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Abstract— We present and validate an equilibrium model
based on the Poisson-Boltzmann equations that includes the
main ingredients to simulate ion-sensitive membranes in the
context of electrochemical potentiometric sensors with and
without ionophores. With respect to phase boundary models,
our model includes spatial resolution of the electrostatic
potential and concentrations. The model enables the study
of Nernstian and non-Nernstian equilibrium responses, helps
improving the detection range and investigating selectivity
and cross-sensitivity issues related to interferent ions in the
sample solution. Therefore, the model is a useful support
for the design of potentiometric microelectronic sensors and
helps optimizing relevant membrane features such as ionic
sites and ionophore concentration for best sensitivity and selectivity.

Index Terms— selectivity, sensitivity, cross-sensitivity, ion-sensing, potentiometric sensors, ion-selective membranes

I. INTRODUCTION

ION-selective membranes (ISMs) are becoming the new
standard in the field of potentiometric chemical sensors,

given their battery-free operation, relatively fast response,
low detection limit and very good selectivity [1]–[3]. ISMs
may either be inserted in between two electrolyte solutions
or deposited on a solid surface, i.e., ion-selective electrode
(ISE) or solid-contact ISE (SC-ISE), respectively. The former
configuration (ISE) is a very common setup in electrochem-
istry laboratories [1], [2], but requires handling two elec-
trode/electrolyte contacts. Conversely, SC-ISEs are amenable
to on-chip integration, as one side of the ISM sticks to a solid
surface (e.g., a conductive polymer or the gate oxide of an
ion-sensitive field-effect transistor ISFET, see Fig. 1.a) [1],
[2], [4]–[6] and only one electrolyte contact is needed.
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In both implementations, the potentiometric sensor response
originates at the ISM/electrolyte interface(s) and is governed
by ion-transfer processes. Therefore, understanding and mod-
eling such mechanisms is key to predicting the membrane
potential. To this end, the main challenge is to include in
the sensor model a robust physico-chemical description of
the ISM ion exchange mechanisms as well as the chemical
interactions between, e.g., ionophores in the ISM and ions
from the electrolyte as sketched in Fig. 1.b. These mechanisms
modify the ideal log-to-linear relation between concentration
of the target analyte and ISM potential and set the lower (LDL)
and upper (UDL) detection limits, hence the detection range,
as illustrated in Fig. 1.c.

Several models have been proposed in the literature to
interpret ISE response. The simplest is the Nikolski-Eisenman
equation (NE) [7], [8] which assumes flat electrostatic poten-
tial and ion concentration profiles in the ISM and the elec-
trolytes. These assumptions lead to what in electrochemistry
are known as phase boundary or total-equilibrium models [1],
[9]–[12], and offer a simple trade-off between complexity and
usability. In equilibrium conditions, they can be successfully
used to predict the logarithmic slope of the Nernstian range
(e.g., 59 mV/dec for monovalent ionic species at room
temperature). However, these models are based on semi-
empirical equations and have some important drawbacks. For
example, they i) fail to provide any physical insight on the
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governing ion-exchange processes; ii) are difficult to integrate
into full device models including, e.g., a FET; iii) may lead to
inaccurate predictions for thin ISMs, where charge neutrality
may not hold throughout the layer; iv) cannot capture effects
such as non-Nernstian responses which can take place in
equilibrium conditions and, v), do not provide time-dependent
information. A complete treatment of all the aspects of the
sensor operation requires that all possible interactions between
ions and ISM components are appropriately accounted for.
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Fig. 1. (a) Example of integration of an ISM into an ISFET with indica-
tion of the electrical interconnections. (b) Zoom on the ISM/electrolyte
interface (dashed rectangle in (a)), showing the main actors in the
charge exchange between the two layers. Ionic sites R are sketched
with squared frames whereas ionophores with circles. The latter can
react with ions from the electrolyte. At equilibrium, a potential drop at
the electrolyte/ISM interface, denoted as ISM potential, is formed. Its
generic dependence on the bulk concentration of the (e.g., monovalent)
target ionic species or analyte in log scales is shown in (c). The linear
response range, or detection range, is approximately delimited by the
two vertical dashed lines corresponding to the lower and upper detection
limits (LDL and UDL, respectively [13]) according to the IUPAC definition
[14].

Consequently, Diffusion-Layer Models [15], [16] have been
used to extend phase-boundary approaches to describe the time
evolution of the selectivity coefficient and LOD. However,
they do not explicitly model the effect of important parameters
such as ISM thickness and dielectric constants [1]. In order
to address the design considerations of ISM-based poten-
tiometry, one must self-consistently solve the drift-diffusion
ion-transport, charge and current continuity together with the
electrostatics described with the Poisson equation. This leads
to what are called Nernst-Planck Poisson (NPP) models in
the analytical chemistry community [17]–[21]. Nevertheless,
one should consider that time-dependent simulations are com-
putationally demanding and not versatile for extensive sensor
optimization across many unknown parameters.

In this work, we provide a general modeling framework
using the well-known Poisson-Boltzmann formalism that is
capable of handling an arbitrary number of ions with any va-
lence charge as well as including ionophores that interact with
up to two ionic species. The adopted formulation can be used
to address features like selectivity and sensitivity (as in phase
boundary models), but adding one spatial dimension with

relatively low computational cost. Adding more physical di-
mensions is possible, but it does not provide additional insights
because given the typical dimensions of the membranes and
typical concentration ranges, 1D models are accurate enough.
Differently from the models typically employed in analytical
electrochemistry, the proposed approach spatially resolves the
electrostatic potential, making it suitable for integration with
FET device solvers and complete sensor simulations.

The manuscript is divided in two parts, respectively devoted
to ISM analysis without and with inclusion of ionophores.
The former case is presented in Section II, where a one-
dimensional Poisson-Boltzmann model of the ISM/electrolyte
system at equilibrium is introduced. Intrinsic membrane se-
lectivity to ions (as a result of different membrane affinity)
and comparison with experimental data are shown as well.
In the second part, Section III, distributed chemical reactions
between ionophores and ions in the electrolyte are added to
the former model. The simulation deck is validated against
experimental data including cross-sensitivity issues in presence
of interferent ions and features such as selectivity (expressed
via the selectivity coefficient KPOT

IJ ), optimum ionophores-to-
ionic sites concentration ratio, UDL, LDL and detection range
are addressed with numerical examples. Pros and cons of our
approach are finally discussed in Section IV.

II. ISM/ELECTROLYTE SYSTEMS WITHOUT IONOPHORES

A. Poisson-Boltzmann modeling framework
Let us first consider the ion-transfer processes across the

membrane/electrolyte interface, that define the response in
ISM-based biosensors [1]. For simplicity, we exclude the
semiconductor part of the device to highlight processes and
voltage drops at the membrane/electrolyte interface. Clearly,
the full system has additional electrostatic potential drops,
but they are independent of the chemical composition of the
sample. We have shown in [22] that the response of the
sensing element and the FET behavior can be decoupled, i.e.,
the threshold voltage shift can be safely obtained modeling
the sensing element alone. We use concentrations in place of
activities assuming full dissociation of salts and neglecting the
discrete nature of ions [11]

When the system is at equilibrium, Boltzmann statistics
applies in the low concentration limit. The space-dependent
concentration [i] in the electrolyte of the species ‘i’ with signed
valence zi, hereafter denoted [izi ] is:

[izi ] (y ∈ el) = [iziB ] exp

(
− ziq

kBT

(
ψ (y)−Vfg

))
, (1)

where [iziB ] is the concentration in molar units M in the bulk
of the electrolyte (i.e., in the neutral region far from the ISM),
q denotes the absolute electron charge, kB is the Boltzmann
constant, T the temperature and Vfg is the potential in the
bulk of the electrolyte taken as reference (e.g., set by the fluid
gate in Fig. 1.a). The electrolyte domain is taken much larger
than the Debye length so that concentrations and potential in
the bulk are essentially constant.

When membrane and electrolyte are brought into con-
tact, one needs to take into account the affinity step be-
tween two media (denoted as single ion distribution in the
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electrochemical terminology [10], [23]) defined as ki =
exp(∆µ0/NAkBT ), with ∆µ0 being the difference of stan-
dard chemical potential between the ISM and electrolyte
phases for ion ‘i’ and NA is Avogadro’s constant. The Boltz-
mann distribution in the membrane phase reads:

[izi ] (y ∈ ISM) = ki [i
zi
B ] exp

(
− ziq

kBT

(
ψ (y)−Vfg

))
. (2)

The value of ki depends on the polarity of the ISM solvent.
For example, membranes with low polarity (low dielectric
constant) have low affinity values, since ion-transfer processes
from the electrolyte (i.e., a hydrophilic phase with high di-
electric constant) is not favorable. Other ionic properties such
as valence charge and size also play an important role. In
fact, small multi-valent ions (e.g., Ca2+) are more polar and
therefore experience higher energy barrier when transferred
into a lipophilic ISM [13]. Such a simple concept explains
the intrinsic selectivity of ISMs to different ions and is well-
described by the Hofmeister series [24], i.e., a series of cations
(or anions) sorted from high to low affinity to lipophilic
phases.

The electrostatic potential entering Eqs. 1, 2 depends on the
total charge density distribution over space according to the
Poisson equation,

d

dx

(
ε(y)

dψ(y)

dx

)
= −

(
ρm (y) + ρf (y)

)
, (3)

where ε(y) is the electrical permittivity of the medium (which
depends on complex local polarization phenomena [25]), ρf
the fixed charge density (see Section II-B), and the charge
density of the mobile ions, ρm, is calculated as

ρm(y) = qNA

∑
i

zi[i
zi ](y). (4)

Combining the Poisson equation with Eqs. 1, 2 we obtain the
non-linear Poisson-Boltzmann (PB) equation, that describes
the system at equilibrium [26].

It is worth noting that the PB model is an equilibrium model.
Its solution is rigorously equal to a steady-state condition
only in the case of a blocking interface. For ISMs located
in between two electrolytes (e.g., in conventional ISEs) non-
null single ion fluxes can exist across the membrane even if
the total current is null, leading to a steady state configuration
that does not correspond to equilibrium, with the presence of
possible diffusion potentials. These latter do not appear with
blocking interfaces where equilibrium and steady state mean
that every single ion has zero net current.

Figure 2 gives numerical proof that the time-dependent NPP
model solution converges to our PB model for t → ∞. The
NPP simulations were carried out using the online-available
NPP solver JEDS [27] assuming the structure depicted in Fig.
3.a, where one side of the ISM is blocked. The computational
burden of our PB models is orders of magnitude less than the
NPP model, so if a steady-state solution is required, the PB
approach is much more efficient than running the NPP model
since the transient converges.
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Fig. 2. Top: electrostatic potential across the ISM/electrolyte interface,
obtained from the NPP solver JEDS [27] (lines) and from our PB
model (symbols). NPP solutions are reported for different time frames
showing the progressive convergence to the PB model: (a) 0 s, (b)
50 ns, (c) 200 ns, (d) 500 ns, (e) 1 µs, (f) 300 s, (g) 1800 s. The
simulated structure is sketched in Fig. 3.a with ISM and electrolyte
layer thickness of 10 µm. Other parameters are: [IXB]=0.1 mM,
[R−]=10 mM, kI=kX=1. For the NPP solver, we used the dif-
fusion coefficients values DI=DX=10−9 m/s2 in the electrolyte
and, DI=DX=10−11 m/s2 and DR=0 m/s2 in the ISM. Bottom:
concentration profiles from PB are compared to NPP for t → ∞.

B. Study of ionic sites and ion affinity
In order to operate as potentiometric sensors, ISMs are

doped with so-called ionic sites or ion-exchangers, i.e.,
charged lipophilic ions with very low mobility or covalently
fixed to a polymeric matrix [12]. Ionic sites are essentially
confined in the ISM phase, while ions can be exchanged via
drift and diffusion across the ISM/electrolyte interface (see
Fig. 3.a). In particular, if the concentration of positive and
negative ions in the electrolyte is lower than the one of ionic
sites in the ISM, then, at equilibrium, the ions with the same
charge sign as ionic sites (e.g., negatively charged X− ions in
Fig. 3.a, hereafter called co-ions) diffuse into the membrane
in a relatively small amount due to the repulsive electric
field exerted by the ionic sites. Conversely, ions with opposite
charge (i.e., counter-ions I+ in Fig. 3.a) are attracted by the
ionic sites, so that their concentration in the ISM counter
balance the combined effect of the ionic sites and its co-ions.
Hence, as long that these conditions are met, the concentration
of the counter-ion I+ is fixed by the ionic sites’ concentration
[Rz

R] regardless of their concentration in the sample solution,
[IzIB ]. The potential step at the electrolyte/ISM interface, or
membrane potential, then follows Nernst equation

ϕm =
kBT

qzI
ln
kI [I

zI
B ]

[IzIISM ]
≈ kBT

qzI
ln
kI [I

zI
B ]

[RzR ]
, (5)

where [IzIISM ] denotes the concentration of species I in the bulk
of the ISM. In Eq. 5, the maximum sensitivity for monovalent
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ions at 300 K is ≈ 59 mV/dec.
To investigate the validity limits of Eq. 5 with our model

(Eqs. 1-3), we firstly simulate the ISM/electrolyte junction
sketched in Fig. 3.a by setting Vfg = 0 V at the liquid gate and
Neumann boundary conditions (i.e. zero electric field, similar
to [10]) at the electrode/ISM interface. The relative electrical
permittivity of the electrolyte and the ISM related to low-
frequencies are fixed to 79 and 4.8, respectively [13], [28] and
the temperature to 298.16 K. For simplicity, ionic sites RzR

are considered as uniformly distributed fixed charges (even
though non-uniform distributions are also possible) giving a
volumetric charge density ρf = qNAzR[R

zR ] in Eq. 3. These
settings are common to all calculations in this manuscript
unless otherwise specified.

Figure 3.b reports the membrane potential of a cation-
selective membrane (i.e., one with negatively charged ionic
sites) for different concentrations of the dissociated salt I+X−

in the sample and unitary affinity constants. We observe that
for low concentrations of [IXB ], the membrane potential is
proportional to the log of [I+B ], where the proportionality
factor is lower than in Eq. 5 for concentrations of [IXB ] that
approach the one of ionic sites [R−] and eventually becomes
zero, thus approximately setting the UDL to the ionic site
concentration [R−]. This effect is also seen in Figs. 3.c and
(d), that show the spatial profiles of the concentrations and
potential at three simulations points marked with black stars
in plot (b). As shown by dotted lines, the membrane potential
(i.e., the built-in electrostatic barrier) becomes zero when the
co-ions concentration [X−] (and so the target ions one [I+])
are much larger than [R−] in the electrolyte and the ISM,
meaning that they can freely diffuse in the membrane leading
to Donnan exclusion failure [14]. Differently, in the range of
log-to-linear response in plot (b) the concentration of co-ions
X− (dashed and solid lines with circles in plot c) is much
lower than [R−] in the ISM, which allows one to make the
approximation [I+ISM ] ≈ [R−] as in Eq. 5 and therefore obtain
Nernstian response.

The impact of the concentration of ionic sites [R−] in the
ISM can be observed comparing the line with red circles and
the one with blue squares in Fig. 3.b, where [R−] is varied over
one decade. The log-to-linear relationship is clearly observable
over ranges that increase with [R−]. Indeed, the larger the
concentration of ionic sites, the higher the concentration of
I+X− at which the co-ions X− diffusing into the membrane
kill the sensitivity to I+.

C. Study of the detection range and selectivity

To go further into the previous analysis we focus on the
limits of the Nernstian response, i.e., the UDL and LDL that
define the detection range. According to IUPAC definition
[14], the UDL is equal to the concentration of ionic sites
in the ISM. However, this is valid only for unitary affinity
coefficients. Figure 4.a reports simulations as in Fig. 3.b but
with different choices of kI and kX while fixing [R−] = 10
mM (i.e., to typical values used in experiments [5], [9], [10],
[13], [29]). With respect to kI = kX = 1 (red curve with
circles), we observe a tenfold increase of the UDL for either,
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Fig. 3. (a) Sketch of the considered structure with indication of
the involved ions and electrodes. (b) Simulated membrane potential
vs the concentration of I+X− salt in the electrolyte for two different
concentrations of ionic sites. The simulations refer to unitary affinity
constants, i.e., kI = kX = 1. The concentration of the ionic species
and potential profiles at the ISM/electrolyte interface, relative the points
marked with black stars in (b), are reported in (c) and (d), respectively.

i), a hundredfold decrease of only kI (green line with squares)
or, ii), a hundredfold decrease of only kX (blue line with
diamonds) or, iii), a tenfold decrease of both kI and kX
(black line with triangles), suggesting that the UDL is fairly
approximated by UDL ≈ [R−]/

√
kIkX , where the square

root arises from the fact that [X−
B ]=[I+B ]=[XIB ]. In a more

general case, it can be easily derived that:

logUDL = log [R−]− log (zIkIkX)− log [X−
B ]. (6)
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Fig. 4. Simulated membrane potential vs the I+X− salt concentration
in the sample for different choices of the affinity constants, without (a)
and with (b) the generic interferent cation J+ in the sample electrolyte.

Interestingly, the membrane potential values at the plateaus in
Fig. 4.a range from negative to zero to positive values if we
scale only kI , both kI and kX or just kX , respectively. The
reason is given by the imparted ISM (intrinsic) selectivity, that
results into a spontaneous accumulation of the ionic species
with higher affinity value into the ISM and, therefore, the
formation of a potential barrier that has the same sign of the
excess ion’s valence charge.

In order to study the LDL, we introduce in the simulations
an additional counter-ion J+ (hereafter called interferent ion)
different from the target I+. As shown in Fig. 4.b, when
kI=kJ=kX=1 (red line with circles and green line with
squares), i.e., when target ion and interferent ion have the
same affinity, a plateau takes place for [I+B ] ≪ [J+

B ] and a
membrane response to ion I+ is therefore obtained in the range
[J+

B ] ≪ [I+B ] ≪ [R−]. The effect of changing the affinity
constants are instead reported by the blue line with diamonds
and black line with triangles in Fig. 4.b. In the first case, the
tendency of LDL increase due to a higher concentration of the
interferent ion J+ is compensated by a lower affinity value of
the same ion, thus suggesting that the LDL is proportional to
kJ [J

+
B ]. In the second case, a tenfold increase of kI lowers the

LDL leading to a ∝ 1/kI relationship. This behavior can be
expressed using thermodynamic considerations. When Nernst
conditions holds (see Eq. 5), one can demonstrate that

logLDL =
zI
zJ

log (zJkJ [J
zJ
B ])− log (zIkI)+ (7)

+

(
1− zI

zJ

)
log [R].

Equation 7 has been verified numerically with our model for
a large number of cases (not shown). Moreover, since the
condition of Nernstian response is necessary when determining
the ISM selectivity as in, e.g., separated solution method
(SSM) or fixed interference method (FIM) [30], [31], one can
use Eq. 7 to derive a model for the potentiometric selectivity
coefficient [31]:

logKPOT
IJ =

zI
zJ

log (zJkJ)− log (zIkI) +

(
1− zI

zJ

)
log [R].

(8)
where we note that not just ionic properties such as ion
valence charges and affinity constants affect the potentiometric
selectivity coefficient, but also the concentration of ionic sites
when zI ̸= zJ . This is in accordance with what was previously
suggested in [32], [33] and experimentally observed in [34].
The selectivity values relative to the cases in Fig. 4.b, calcu-
lated using Eq. 8 are reported in Table I together with other
numerical examples. We see that Eq. 8 is in good agreement
with the KPOT

IJ extracted directly from the simulated ϕm vs
[XIB ] using the method described in [31].

TABLE I
POTENTIOMETRIC SELECTIVITY COEFFICIENTS FOR DIFFERENT ISM

PARAMETERS.

[R] (mM) 10 10 10 10 1 10 1

kI 10 1 1 1 1 1 1
kJ 1 1 0.1 1 1 1 1
zI 1 1 1 1 1 2 2
zJ 1 1 1 2 2 2 2
logKPOT

IJ
a -1 0 -1 -0.9 -1.4 0 0

logKPOT
IJ

b -1 0 -1 -0.9 -1.5 0 -0.1
a Calculated using Eq. 8. b Calculated using [31, Eq. 5] with the LDL values

extracted from our simulations.
The first three columns refer to the same cases analyzed in Fig. 4.b.

D. Comparison with experimental data

Curves as those in Fig. 4.b are very often observed in
experiments when performing calibration, i.e., consecutive
membrane potential measurements upon consecutive dilutions
of the target ion concentration in the sample. Following the
experimental work in [29], we consider a cation-sensitive
ISM with thickness of 200 µm and [R−] = 5 mM. The
sample solution consists is a mix between a salt containing
the cation tetramethylammonium, TMA+, and salts with the
generic interferent cation with concentration [J+

B ] = 2 mM
(with J+ being one among K+, Na+ and Ca2+). By plugging
these parameters in the PB model described in Section II-
A, excellent agreement is found between simulations and the
experimental data in [29], as reported in Fig. 5 (lines vs
symbols, respectively). It should be noted that to compensate
for the missing inner reference solutions in the experiments in
[29], we solve the junction between membrane and reference
solution and subtract it from the simulation of the mem-
brane/sample solution junction. A direct consequence of this
simulation procedure is that the derived affinity constants of
the interferent ions in Fig. 5 are relative to kTMA (ultimately
set to 0.0043 from the standard Gibbs free energies reported
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in [35]), since the computed potential in the absence of
interfering ions only depends on the ratio between [TMA+]
in the sample and reference solutions and not on kTMA. The
values of kJ that we have set in the simulations in order to
reproduce the experiments in the presence of interferent ions
are consistent with the Hofmeister series [24]: for example, K+

is the most lipophilic ion among the selected interferents (i.e.,
has the highest affinity constant) and therefore sets the LDL
to a relatively high concentration of the target ion, TMA+.
Interestingly, a LDL is also observed when no interferent ions
are intentionally added (black symbols in Fig. 5). This could be
explained with the possible contamination of K+ ions from the
KCl bridge electrolyte contacting the reference half-cell [29].
In fact, more than satisfactory agreement with simulations was
obtained by adding potassium ions as the interfering cation
with concentration [K+] = 11 µM.
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Fig. 5. Experimental (symbols, [29]) vs simulated (lines) calibration
curves of TMA+ for a cation-selective membrane in the presence of dif-
ferent interferent ions. The ISM was composed by sodium tetrakis-[3,5-
bis(trifuoromethyl-phenyl]borate (NaTFPB, in 0.45 wt%, 5.00 mmol/kg),
bis(2-ethylhexyl) sebacate (DOS, in 66.15 wt%), and Poly(vinyl chlo-
ride) (PVC, in 33.40 wt%). In the simulations, chloride ions Cl− were
used to provide electroneutrality in the sample electrolyte.The affinity
constants that yield the best fit are reported in the figure whereas
kTMA = 0.0043 and kCl = 2·10−9 were set from [35]. For the case
without intentionally added interferent ions (black symbols and line) we
assumed interference from K+ ions with [K+] = 11 µM due the KCl
bridge salt in [29].

III. ISM/ELECTROLYTE SYSTEMS WITH IONOPHORES

A. Inclusion of chemical reactions into the PB model

Figure 5 in Section II demonstrated that interferent ions with
high affinity constant (if present with relevant concentrations)
reduce the detection range of the sensors. To prevent this, one
can add in ISMs the so-called ionophores. These are mobile,
charged or neutral lipophilic compounds that form complexes
with ions at the ISM/electrolyte interface, imparting artificial
selectivity to the ISM according to the specific ion-ionophore
binding affinities. The charge of the complex contributes to
the potential barrier ϕm as well.

In ISMs, the concentration of ionophores is typically com-
prised in the range of 0.5-2% of the membrane mass [13],
meaning that ISMs’ mechanical properties are not significantly
modified upon their mixing with ionophores. Furthermore, the
majority of ionophores employed in ISMs are neutral and their
effect on the electrical permittivity is minimum.

Based on the experimental observations, ionophores have
been considered in phase boundary models for ISEs [9], [10],
[12], [36], [37], where one or more ionophores can react with
a single ion (target of interferent) according to the binding
stoichiometric coefficients.

In this section, we extend to one dimension the theory in
[10], that includes reactions between one type of ionophore
and two ionic species, namely, the target ion I and the
interferent ion J, respectively. Models considering more than
one interferent species [9], [12], [37] can be implemented in
a similar way, but are not discussed in this work.

Under these assumptions, inclusion of ionophores in the
PB model results in an extra set of equations to define the
space charge density in the domain. The binding/unbinding
reactions between free ions, I and J, and ionophores, L, inside
the membrane are then

IzI + nIL
zL ⇋ ILzIL

nI

JzJ + nJL
zL ⇋ JLzJL

nJ
, (9)

where nI and nJ are the stoichiometric coefficients for a single
primary or interfering ion, respectively, while zIL = zI +
nIzL and zJL = zJ + nJzL. The products are the ILnI

and
JLnJ

complexes, respectively. At equilibrium, the complexes
formed between ionophores and electrolyte ions depend on the
association constants βIL and βJL, respectively [10]:

βIL =
[ILzIL ] (y)

[IzI ] (y) [LzL ]
nI (y)

, βJL =
[JLzJL ] (y)

[JzJ ] (y) [LzL ]
nJ (y)

.

(10)
Normally, ionophores are mobile and strongly lipophilic

molecules; ideally, they do not escape from the membrane
phase. Therefore, their total quantity remains fixed and mass
conservation should be included in the model, i.e., the space
integral of the concentration of ionophores should remain con-
stant. However, it can be shown that for nowadays typical ISM
thicknesses (much larger than the Debye screening length) and
at the equilibrium a constant concentration of ionophores can
be assumed throughout the space, without appreciable loss of
accuracy. This simplification is expressed as:

[Ltot] = [LzL ] (y) + nI [IL
zIL ] (y) + nJ [JLzJL ] (y), (11)

where [Ltot] is the total concentration of ionophores (free
and bound). Since the space dependency of free and bound
ionophores is solely dictated by the distributed chemical
reactions, ρf in Eq. 3 now reads:

ρf (y) = qNA

(
zR[R

zR ] + zIL[IL
zIL
nI

](y)

+zJL[JL
zIL
nJ

](y) + zL[L
zL ](y)

)
. (12)

Conversely, unbound ionic species I and J in Eq. 10 still follow
Boltzmann statistics, Eq. 2.

By inserting Eq. 11 into Eq. 10 one obtains a system of two
equations for the two unknown concentrations of complexed
species IL and JL, respectively:{

[IL] = βIL (Ltot − nI [IL]− nJ [JL])
nI [I]

[JL] = βJL (Ltot − nI [IL]− nJ [JL])
nJ [J ] ,

(13)

where, for the sake of a simpler notation, we dropped the ionic
valences of free and complexed ions as well as the spatial
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dependence y. Hence, by inserting Eq. 2 into Eq. 13 and
solving one obtains the expressions for [IL] and [JL] as a
function of the electrostatic potential. In fact, the electrostatic
potential appears in the expression of all unbound species’
concentrations according to the Boltzmann factor.

Since Eqs. 13 contribute to the fixed charge density of
the ISM (Eq. 12) they must be computed at each iteration
of a self-consistent (e.g., Newton-Raphson) loop given by
Eqs. 1-4, 12. The complexity of such a task rapidly increases
with stoichiometric coefficients other than ‘1’, especially when
calculating the Jacobian terms. In this work, we used a
symbolic solver to find the analytical expressions of [IL] and
[JL] complexes in Eq. 13 and their Jacobian terms when
nI,J = 2 and 3. An implementation flowchart of the PB model
including ionophores is reported in Fig. 6. We have shown in
[38] that the membrane potential provided by our model with
ionophores is in perfect agreement with the model in [10] over
a wide variety of ISM parameters. With respect to [10], our
model does not only provide the membrane potential but the
entire potential and concentration profiles ψ(x) and [i](x).

Initialization:
Set geometry and physical parameters
Set the fluid gate potential, Vfg
Set bulk ionic compositions, [iziB ]
Define the initial guess, ψ0(x)

Calculate free ionic species
distribution using Eqs. 1, 2

Calculate the fixed charge
density using Eq. 12

Generate a new estimate
of the electrostatic poten-
tial, ψnew(x), using Eq. 3

convergence?

end

yes

no

Fig. 6. Flowchart of the algorithm used to implement the PB model with
distributed chemical reactions between ionophores and ions.

B. Validation with experimental data

In this Section, we compare the model in Section III-
A with the experiments reported in [5], for a calcium-
sensitive ISFET (Fig. 1.a). In [5], the measurements with
both the target and interferent ionic species were performed

using the ionophore ETH 1001 –3%, and ISM compo-
sition consisting of polymeric tripropyleneglycol diacrylate
pol(TPGDA) –54.8%, bis(2-ethylhexyl)sebacate (DOS) plas-
ticizer –40.6%, and tetrakis(p-chlorophenyl)borate KTpClPB
ionic sites –1.6%.

TABLE II
PARAMETER VALUES USED IN THE SIMULATIONS IN FIG. 7.

Symbol Value Units Symbol Value Units

εel 80 - βCaL2
a 1019 M-2

εm 4.8 - βMgL
b 8·1013 M-1

kCa 5.5·10−11 - [Mg2+]b 100 mM
kCl 2·10−9 - [R−] 10 mM
kMg

b 1.6·10−11 - [Ltot] 22 mM
aValue taken from [39]. bFor MgCl2 only.

The ISM potential computed with our model using the
parameter values in Table II (where kCa, kCl and dielectric
constants are the same as in Fig. 5) is compared in Fig. 7 with
the experimental data from [5] (lines vs symbols, respectively)
for two different background electrolytes: pure CaCl2 solutions
(red squares) and a mixed solution with CaCl2 and MgCl2
(blue circles). In the simulations, we used a 1:2 stoichiometric
coefficient for Ca2+-ionophore complex according to [5], [40]
(i.e., nI=2 in Eq. 13) while 1:1 stoichiometry has been
assumed for the interfering Mg2+-ionophore (i.e., nJ=1). The
background concentration of chloride ions was adjusted to
achieve electroneutrality in the electrolyte sample.
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Fig. 7. ISM membrane potential ϕm vs the calcium concentration in
the electrolyte in an ISFET structure. Symbols show the experimental
data reported in [5] whereas solid and dashed lines are the simulations
of this work. For the sake of an easier comparison, the chosen x-axis
orientation is consistent with other plots in this manuscript rather than
with [5]; furthermore, simulation results are all rigidly shifted by the same
amount along the y-axis to be comparable to the fluid gate potential
measurements. The simulation parameters are reported in Table II.

As shown in Fig. 7, Nernstian response (i.e., ≈ 29.5 mV
for a divalent ion) is obtained for pure CaCl2 over almost
the whole range of explored concentrations, with a slight
tendency to saturation for [Ca2+] ≲ 10−6 M, due to possible
interferent with ionic impurities. For the second background
electrolyte (CaCl2 and 0.1 M of MgCl2), the ISFET response
from the experimental data (blue circles) is, once again, nicely
reproduced by our simulations (solid line).
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The importance of the ionophores in determining the selec-
tivity is exemplified by the dashed line in Fig. 7. We observe
that, without ionophores, Mg2+ ions inflect the response curve
below 10 mM and completely flatten the ISM response below
[Ca2+] = 10−3 M.

C. Effect of ionophores on selectivity
Once validated, the simulation model can be used to predict

the response of the sensor to different ionic combinations
to study the impact of any parameter on the system. For
instance, as reported in [10], [38], sub, inverted and super-
Nernstian ISM equilibrium potentials can be obtained as a
result of specific stoichiometric coefficients of ion-ionophore
complexes and the ionic valences.

In this Section, we derive interesting insights concern-
ing the effect of the ion-ionophore stability on the typical
sensor response (e.g., Fig. 1.c). To this aim, we consider
a cation-selective ISM containing negatively charged ionic
sites [R−] (and therefore repelling anions) and temporarily
assume ionophores with a total concentration, [Ltot] in a
2:1 proportion with respect to ionic sites. In the following
examples, we focus on neutral ionophores (the most common
case) and set the ionic affinity coefficient for all ions to one.
The reason of the latter choice is to avoid imparting an intrinsic
selectivity to the ISM (see the dependencies of UDL and LDL
on kI , kJ and kX shown in Sections II-B and II-D) so to focus
only on the effects given by the ionophores.

In the first analysis, we assume βJL = 0 M-1 and, therefore,
[JL+] = 0 M. The corresponding membrane potential is
reported with black lines in Fig. 8 for different values of the
association constant βIL. Results show that, increasing the
binding strength of the IL complex, hence unbalancing the
reaction towards the bound IL configuration both the LDL
and UDL shift towards lower primary ion concentrations (see
Section III-E). On one hand, a lower LDL means increased
sensitivity and thus the capability of sensing the concen-
tration of target ions at lower concentrations with respect
to ionophore-free ISMs (line with circles in Fig. 8.a). On
the other hand, lower UDL means that saturation of free
ionophores occurs at lower concentrations of the target ionic
species. Since ionophores are generally in excess with respect
to ionic sites, the saturation is preceded by a sign change
of the membrane potential (e.g. from negative to positive
in the considered example). Such change is anticipated to
lower [IXB ] concentration for higher values of βIL, and
electrostatically forces the extraction of co-ions (X−) from the
electrolyte to the ISM, well before that the diffusion-related
Donnan exclusion failure takes place. A direct consequence of
this is the formation of an inverted-Nernstian response after
the onset of UDL [12], [41], [42].

In order to better understand the above phenomena, Figs.
8.c and d report the ionic concentration profiles across the
ISM/electrolyte structure sketched in Fig. 8.b when ϕm = 50
mV and [I+B ] lies below and above the UDL, respectively. In
the first case (Fig. 8.c), ionic sites are the dominant anions in
the ISM and are compensated by IL+ complexes that, in turn,
fix the concentration of I+ in the membrane through the re-
action equilibrium, therefore providing Nernstian relationship
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Fig. 8. (a) Black curves: calibration curves of ISMs at equilibrium
containing ionophores perfectly selective to the target ion I+, for different
values of the association constant βIL. Red curves: same as black
curves but varying βJL for βIL = 105 M−1. [R−] = 10 mM and
[J

+
B ] = 0.1 mM. In (b) and (c) the spatial ionic concentration profiles

relative to the calibration point marked with blue star symbols in (a) (i.e.,
when ϕm = 50 mV) are shown, respectively.

to changes of [I+B ]. Also, the concentration of free ionophores
L (green lines with circles) in the ISM is comparable to that
of complexed ones.

In the second case (Fig. 8.d) instead, almost all ionophores
are in the complexed state IL+. The consequences are two-
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fold: firstly, since ionophores are saturated, ions I+ enter the
ISM in the free form and their concentration is no longer
fixed in the membrane. Secondly, the new IL+ complex
behaves as the original R− ionic sites, except being sensitive
to anions, rather than cations. This leads to the observed
inverted Nernstian response, that eventually vanishes when
the concentration of anions X− is greater than that of IL+

complexes in the membrane (≈ [Ltot] in saturation conditions,
as shown by red lines with squares in Fig. 8.d).

Despite the condition of perfect ionophore selectivity used
in this virtual experiment, the effect of free interferent ions
J+ reveals itself at very low concentrations of the primary
ions, setting the LDL. This holds true regardless the binding
strength βIL which can reduce but not eliminate the LDL.

We now analyze the reaction between interferent ions and
ionophores, making cross-sensitivity issues to become more
relevant. The main consequence is that the ability of the
ISM to set the concentration of target ions is reduced and
the range of maximum sensitivity shrinks. Of course these
effects depend on the stability (or association constant) of
the target and interferent ion-ionophore complex as well as
the concentration of the species in the sample electrolyte. To
show this, let us reconsider the previous analysis and allow
the formation of JL+ complexes. The resulting membrane
potential is shown by red lines with triangles in Fig. 8.a, for
different binding constants of the interferent ion-ionophore
complex, βJL, while keeping [J+

B ] = 0.1 mM and setting
βIL=105 M−1. For simplicity, we consider only 1:1 stoi-
chiometries between target or interferent ions and ionophores
(nI=nJ=1 in Eq. 13). Figure 8.a shows that the LDL is now
proportional to the log of βJL. This means that, for βJL=βIL
(not shown), ionophores bind the target and interferent ions
indiscriminately, giving a membrane response to the primary
ion only when [I+B ] > [J+

B ]. In the latter conditions, ionic
sites are compensated by equal amounts of IL+ and JL+

complexes, whereas the concentration of free ionic species
remain negligible. Indeed, in these conditions, cations in the
sample are simply indistinguishable. By increasing the strength
of the interferent-ionophore complexes (βJL=106 M−1), line
with right-pointing triangles) the membrane response becomes
totally dominated by the effect of the interferent species,
except in the inverted Nernstian regime, where the extraction
of co-ions X− from the electrolyte to the ISM dominates the
membrane response.

D. Optimum choice of the ionophore concentration

To complement this analysis, we investigate the impact
of the total concentration of ionophores [Ltot] in the ISM.
This parameter is often expressed relative to [R], since the
ratio between the two is what defines the capability of the
ISM to buffer (i.e., to maintain constant) the concentration
of the target ions inside this phase [12]. Figure 9 reports
a few calibration curves of an ionophore-based ISM, for
different ratios [Ltot]/[R]. In the left panel, the presence of
ionophores with concentration that is equal or lower than that
of ionic sites yields an improvement on the detection range
to target ions with respect to the case without ionophores

(line with squares/diamonds vs circles) that is sub-optimal.
In fact, despite the detection range is increased, the response
is sub-Nernstian and the UDL is lowered. On the other hand,
[Ltot]/[R] > 1 improves the response range which becomes
Nernstian for a wider concentration interval of the target ion.
Ratios above 2:1 do not lead to appreciable improvement,
since the concentration of ionophores is already high enough
to successfully buffer the target ions in the ISM.
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Fig. 9. Calibration curves of cation-selective ISMs at equilibrium with
different ratios of [Ltot]/[R] > 1. The parameter values in the left
panel are , βJL = 102 M−1, nI = nJ = 1, [R−] = 10 mM,
[J

+
B ] = 0.1 mM and all the affinity constants are set to 1, whereas in

the right panel βIL = 1010 M−2 and nI = 2.

Simulations such as in Fig. 9 quantify the smallest
ionophore concentration that gives the best sensor perfor-
mances. One should note, however, that optimal ratios strongly
depend on the stoichiometric coefficients of the ion-ionophore
reactions as well as the valence charge of the involved ions
[11]. Theoretical approaches have been proposed to use such
ratio for optimization of ISM selectivity [32]. In the other
way around, experimental data with different [Ltot]/[R] can
be used, together with simulations, to infer the actual stoi-
chiometric coefficients and binding constants of the chemical
reactions [12]. One example is shown in the right panel of
Fig. 9, where we repeat the simulations of the left panel but
using nI = 2, to show that the optimal ratio changes from
2 to ca. 4. In fact, the stoichiometric coefficient defines how
quickly ionophores are consumed by the chemical bound with
ions I+ for increasing concentration of such ions in the sample
solution.

E. Effect of the ISM parameters on the detection range
and selectivity

So far we have shown which are the main parameters
affecting the sensor detection range in ISMs while illustrating
the extensive predictive capabilities of the presented models.
As shown in Fig. 1.c, the ultimate goal during the design
of ISM-based biosensors is that the linear-to-log portion of
the sensor characteristics completely covers the concentration
range required by the sensor application. Therefore, Fig. 10
suggests a set of intuitive plots, generated with our model,
that highlight the visualization of the UDL, LDL and detection
range figures of merit. From left to right, each panel shows
the detection range (greenish filled area between the UDL
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TABLE III
CALCULATED POTENTIOMETRIC SELECTIVITY COEFFICIENTS GIVEN THE PARAMETER VALUES.

[R] (mM) 10 10 10 10 10 10 10 10 10 10 10 10 1

kI 1 1 1 1 1 1 1 1 0.1 1 1 1 1

kJ 1 1 1 1 1 1 1 1 1 0.1 1 1 1

zI 1 1 1 1 1 1 1 1 1 1 2 1 1

zJ 1 1 1 1 1 1 1 1 1 1 1 2 1

nI 1 1 1 1 1 1 2 2 1 1 1 1 1

nJ 1 1 1 1 1 1 1 1 1 1 1 1 1

log βIL 4 6 5 5 5 5 10 10 5 5 5 5 5

log βJL 0 0 0 4 2 2 2 2 2 2 2 2 2

[Ltot] (mM) 20 20 20 20 20 40 40 80 20 20 20 20 20

logKPOT
IJ

a -2 c -4 c -3 c -1 c -3 d -3 d -6.1 d -6.7 d -2 -4 -1.5 -3.8 -3
logKPOT

IJ
b -2.1 c -4.1 c -3.1 c -1.4 c -2.7 d -2.9 d -6.1 d -6.8 d -1.7 -3.7 -0.8 -3.7 -3.1

a Predictions using Eq. 14. b Calculated using [31, Eq. 5] with LDL values extracted from the numerical simulations including ionophores. c Parameters
values taken from Fig. 8 and, d, from Fig. 10.

and LDL curves) of an ISM containing ionophores, when
changing the concentration of interferent species in the sample
electrolyte and the binding association constants βIL and βJL
in the ISM, respectively. Other numerical values used in the
simulations are: kI = kJ = kX = 1, nI = nJ = 1, [R−] = 10
mM and [J+

B ] = 0.1 mM. From Fig. 10 we observe that the
UDL only worsens (decreases) when βIL is increased and
remains almost flat otherwise. This in line with the theoretical
predictions reported in [33, Eq. 47]. Conversely, the LDL is
significantly improved (reduced) with increasing βIL whereas
it is worsened with increasing concentration of interferent ions
as well as the stability constant βJL. Finally, the detection
range follows LDL when the UDL is flat and slightly increases
for higher βIL, since the LDL decreases faster than the UDL.
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Fig. 10. UDL and LDL trends are plotted against [J+
B ], βIL and βJL

in the panels from left to right, respectively. Other parameter values are
reported in the text. The shaded area is the detection range.

It is worth noting that the UDL and LDL in Fig. 10 have
been calculated following IUPAC convention (see Fig. 1.c).
In the particular case of calibration curves with inverted-
Nernstian responses (see Fig. 8.a) the UDL was defined by
placing the horizontal limit line in correspondence of the
inversion peak. This choice leads to slightly shifted results
with respect to the convention adopted in [43], where the UDL

is defined as the crossing point between the Nernstian and
inverted-Nernstian lines.

As previously mentioned in Section II-C, the potentiometric
selectivity coefficient can also be used as a FoM for ISM-based
sensors. A simple expression for the case of neutral ionophores
and monovalent ionic sites reads [32], [33]:

logKPOT
IJ = logKPOT

IJ,0 +
zI
zJ

log βJL − log βIL+

− nJ
zI
zJ

log

[(
r − nJ

zJ

)
[R]

]
+ nI log

[(
r − nI

zI

)
[R]

]
,

(14)

where we denoted as logKPOT
IJ,0 the selectivity coefficient

without considering ionophores (see Eq. 8) and defined r =
[Ltot]/[R]. The comparison between the numerical simulations
performed with our model and the values predicted by Eq.
14 are reported in Table III, for different choices of the ISM
parameters, including the examples proposed in Figs. 8-10.
The comparison reveals that the theoretical predictions are
quite close to the numerical results and that the former are
able to capture all the dependencies of the potentiometric
selectivity coefficient included in the simulator. However,
the discrepancies are not uniformly distributed across the
parameters’ space, and relatively large errors are obtained in
some instances, e.g., for zI = 2 or log βIL ≈ log βJL.

IV. DISCUSSION AND CONCLUSIONS

In this paper we showed that ISM equilibrium models can be
developed using the Poisson-Boltzmann system of equations
amenable to extensions including distributed chemical reac-
tions with ionophores. The advantage of our approach with
respect to phase boundary models is that the solutions are
spatially resolved and extendible to more than one dimension,
and allow users to visualize spatial concentration and potential
profiles.

Thanks to the inclusion of the spatial dimension and
the implementation based on Poisson equation with Neu-
mann/Dirichlet boundary conditions, our models are easy to
integrate in simulation tools of the whole sensor device [44],
[45], as nowadays relevant for the design of integrated sensor
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solutions. The main implementation difficulty remains dealing
with non-linearities induced by the PB system of equations,
that, coupled with distributed chemical reactions increase the
overall complexity, with possible limitations on the number of
reactions that can be simultaneously considered. The models
are in very good agreement with experimental data in the
literature and are useful to characterize the sensor response
dependency on the ionic concentrations and the parameters of
the ISM. Despite the choice of an equilibrium framework (time
is not included) we believe that the proposed approach still
conveys useful information to optimize potentiometric sensors.

Based on the simulation results presented in this paper, for
idealized ISMs, we summarize below the key points necessary
to optimize the LDL, UDL, selectivity and dynamic range of
ISM-based electrochemical potentiometric sensors.

When ionophores are not incorporated in the membrane, the
ISM design should consider that:

• there is essentially no sensor response without ionic sites;
• the extent of co-ions (e.g., X− for R− ionic sites) uptake

in the ISM determines the UDL;
• the extent of counter-ions different to the target ions (i.e.,

J+) uptake in the ISM determines the LDL;
• The UDL can be improved with i) higher concentrations

of ionic sites [R−], ii) lower affinity constant of the co-
ions (e.g., kX ) or iii) lower affinity constant of the target
ion (e.g. kI );

• The LDL can be improved with higher ratio of the target
ion affinity constant over the ones of the interferent ionic
species, e.g., kI > kJ , or by lowering/increasing the
concentration of ionic sites when zI < zJ or zI > zJ ,
respectively;

• selectivity among different ions is generally governed by
the Hofmeister series.

On the other hand, when ionophores are introduced in the
design, one should also consider that:

• ionophores can provide selectivity patterns different from
the Hofmeister series;

• if the binding stability of target ion-ionophore complex
is high enough (i.e., large βIL), Nernstian sensitivity
towards the target species can be achieved even in
the presence of high concentrations of interferent ionic
species (e.g., [JB ]);

• high values of the target ion-ionophore association con-
stant lower the LDL and increase the detection range but
worsens the UDL, as they induce co-ion interference;

• The ratio between [Ltot] and [R] concentrations in the
membrane composition should be optimized according to
the ionic valence charges and stoichiometric coefficients
of ion-ionophore complexes (usually in 2:1 proportion for
monovalent species and 1:1 stoichiometries);

• ion valence charges as well as the number of ionophores
that bind a single ion can lead to sub-, super and inverted
Nernstian responses also at equilibrium [10], [38].
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