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Quality of data services is crucial for operational large-scale internet-of-things
(IoT) research data infrastructure, in particular when serving large amounts of
distributed users. Effectively detecting runtime anomalies and diagnosing their
root cause helps to defend against adversarial attacks, thereby essentially boosting
system security and robustness of the IoT infrastructure services. However,
conventional anomaly detection methods are inadequate when facing the dynamic
complexities of these systems. In contrast, supervised machine learning methods
are unable to exploit large amounts of data due to the unavailability of labeled
data. This paper leverages popular GAN-based generative models and end-to-
end one-class classification to improve unsupervised anomaly detection. A novel
heterogeneous BiGAN-based anomaly detection model Heterogeneous Temporal
Anomaly-reconstruction GAN (HTA-GAN) is proposed to make better use of a
one-class classifier and a novel anomaly scoring function. The Generator-Encoder-
Discriminator BiGAN structure can lead to practical anomaly score computation
and temporal feature capturing. We empirically compare the proposed approach
with several state-of-the-art anomaly detection methods on real-world datasets,
anomaly benchmarks, and synthetic datasets. The results show that HTA-GAN

outperforms its competitors and demonstrates better robustness.
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1. INTRODUCTION

Scientific research data infrastructures bring together
facilitates, resources, research data and services used by
scientific communities to conduct datacentric research
and establish best practice for science, and foster
innovation. In the environmental and earth sciences
domain, there are various existing research data
infrastructures in operation, e.g., EPOS1 of solid earth
and ACTRIS2 of atmosphere. Among them, Euro-

1https://epos-eu.org/
2http://actris.nilu.no/

Argo3 is a typical example, in which thousands of
ocean observation sensors, namely Argo devices, are
deployed to monitor the ocean variables. These
sensors provide large amounts of timely updated status
data, and the accumulated research data are well-
organized in large-scale IoT data infrastructures to
serve user communities for different purposes, e.g.,
for realtime decisions, oceanographic research, and
education, as shown in Figure 1. In such kind of data
infrastructures, the quality of the data services, e.g.,
for retrieving and accessing data products, is crucial for

3http://www.euro-argo.eu/
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FIGURE 1. Typical Service Optimization for Large-
scale IoT Data Infrastructures.

enabling applications with critical business values such
as realtime early warning.

Monitoring the service performance and detecting
abnormal system behavior is a meaningful way to
diagnose the system status and assure service quality.
Anomaly detection, a.k.a. outlier detection or novelty
detection, is referred to as the process of detecting data
instances that have significantly different characteristics
from the majority of data instances. Generally,
the system monitor data, especially service logs, are
organized in time series. In addition, we are focusing
on point anomaly detection in this paper instead of
complicated anomalies like contextual or collective ones.
Thus, we limit anomaly detection as ”to detect a
point in time series where the system’s behavior is
significantly different from the previous normal status”.
Anomaly detection has been an active research area for
several decades [1, 2, 3].

Although anomaly detection has been active since
the 1960s and it is highlighted in various technologies,
including data mining, machine learning, computer
vision, and statistics, it remains challenging because of:
i) Unknownness: anomalies are associated with many
unknowns until their actual occurrence, such as novel
frauds and network intrusions. ii) Heterogeneity: one
class of anomalies may be completely different from
another class. iii) Rarity: anomalies are typically rare
data instances, compared with normal instances that
often dominate and occupy a most proportion of the
data. Therefore, this rarity leads to the unavailability
of large-scale labeled data in almost all situations.

In recent years, deep learning has demonstrated
tremendous capabilities in learning feature representa-
tions of complex data such as high-dimensional non-
linear data, temporal data, spatial data, and graph
data, gaining great success in various applications. As
for anomaly detection, deep learning for anomaly de-
tection, deep anomaly detection for short, aims to learn
feature representations or anomaly scoring via deep
neural networks to detect anomalies. Unlike traditional
distance-based, one-class classification, probabilistic or
cluster-based methods, there are mainly three cate-
gories in deep anomaly detection: feature extraction,

learning feature representations of normality, and end-
to-end anomaly scoring. Recently, deep anomaly detec-
tion approaches have continuously pushed the bound-
aries from different aspects for detecting challenging
real-world anomalies.

Supervised deep anomaly detection still suffers
from limited available high-quality labeled datasets.
Generative Adversarial Networks (GAN) [4] framework
has shown to be wildly successful in generating realistic-
looking images, real-valued time series sequences,
or even melodious polyphonic music. Thus GAN-
based anomaly detection has attracted much attention,
and several GAN-based methods have been proposed
recently. However, due to the high complexity
of massive high-dimensional, non-linear, and non-
independent data and the difficulties of GAN’s
adversarial training model, we still face some challenges
in applying it in anomaly detection. First of all, low
anomaly detection precision and recall rate in high-
dimensional and/or non-independent data. Secondly,
convergence issues and mode collapse occur frequently
during adversarial model training. Last, it is time-
consuming for neural network training, which may not
be acceptable for an enormous amount of real-world
applications.

As for real-time operational anomaly detection
for large-scale scientific research data infrastructure,
limited exploration for GAN-based anomaly detection
approaches has been conducted. Inspired by Generative
Adversarial Active Learning [5] to generate anomalies
instead of normal instances via the minimax game, we
are motivated to propose the Heterogeneous Temporal
Anomaly-reconstruction GAN (HTA-GAN) to detect
point anomalies from time series. HTA-GAN can
satisfy better detecting precision, recall, and real-
time performance for operating data infrastructure
services. Our method adopts a novel heterogeneous
generator and discriminator architecture, which can
empower temporal feature capturing via recurrent
neural networks, make the best use of convolutional
neural networks’ strong pattern classification capability,
and reduce overfitting issues. We define a novel
anomaly scoring function using a weighted combination
of the discriminator’s binary cross-entropy and the
generator’s anomaly reconstruction error. BiGAN [6]
architecture is leveraged to improve computational
efficiency of the reverse mapping of the generator while
generating anomalies. The main contributions of the
proposed HTA-GAN are as follows:

• Capture normal multivariate time series data regu-
larities while discriminating generated anomalies in
an unsupervised one-class classification manner by
providing an effective heterogeneous GAN-based
architecture.

• Exploit end-to-end one-class discrimination and
the reconstruction error of anomalies by developing
a novel anomaly score function.
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• Improve the computational efficiency of the
anomaly score by introducing a BiGAN-based
structure.

The rest of this paper is organized as follows. Section
2 presents a brief review of the related works. Section
3 introduces the proposed HTA-GAN architecture and
corresponding anomaly score function. In Section
4, we introduce seven test datasets, including real
operational logs from the Euro-Argo infrastructure,
anomaly bench-marks, and synthetic datasets, and then
show the experimental results of the proposed HTA-
GAN with other seven state-of-the-art methods on these
test datasets. Section 5 presents further discussions
on the results and service optimization for Euro-Argo
Infrastructures. Finally, Section 6 summarizes the
whole paper and suggests possible future work.

2. RELATED WORK

We briefly review existing work on point anomaly detec-
tion, especially recent progress for time series. We start
from the classic anomaly detection methods, followed
by deep-learning-based ones. More comprehensive lit-
erature reviews can be found in recent surveys [7, 8, 9].

2.1. Classic Methods

Due to the inherent unavailability of labeled anomaly
data for supervised learning, anomaly detection is
mostly based on unsupervised methods. Most classic
anomaly detection methods are as straightforward as
model-based methods to establish a model for all
samples and then predict anomalies as those having
large deviations from the established profiles of time
series. These model-based methods are typically based
on linear models, distance models, and probability
models.

Principal Component Analysis (PCA) [10] is a
typical example of linear models. Most linear-model-
based anomaly detection methods basically preserve
the important variability information extracted from
dimension reduction for vast amounts of correlated
data. K-Nearest Neighbor (KNN) [11] is a popular
approach of distance-based methods; it computes
the average distance to its k nearest neighbors and
obtains anomaly scores based on this distance. Local
Outlier Factor (LOF) [12] is another example of
distance-based methods. Most linear or distance-
based models are only effective for highly correlated
data and require the data to comply with some
assumptions, such as following multivariate Gaussian
distribution [13]. The probabilistic-based methods were
proposed as improvements of distance-based methods
by paying more attention to the data distributions. For
example, the Angle-Based Outlier Detection (ABOD)
[14] and Isolation Forest (IF) [15] deal with data
by considering variable correlations. However, these
methods are unable to take into consideration the

temporal correlation along with time steps and thus
do not work well for complicated datasets. One-Class
Support Vector Machine (OC-SVM) [16] does not make
any assumptions about the data distribution. It aims to
find a hyperplane that can separate the vast majority of
data from the origin in the projected high-dimensional
space.

Overall, choosing a suitable model and parameters
are the key to the classic methods, which significantly
depends on the prior expertise. However, due to the
complexities of high-dimension, non-linear and non-
stationary multivariate time series data, traditional
methods face significant challenges, including high
computational costs and the “curse of dimensionality.”

2.2. Deep Learning Methods

In recent years, deep learning has proven to be
amazingly promising in various applications. Thus,
deep-learning-based unsupervised anomaly detection
methods have gained visible popularity, especially for
multivariate time series. Generally, these well-studied
methods could be categorized into three groups.

Firstly, deep feature extraction approaches directly
leverage popular pre-trained deep learning models such
as AlexNet [17] to extract low-dimensional feature
representations from high-dimensional, non-linear, and
non-stationary data for downstream anomaly detection.
The anomaly detection performance would be pretty
impressive if there are proper mature pre-trained
models for corresponding specific applications such as
images or videos.

The second one is to learn feature representations
of normality, to which most existing unsupervised
deep methods belong. Auto-Encoder (AE) and its
variants like Variational Auto-Encoders are typical
models by inspecting its reconstruction errors. Deep
Autoencoding Gaussian Mixture Model (DAGMM)
[18] and LSTM En-coder-Decoder [19] have reported
good performance for multivariate anomaly detection.
The most straightforward way is to follow the same
procedure as the conventional use of AEs by adapting
the network architecture to the type of input data
including multivariate time series, such as CNN-AE
[20, 21], Conv-LSTM-AE [22], and GCN-AE [23].
There are also deep distance-based anomaly detection
methods aiming to learn feature representations that
are specifically optimized for a specific type of distance-
based anomaly measures. There have been a number of
effective distance-based anomaly measures introduced,
such as DB outliers [24, 25], k-nearest neighbor
distance [26], average k-nearest neighbor distance [11],
relative distance [27], and random nearest neighbor
distance [28, 29]. Next, the predictability-based model,
which learns feature representations by predicting the
current data instances using the representations of the
previous instances within a temporal window as the
context, is widely used for sequence representation
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learning and anomaly detection [30, 31, 32, 33].
The predictability-based methods should capture the
temporal or sequential dependence within a given
time window or sequence length to achieve accurate
predictions. Specifically, GAN-based [4] anomaly
detection methods emerge quickly after their early
use in [34] due to GAN’s capability to capture the
deep representation of real data through a mini-max
game and achieved state-of-the-art performance in
a variety of applications. The majority of GAN-
based methods fall into this group as the GAN-based
generative methods. AnoGAN [34] generally aims to
learn a latent feature space of a generative network G
so that the latent space well captures the normality
underlying the given data. Some forms of residual
between the real instance and the generated instance
are then defined as anomaly score. Then, EGAN [35]
and fast AnoGAN [36] have been proposed to improve
AnoGAN’s computational efficiency. GANomaly [37]
further improves the generator by adopting an encoder-
decoder-encoder network for the generator. There
have been some other GAN-based improvements from
various aspects [38, 39, 40, 41] in this group.

The last group is the end-to-end anomaly scoring
approach, which is not dependent on existing anomaly
measures. Similar to typical end-to-end applications, it
has a neural network that directly learns the anomaly
scores. Novel loss functions are often required to
drive the anomaly scoring network, e.g., the ranking-
model-based approach devises ordinal regression-based
loss functions to drive the anomaly scoring neural
network [42, 43]. It is worth mentioning that
GAN can also be adopted as an end-to-end one-class
classification model in this group. The key idea is to
train the discriminator to be a one-class classifier for
normality to discriminate those normal instances from
generated anomalies. Adversarially Learned One-class
Classification (ALOCC) is first studied in [44]. This
idea is explored more in [45]. One-class adversarial
network (OCAN) is introduced in [46] to leverage
the idea of badGAN [47] to generate fringe instances
based on the distribution of the normal training
data. Generative Adversarial Active Learning (GAAL)
[5] adopts generative adversarial learning to generate
informative potential outliers directly. Meanwhile, one
widely used assumption for this group would be that
the anomalies are not as concentrated as the normal
instances. Furthermore, GAN can be also adopted to
deal with data imbalance for intrusion detection [48].

In summary, there are impressive achievements by
deep-learning-based unsupervised anomaly detection
approaches. However, there are still three difficulties,
including i) the detecting performance still could
not satisfy real-world applications, especially for
classification measurements such as precision or recall.
ii) the real-time performance suffer from multiple
problems during neural network training, such as failure
or slowness to converge and mode collapse [49]. iii)

feature representation learning could be biased by
infrequent regularities and the presence of anomalies in
the training data.

3. PROPOSED METHOD: HTA-GAN

To resolve these difficulties and detect operational
anomalies for data infrastructure, we propose a novel
GAN-based approach HTA-GAN. The organization of
this section is as follows: In section 3.1, we present the
problem formulation of anomaly detection. Section 3.2
introduces the architecture of HTA-GAN. Section 3.3
presents anomaly scoring computation to satisfy real-
time requirements. The heterogeneous structure for
better feature learning is introduced in Section 3.4.

3.1. Problem Formulation

Given a dataset X = {x1, x2, . . . , xN} , xi ∈ RD with
unobservable labels Y = {y1, y2, . . . , yN} , yi ∈ {0, 1},
let Z ∈ RK(K � N) be a feature space, goal of
deep anomaly detection is to learn a feature mapping
function φ(·) : X 7→ Z or an anomaly scoring function
τ(·) : X 7→ R in order that anomalies can be easily
distinguished from normality in the space yielded by
the φ or τ function, where both φ and τ are neural
networks with H ∈ N hidden layers with weight matrix
Θ =

{
M1,M2, . . . ,MH

}
. Specifically for the feature

mapping φ (·), an additional step is required to calculate
the anomaly score of each data instance in the new
representation space. As an anomaly scoring function,
τ(·) can directly infer the anomaly scores with raw data
inputs. More significant τ outputs indicate a greater
degree of being anomalous. Therefore, deep anomaly
detection can be formulated as:

For φ(·) : X 7→ Z, there is:

{Θ∗, W∗} = argmin
Θ, W

∑
x∈χ

`(ψ(φ(x; Θ); W)) (1)

Sx = f(x, φΘ∗, ψW∗) (2)

While τ(·) : X 7→ R, there is:

Θ∗ = argmin
Θ

∑
x∈χ

`(τ(x; Θ)) (3)

Sx = τ(x; Θ∗) (4)

Where φ maps the original data to the feature space
Z, ψ is parameterized by W is a learning task that
operates on the feature space Z and is dedicated to
learning normal data’s regularities and distributions, `
is a model relevant loss function, and f is a scoring
function that utilizes φ and ψ to calculate the anomaly
score s.

As in most existing GAN-based generative methods,
the parameters of generator G and discriminator D
are updated based on the outputs of D until Nash
Equilibrium. On the one hand, train the discriminator
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D to be as sensitive as possible to assign correct
labels to either real or fake data instances. On the
other hand, simultaneously turn the generator G to
be as ingenious as possible to fool the discriminator
after sufficient iterations. As can be imagined, the
generator G will have a better understanding of
datasets’ hidden distributions of the training dataset
and be able to generate realistic samples. Theoretically,
in a typical GAN model, the generator, which takes
randomly generated noises as input, can directly
generate informative potential anomalous instances
that occur far from the real normal data through
the guide of the discriminator. An anomaly score
could be adopted inversely for such fake anomaly
generation. As a result, the discriminator can identify
anomalies based on the anomaly score by describing a
division boundary separating potential anomalies from
the normal instances. There is an assumption that the
class distributions of the datasets should be unbalanced
between anomalies and normal data. This assumption
is widely used for anomaly detection. In addition, as we
mainly focus on point anomaly detection for time series,
we only consider generating point anomaly, i.e., single
anomalous point in time series, via the GAN model.

To be more concrete, the fundamental intuition of
this GAN-based generative approach is that, given
any data instance x, it aims at an instance z from
latent feature space of the generative network G so
that the corresponding generated instance G(z) and x
are as similar as possible. Since the latent space is
enforced to learn the training dataset’s underlying key
feature, anomalies are expected to have less similarity
to generated counterparts than normal instances.
Specifically, a GAN is first trained with the following
conventional objective:

min

ΘG

max

ΘD V (D,G) = Ex∼px[log[D(x)]+Ex∼pz[log[1−D(G(z))]
(5)

Where G and D are respectively parameterized by
ΘG and ΘD, and V is the value function of the two-
player minimax game. After that, for each x, to
find its best z, two loss functions - residual loss and
discrimination loss - are used to guide the search. The
residual loss is defined as:

`R (X,Zy) = ‖X −G (Zy)‖1 (6)

While the discrimination loss is defined based on the
feature matching:

`fm (X,Zy) = ‖h(x)− h (G (Zy))‖1 (7)

Where γ is the index of the search iteration step, and
h is a feature mapping from an intermediate layer of D.
The search starts with a randomly sampled z, followed
by updating z based on the gradients derived from the
loss function, i.e., anomaly scoring function:

sx = (1− α)`R (X,Zγ) + α`fm (X,Zγ) (8)

Where α is a hyper parameter. The anomaly score is
accordingly defined upon the similarity between x and
z obtained at the last step γ∗ :

sx = (1− α)`R (X,Zγ∗) + α`fm (X,Zγ∗) (9)

The end-to-end one-class classification approaches
emerge mainly due to the combination between
GAN and the concept of one-class classification,
i.e., adversarial learning of one-class classifier. The
key idea is to learn a one-class discriminator
of the normal instances in an end-to-end way.
As a result, the discriminator would be able to
differentiate those instances from generated fake
anomalies well. The intuition is that G can well
reconstruct or even augment normal instances, but it
can be fooled by inputted anomalies and consequently
generates distorted anomalies. Through the minimax
optimization, the discriminator D learns to be a one-
class classifier, which can better discriminate normal
instances from the anomalies than using the original
data instances. Thus, D(G(z)) can be directly used as
τ to detect anomalies.

Based on the two GAN-relevant methods, the three
difficulties as mentioned earlier are transferred into
three key problems: i) How to exploit a single
GAN’s generator and discriminator architecture to
combine the two models’ advantages. ii) How
to define a computational efficient anomaly scoring
function. iii) How to conduct simultaneous temporal
representation capture and one-class classifier for
complex logs of multivariate time series. To
perform effective anomaly detection in the real-time
operation of data infrastructure, we should handle
them reasonably. Moreover, the engineering problem
discussed in this paper is originated from the service
optimization of Euro-Argo. To enable Euro-Argo
data infrastructures to adapt to real-time operation
and dynamic provisioning, the maximum duration for
analyzing the integrated data should be less than 10
minutes, including data preprocessing, training the
model in a sliding window, and calculating anomaly
scores. The 10 minutes maximum time window to
log analysis is defined by Euro-Argo based on both
business value and real-world operation. If it is too
long, anomaly detection is not effective enough for
real-time operation. However, if a short interval, like
less than 1 minute, infrastructure provisioning like VM
initialization may not even finish. Therefore, we must
take time cost into account.

3.2. HTA-GAN Architecture

To address the first key problem, i.e., how to exploit a
single GAN’s generator and discriminator architecture
to combine the two models’ advantages, we need
first to look into the differences between the GAN-
based generative methods and the end-to-end one-
class classification approaches. In brief, there are
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FIGURE 2. HTA-GAN architecture overview. Z is the latent space while X is the original data space.

two main differences: i) the GAN-based methods aim
at learning generative characteristics to be maximally
similar to the real data distribution, obtaining a
generative model that nicely captures the normality of
the training data instances; while the end-to-end one-
class classification based approaches aim to optimize
a discriminative model to separate normal instances
from generated anomalous instances. ii) the GAN-
based generative methods define the anomaly scores
based on the reconstruction residual between the real
instances and the corresponding generated instances,
whereas the end-to-end one-class classification based
methods here directly use the discriminator to recognize
anomalies in a binary classification manner, i.e., the
discriminator D acts as τ in (3). Next, there are two
necessary assumptions, which are consistent with most
existing researches [50]. One is that inherent properties
of anomalies have significantly different characteristics
from normal data, and the class distributions are
extremely unbalanced between anomalies and normal
data. The other assumption is that anomalies are not
as clustered as the normal data.

As shown in Figure 2, on the basis of compar-
ison between GAN-based generative framework and
end-to-end one-class classification models, we pro-
pose HTA-GAN (Heterogeneous Temporal Anomaly-
reconstruction GAN) to exploit and unify both mod-
els into a single GAN for operational anomaly detec-
tion in large-scale scientific research data infrastruc-
tures. Specifically, the discriminator D plays a one-class
classifier role and the generator G as an anomalous in-
stance reconstructor. The training procedure falls into
a similar manner as end-to-end one-class classification
models: The generator G generates fake anomalies from

noises from latent space while the discriminator D is
to differentiate generated anomalies from real normal
data. After sufficient adversarial training epochs, the
discriminator D is trained as a robust one-class classi-
fier to detect anomalies directly. Here we must notice
that it is crucial for the generator G to learn anoma-
lies’ representation when the discriminator is sensitive
enough to assign correct labels to an anomaly or normal
instance. Therefore, the reconstruction error of the gen-
erator G would also be exploited for anomaly scoring as
well as direct binary cross-entropy from the discrimina-
tor D, i.e., D(G(z)). The reconstruction error indicates
the residuals between real-time testing samples and re-
constructed samples, i.e., fake anomalies by G based on
the mapping from the GAN latent space to real-time
space. Here the main difference of the proposed recon-
struction error from the typical GAN-based generative
framework is that the proposed reconstruction error is
more significant for normal data instances due to the
fact that the generator generates anomalous instances
G. As can be figured out, the proposed reconstruction
error is smaller for anomalies while more significant for
normal data. Moreover, regarding unknown anomalies,
since our model learns the features of normal data and
adopts the deviation between an instance and normal
instances to decide if it is anomalous, it can detect un-
known anomalies.

Therefore, the anomaly scoring function would be
appropriately defined by a combination of binary cross-
entropy from the discriminator D and the anomaly
reconstruction error from generator G, which, according
to (8), can be formulated as follows:

sx = α`OC(X)− (1− α)`AR(X) (10)
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Where `OC is the one-class classification error, which
can be obtained from binary cross-entropy of the
discriminator D. However, the anomaly reconstruction
error `AR could not be calculated directly, which is the
second key problem to be handled.

3.3. BiGAN-based Anomaly Score Calculation

The second key problem, i.e., how to define a
computational efficient anomaly scoring function,
although binary cross-entropy from the discriminator
D is easy for calculation, the calculation of anomaly
scoring should be paid much attention. Theoretically,
the testing samples should be mapped back into
the latent space to calculate the corresponding
reconstruction error based on the difference between the
reconstructed samples and the actual testing samples.
However, reverse mapping is not available directly since
the generator G only implements only the mapping
from latent space to real data space. Enlightened
by the concept of BiGAN [6], the overall architecture
would be updated accordingly by adopting BiGAN’s
encoder-generator-discriminator structure, which can
result in simultaneous adversarial training for encoder
E, the generator G and the discriminator D. The
encoder E would be the reverse mapping from real
data space back to the latent space, leading to notably
reduced computational complexity. Thus G(E(x)) can
be regarded as the reconstructed instance to compare
with the real input instance x, which could be pretty
straightforward as:

`AR(X) = ‖x−G(E(X))‖1 (11)

With the BiGAN improvement, we can also update
our overall minimax game as follows: From

min

ΘG

max

ΘD V (D,G) = Ex∼px[log[D(x)]+Ex∼pz[log[1−D(G(z))]
(12)

To

ΘE

min

ΘG

max

ΘD Ex∼px
[
Ex∼pE(·|x) log[D(x, z)]

]
+Ex∼pz

[
Ex∼pG(·|z)[log(1−D(x, z))]

] (13)

3.4. Heterogeneous Generator and Discrimina-
tor

To deal with properly the third key problem, i.e., how to
conduct simultaneous temporal representation capture
and one-class classifier for complex logs of multivariate
time series, we construct the GAN’s generator and
discriminator heterogeneously. As to the generator,
we adopt Long Short-Term Memory (LSTM) due to
its proven temporal feature learning and representation
capability. In contrast, Convolutional Neural Networks
(CNN) are leveraged for discriminator because of their
out-standing performance in pattern classification, as
shown in the corresponding part of Figure 2. Following

a typical End-to-end one-class GAN-based classifier
framework, the generator (G) generates fake anomalies
with sequences from a random latent space as its inputs.
It passes the generated anomalies to the discriminator
(D), which will try to distinguish the generated, i.e.,
anomalous data instances from the real, i.e., normal
training data sequences as a generic one-class classifier.
This improved heterogeneous GAN structure is capable
of making the best use of LSTM and CNN for their
respective merits, which fits for the generator to
bring forward anomalous instances actively and for the
discriminator to detect anomalies. Furthermore, this
heterogeneous structure can also effectively mitigate the
overfitting issue. Considering real-time performance
and practicality, we adopt shallow layers, i.e., no more
than three layers for either LSTM or CNN. We choose
Adam and SGD as optimizers during the training
process.

4. EVALUATION

4.1. Experimental Settings

This section provides details of the datasets, evaluation
metrics, baseline methods, and parameter settings for
subsequent experiments.

4.1.1. Datasets
To verify the proposed anomaly detection method,
we conduct experiments on three different kinds
of datasets, covering both real-world and synthetic
datasets.

Euro-Argo Integrated Data Service log: The Euro-
Argo scientific research data infrastructure is the
European contribution to the global Argo program,
which currently has more than 3500 autonomous
float instruments globally deployed over the world
ocean to measure and report temperature, salinity,
and other properties of the oceans. The collected
raw data from deployed floats, massive but low-
dimensional, is processed into scientific research data,
which are key assets for conducting environmental
and interdisciplinary scientific research. They are
then made available via the Euro-Argo data portal,
and research communities can access them from
various methods. To guarantee this, the Euro-Argo
infrastructure needs to allocate sufficient resources for
the storage of data, execution of service requests, and
bandwidth for down and uploads. Analyzing access
patterns of different data services will help Euro-Argo
understand more about how its data products and
services are used, particularly in the context of open
access to scientific data. Like an ordinary data center,
among access pattern analysis and optimization for
quality of service, one critical and unavoidable factor
is anomaly detection, which is, in data infrastructure
context, to detect service failure, SLA unsatisfaction,
traffic outliers, and network intrusion. The Euro-Argo
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TABLE 1. GENERAL INFORMATION OF SEVEN TEST DATASETS

Dataset Abbr. Variables Samples Type Anomaly Percentage

Euro-Argo Eu 49 28311 Real-world 2.84%
vertebral Ve 6 240 Benchmark 12.50%
optdigits Op 64 5216 Benchmark 2.88%
Synthetic 1 S1 200 33000 Synthetic 15.00%
Synthetic 2 S2 100 12000 Synthetic 5.00%
Synthetic 3 S3 50 4000 Synthetic 5.00%
Synthetic 4 S4 50 18000 Synthetic 15.00%

FIGURE 3. Euro-Argo Integrated Data Service logs.

Integrated Data Service Log data, as can be seen from
Figure 3, is collected for one month’s continuous data
services running 24 hours per day. Various anomalies
occurred with different intents and divergent lasting
durations from a few minutes to some hours. There
are 49 variables from different data services measured
for one month. There are 28311 samples collected by
sampling every 10 minutes from the 4094157 raw log
data. In the anomaly detection process, we subdivide
the original long multiple sequences into smaller time
series by taking a sliding window across raw streams.
To enable effective adaptation, Euro-Argo requires that
the point anomaly detection accuracy is no less than
90 percent. Meanwhile, another crucial requirement
of Euro-Argo is real-time performance since the logs
are generated continuously per each request. The
time duration for analyzing the integrated service logs
should be less than 10 minutes to empower Euro-Argo
data infrastructures to adapt to real-time operation
and dynamic provisioning. This criterion is a trade-off
between dynamic adaptation and resource utilization,
e.g., shorter duration may lead to better and faster
adaptation but a lower resource utilization or even
resource unpreparedness.

Open Anomaly Detection Datasets: as for the open
anomaly detection datasets, we choose two benchmark
datasets: “vertebral” and “optdigits” to evaluate

the performance for small sample sizes. These two
benchmarks often appear in the anomaly or outlier
detection literature with lower performance due to
smaller sample sizes and ranged anomaly rates, e.g.,
there are only 240 and 5216 samples for “vertebral”
and “optdigits”, respectively. Generally, the F1 Scores
for most tested anomaly detection methods in existing
experiments are lower than 0.5.

Synthetic Datasets: We adopt four synthetic datasets
for further performance comparison. Specifically,
we use the PyOD4 toolset to generate four random
synthetic datasets with different volume, dimension,
and anomaly rate combinations: 1) Data volume:
training sample size considered from 3000 to 30000
with test sample size from 1000 to 3000 are used
to evaluate the computational complexity of anomaly
detectors on a group of datasets with different scale; 2)
Data dimension: is designed to explore their influence
on the performance of different algorithms. Here,
from 50 to 200, which are most typical for high-
dimensional data, is synthesized for evaluation; 3)
Anomaly Distribution and Percentage: the distribution
and percentage of anomalies are used to assess the
sensitivity for different anomaly class and ratios. Note
that, for all synthetic datsets, normal data comply with
multivariate Gaussian distribution, and anomalous data
is generated by a Uniform distribution with an Anomaly
Percentage, i.e., Contamination Rate (CR) in PyOD,
from 5% to 15%.

Table 1 summarizes general information about these
datasets.

4.1.2. Evaluation Measures
Considering anomaly detection as a one-class classifi-
cation, we follow generic measurements based on the
confusion matrix. Generally, given anomalies are the
rare part of the entire datasets, Precision, Recall, and
F1 score are adopted to measure the overall detection
accuracy, which is more suitable for these highly skewed
datasets. The definition of Precision, Recall, and F1
scores are as follows:

Precision =
TP

TP + FP
(14)

4https://pyod.readthedocs.io/en/latest/pyod.html
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Recall =
TP

TP + FN
(15)

F1 =
2× Precision×Recall
Precision+Recall

(16)

Where TP is True Positives, FP is False Positives,
TN is True Negatives and FN is False Negatives.

Another important metric is the time duration, mea-
sured in seconds, especially for real-world applications
like Euro-Argo. According to Euro-Argo’s requirement,
it is of much importance that anomaly detection should
be carried out within 10 minutes. Meanwhile, to com-
prehensively evaluate the real-time performance, we
also compare the time duration of all approaches on
the other six datasets.

4.1.3. State-of-the-art Anomaly Detection Methods
We evaluate the anomaly detection performance of
HTA-GAN on the datasets mentioned earlier. We
compare the anomaly detection performance with
classic and popular K-Nearest Neighbour (KNN)
[11], Angle-Based Outlier Detection (ABOD) [14],
Isolation Forest (IF) [15], and Auto-Encoder (AE)
[18] that are popular unsupervised anomaly detection
methods on the datasets. As to the GAN-based
method, we compare HTA-GAN with the Efficient
GAN (EGAN) [35] method and Generative Adversarial
Active Learning (GAAL) method [5]. EGAN is
a typical GAN-based generative approach, while
GAAL is also based on anomaly generation and one-
class classification. Note that GAAL is actually
including two variants: Single-Object Generative
Adversarial Active Learning (SO GAAL) and Multi-
Object Generative Adversarial Active Learning (MO
GAAL).

4.1.4. Experimental Environments
We perform all the experiments on a single server with
Intel Xeon Processor 4 Core Skylake CPU and an
Nvidia T4 GPU. The software environments include
Anaconda 3, Python 3.8, Cuda 11.1, and necessary
running libraries such as TensorFlow-GPU 2.2.0, Cudnn
7.6.5, PyOD 0.8.6, and Sktime 0.5.1. Implementation
of our methods is based on Keras5, and all compared
anomaly detection methods are implemented on a
common anomaly detection framework PyOD.

To better compare with those competing methods,
we search their optimal parameters in a range of values.
For KNN and ABOD, since their performance will be
dramatically affected by the size of the neighborhood
set and the number of base estimators, we tune it in
the range of 2, 4, 8, 10, 20, 40, 80, 100, 200, 400. For
IF, the number of base estimators counts a lot, and we
choose the best from the range of 20, 40, 80, 100, 200,

5https://tensorflow.google.cn/api_docs/python/tf/

keras/

400, 800, 1000. For AE, considering the comparison
between AE and GAN-based methods, three layers of
dense are adopted with hidden neuron numbers (128,
64, 64, 128) and 30 training epochs, which could lead to
better performance as well as reasonable time, which are
similarly considered in GAN-based methods. Finally,
regarding GAN-based methods including SO GAAL,
MO GAAL, EGAN, and the proposed HTA-GAN, we
use a relatively stringent parameter setting: (i) Three
layers of neural networks are adopted for all generators,
discriminators, and potential encoders. (ii) The number
of hidden neurons is no more than 128. (iii) Adopt
the Sigmoid activation function for the output layer
of discriminator and ReLU or Leaky ReLU for the
remaining layers. (iv) The training epochs are all
limited to 30. (v) Use the SGD optimizer with the
learning rate of 0.0001 for the generator G and the
encoder E and 0.01 for the discriminator D. (vi) a mini-
batch size m = min (500, n) for training, and (vii) stop
training generator when the downward trend of its loss
tends to be slow.

To mitigate experiments’ randomness, we run each
method for each dataset ten times with different
randomized seeds, and we record the average results
of the ten runnings in the result tables.

4.2. Experimental Results

In this section, we present results intending to
demonstrate the global performance of HTA-GAN
on both real-world and synthetic datasets and give
some insights into the performance comparison among
different anomaly detection methods.

Figure 4 demonstrates the overall F1 Scores for
the compared eight approaches on the seven datasets.
Table 2 , Table 3, and Table 4 show the detailed
results for Euro-Argo, Anomaly benchmarks, and
synthetic datasets, respectively. To make the result
clear, we show the best performance among the 4
popular unsupervised methods, including K-Nearest
Neighbour (KNN), Angle-Based Outlier Detection
(ABOD), Isolation Forest (IF), and Auto-Encoder (AE)
with underlines. The best result among the 4 GAN-
based methods, including EGAN, SO GAAL, MO
GAAL, and the proposed HTA-GAN with double
underlines, and the overall best performance in bold
for all the compared 8 methods. The last column
of the tables indicates the ranking of each method’s
performance within each dataset. Note that the ranking
is mainly based on the F1 score.

4.2.1. Results of Euro-Argo Datasets
From Table 2, we observe the following details:

For the Euro-Argo dataset, we focused on the results
chosen by best F1 since F1 could demonstrate a
balance between precision and recall. Generally, with
large-scale samples for feature learning, deep-learning-
based models like AE or GAN perform better. AE
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FIGURE 4. The overall F1 Scores for all the compared anomaly detection methods on the given 7 test datasets.
EA for Euro-Argo real-world dataset. Ve and Op for the two benchmarks while S1-S4 for the 4 synthetic datasets.

TABLE 2. EXPERIMENT RESULTS FOR EURO-ARGO DATASETS

Dataset Method Precision Recall F1 Duratiom Rank

Euro-Argo

KNN 0.5678 0.5216 0.1608 1.1542 6
ABOD 0.5657 0.5039 0.1239 4.6947 7
IF 0.5901 0.5707 0.5778 1.3863 5
AE 0.6308 0.7875 0.5835 31.425 4
SO GAAL 0.6755 0.8599 0.6802 89.5091 3
MO GAAL 0.5391 0.5012 0.1193 948.5885 8
EGAN 0.7586 0.9278 0.8032 87.356 2

HTA-GAN 0.9961 0.974 0.9847 183.2797 1
* The best result among KNN, ABOD, IF, and AE is underlined.
* Double underline is for the best among 4 GAN-based methods.
* The overall best for each metric is bold.

demonstrates the best performance among the four
classic methods (KNN, ABOD, IF, and AE). We can
see, the proposed HTA-GAN outperformed AE by
30.12% and achieves almost 100% precision and recall.
HTA-GAN detects anomalies with 36.53% and 18.65%
more for precision and recall than AE, respectively, at
the cost of longer time duration for training.

As to the GAN-based method sets (SO GAAL, MO
GAAL, and EGAN), according to previously mentioned
reasonably similar hyper parameters’ settings, although
EGAN performs well both in recall and F1, HTA-GAN
still obviously leads to an all-around better performance
from all metrics except for time cost during training. In
a word, the proposed HTA-GAN achieved nearly 100%
precision and recall, resulting in detecting almost all
the anonymous points correctly for Euro-Argo without
false alarms.

As required by Euro-Argo, anomaly detection must
satisfy no less than 90 percent accuracy and no more
than 10 minutes time cost. The proposed HTA-GAN
with three layers of neural networks for generator G,
encoder E, and discriminator D would fully satisfy
both requirements by achieving 0.9847 F1 and finishing
computation in about 3 minutes, as shown in Table 2.

Regarding other models, only EGAN can satisfy only
Recall by 0.9278 for accuracy. Meanwhile, all models
are able to finish the detection within 10 minutes except
for MO-GAAL.

4.2.2. Results of Anomaly Benchmarks
We compare performance between different methods for
two popular anomaly benchmarks, and we put the result
for both datasets together, as shown in Table 3. We can
see, here following observations would be found:

Compared methods, either the four popular or the
four GAN-based ones, behave differently for the two
benchmarks. Generally speaking, less samples will lead
to lower performance because a larger sample size could
be crucial for adequate feature learning. Specifically, for
“vertebral”, it is evident that HTA-GAN outperforms
the others for all the metrics except for the time
duration, which is always an inherent disadvantage for
deep learning methods. The 0.5519 F1 score is the
only one more than 0.5. However, there are not many
differences among all these methods for “optdigits”
because the variation is not quite noticeable, e.g., the
F1 score ranges from 0.4682 to 0.5032 while Precision
from 0.486 to 0.5105.
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TABLE 3. EXPERIMENT RESULTS FOR BENCHMARKS

Dataset Method Precision Recall F1 Duratiom Rank

vertebral

KNN 0.4302 0.4405 0.4353 0.0186 7
ABOD 0.4318 0.4524 0.4419 0.0559 6
IF 0.4286 0.4286 0.4286 0.3529 8
AE 0.4634 0.4583 0.4613 2.8225 4
SO GAAL 0.4686 0.4642 0.4662 3.5628 3

MO GAAL 0.486 0.4881 0.4866 21.8672 2
EGAN 0.4598 0.4464 0.4517 3.5947 5
HTA-GAN 0.5767 0.5436 0.5519 9.0861 1

optdigits

KNN 0.4865 0.4579 0.47 2.7611 6
ABOD 0.4928 0.4738 0.4749 3.3089 5
IF 0.5105 0.5361 0.5032 0.9948 1
AE 0.486 0.4509 0.4658 7.2231 8
SO GAAL 0.503 0.5093 0.4948 13.6825 3

MO GAAL 0.5044 0.516 0.4927 131.3917 2

EGAN 0.4863 0.4556 0.4686 15.3933 7
HTA-GAN 0.4947 0.4834 0.4822 41.5841 4

* The best result among KNN, ABOD, IF, and AE is underlined.
* Double underline is for the best among 4 GAN-based methods.
* The overall best for each metric is bold.

TABLE 4. EXPERIMENT RESULTS FOR SYNTHETIC DATASETS

Dataset Method Precision Recall F1 Duratiom Rank

Sample=33000, Dim=200, CR=0.15

KNN 0.9724 0.8344 0.8866 451.7546 2
ABOD 0.9717 0.83 0.883 455.0937 3
IF 0.9712 0.8267 0.8803 13.6794 4
AE 0.9694 0.8156 0.8712 75.126 5
SO GAAL 0.4958 0.4972 0.4929 204.8572 6

MO GAAL 0.481 0.4868 0.4814 2304.483 7
EGAN 0.4157 0.4351 0.4252 248.5142 8
HTA-GAN 0.9736 0.8422 0.8928 427.9677 1

Sample=12000, Dim=100,CR=0.05

KNN 0.7451 0.9726 0.8149 26.9207 3
ABOD 0.7273 0.9684 0.7962 27.3808 5
IF 0.7427 0.9721 0.8124 1.7035 4
AE 0.7463 0.9729 0.8161 20.4199 2
SO GAAL 0.5612 0.6124 0.5746 56.0444 7

MO GAAL 0.5763 0.6503 0.5949 504.5886 6
EGAN 0.472 0.4439 0.4576 57.8765 8
HTA-GAN 0.766 0.9768 0.8354 123.7224 1

Sample=4000, Dim=50, CR=0.05

KNN 0.7809 0.9795 0.8492 1.5843 1
ABOD 0.7551 0.9747 0.8249 2.0324 3
IF 0.7525 0.9742 0.8223 0.6736 4
AE 0.7427 0.9721 0.8123 7.4666 5
SO GAAL 0.5897 0.6921 0.6136 16.9357 7
MO GAAL 0.694 0.8774 0.7488 132.9787 6
EGAN 0.4714 0.4342 0.4521 15.8845 8

HTA-GAN 0.7688 0.9774 0.8381 37.7779 2

Sample=18000,Dim=50,CR=0.15

KNN 0.9674 0.8022 0.8599 23.963 6
ABOD 0.9713 0.8278 0.8812 25.8787 2
IF 0.9708 0.8244 0.8785 1.7982 3
AE 0.97 0.8189 0.8739 25.2651 4
SO GAAL 0.5061 0.5042 0.5017 74.4308 8

MO GAAL 0.5584 0.5359 0.539 793.8951 7
EGAN 0.9694 0.8159 0.8712 77.9439 5
HTA-GAN 0.974 0.8444 0.8945 166.3911 1

* The best result among KNN, ABOD, IF, and AE is underlined.
* Double underline is for the best among 4 GAN-based methods.
* The overall best for each metric is bold.
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The “vertebral” benchmark is interesting because its
sample number and its dimension are relatively small,
which requires anomaly detection to be data-efficient.
From the results, it can be learned that the five deep-
learned-based unsupervised methods work pretty well
as they beat classic models for this kind of data-efficient
task. Among these methods, GAN-based ones behave
even better than AE. What is more, the proposed HTA-
GAN demonstrates the best detecting results: 9.07%
Precision, 5.55% Recall, and 6.53% F1 score better
than the second-winner MO GAAL and shorter time
by 12.7811 seconds.

As to the “optdigits” benchmark, every method
struggles, not only for classic ones but also deep learning
ones such as AE and GAN-based models. These
struggles are common because, as mentioned in the
previous section, we choose “vertebral” and “optdigits”
due to their challenging. Among all these methods,
IF would be the winner, from F1 to time duration,
although the performance is still not good enough and
just a little step ahead of others. AE performs poor
while GAN-based methods are all just average or even
below average.

4.2.3. Results of Synthetic Datasets
From Table 4, it is easy to know:

For the synthetic datasets by PyOD toolsets, a
total of four datasets are generated for testing, with
different datavolumes, dimensions, and contamination
rates. As the PyOD toolset generates the synthetic
datasets with multivariate Gaussian distribution for
normal data and Uniform distribution for anomalous
data, most anomaly detection methods work well since
the data distributions are more straightforward to
be captured than real-world complicated anomalous
scenarios. Classic models such as KNN and IF could
effectively capture such data regularities. However,
this is challenging for GAN-based methods due to
the generator’s capability of learning data regularities
via a mini-max game. As shown in Table 4,
existing GAN-based models still struggle in most
cases. The proposed HTA-GAN could perform well
due to its heterogeneous structure, exploiting both
temporal feature representation and one-class anomaly
recognition. As can be seen from Table 4, among
those GAN-based methods, only HTA-GAN works fine
to get as competitive results as other non-GAN-based
methods. HTA-GAN provides the best metrics for
three out of four datasets, proving that the proposed
HTA-GAN can achieve better robustness. However,
compared with other non-GAN-based models, the
training would still be a tradeoff because it takes much
longer than IF and AE, although it looks acceptable
compared to KNN and ABOD.

More precisely, on the one hand, classic unsupervised
methods including IF, ABOD, KNN, and AE perform
well, with good metrics such as more than 0.85 for

F1 score and relatively shorter time, e.g., just a few
seconds. On the other hand, GAN-based methods,
except for the proposed HTA-GAN, struggle a bit
and behave inconsistently, e.g., EGAN could catch up
with main-stream metrics as ABOD and HTA-GAN for
the fourth datasets but ranks the last for the other
datasets. Only the proposed HTA-GAN, thanks to
its heterogeneous BiGAN structure to better capture
temporal dependencies and identify anomalies via
an end-to-end one-class classifier, outperformed other
methods consistently, especially for those datasets with
large sample sizes. As for high-dimensional datasets,
HTA-GAN can still achieve decent performance.

FIGURE 5. Robustness Test Results. (a)
shows the F1 score of synthetic datasets D1-D7 with
different volume, dimension and contamination rate.
(b) demonstrates the F1 scores for different hyper
parameters H1-H7.

Overall, as shown in Figure 4 HTA-GAN outper-
formed the popular unsupervised detection methods for
most situations. To be more specific, among all these
7 test datasets, the proposed HTA-GAN ranks no.1 for
five times, and for remain two datasets, it ranks no.2
and no.4. The main drawback is that it takes a much
longer time to deal with longer subsequences. For the
Euro-Argo project, it is acceptable. However, it will be
an issue for time-critical real-time applications. It will
be worthwhile to explore using other Neural Networks
to incorporate the temporal correlation and consider the
choice of subsequence length for future work.

4.2.4. Experiments for Robustness Analysis
As alluded to above, the robustness of HTA-GAN
is an interesting issue to explore further. First
of all, followed by previous synthetic datasets, we
conduct more experiments for different data volumes,
dimensions, and contamination rates, which could help
demonstrate the proposed HTA-GAN’s robustness. In
addition to the existing four generated datasets, we have
three more datasets with different volumes, dimensions,
and contamination rates. There are seven datasets from
D1 to D7.

We plot the seven datasets’ F1 score on Figure
5(a), and we can see that the proposed HTA-GAN
performs consistently well. To be more specific, all
the F1 scores are generally decent, more than 0.83.
For lower contamination rates such as D5 and D6,
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FIGURE 6. The Complete Service Optimization
Pipeline for large-scale IoT Data Infrastructure.

the performance is even better, although volume and
dimension vary significantly. Another observation is
that the runtime increases reasonably according to the
scale, decided by both volume and dimension. In a
word, HTA-GAN is robust to various datasets with
different data volume, dimension, and contamination
rate combinations.

Next, HTA-GAN is based on deep neural networks.
As mentioned by many pieces of literature, several
hyperparameters of neural networks are involved. As for
the representation learning ability of neural networks,
we adjust the number of layers from 2 to 5 and
the number of hidden layer neurons from 64 to 128,
respectively, to get seven models of HTA-GAN of H1-
H7.

We test Euro-Argo real-world datasets on the above
seven models with varied hyperparameters and plot
their F1 scores on Figure 5(b). We can see that fewer
neurons in hidden layers lead to a slightly worse F1
score because insufficient neurons can result in loss of
representation for informative potential anomalies for
generator. Moreover, excessive hidden layers may also
have little impact on model performance. Certainly,
with increased neurons and layers, the runtime arises
correspondingly. Therefore, we can conclude that the
proposed HTA-GAN is generally robust to different
hyperparameter settings

5. DISCUSSION

As for high-quality data services running on data
infrastructures such as Euro-Argo, the proposed HTA-
GAN is able to detect real-world operational anomalies
accurately and timely, which would be practical to
improve the quality of scientific data services. The
main features of HTA-GAN are: i) a novel anomaly
reconstruction error embedded into an end-to-end one-
class classification model. ii) adopting BiGAN structure
for computational efficiency, and iii) heterogeneous
generator and discriminator for different goals of feature
learning. Moreover, here some interesting discussions
would be involved further.

As shown in Figure 6, here is the complete

service optimization pipeline for large-scale IoT data
infrastructures. Anomaly detection is a fundamental
module of the whole service optimization pipeline for
data infrastructures. However, the only detection is not
adequate; anomaly-based system diagnosis, or anomaly
diagnosis for short, is the next topic. With HTA-
GAN’s decent detection and a wide variety of known
anomalies, upgrading the one-class discriminator into
a multiclassifier would be potentially more feasible.
Further handling of anomalies would be realistic based
on anomaly diagnosis and explanation. The most
challenging issues would be: i) Complicated anomalies
are involved in most cases. ii) Real-time performance,
both for processing the continuously generated log
steamings with strict time-constraint and various
operational time-critical aspects.

A large-scale data infrastructure is often broadly
distributed; it consists of many monitoring sensors
deployed in remote areas and data management services
running in different data centers. A research data
infrastructure is often constructed as an aggregation
of many small-scale or regional data infrastructures, as
we see in EPOS and many other examples in ENVRI.
Detecting real-time anomalies at different parts of the
infrastructure will thus be an important operation
challenge. How to tackle anomaly detection in edge-
cloud continuum would be a fundamental problem
here. Are we able to seamlessly migrate and embed
HTA-GAN into edge systems as an anomaly detection
service? Either communication cost or unavailability
of complete system logs would cause massive troubles.
The results achieved in this paper provide a good
starting point to be applied in decentralized learning,
e.g., Decentralized Learning of Generative Adversarial
Networks [51] to learn multiple data collections. In
addition, anomaly diagnosis is not the final step.
As shown in Figure 6, anomaly handling would be
more practical, e.g., we could consider anomaly-aware
adaptation based on deep-reinforcement-learning-based
dynamic scheduling approaches [52, 53, 54] with
effective anomaly detection and diagnosis, which would
also contribute to QoS improvement [55].

According to the experimental results, although
demonstrating well, there are still two main limitations
of HTA-GAN, including i) only detecting point
anomalies due to lack of contextual anomalous
instances, as most methods did. ii) real-time
performance still needs improvement for latency-
sensitive scenarios. To mitigate, we continue closely
collaborating with Euro-Argo technical team to get
more contextual or collective anomalous instances and
optimizing the convergence of neural networks.

6. CONCLUSIONS

This paper proposes a novel anomaly detection ap-
proach HTA-GAN to detecting real-world operational
anomalies for high-quality data services running on
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large-scale scientific research data infrastructures such
as Euro-Argo, which can make better use of GAN’s ca-
pability as an informative fake anomaly generator and
end-to-end one-class discriminator. Moreover, we ex-
ploit the heterogeneous structure of GAN to improve
multivariate time series representation learning and an
efficient BiGAN-based anomaly scoring function lever-
aging not only binary crossentropy of discriminator but
anomaly’s reconstruction error. HTA-GAN achieves the
best metrics and ranking on the real-world Euro-Argo
datasets, anomaly benchmarks, and synthetic datasets
compared to several state-of-the-art point anomaly de-
tection methods for multivariate time series. HTA-
GAN demonstrates strong robustness to varying hy-
perparameters of neural networks and datasets with
ranged data volume, dimension, and contamination rate
based on further experiments. Although neural network
training is involved, HTA-GAN can satisfy most real-
world applications like Euro-Argo. Generally, HTA-
GAN would be suitable for anomaly detection sce-
narios with complex anomaly distribution, large sam-
ple size, limited time cost, and high accuracy require-
ments. Typical applications would include operation
& maintenance (O&M) in cloud platforms, data in-
frastructures, edge-cloud continuum, especially helpful
when integrated into AIOps toolsets. For future work,
as shown in Figure 6 for the Euro-Argo project, we
plan to conduct further research on i) Introduce multi-
classification into discriminator so that it could be capa-
ble of anomaly diagnosis and explanation, which would
be of key importance for operating such data infras-
tructure; ii) Complex anomalies, such as contextual or
collective anomalies, detection for Euro-Argo Data Ser-
vice operations. How to generate such complex anoma-
lies based on a GAN model and few-shot learning? How
to generate synthetic datasets with a complex anomaly
distribution? iii) A detailed study on the pipeline of the
whole data-centric operational anomaly detection and
handling lifecycle and iv) In terms of applications, we
plan to extend HTA-GAN for predictive scheduling and
fault diagnosis for edge-cloud continuum.
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