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Abstract—The ongoing trend from mass-produced to mass-
customized products with batch-sizes as small as a single unit
has highlighted the need for highly adaptable robotic systems
with low down-time for maintenance. To address these demands,
this work proposes the development of a novel reconfigurable
collaborative robot (cobot), which has the potential to open up
many new scenarios within the rapidly emerging flexible man-
ufacturing environments. As the technological contribution, we
present a complete hard- and software architecture for a quickly
reconfigurable EtherCAT-based robot. This novel approach al-
lows to automatically reconstruct the topology of different robot
structures, composed of a set of body modules, each of which
represents an EtherCAT slave. As the theoretical contribution,
we propose a method to obtain in an automatic way the kinematic
and dynamic model of the robot and store it in URDF format
as soon as the physical robot is assembled or reconfigured. The
method also automatically reshapes a generic optimization-based
controller to be instantly used after reconfiguration. While the pa-
per focuses on reconfigurable manipulators, the proposed concept
can support arbitrary serial kinematic tree-like configurations.
We demonstrate the contributions with examples of: (a) how the
topology of the robot is reconstructed and the URDF model is
generated, (b) a Cartesian task application for a cobot built with
the basic modules, demonstrating the quick reconfigurabilty of
the system from a 4 degrees of freedom (DOF) robot to a 5-DOF
robot, in order to satisfy new workspace requirements.

I. INTRODUCTION

Cobots keep entering new application domains in which
robotic automation was not conceivable until recently. Yet,
many small and medium sized enterprises (SMEs) struggle
to benefit from robotics. The main perceived barriers are the
limited flexibility to serve manufacturing trends of shorter
product life-cycles, smaller lot sizes and mass-customised
products [1], requiring new paradigms of highly configurable
robot solutions. While being flexibly programmable and cus-
tomisable from a software perspective, the hardware cus-
tomisability of existing cobots is limited to the end-effector
tooling. Conventional cobots are, strictly fixed in their physical
properties such as the number of degrees of freedom (DOF),
kinematics (workspace volume and shape) as well as payload
capacity. The size and payload capacity appear to be “rigidly”
proportionate: the higher the payload capacity, the bigger the
robot. These observations motivate the work on reconfigurable
robots, i.e. modular robots that can be frequently reconfigured
in their physical shape even after their initial build.

On the other hand, quickly reconfigurable robots offer the
required versatility to adapt and realise fit-to-task kinematic
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Fig. 1. Tabletop view of all components needed for realising the reconfig-
urable robot: Joint modules, Tool-exchanger module (an end-effector module
designed to hold various tools) and the Base module. The modules can
be quickly connected together through C-couplings and standard electro-
mechanical interfaces starting from either the Base module or the base socket
to build robots as the one in the top-left corner.

arrangements on demand, addressing changes in the manu-
facturing process with minimal down-times of the automation
line. In particular, the physical characteristics of reconfigurable
robots can be rapidly customised to meet specific and varying
application requirements, in terms of payload, workspace,
kinematics and task dexterity. Reconfigurable robots can be
split and merged to quickly increase throughput for simple
tasks with few required DOF and reduce energy consump-
tion. For maintenance, individual modules can be selectively
and swiftly swapped. Swapped modules can be comfortably
returned to the manufacturer for maintenance, whereas a
conventional robot would have to be substituted entirely or
maintained on-site resulting in longer down-times.

The first prototypes of modular manipulators start to appear
between the late 80-ies and early 90-ies, with some pioneering
work in [2]–[4]. Later in the 90-ies, Chen proposed a generic
approach for automatic model generation of reconfigurable
robot systems [5] and later exploited it to realize a reconfig-
urable robotic workcell [6]. From the early 2000s, other appli-
cations such as search and rescue robots [7], and space appli-
cations [8] have been explored along with self-reconfigurable
robots [9], [10], intra-robot reconfiguration [11] or approaches
for reconfigurable redundant manipulators [12]. The topic
was also investigated more recently by works focusing on
spring-assisted modular robots [13], autonomous exploration
[14], self-reconfiguration planning [15] or optimization-based
design [16], [17]. In the industry world a modular arm was
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developed by Schunk [18] and employed in [19], [20]. A
prototype modular robot was proposed also by Traclabs in
[21].

To our observation, works concentrating on the electro-
mechanical module design and modelling of reconfigurable
robots have been dominating the literature until recently. Only
few – mostly recent – works address how to enable a quickly
reconfigurable robot to be also quickly programmable and
operational by the user immediately after its reconfiguration.
From our perspective, the flexibility benefits offered by re-
configurable robots are tangible only if the time to physically
assemble the robot and the time to program it for the desired
task are on an equally short time scale.

This directly leads to research questions and challenges con-
cerning the fundamentally necessary capabilities for automated
module discovery [22], [23], auto-generation and verification
of complete and accurate kinematic and dynamic models, as
well as automatic controller generation and tuning [24], [25].

In [26], axiomatic design is applied to define a general
architecture of reconfigurable robot systems that, with respect
to previous approaches, allows to deal with more general
types of modules and connections. In this regard, the authors
introduced an Object Incidence Matrix (OIM), which contains
module-specific kinematic/dynamic parameters, extending the
Assembly Incidence Matrix (AIM) introduced in [27] to
describe the robot topology. Nonetheless, neither of these
works has shown how to automatically extract this inherent
information from the communication network. Recently a
similar work was presented in [28], where the kinematic
structure is automatically detected, although no indication of
the time-scale of the reconfiguration process was given and
only kinematic model of the robot was reconstructed, not
allowing to implement dynamics-based controller as the one
presented in this paper.

The key contributions of the paper are:

• a method for automatic robot model detection and genera-
tion, by exploiting 4-port EtherCAT network configurations,

• the software architecture to realise a controller that, inde-
pendently of the robot configuration, implements a torque-
controlled compliant behaviour, with no need for user input.

While the model generation method is applicable to any
reconfigurable robot, the paper focuses on user-reconfigurable
cobots of size, payload and power ratings, equivalent to
commercially available conventional cobots requiring torque-
controlled functionality as a crucial requisite. The technolog-
ical contribution of this paper is the introduction of a novel
hard- and software architecture for user-reconfigurable cobots,
which extends the software-centred flexibility and programma-
bility of conventional cobots also to the hardware level. The
proposed method enables to operate the robot regardless of
re-configurations. It hides the specific hardware configuration
details from the user. The presented novel reconfigurable cobot
is entirely torque controlled and composed of interchange-
able modular plug-and-work components featuring common
electro-mechanical interfaces (EMI). Connecting two modules
with the provided EMIs requires only a single torque wrench
and less than one minute of time for a non experienced user.
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Fig. 2. Overview of the method for automatic model generation and robot
reconfiguration.

As theoretical contribution, the paper describes the auto-
mated configuration discovery of the connected modules, the
kinematic and dynamic model generation as well as the control
and software interface adaptation required after each physical
reconfiguration of the robot modules. It discusses all steps
involved in the robot reconfiguration process and indicates
the technical features enabling it in Sec. II. This involves the
low-level communication systems required for the automated
network topology recognition described in Sec. III and subse-
quently the robot physical topology reconstruction detailed in
Sec. IV. Sec. V explains the reconfigurable software architec-
ture including decentralised controllers on the module level,
a hard real-time middleware with automatically reconfiguring
centralised controllers and higher level application interfaces.
Sec. VI provides more details on the centralised controller
reconfiguration. Sec. VII illustrates a hardware prototype with
an application demonstration. Finally, the paper concludes and
provides an outlook for ongoing works in Sec. VIII.

II. RECONFIGURATION PROCESS OVERVIEW

The overall process of robot assembly and reconfiguration
consists of five steps as depicted in Fig. 2. Initially, the
user manually assembles the robot by connecting the modules
to realise the desired kinematic configuration suitable to the
requirements of the targeted automation task. This is the only
manual step where the user input is required. As soon as
this step is completed and the physical robot is assembled
from the interconnected modules, a network communication
is established among the modules and the network topology
can be discovered, as described in Sec. III. This enables to
reconstruct the parent/child relationship among the modules.
Each type of module also contains a unique identifier that
permits after the discovery of the network and the identifi-
cation of the interconnected modules, to access a database
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and obtain all parameters of each module. This information
is then used to reconstruct the physical properties of the
robot: kinematic, dynamic model and semantic information
such as which module is an end-effector, or which modules
are part of the same kinematic chain. Finally, the software
architecture is dynamically reconfigured at the end of the
robot reconfiguration permitting the user to operate the robot
immediately and perform the required task right after the
completion of this process. The rapid reconfigurability of the
robot allows the user to quickly iterate the entire process to
arrive at the most effective solution. The same process can be
performed to quickly adapt the robot configuration to the new
task and/or workspace settings.

III. NETWORK TOPOLOGY RECOGNITION

The requirements for the network technology suitable for
the implementation of the proposed method are as follows:

1) Since each slave will comprise one electronic device, the
topology of the network used in the proposed electronic
must permit chaining of slaves to create tree-like robots.
Only this way, modular serial kinematic robots, such
as robotic arms, and tree-like robots, such as legged
locomotion platforms, can be designed.

2) For kinematic and dynamic modelling, it must be fea-
sible to infer the exact network topology, i.e. to extract
the graph with slaves being the graph’s nodes and the
connections among the slaves being the graph’s edges.

A. EtherCAT Networks
One communication network standard that satisfies these

requirements is the EtherCAT standard, that is briefly recalled
here. In order to reconstruct the robot topology we assume that
for each robot module, the embedded slave device includes
at least one EtherCAT Slave Controller (ESC) chip. Fig. 3
illustrates the base feature of different ESC chips complying
with the EtherCAT standard. Each ESC is comprised of
an EtherCAT processor unit and at least the Ports 0 to 2.
Optionally, more ports (eg. a Port 3) may exist (dotted port).
In the following, only 4-port slaves (Port 0-3), as depicted in
Fig. 3, will be considered. The port 0 has a special function
as a so-called upstream port, since it always points towards
the network master1. When the EtherCAT master inserts a
data telegram into the ring, it will arrive to a slave through
port 0. The telegram advances to the next port when a port is
closed; open ports pass the telegram towards a slave connected
to them, until it will be received back through this port and
forwarded to the next one. Finally the telegram arrives back
to the master. Any port of the ESC is automatically opened
or closed when a communication link on that port becomes
active or inactive. Each ESC exhibits a register, accessible by
the master, that holds the open/closed state of each port.

B. Topology reconstruction algorithm
The network implementation allows to connect slaves in

apparent topologies that are bus, tree- or star-shaped, resulting

1To exploit the genderless connectors, a hardware circuit can swap the
connectivity of port 0 to the EMI on demand as in [28]
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Fig. 3. Illustration of the functioning of the EtherCAT Slave Controller.

in robots with series or tree-like kinematic chains. However,
an EtherCAT actual network topology is always an open ring
where only the organization of the ports in the ESC makes the
apparent network topology – and thereby the robots physical
topology – appear differently. The master sees all slaves lined
up in a certain order on this ring. In this way, two different
apparent network topologies (physical robots) can lead to the
same order of slaves on the ring, as Fig. 4 exemplifies.

The example shows two Robots A and B. The apparent
topology of Robot A differs from the apparent topology of
Robot B in that Slave 5 (Torso module) uses the ports 0, 1 and
3 for Robot A, whereas for Robot B, the ports 0,1,2 are being
employed. Both apparent network topologies yield the same
common actual network topology ring seen by the EtherCAT
master. This can be verified by following the outgoing network
line across all slaves back to the master. The difference in the
apparent network topology leads to a difference in the physical
robot topology. The reconstruction of the apparent network
topology from the order of the slaves along the network ring
is therefore the first step to the automatic reconstruction of
the robot kinematics and dynamics. This becomes possible by
applying the convention that port 0 is always the upstream port
and by the ESC’s register of open and closed ports, which can
be read and set from the EtherCAT master.

The EtherCAT master can then reconstruct the apparent
network topology from the network ring by looping over all
slaves on the ring. Each slave has a parent slave in the tree-
like apparent network topology. This parent is a precursor
on the network ring, but not necessarily the direct neighbour
of the slave. Considering the EtherCAT network rules, it is
possible, by looking at the open ports of each slave on the
ring, to determine its parent, as implemented in the Simple
Open EtherCAT Master [29]. The result of this step, is a graph
structure χ representing the apparent network topology with
the slaves being the nodes and the connection among the ports
being the edges of the graph. As in [5] the graph χ can be
represented in a more compact form by an AIM, with the
difference that in our graph all types of modules (even joints)
are vertexes. Every slave of the network (joints and links alike)
are treated equally so that the robot topology can be detected.

IV. ROBOT PHYSICAL TOPOLOGY RECOGNITION

At this point, we identified the graph χ describing the
network topology with each node representing an EtherCAT
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slave (Sec. III). For each node we can extract the information
fully characterising the module hosting the slave from the
centralised database (Sec. IV-A). The convention for frame
assignment described in Sec. IV-B allows us to expand each
slave node into multiple physical nodes as described in
Sec. IV-C. This information is now aggregated into a tree-
like data structure φ, where each node represents a physical
body module. This new graph φ contains bodies as nodes, and
joints and physical connections as edges; rather than slaves and
ports, respectively. This tree reflects the physical topology of
the robot and can be converted effectively to URDF (Universal
Robot Description Format) [30], that will be exchanged among
the different software agents. With the given robot model we
can compute kinematics and dynamics quantities as according
to Featherstone [31] (Sec. IV-D).

In Fig. 5, a non-exhaustive set of possible representations of
robotic modules are depicted. Each robotic module compre-
hends at least one of the electronic devices with an embedded
ESC, where available ports are associated to an EMI to connect
to other modules. Robot modules can for instance be Link
and Joint modules. The ESC inside a Joint or Link module
features either one single (open end, last member of a chain) or
two EtherCAT connections (interior member of a chain). End-
effector Modules can only be placed as the ends of a chain and
can have arbitrary application related purposes such as sensor
modules, gripper and tools modules, or mobility modules such
as feet or wheels for various types of locomotion.

Base modules function as control unit and allow to branch
the network and therefore the robot’s kinematic chain. It
includes a minimum of one ESC, as in the other modules, in
which all the four ports are available for communication. The
Base module also contains an embedded PC where, together
with the other software modules, the EtherCAT master is
running, controlling the communication with the slaves and
providing a command interface to the user. To this end, port

0 is used to connect to the EtherCAT master, leaving three
available ports which can be used to connect robot branches.
More ESCs can be combined in the Base module so that a
higher number of branches can be connected. For example,
the Base module presented in Fig. 5 combines two ESCs
communicating with the EtherCAT master, thereby allowing
communication with five robot branches. In a similar way
Hub modules can be created with one or more ESCs, just like
the Base modules without the EtherCAT master. Hub modules
enable multiple branching points at any point in the structure.

A. Module Database

After creating χ, each slave is asked for its Module identifier
stored in the microprocessor of the slave device. This identifier
serves as a key to lookup the module properties in a centralised
module database. The Module identifier code embeds:

• a Module type, which can be: 1 for an active Joint, 2 for
a Base, 3 for an End-Effector, 4 for a passive Link

• a Module id, which is used to distinguish between differ-
ent module of the same type. For instance it will be 1 for
a straight Joint module and 2 for an elbow Joint module.

• a Module size, which is 1 for small size modules, 2 for
medium size and 3 for large size.

• a Module revision number, with increasing value for
successive versions of the module design.

The properties stored for each module type and version
inside the centralised module database comprehend at least:

• The coordinate transformations between the coordinate
frames assigned to the module.

• The inertial parameters of the module. This includes the
centre of mass coordinates w.r.t. the upstream frame, the
module mass along with the module inertia parameters
w.r.t. the centre of mass. For Joint modules, the parame-
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ters are stored separately between the upstream body and
the downstream body of the joint.

• Semantic information describing the common purpose of
the module, which identifies for example an End-effector
module as a ‘gripper’ or a ‘foot’ or a ‘wheel’.

• Parameters for possible kinematic, differential or dynamic
constraints associated with the module. Joint motion
range, torque and speed limits are common constraints.

• Links to a 3D mesh file graphically representing the
module body, and coordinate transformation between the
upstream frame of the body and the mesh origin.

B. Module Coordinate Frame Assignment
We introduce a coordinate frame convention to formalise

the automatic model generation. A coordinate frame on each
connection interface and on each joint axis define all the
kinematic properties of a module. An additional reference
frame on each moving body center of mass (CoM), with axes
parallel to the upstream frame, locates the inertial properties
of the module. These coordinate frames {f} and the relative
transformations T between them enable the reconstruction and
description of the robot in URDF (see Sec. IV-C). The frame
axes are named X,Y, Z. As a convention in this paper, the
Z axis of the module interface always points downstream.
The optional leading subscript indicates a special purpose,
such as a ‘j’ means that the frame defines the joint axes of
action. Frames without the optional purpose subscript indicate
the placement of one of the interfaces of the module. The
trailing superscript is the index or identifier associated with
the ESC, while the trailing subscript refers to the port of the
ESC: {purposef slave id

port id }.
The coordinate frames are kept parallel to the upstream

frame where possible. If a reorientation of one coordinate
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frame with respect to the upstream frame is necessary, the
approach is to rotate about the minimum number of axes. The
two frames in a connected EMI are by default coincident. They
can have an orientation offset Ω about the common axis. For
joint axes indicated by the purpose subscript ‘j’, the axis of
action is always the Z axis.

The coordinate frame assignment for Link and End-Effector
modules is straightforward. In Fig. 6 example I shows the
frame convention when two Joint modules are connected to
each other. Example II shows the frame convention applied
to a Base module. It is visible that for each port, there is a
coordinate frame attached to the EMI.

C. Modelling and URDF/SRDF Generation

The coordinate frames convention introduced in Sec. IV-B,
permits to unequivocally derive the robot physical model.
Since reference frames associated to paired connection inter-
faces will be coincident, the relative kinematics between two
subsequent modules will depend solely on parameters of the
parent module. Following the notation in [31] for kinematic
trees, we can denote as λ(k) the parent of a module of index
k. The Tλ(k),k transformation matrix between modules λ(k)
and k, can be defined as the one between the frames associated
to the input port 0 of the modules {fλ(k)0 } and {fk0 }, by

Tλ(k),k = T
f
λ(k)
0 ,fk0

= T
f
λ(k)
0 ,f

λ(k)
pout

· T
f
λ(k)
pout ,f

k
0︸ ︷︷ ︸

= I

= T
λ(k)
0,pout

(1)
where T

λ(k)
0,pout

∈ SE(3) and pout ∈ {0, 1, 2, 3} is the
port number where the subsequent module is connected. It
assumes the dummy value of 0 only in case of End-Effector
module. For a module k, which can be any node in χ, the
transformation depends only on the parent node λ(k) and the
edge connecting the two nodes, which embeds the value of
pout. Therefore, the relative forward kinematics between two
modules a and b can be computed by traversing the graph
from node a and iteratively call (1) until b is reached.
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Algorithms such as those in [5], [32] can be used to obtain
the full forward kinematics model. The modular kinematics for
any module k is:

T k0,pout =


T k0,j · eŝ

k
j qk · T kj,pout , if type = Joint

T k0,pout , if type = Link, Base
T k0,tcp, if type = End-Effector

(2)
where the above transformation matrices are as follows: T k0,j
from frame {fk0 } to {jfk}, T kj,pout from {jfk} to {fkpout},
describing the proximal and distal parts of the Joint module
respectively, T k0,pout between input port (0) and the output
port for Link/Base modules, and T k0,tcp between input port
and the TCP of End-Effector modules. qk is the joint dis-
placement of module k. ŝkj ∈ se(3) is the twist of the joint
of module k expressed in frame {fkj }. The 6-D coordinate
vector skj representing the twist coordinates of the joint axis
is constant, with skj = [0, 0, 0, 0, 0, 1]T for revolute joints and
skj = [0, 0, 1, 0, 0, 0]T for prismatic joints.

By traversing the graph χ, each node can be expanded by
applying (2) and using the data retrieved from the database,
to obtain the graph φ. For example a Joint module node is
expanded into two nodes representing the proximal and distal
bodies, connected by an edge representing the actuated joint.
The nodes store the dynamical parameters of each moving
body and the edges the transformations relating the bodies
to each other. This could be converted to an OIM [26] or
AIM [27] for a more compact representation. Considering the
URDF format (an XML format) as a de-facto standard for
ROS-based libraries, we convert the graph φ to a URDF file
to describe the kinematics and dynamics model of the robot,
representing the robot as a series of link elements (which con-
sists of inertial, visual and collision properties) connected by
either fixed, prismatic or revolute joint elements. The mapping
between nodes and edges of φ and the URDF XML elements is
therefore 1:1. Note that the static physical connection between
two links (for instance between the distal and proximal body
of two successive Joint modules) is represented by a fixed joint
element, leaving to the URDF parser of the dynamic library
of choice, the task of computing the dynamic parameters
of the composite body. Semantic information of the robot,
such as a description of the end-effectors, kinematic chains
and joints composing them, is instead written in a SRDF
file (Semantic Robot Description Format), introduced by the
MoveIt! framework [33] to complement the URDF.

D. Kinematic and Dynamic Algorithms

The dynamic library of choice derives unequivocally the
kinematic and dynamic model from the URDF. Particularly
efficient implementations of dynamic libraries, suitable for
computations in a high-frequency real-time control loop, are
the ones using spatial algebra notation [31] such as KDL [34],
Pinocchio [35] or RBDL [36]. In our current implementation
the latter was used, although any of these libraries allows
to numerically compute from the URDF input all the main
kinematic and dynamic quantities. The main algorithms to
describe rigid body dynamics implemented are:

• the Inverse Dynamics or Recursive Newton-Euler Algorithm
(RNEA)

τ = RNEA(model, q, q̇, q̈) = M(q)q̈ + n(q, q̇) (3)

• the Forward Dynamics or Articulated Body Algorithm
(ABA)

q̈ = ABA(model, q, q̇, τ ) (4)

• the Composite Rigid Body Algorithm (CRBA)

M(q) = CRBA(model, q) (5)

where model is a data structure obtained by parsing the URDF.
In particular, for the controller implemented in Sec. VI.C, the
RNEA algorithm is used to compute the Coriolis-centrifugal
and gravitational forces n and the CRBA to compute the
manipulator mass matrix M . Other quantities such as point
Jacobians, accelerations and velocities can be computed from
the model structure as in [31].

V. RECONFIGURABLE SOFTWARE ARCHITECTURE

To exploit the reconfigurability of the hardware, also the
software architecture should provide the necessary flexibility
to automatically adapt to the new robot topology. It enables to
make the robot a plug-and-work system, ready to be operated
right after assembly, providing access to all the required API,
without the need to define a new controller or the need for user
input and tuning. To achieve the above, the proposed software
architecture is structured on three main components, which are
going to be described from the lower to the higher level.

A. Module Level

The firmware on each hardware module allows communica-
tion over the EtherCAT network, with an interface providing
state measurements to higher levels of the architecture. The
lower-level implementation of active modules e.g. joint and
wheel modules includes a decentralised controller, which
drives the module given the references from the higher levels.

B. Middleware Level

The middleware level exploits XBot [37], a cross-robot
software framework that abstracts the diverse variability of
the robotic hardware, assuring deterministic hard Real-Time
(RT) performance and delivering enhanced flexibility through
a plug-in architecture. XBot provides to the user a standard
API to communicate with the robot, regardless of its specific
structure (manipulator, humanoid, quadruped, etc), and inde-
pendently of the particular software layer that the user wanted
to operate within, requiring only the URDF and SRDF files.
It therefore adapts its API to the discovered robot topology.
Changing the robot topology, adding for example a kinematic
chain, results in a different API that is compatible with the
available components of the robot to control.

In the centre of Fig. 7 the different components of XBot are
depicted, which are detailed in [37]. The lowest layer imple-
ments the EtherCAT master, which realises the bi-directional
communication between the centralised software components
and the decentralised ones implemented at the firmware level
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Fig. 7. Software architecture scheme: decentralised firmware level, centralised
middleware level and application level.

inside robot hardware modules. The main component of this
architecture level is the Plugin Handler, which is respon-
sible for running different RT plugins and executing them
sequentially. One or more Communication Handler instead
organise the communication to the third non-RT layer that
is the application level. The XBotInterface provides a RT and
non-RT API that are generated based on the model description
obtained via the physical topology recognition.

C. Application Level

This third architecture level, is the non-RT application
software level. Software modules in this level run in non-RT
threads, which asynchronously receive data from the middle-
ware level and send command references to it. For instance, the
interface to the ROS framework is built-in with XBot, allowing
for integration with user-defined and third party ROS nodes.

To further simplify development at the application level,
the CartesI/O [38] library provides an auto-generated ROS
API allowing the user to specify reference trajectories in the
Cartesian space. It generates trajectories online and executes
them in a hard RT control loop (inside a XBot RT plugin),
while ensuring the real-time safeness of the operations.

The reconfigurability on this level is intrinsic as the appli-
cations can run and terminate at arbitrary moments in time

and interact with the underlying architecture levels through
requests to a Communication Handler.

VI. RECONFIGURABLE CENTRALIZED CONTROL

All safety critical centralised controllers such as interaction,
force and impedance controllers run as RT plugins in the
middleware architecture level. The controllers must respect
the robot dynamics limits and remain stable even if the robot
physical topology changes, which necessitates reconfigurabil-
ity also in the control architecture.

A. Optimisation-based Control

The proposed control architecture makes use of the Open-
SoT library [39] which exploits Quadratic Programming (QP)
and the concept of Stack of Task [40] to execute multiple tasks
and achieve complex whole-body motion behaviours.

Tasks are mathematically described as convex quadratic
programs, formulated as cost-functions to minimise under
linear constraints. The benefit of this approach is that global
minimisers to such optimisation problems are fast and efficient
with guaranteed convergence. For example, a generic task can
be described as the weighted least square cost function:

Γ(x) = ||Ax− b||2W (6)

defined by the matrix A, the column vector b, a weighting
matrix W and the robot state vector x . Tasks can be defined
in the joint space, with the purpose to minimise joint state
variables (e.g. torques or velocities) or other indexes, or in the
Cartesian space, with the goal to impose a specific behaviour
to the robot (e.g. controlling the CoM or an end-effector).

Constraints are defined by a generic function which can take
the form of a linear inequality constraint:

l ≤ Cx ≤ u (7)

where the column vectors l and u are lower and upper bounds,
and the matrix C is the constraint matrix. Again, each column
of the matrix C corresponds to a DOF of the robot. In the
same way, each row corresponds to a constraint. Consequently,
adding or removing a robot degree of freedom changes the
number of columns of C. The rows of the matrix C and
thereby also the number of elements in the vectors l and u
change with the number of constraints being active to the task.

Tasks are atomic entities, which can be executed concur-
rently with soft or hard priorities. Soft priorities are assigned
to “equally important” tasks by the weighted superposition
of their individual cost functions. Equivalently, the concurrent
tasks might be added as rows to the existing cost function.
Hard priorities are assigned by minimising cost functions of
lower priority tasks subject to the preserved optimality of
higher priority tasks using null-space projection techniques,
equality constraints or similar methods.

B. Controller Reconfiguration Principle

Controller reconfiguration is therefore equivalent to adding
or removing rows or columns in the matrix equations of cost-
functions and constraints. The job of automatically composing
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the mathematical formulation of the controller is carried out
by OpenSoT with the inputs given from the automatically dis-
covered physical robot topology and the user-defined stack of
tasks. A key feature of this step is that the user is not required
to update the control task just because a new module has been
added. End-effector task-frames can be automatically shifted
to new end-effector locations. The task formulation w.r.t. the
end-effector remains identical and numeric dimensions of the
optimisation problem are updated automatically.

C. Impedance Controller Implementation

A Cartesian impedance controller has been selected for
demonstration in this paper. It is particularly suited for
tasks involving physical interaction with the environment. An
impedance control law relates the wrench exerted on the
environment by the manipulator’s end-effector Fext ∈ <m
to the deviation of its actual Cartesian position x ∈ <m from
the desired equilibrium point xd, according to the law:

Λdë+Ddė+Kde = Fext (8)

where Λd,Dd,Kd are m×m matrices representing the de-
sired mass, damping and stiffness, respectively and e = x−xd
is the Cartesian error. The damping matrix is updated at each
control loop, depending on the desired stiffness, the desired
damping ratio, and the actual Cartesian mass matrix of the
arm, e.g. with one of the techniques described in [41].

Without the external force feedback, the desired mass matrix
can not be chosen arbitrarily, but it is determined by the
equivalent Cartesian mass matrix Λ(q):

Λd = Λ(q) = (J(q)M(q)−1J(q)T )−1 (9)

where J(q) is the task Jacobian matrix of size m × n and
M(q) is the manipulator’s mass matrix of size n× n.

As in [41] the link-side dynamics of a robot with n flexible
joints can be described by:

M(q)q̈ + n(q, q̇) = τd + J(q)TFext (10)

where q ∈ <n is the joint state vector, n(q, q̇) ∈ <n is
the vector of gravitational and Coriolis-centrifugal forces and
τd ∈ <n is the desired torque vector. By selecting τd =
δτ+n(q, q̇) to compensate for the nonlinear terms the closed
loop behaviour (8) is achieved by choosing a δτ ∈ <n solution
of the following QP [42]:

min
δτ∈C

||J(q)M(q)−1δτ − J(q)M(q)−1J(q)Tf ||2 (11)

where f = Λ(q)(ẍd − J̇(q)q̇) − Ddė − Kde and C is
the set of linear constraints as in (7), that imposes limits on
position, velocity, acceleration and torque. Eq. (11) represents
the main task in Cartesian space, for which one of the solutions
is the well-known τ ∗ = J(q)Tf . In the case of redundant
manipulators, the nullspace dynamics can be determined by
adding dynamically-consistent ( [41], [43]) lower-priority tasks
expressed in the joint space (e.g. a postural task) or in the
Cartesian space (e.g. conditions on other frames of the manipu-
lator). We add the nullspace resolution task to the second level
of priority in the Stack of Tasks. In this way, the structure of

the controller remains unchanged when modifying the physical
structure of the robot even in the presence of redundancy (e.g.
adding modules to realise a 7-DOF manipulator).

We can see how (11) is written as in the generic form (6)
where A = JM−1 is a m×n matrix, while x = δτ is a n×1
vector and b = JM−1JTf = Λ−1f is a m× 1 vector. This
controller formulation is particularly suited for reconfigurable
robots since adding and removing modules to the structure
will just change the shape of the A matrix and the length of
the robot state vector x, while no change to the controller or
re-tuning of control parameters is needed.

VII. EXPERIMENTAL RESULTS

To validate the presented method, a reconfigurable robot
prototype consisting of several straight and elbow Joint mod-
ules, an End-Effector module and a Base module has been
developed. With these basic modules, several tree-like robots
can be created. The Joint modules are actuated by the Alber-
obotics actuators [44], [45], which feature integrated torque
sensing, high power-to-weight ratio and broad torque and
velocity ranges. The end-effector used in this prototypical
implementation (Tool-exchanger) includes a magnetic actuator
to quickly attach or detach different tools. For this example, we
use two EMIs of the Base module to attach module chains. The
Base module contains a power-board and a compact PC with
RT operating system to run the centralised software modules
up to the middleware level. The application level software runs
on an external PC communicating with the embedded PC of
the Base module via WiFi.

All module prototypes comprehend the slave device re-
quired by the proposed method. The EMIs allow to quickly
establish a reliable mechanical connection that ensure an
uninterrupted power and communication link between the
modules. It is realised by a hollow flange with conical shape
accommodating the power and communication bus connectors
as shown in Fig. 8. The mechanical connection is established
by mating the flanges of two modules with a pair of identical
C-couplings, which can be tightened together with two screws.
Such an interconnection establishes form-closure around the
interface, and was also exploited in [46]. For the electrical
connection instead we exploited a commercial MPTC/MPSC
connector with EIA-364 standard test approval for shock and
vibration. This electrical connector allows for axial clearance
of about 1 mm and is mounted on a PCB with rubber support

Fig. 8. Side, top and isometric view of the EMI. One of the two C-couplings
required to establish a connection and its placement around the conical surface
of the EMI, is also shown in the picture. A couple of screws can tighten the
two C-couplings to establish the mechanical connection.
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for compliance w.r.t. the mechanical connector. The proposed
mechanical interface was designed to withstand a worst-case
resultant moment of 170 Nm, with a safety factor of 1.5. The
corresponding deformation/displacement is up to a maximum
of 0.3 mm that guarantees the electrical connectivity.

A. Automatic discovery experiment

Fig. 9 illustrates automatic topology discovery and recog-
nition with the experimental setup. The example is a tree-
like robot with two chains extending from the Base module
Fig. 9.1. Following Sec. III, the EtherCat master discovers the
apparent network topology as a graph χ with each EtherCAT
slave represented as a node Fig. 9.2. The displayed graph
contains the position of the slave in the EtherCAT ring and
the number of open ports. A 4-bit word identifies which ports
of the ESC are open. For each port the corresponding bit is
set to one if open or zero otherwise. For each module the
Module Identifier is collected, which contains the four fields
characterising it: type, id, size and revision as described in
Sec. IV. With the identifier, the information characterising
each module is retrieved and aggregated to χ (Fig. 9.3).
Each node in the tree represents a module and contains all
the associated kinematic, dynamic and semantic data of the
module. From this tree structure the physical robot topology
φ can be obtained (Fig. 9.4), and represented in URDF format
(Fig. 9.5). In Fig. 9.6 the output of the process, the URDF
model, is rendered to assess the correct model generation.

At this point, both the simulation and robot hardware are
ready to be used. The time required for building a robot
structure from modules and automatically generate the model
takes on average less than 5 minutes (compare also Fig. 10.2).

B. Cartesian task experiment

To show the efficacy of the introduced method we present
an application example, where the same task is performed with
two different robot configurations. In the example task, robot is
instructed to draw on two sheets of paper. One sheet is further
away than the other and necessitates a higher reachability of
the arm. The task is repeated twice: once with 4 DOF (closer
sheet) and one with 5 DOF (to reach the second farther sheet).
The tool held by the end-effector is a simple pen.

Fig. 10 captures the main phases of the experiment starting
from building the first 4-DOF robot Fig. 10.1. The automatic
discovery phase Fig. 10.2 comprises the network and physical
robot topology recognition, and the controller reconfiguration.
Next, the robot and controllers are started to kinesthetically
teach and execute the drawing task Fig. 10.3. The whole
procedure repeats for the 5-DOF robot in the adapt, discovery
and repeat phases Fig. 10.4-6. After about 13 minutes the
entire experiment is completed2. For this experiment a non-
RT state machine runs at the application level of the software
architecture of Sec. V to control the behaviour of the robot.
From the GUI the user can put the robot in teaching mode to
calibrate the workspace, specify the drawing to execute and
select the control parameters (stiffness and damping ratio). The

2Video of the experiment is available at: https://youtu.be/DHi7aI1HcpE
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Fig. 9. The topology of a generic robot composed of the basic modules
can be recognised with the proposed method. In this picture a two-arm robot
model has been built (1) and information on each module collected by the
EtherCAT master (2). From this data, the proposed method reconstructs the
network topology χ (3) and physical topology φ (4). A snapshot of the URDF
representation of φ is shown in (5), and its virtual rendering in (6), matching
the real robot. Different colours indicate different modules and show how the
data is propagated through χ to φ, and then stored in URDF. Light green,
blue and yellow indicate respectively Joint, Base and End-Effector modules.
In grey are instead indicated the fixed joints, rigid transformations representing
the mechanical connections established between each module.
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Fig. 10. In this example application, a 4 DOF robot is originally built by connecting the basic modules (1). The robot topology is then reconstructed and
visualised by the web app, where the initial robot pose can be set and the controller started (2). Through the GUI it is possible to specify a drawing task
and run it (3). This is then repeated for a 5 DOF robot which can be built just by adding a new module to the previously built one (4). The discovery and
drawing task are then repeated as before (5-6). The drawing is replicated on a second sheet of paper not reachable by the 4-DOF robot.

rest of the procedure executes automatically. The controller
does not need to be modified by the user after reconfiguration,
since the software modules already reconfigure the middleware
API and the controller architecture. In the automatic model
generation the only difference is the presence of one more
module with an additional DOF in the kinematic chain. This
is handled automatically in the discovery phase Fig. 10.5. For
this task the defined controller uses a Stack of Tasks [39] with
a translation and orientation Cartesian impedance task on the
higher level of priority, and a Postural task on the second and
last level of priority as explained in Sec. VI. The postural is
required for robots that are redundant with respect to the task.
The Stack of Tasks is defined a-priori before the experiment.

In Fig. 11 the actual position of the end-effector and the
given reference are plotted in Cartesian coordinates, both for
the 4-DOF and 5-DOF robot cases. The stiffness values used
for this experiment are the same for the two robots, with a
translational stiffness on the x, y, z axes of 2500 [N/m], rota-
tional stiffness on the roll and pitch rotations of 20 [Nm/rad]
with null stiffness on the yaw axis. This proves there is no need
to re-tune the controller parameters after re-configuration. The
values for the damping matrix are instead computed as in [41]
by setting a damping ratio of 0.7. Maximum error on the x-y
plane during the drawing task is 0.0024 m for the 4-DOF robot
and 0.0033 m for the 5-DOF robot. With identical controller
gains, the increased tracking error for the 5-DOF robot can be
explained by accumulated model errors when higher number
of modules are involved. One way to reduce the tracking error
is raising the stiffness gains. Another option is enhancing the
model accuracy for each module i.e. from identification to
decrease error contributions from model based compensation
terms. This will be part of future work.

The proposed method, comprising of the automatic kine-
matic and dynamic model generation, provides all the tools
to implement other types of controllers capable of improving
the trajectory tracking performance, although sacrificing the
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Fig. 11. Actual end-effector pose and its reference on the x-y plane for the
drawing task of the 4-DOF and 5-DOF robot.

compliance behaviour property of the impedance control, with
techniques as those proposed in [47], [48].

VIII. CONCLUSION

The paper presents a novel method and a complete architec-
ture for quickly hard- and software reconfigurable robots. The
architecture comprises a set of modules with modular electro-
mechanical communication, power and mounting interfaces
along with a fully reconfigurable software stack. The software
stack comprises the lowest module firmware level, a hard
real-time middleware for centralised control and safety-critical
algorithms as well as a higher non-real-time application level.

Using the proposed method, the paper successfully demon-
strates and exemplifies how a robot can be built, programmed
for a task, commanded to execute it, reconfigured for a
larger workspace and commanded again to execute the task
in minimal time within 13 minutes approximately. The time
to physically assemble and program the robot for the desired
tasks are on equally short time scales. This paves the way
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to exploit the versatility of reconfigurable modular robots
to: (i) cope with frequent product variation, (ii) minimise
maintenance down-times and (iii) build new robot designs on-
demand. The proposed approach enables robots not only to
assist in the production of mass customisable products, but
permits robots to become mass-customisable themselves.

Future research of this work will focus on the development
of software assistant tools to help the user identify the optimal
robot configuration for formally defined task requirements as
well as on the further extension of the presented approach to
floating-base robots for locomotion, mobile manipulation and
combined loco-manipulation tasks.
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