the way 
these indices are calculated. 

The main Sobol sensitivity index in the case of statistical dependent model inputs captures the total 
correlated contribution of the input to the output variance, i.e., the summation of the variance 
contribution solely caused by the input itself and the variance contribution of all correlations the input 
is involved (both with interaction terms and with individual other inputs). 

The total sensitivity index is the total uncorrelated contribution and considers no contributions due to 
correlations but solely variance contributions due to the input itself and the interactions of this input 
with other parameters. 

To estimate the multi-dimensional integrals that define the sensitivity indices, we have thus adopted 
the approach of Li et al. 18 and implemented this in MATLAB (MathWorks Version 2021a). Thereafter, 
we have first applied it to benchmark problems, for which analytical estimates of the indices exists 
and which were also used by Li et al.18, to verify our implementation. Thereafter, we have applied the 
method to a 1D model that is able to simulate pressure and flow wave propagation throughout the 
cardiovascular system.  

Application to simple non-linear and polynomial function 
The first benchmark problem is the simple non-linear function defined as: 

𝑌 = 𝑋1𝑋2 + 𝑋3𝑋4. 

It is assumed that 𝑋1 and 𝑋2 are correlated with the correlation coefficient 𝜌13 = 0.3 and that 𝑋3 and 
𝑋4 are correlated with the correlation coefficient 𝜌34 = −0.3. The computed analytical variance 
contributions compared to the analytically computed variance contributions are shown in Figure 14. 

 
17 Li et al., 2017, http://dx.doi.org/10.1016/j.ast.2016.12.003 
18 Li et al., 2017, http://dx.doi.org/10.1016/j.ast.2016.12.003 
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Figure 14: Li et al. based and analytical estimates of the variance contributions for the non-linear model. 

As can be seen, the computed sensitivity indices agree with their analytically derived counterparts. 
These results agree with the implementation of Li et al. 19 as well. The second benchmark problem is 
the simple polynomial defined as: 

𝑌 = 5 + 8𝑋1 + 𝑋2
2. 

The inputs were correlated by a coefficient of 𝜌12 = 0.5. The computed analytical variance 
contributions compared to the analytically computed variance contributions again agree and are 
shown in Figure 15. 

 

Figure 15: Li et al. based and analytical estimates of the variance contributions for the polynomial model. 

Application to Ishigami functions with different parameterizations 
The third benchmark problem are the Ishigami functions. The first Ishigami function is defined as: 

𝑌 = sin 𝑋1 + 𝑎 sin2 𝑋2 + 𝑏𝑋3
4 sin 𝑋1. 

All input variables are uniformly distributed in the interval [−𝜋, 𝜋]. It is assumed that 𝑋1 and 𝑋3 are 
correlated with the correlation coefficient 𝜌13 = 0.4. For the uniformly distributed input variables, 
the zeros of the Gauss-Legendre polynomials are used as one-dimensional quadrature points. A 
Gaussian copula is used to transform the original problem to the case of the correlated normal one. 

 
19 Li et al., 2017, http://dx.doi.org/10.1016/j.ast.2016.12.003 
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The computed variance contributions are shown in Figure 16. 

 

Figure 16: Numerical estimates of the various variance contributions for the input variables of the Ishigami function. 

They are like the SGI computed variance contributions found by Li et al. Furthermore, Li et al. also 
applied their method to the following two forms of the Ishigami function: 

𝑌1 = sin 𝑋1 + 𝑎 sin2 𝑋2 + 𝑏𝑋3
4𝑋1

4   

      and 

𝑌2 = sin 𝑋1 + 𝑎 sin2 𝑋2 + sin2 𝑋3. 

For both forms, again 𝑋1 and 𝑋3 are correlated with the correlation coefficient 𝜌13 = 0.4.  The 
computed estimates of these Ishigami functions are given in Table 5. 

 

Table 5: Estimates of the various variance contributions for the two forms of the Ishigami functions. 

Again, comparing these results to the results found by Li et al., it was found that they correspond very 
well with one another. The largest difference found between the indices is a difference of 0.015, which 
is considered negligible when it comes to assessing the sensitivity.  

Application to a pulse wave propagation model 
The 1D pulse wave propagation model on which we will apply our sensitivity analysis was already 
presented in Deliverable 7.2 - First version of the simulation models (TUE, M9). However, for 

Y2 

Y1 
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readability we will summarize the basic components of the model before we move on to the sensitivity 
analysis. 

The 1D model consists of serially connected arterial elements that form the ADAN56 vascular tree. 
Each element represents the local relation between pressure and flow via mass conservation, 
momentum balance and a constitutive law to capture vessel mechanics. At the end of truncated 
vessels three-element Windkessel models are placed to mimic the distal vasculature. On the first 
arterial node (aorta) a time-dependent flow waveform is prescribed. All inputs of the elements and 
boundary conditions (inflow and Windkessels) are provided in the supplementary material of Boileau 
et al.20, in which our numerical implementation was benchmarked against other numerical schemes. 
However, for the analysis in this deliverable we have used another velocity profile to express the wall 
shear stress and the advection term in the momentum balance in terms of pressure and flow, because 
this velocity21 better captures the physics than the profile used in Boileau et al. 

To conduct the sensitivity analysis, we have defined 23 model inputs (Table 6). To avoid unrealistic 
combinations of model inputs, we have grouped different vessels together and varied their inputs 
(Young’s modulus, radii and length). Also, the Windkessel parameters are grouped. A similar approach 
was taken by Melis et al.22 who performed a sensitivity analysis on a 1D model by using Gaussian 
process emulators, and by assuming statistically independencies between the inputs. We also adopted 
the input uncertainty ranges of Melis et al., expect for the Windkessel compliances that are chosen to 
be 30% instead of 50%. The complete input space used in this study is given in Table 6 (for now still 
assuming no correlations/statistical dependencies).  

Input parameter Ranges 

𝑬𝒂𝒐𝒓𝒕𝒂 -20% – 20% 

𝑬𝒐𝒓𝒈𝒂𝒏𝒔 -20% – 20% 

𝑬𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -20% – 20% 

𝑬𝒏𝒆𝒄𝒌 -20% – 20% 

𝑬𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -20% – 20% 

𝒍𝒂𝒐𝒓𝒕𝒂 -10% – 10% 

𝒍𝒐𝒓𝒈𝒂𝒏𝒔 -10% – 10% 

𝒍𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -10% – 10% 

𝒍𝒏𝒆𝒄𝒌 -10% – 10% 

𝒍𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -10% – 10% 

𝒓𝟎𝒂𝒐𝒓𝒕𝒂 -10% – 10% 

𝒓𝟎𝒐𝒓𝒈𝒂𝒏𝒔 -10% – 10% 

𝒓𝟎𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -10% – 10% 

𝒓𝟎𝒏𝒆𝒄𝒌 -10% – 10% 

𝒓𝟎𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -10% – 10% 

𝑹𝒐𝒓𝒈𝒂𝒏𝒔 -25% – 25% 

𝑹𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -25% – 25% 

𝑹𝒏𝒆𝒄𝒌 -25% – 25% 

𝑹𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -25% – 25% 

𝑪𝒐𝒓𝒈𝒂𝒏𝒔 -30% – 30% 

𝑪𝒖𝒑𝒑𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -30% – 30% 

𝑪𝒏𝒆𝒄𝒌 -30% – 30% 

𝑪𝒍𝒐𝒘𝒆𝒓 𝒍𝒊𝒎𝒃𝒔 -30% – 30% 

Table 6: Inputs and ranges used during the sensitivity analysis of the pulse wave propagation model. 

Currently, correlations are unknown to us so we will vary them ourselves to find out the effects of the 
correlations on the computed variance contributions/sensitivity indices. 

 
20 Boileau et al., 2015, DOI: 10.1002/cnm.2732 
21 Bessems et al., 2007, DOI:10.1017/S0022112007005344 
22 Melis et al., 2017, DOI: 10.1002/cnm.2882 
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To quickly compute the variance contribution of the PWPM, a two-step approach is used. First, a 
surrogate model of the PWPM is created by making use of a Vectorial Kernel Orthogonal Greedy 
Algorithm (VKOGA) method23,24. This VKOGA method allows for the creation of a kernel function based 
on a finite set of inputs and outputs generated with the PWPM. This kernel function in turn allows us 
to quickly relate input variables to a certain output. 

The second step is performing the SGI sensitivity analysis using the kernel function. No correlations 
were added to be able to compare the results obtained by the two-step approach with the results 
obtained by the uncorrelated agPCE SA method. For both methods, the variance contributions to two 
certain outputs were derived, namely the systolic and diastolic aortic pressure. The results of the 
comparison can be seen below in Figure 17 and Figure 18. For both sensitivity analysis, the computed 
sensitivity indices agree with one another, validating the implementation of the SGI method in 
MATLAB (MathWorks Version 2021a) 

 

Figure 17: The comparison of computed variance contributions by the sensitivity analysis performed on the aortic systolic 
pressure as output by both the SGI and agPCE method. 

 
23 Koeppl et al., 2018, DOI:10.1002/cnm.3095 
24 Haasdonk and Santin, 2018, https://doi.org/10.1007/978-3-319-75319-5_2 
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Figure 18: The comparison of computed variance contributions by the sensitivity analysis performed on the aortic diastolic 
pressure as output by both the SGI and agPCE method. 

After the SGI method was validated, simulations were performed with correlations. Various 
simulations were run with increasing correlations between the following two input parameters: the 
length of the aorta and the radius of the aorta. The results of the variance contributions of certain 
input parameters on the computed pulse wave velocity of these simulations can be seen in Figure 19. 
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Figure 19: The comparison of computed variance contributions when the correlation between the aortic length and radius is 
increased. 

As can be seen in Figure 19, increasing the correlations does affect the computed variance 
contributions of the aortic length and radius. Furthermore, it also affects the variance contribution of 
the uncorrelated aortic Young’s Modulus. The peripheral resistance and compliance of the organs are 
unaffected by these changes in correlations between the aortic radius and length. 

Discussion 
In this section we have elaborated on an implementation to calculate sensitivity indices when inputs 
are statistically dependent. We have demonstrated that the methods have been implemented 
accurately, and that we are able to produce similar results as Li et al. In addition, we have applied our 
method to a cardiovascular 1D pulse wave propagation model, and we have shown the feasibility of 
the method also for this type of models. The emulator approach for fast evaluation of the 1D model 
gives similar results as when applying the method to the pulse wave propagation model directly. This 
approach is therefore also likely to be applicable to computational demanding models for which a 
proper surrogate model is derived. 
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Application of sensitivity toolbox 

The sensitivity and uncertainty analysis tools presented in this deliverable will be further advanced 
and applied to the models of our use cases. First, we will now apply these techniques to our models 
(see Deliverable 7.2 - First version of the simulation models (TUE, M9)) to personalize and validate our 
models on patient-level, i.e.: Is the physiological model able to mimic the patient’s physiology before 
and (later in the project) also after medical device implantation. The sensitivity analysis will in this 
stage mainly guide our measurement protocol and defines the relevant input space (the input space 
definition of Deliverable 7.1 – Definition of model output (TUE, M6) will be improved). The UQ tools 
will be use here to quantify the uncertainty due to uncertainties in the input. 

Second, when patient-level validation has been done, virtual cohorts will be generated by varying 
model inputs simultaneously and subsequently evaluating our models (or their surrogates). Based on 
the outputs, and the filters that are designed on the RSA techniques presented in this deliverable, 
realistic virtual cohorts will be generated. The region of the output space that is considered as the 
behavioural set will be based on the output spaces of Deliverable 7.3 – First version of the definition 
of the input space (TUE, M12). 
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