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Autonomous optical and inertial navigation of
solar-sail propelled CubeSat class spacecraft during

targeting missions to asteroids and minor moons

Hazal Karaaliler1, Yağız Akan1, Deniz Lena Demirbağ1, İlayda Macit1
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1 Abstract
Traveling through deep space is still an area that needs to be improved and re-

generated considering the number of successful interplanetary missions. Further-
more, traveling through distant asteroids or planetary systems requires innovative
technologies in propulsion, tracking, maneuvering, etc. Since the spacecraft voy-
ages through deep space, it cannot completely count on ground-based navigation
systems and needs to have an on-board, autonomous navigation system to steer
itself. Another solid reason to develop an autonomous navigation technology is
the overuse of the Deep Space Network which has started to ripen and thus may
not be able to deliver as before. Likewise, the propulsion technology needs to
be reformed according to the needs of missions. Solar-sailing has branched out
in that sense, providing a potential to improve space travel without carrying any
engine or conventional propulsion system but utilizing radiation pressure produced
by the Sun. Although there are some pioneer missions implementing these tech-
nologies, there is not any application that has combined autonomous navigation
and Solar-sailing. And, this project intends to prove the concept of a Cube-Sat
class, Solar-sail propelled spacecraft with an on-board autonomous optical and
inertial navigation system during targeting missions to asteroids and minor moons
by modeling a synthetic stellar environment on Mathematica to operate navigation
procedures, eventually to estimate the spacecraft’s current position.
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List of Symbols, Definitions and Abbreviations
accelerometer An accelerometer is a tool that measures proper acceleration.

Proper acceleration is the rate of change of velocity of a body in its own
instantaneous rest frame. 7, 8, 16

albedo Albedo (’whiteness’) is the measure of the diffuse reflection of solar
radiation out of the total solar radiation and measured on a scale from
0, corresponding to a black body that absorbs all incident radiation, to 1,
corresponding to a body that reflects all incident radiation. 15, 16

angular velocity (𝜔) Angular velocity or rotational velocity, also known as angu-
lar frequency vector, is a vector measure of rotation rate, that refers to how
fast an object rotates or revolves relative to another point. 7, 8

aphelion (Q) Aphelion is the point in the orbit of a planet, comet, or other body
most distant from the Sun. It is equivalent to the apoapsis of a general orbit.
52

Apollo The Apollo program was the third United States human spaceflight pro-
gram carried out by the National Aeronautics and Space Administration
(NASA), which accomplished landing the first humans on the Moon from
1969 to 1972. 16

apparent magnitude Apparent magnitude (m) is a measure of the brightness of a
star or other astronomical object observed from Earth. An object’s apparent
magnitude depends on its intrinsic luminosity, its distance from Earth, and
any extinction of the object’s light caused by interstellar dust along the line
of sight to the observer. 26, 28

aragument of perihelion (𝜔) The argument of periapsis/perhelion is the angle
from the body’s ascending node to its periapsis, measured in the direction
of motion. 52

ASTAP Astrometric Stacking Program, astrometric solver and FITS image viewer.
25, 26, 28, 43, 45–47, 59, 60, 63, 64, 87

AU A unit of length effectively equal to the average distance between Earth and
the Sun. 24

Auto-Nav Autonomous Onboard Optical Navigation. 10, 12, 13, 85, 87

beacon A beacon is an intentionally conspicuous device designed to attract atten-
tion to a specific location. 7, 18–20
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B-V color index In astronomy, the color index is a simple numerical expression
that determines the color of an object, which in the case of a star gives
its temperature. The smaller the color index, the more blue (or hotter) the
object is. Conversely, the larger the color index, the more red (or cooler) the
object is. 28

C Capacitance is the ratio of the amount of electric charge stored on a conductor
to a difference in electric potential. 8

capacitor A capacitor is a device that stores electrical energy in an electric field.
It is a passive electronic component with two terminals. 8

CCD A charge-coupled device is an integrated circuit containing an array of
linked, or coupled, capacitors. Under the control of an external circuit, each
capacitor can transfer its electric charge to a neighboring capacitor. 11, 15,
29, 31, 41, 56

coma The coma is the nebulous envelope around the nucleus of a comet, formed
when the comet passes close to the Sun on its highly elliptical orbit; as the
comet warms, parts of it sublimate. This gives a comet a "fuzzy" appearance
when viewed in telescopes and distinguishes it from stars. 15, 16

covariance It is a measure of the joint variability of two random variables. The
sign of the covariance shows the tendency in the linear relationship between
the variables. 11–13

CubeSat A CubeSat (U-class spacecraft) is a type of miniaturized satellite for
space research that is made up of multiple cubic modules. 10, 85

DS1 Deep Space 1 was a NASA technology demonstration spacecraft which flew
by an asteroid and a comet. 15, 16, 85

DSLR A digital single-lens reflex camera (digital SLR or DSLR) is a digital
camera that combines the optics and the mechanisms of a single-lens reflex
camera with a digital imaging sensor. 31

DSN The Deep Space Network is a worldwide network of spacecraft communi-
cation ground segment facilities, located in the United States, Spain, and
Australia, that supports interplanetary spacecraft missions. 7, 9, 10, 87

eccentricity (e) The orbital eccentricity of an astronomical object is a dimension-
less parameter that determines the amount by which its orbit around another
body deviates from a perfect circle. A value of 0 is a circular orbit, values
between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, and
greater than 1 is a hyperbola. 52
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ephemeris In astronomy and celestial navigation, an ephemeris is a book with
tables that gives the trajectory of naturally occurring astronomical objects as
well as artificial satellites in the sky, i.e., the position (and possibly velocity)
over time. 7, 9, 10, 18, 20, 67, 68, 70

focal length The focal length of an optical system is a measure of how strongly
the system converges or diverges light; it is the inverse of the system’s optical
power. 20

FOSS Free and open-source software (FOSS) is software that is both free software
and open-source software where anyone is freely licensed to use, copy, study,
and change the software in any way, and the source code is openly shared so
that people are encouraged to voluntarily improve the design of the software.
18

FOV Field of view is the maximum area of a sample that a camera can image.
17, 18, 20, 45

G The gravitational constant, G, is an empirical physical constant involved in the
calculation of gravitational effects in Sir Isaac Newton’s law of universal
gravitation and in Albert Einstein’s general theory of relativity. 24

GEO A geostationary orbit is a circular geosynchronous orbit 35,786 kilometres
in altitude above Earth’s Equator and following the direction of Earth’s
rotation. 7

GMAT The General Mission Analysis Tool (GMAT) is a space trajectory op-
timization and mission analysis system developed by NASA and private
industry in the spirit of the NASA Vision. 68, 70

gnuplot gnuplot is a command-line and GUI program that can generate two- and
three-dimensional plots of functions, data, and data fits. 26

gyroscope A gyroscope is a device used for measuring or maintaining orientation
and angular velocity. 7, 16, 23

heliocentric coordinate system Heliocentric coordinates express the true spatial
position of a feature in physical units from the center of the Sun. 19

heliocentric ecliptic frame The origin is the Sun’s center, the plane of reference
is the ecliptic plane, and the primary direction (the x-axis) is the vernal
equinox. 19

IPS An ion propulsion system is a form of electric propulsion used for spacecraft
propulsion. It creates thrust by accelerating ions using electricity. 15
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inclination (i) Orbital inclination measures the tilt of an object’s orbit around a
celestial body. It is expressed as the angle between a reference plane and the
orbital plane or axis of direction of the orbiting object. 52

JPL The Jet Propulsion Laboratory (JPL) is a federally funded research and devel-
opment center and NASA field center in the city of Pasadena in California,
United States. 18, 85

Julian Days The Julian day is the continuous count of days since the beginning
of the Julian period, and is used primarily by astronomers, and in software
for easily calculating elapsed days between two events. 69

Jupyter Notebook The Jupyter Notebook is a web-based interactive computing
platform. 33, 42, 56, 66, 87

Kalman Filter It is an algorithm that uses a series of measurements observed
over time, including statistical noise and other inaccuracies, and produces
estimates of unknown variables that tend to be more accurate than those
based on a single measurement alone, by estimating a joint probability
distribution over the variables for each timeframe. 12, 33, 68, 83–85, 87

Least Squares method The method of least squares is a standard approach in
regression analysis to approximate the solution of overdetermined systems
by minimizing the sum of the squares of the residuals made in the results of
each individual equation. 15

Levenberg-Marquardt algorithm In mathematics and computing, the Levenberg-
Marquardt algorithm, also known as the damped least-squares method, is
used to solve non-linear least squares problems. These minimization prob-
lems arise especially in least squares curve fitting. Applied to artificial
neural network training, a Levenberg-Marquardt algorithm often converges
faster than first-order backpropagation methods. 15

longitude of the ascending node (Ω) The longitude of the ascending node is the
angle from a specified reference direction, called the origin of longitude, to
the direction of the ascending node, as measured in a specified reference
plane. 52

LOS A straight line along which an observer has unobstructed vision. 12, 15–
20, 80

LRGB LRGB, short for Luminance, Red, Green and Blue, is a photographic
technique used in amateur astronomy for producing good quality color pho-
tographs by combining a high-quality black-and-white image with a lower-
quality color image. 32
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M⊙ The solar mass is a standard unit of mass in astronomy, equal to approximately
2 × 1030 kg. It is approximately equal to the mass of the Sun. 24

magnetic field (B) Angular velocity or rotational velocity, also known as angular
frequency vector, is a vector measure of rotation rate, that refers to how fast
an object rotates or revolves relative to another point. 8

Markov process A Markov process is a random process in which the future is
independent of the past, given the present. Thus, Markov processes are
the natural stochastic analogs of the deterministic processes described by
differential and difference equations. 12

Mathematica Wolfram Mathematica is a software system with built-in libraries
for several areas of technical computing that allow machine learning, statis-
tics, symbolic computation, manipulating matrices, plotting, etc. 11, 18, 33,
56, 68, 74, 76, 87

mean anomaly (M) It is the fraction of an elliptical orbit’s period that has elapsed
since the orbiting body passed periapsis, expressed as an angle which can
be used in calculating the position of that body in the classical two-body
problem. It is the angular distance from the pericenter which a fictitious
body would have if it moved in a circular orbit, with constant speed, in the
same orbital period as the actual body in its elliptical orbit. 52

mean motion (n) Mean motion is the angular speed required for a body to com-
plete one orbit, assuming constant speed in a circular orbit which completes
in the same time as the variable speed, elliptical orbit of the actual body. 52

minor-moon A minor-planet moon is an astronomical object that orbits a minor
planet as its natural satellite. 7

NASA The National Aeronautics and Space Administration is an independent
agency of the U.S. federal government responsible for the civilian space
program, as well as aeronautics and space research. 11, 18, 85

Newton-Raphson method In numerical analysis, Newton’s method, also known
as the Newton-Raphson method, named after Isaac Newton and Joseph
Raphson, is a root-finding algorithm which produces successively better
approximations to the roots (or zeroes) of a real-valued function. 15

parallax Parallax is a displacement or difference in the apparent position of an
object viewed along two different lines of sight, and is measured by the angle
or semi-angle of inclination between those two lines. 9, 18
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perihelion (q) The position of closest approach, i.e. the shortest distance between
the Sun and the planet, is known as the perihelion. At this point in the orbit,
the planet is moving at its maximum speed (Keplerâ€™s Second Law). The
perihelion refers specifically to orbits around the Sun, and is equivalent to
the periapsis of a general orbit. 15, 16, 52

period (T) The orbital period (also revolution period) is the amount of time a given
astronomical object takes to complete one orbit around another object. 52

pixel In digital imaging, a pixel is the smallest addressable element in a raster
image, or the smallest addressable element in an all points addressable
display device. 11, 15, 17, 20, 28, 29, 31, 56–60

Point Spread Function (PSF) The point spread function (PSF) describes the re-
sponse of an imaging system to a point source or point object. A more
general term for the PSF is a system’s impulse response, the PSF being the
impulse response of a focused optical system 33, 41, 42, 56

pulsar A celestial object, thought to be a rapidly rotating neutron star, that emits
regular pulses of radio waves and other electromagnetic radiation at rates of
up to one thousand pulses per second. 7

RA/Dec The right ascension (RA), 𝛼, measures the angular distance of an object
eastward along the celestial equator from the vernal equinox to the hour
circle passing through the object. The declination (Dec), 𝛿, measures the
angular distance of an object perpendicular to the celestial equator, positive
to the north, negative to the south. 18, 45, 46, 49, 53, 55, 59, 60, 65, 67, 69,
80, 82, 87

RGB The RGB color model is an additive color model in which the red, green, and
blue primary colors of light are added together in various ways to reproduce
a broad array of colors. The name of the model comes from the initials of
the three additive primary colors, red, green, and blue. 32

semi-major axis (a) The semi-major axis is the longest semidiameter or one half
of the major axis, and thus runs from the centre, through a focus, and to the
perimeter. In astronomy, the semi-major axis is one of the most important
orbital elements of an orbit, along with its orbital period. For Solar System
objects, the semi-major axis is related to the period of the orbit by Kepler’s
third law. 52

sextant A sextant is a doubly reflecting navigation instrument that measures the
angular distance between two visible objects. 16, 17
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SIMBAD SIMBAD is an astronomical database of objects beyond the Solar Sys-
tem. It is maintained by the Centre de donnÃ©es astronomiques de Stras-
bourg, France. 41, 42

solar-sail Solar sails are a method of spacecraft propulsion using radiation pres-
sure exerted by sunlight on large mirrors. 23, 24, 85, 87

spectrometer A spectrometer is a scientific instrument used to separate and mea-
sure spectral components of a physical phenomenon. 15

SPK SPK file is typically a tar file with standard files and structure. 18

star catalog A star catalog is an astronomical catalog that lists stars. In astronomy,
many stars are referred to simply by catalogue numbers. 10, 17

Stellarium Stellarium is a free open source planetarium for your computer. It
shows a realistic sky in 3D, just like what you see with the naked eye,
binoculars or a telescope. 25, 26, 28, 49, 64, 65, 71, 72

telemetry Telemetry is the in situ collection of measurements or other data at
remote points and their automatic transmission to receiving equipment
(telecommunication) for monitoring. 7

topocentric Measured from, or as if observed from a particular point on the
earth’s surface. 71

Δ𝑣 The change in velocity. 23
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“A preliminary draft and conclusions about our work were provided in an oral
presentation at the 1st Workshop on Open Source Space Mission Design Tools
hosted online on 1 March 2022 by the Department of Aerospace Engineering of
the Izmir University of Economics in Izmir, Türkiye” [1]

2 Introduction
The increase in the growth of space missions both in numbers and improve-

ments started to require replacing the conventional navigation systems with on-
board systems. Historically, spacecraft navigation has been done by ground-based
antennas, radars, telemetry, and similar tracking methods. The procedure in ob-
taining the current position and velocity is to demand information from the Deep
Space Network, which is now indicated to be overused and inadequate to supply
each incoming request. Considering an interplanetary mission, relying on the
DSN makes it even poorer in terms of sturdiness and reliability. Therefore, au-
tonomous/onboard navigation systems need to be introduced to the spacecraft in
need of persistent information and/or traveling to far off asteroids, planets, and
minor-moons in deep space.

As introduced by D. Wang, et al. (2021), autonomous navigation includes
four different branches: inertial navigation, autonomous optical navigation, au-
tonomous navigation based on pulsars, and navigation based on artificial bea-
cons [2].

Pulsar-based autonomous navigation utilizes a pulsar’s ephemeris position to
extract the information as an initial signal estimation. Then, this first measurement
is compared with a specified reference location to obtain a phase offset between
the reference point and the spacecraft in the route of the pulsar [3].

Artificial beacons or active landmarks are devices that help the involved object,
generally air/spacecraft, robots, or ships, to find its direction to the beacon by
transmitting radio signals. They can be benefited in geostationary (GEO) and
inclined orbit satellites [4], and not applicable for a satellite traveling deep space.
We are left with two autonomous navigation methods, optical and inertial, which
are the interests of this project.

2.1 Autonomous inertial navigation system

The inertial navigation system can be expressed as a method to obtain the
current orientation and velocity of the object relative to a reference point, using
the onboard accelerometers and gyroscopes. Generally, an inertial navigation sys-
tem contains gyroscopes and accelerometers which are responsible for measuring
angular velocity (𝜔) and linear acceleration respectively, which is then integrated
to determine position.

13



An accelerometer works with the forces caused by vibration and elasticity
which can be created with a spring-mass system, and because of a certain movement
or the forces introduced into the system, the proof mass would displace by moving
between two parallel plates of the capacitor. Capacitive accelerometers work with
the change in electrical capacitance caused by acceleration. Meaning that, the
capacitor’s plates change their position due to the acceleration, which also affects
the capacitance, C since it is calculated by,

C = 𝜖0
𝐴

𝑠
(1)

where 𝐴 is the area of the plate, and 𝑠 is the distance between the plates. These two
plates create two air gaps that increase or decrease with respect to the direction
of motion and alter the capacitance proportional to acceleration. The amount of
acceleration can tell if the device is moving, how it is moving, is it falling, or at
which angle it is moving. Obtaining the tilting angle of a device relative to the
Earth can be determined by a dynamic accelerometer which essentially measures
the gravitational pull. It is possible to obtain the linear acceleration of a spacecraft
in the inertial reference frame by processing its current angular velocity (𝜔) and
linear acceleration, measured with respect to the spacecraft. Considering the initial
conditions, integrating the inertial accelerations in the equation of motion would
give the inertial velocities. And, the second integration would give the inertial
position by using the original position as initial conditions [5].

However, the inertial navigation system cannot serve for long periods (cruise)
but only for shorter periods (maneuvers), since uncertainty in the measurement of
acceleration would create a bias on the velocity and a deflection on the position [6].
In order to have control over each direction, at least three accelerometers need to
be introduced in an inertial navigation system, therefore to be able to face all
directions. Because of the existence of electricity between the parts, a magnetic
field (B) occurs to perceive the alteration in moving parts. Thus, the inertial
measurement unit can estimate the current position and velocity of the object with
physical occurrences. And, the current velocity and position of the spacecraft are
the essentials for navigation and control. Other than the fact that inertial navigation
systems are autonomous and conductible in various environments without needing
any ground-based tracking systems, it may also increase the total cost of the mission
or may cause drastic errors in the case of a poorly executed operation [7].
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2.2 Autonomous optical navigation system

The optical navigation plays a more crucial role in this project since it needs to
be in charge for a longer time in the mission. The optical navigation system is an
image-based measuring method, collaborating with an inertial navigation system,
and possibly the DSN, which acquires the needed data from the attached cameras
on the spacecraft, and ephemeris information.

asteroid 1

SC

asteroid 2

Pluto

Figure 1: Measurement geometry, sketched via diagrams.net

Cameras are responsible for providing photographs of a celestial body or an
asteroid placed against a star whose coordinates are known. Then, processing this
image and determining the trigonometric relationship, parallax, shown in Fig. 1
which is sketched according to our results presented in Sec. 7.5, between the
spacecraft and the celestial object produces an optical correlation to be used in
navigation.

M. Paluszek, et al. (2010) presented a flexible optical navigation system for
deep space missions, and they listed the observables that can be used in optical
measurement, see Fig. 1 in Paluszek [8]. For our case, we are interested in the
angle between a celestial body (an asteroid), and its distance to the Sun which can
be acknowledged as the center of coordinates [8].
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Another important fact that needs to be considered is the capacity of the
cameras used for the mission. It is very tough to obtain excellent optics when the
camera automatically gets micro or nano-proportional to the size of the spacecraft.
Optics restrict the number of distinguishable celestial objects, which may cause a
tremendous amount of error in the measurement. But with the great improvements
in nanotechnology, engineers are able to produce according to intentions, and
autonomous optical navigation has become possible also for micro/nanosatellites
with micro/nano cameras attached.

The presence of Auto-Nav greatly increases the possibilities to improve the
mission capabilities without completely trusting on the DSN. Building an inde-
pendent CubeSat-class spacecraft does not only benefits the mission requirements
and demands but also advances the mission itself by reducing the size and weight,
creating more space for additional components, instruments, or technologies, and
diminishing the mission cost caused by total payload.

Camera 1

Centroiding Star Info

Star
Catalog

Targeting Measurement
Computation

Processing Filtering and
Sensors

Telescope
Gimbal Angles

Ephemerides

Position 

and


 velocity

Optical Measurement

Figure 2: Autonomous optical navigation block diagram. (Adapted from Ref. [8],
sketched via diagrams.net)

Fig. 2, shows a conceptual block diagram for the workflow of the autonomous
optical navigation system. This hypothetical system utilizes a camera as an acqui-
sition sensor to capture the objects present in the environment. Then identifying
the information/ID of the observed stars using a star catalog. The position of the
celestial objects is determined with the help of ephemeris, which is crucial for tar-
geting and affects the inertial measuring accordingly. Combining and processing
the information coming from optical and inertial navigation systems produce the
current position and velocity of the spacecraft.
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2.3 Image acquisition

The essential tool to produce an image to process for navigation is a CCD
camera which is one of the most trivial technologies utilized in modern optics.
CCD cameras allow to produce photographs with a strong resolution, dynamic
range and a great acquisition speed compared to other technologies, which would be
the number one reason to implement them into high technology/cost missions [9].

Before diving into capturing a picture, the camera needs to be calibrated in
order to produce a correctly distorted image. Camera calibration (a.k.a camera
re-sectioning) is an estimate of the lens parameters and image sensor. Adjusting
these parameters according to the desired lens distortion allows us to measure
the real size of captured objects, or determine the location of the camera itself
corresponding to its environment [10].

After the camera is correctly calibrated, the image processing procedure can
be initialized, which plays the leading role in navigation since it is the part where
one extracts information out of that frame. Image processing can be classified as
a branch of signal processing where an image is an input instead of a signal. The
output can be either a better quality image or any other information that can be
extracted out of that image. Hence, for navigation systems, pixels are utilized to
be turned into digital data. In this project, we use Mathematica as the operating
system for creating synthetic stars and processing the obtained data thoroughly,
which is declared in Sec. 4 with details.

3 Literature Review

3.1 N. B. Stastny, et al. “Autonomous optical navigation at Jupiter: A linear
covariance analysis” (2008)

N. B. Stastny and D. K Geller (2008) presented a study on the efficiency of
optical measurements of the moons of Jupiter to determine a spacecraft’s position
and velocity while it’s approaching Jupiter and analyzed the outcome using a
linear covariance analysis. The covariance of two variables can be expressed as
a measure of their combined variability between a reference trajectory and an
estimated trajectory. Besides estimating the error covariance about the nominal
trajectory, this technique eliminates the need to estimate the system state.

They considered a suitably realistic truth model and simulation to analyze the
optical navigation technique and utilized four methods in this sense. First off, is
defining moons’ positions using the information from NASA archive, as well as the
celestial bodies’ ephemerides. And by analyzing those positions, the spacecraft
position can be determined with scientific tools.
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An Auto-Nav system can obtain mission path and position information [11].
Then, it is essential to calculate the gravitational forces from the near planets, since
it is important to develop the path and simulate movements of the spacecraft and
its trajectory. They have introduced Kalman Filtering as the linear quadratic esti-
mation. Kalman Filtering is a type of algorithm which uses measurements taken
over by time and tries converging to the real value using previous measurements.
Because of the joint probability distribution for each time frame over the variables,
it is one of the best ways to define errors and compare them with previous amounts.
They have proceeded with identifying the error sources and stressed the priory co-
variance, which is the spacecraft’s estimated inaccuracy in velocity and position
relative to the effect of the gravity force from the near planet. And suggested
that it may be fixed by the Earth-based systems or alternative methods of naviga-
tion. Unmodeled gravitational or non-gravitational accelerations are represented
as process noise in the linear covariance tool (similar to the Kalman Filtering
Method), and they show the difference between an elevated onboard gravity model
and the actual gravity. White noise is used to represent the process noise. The
white noise accelerations’ capacity is measured in m2/s3, which means that the
non-gravitational accelerations produce a velocity variance in m2/s2 that grows at
a rate of m2/s3.

The attitude knowledge errors of the spacecraft, which are modeled from a first
Markov process, are straightforwardly estimated as filter elements and powered by
white noise. To match the accuracy of a star camera attitude update, a standard
deviation of 1 arc-sec per axis was chosen, and 10 arc-sec per axis as an alternative
setting. The misalignment of the camera mounting is directly estimated as a filter
element. With a priory uncertainty of 0.01 degrees per axis, the misalignment error
is assumed to be constant, and 0.1 degrees per axis is an alternative setting. Even
though this parameter is included in the estimation filter, any sensor misalignment
is likely to be measured out of any mission. The number of optical navigation
cameras, which is expected to be a single camera, the spacecraft’s capacity to
realign its attitude to point at a new moon, and extra demands on the spacecraft
limit the imaging frequency. The nominal imaging frequency is to capture a new
moon every two hours to minimize reorientation maneuvers. The other option is
to set the timer to six hours. Since the true error direction is unknown, it can be
assumed that it is perpendicular to the spacecraft’s LOS to the Moon. The result
of the standard deviation of the error in the image measurement is:

𝜎ephem =
Δ𝑟

𝑟𝑠𝑚
(2)

where Δ𝑟 is the moon’s ephemeris knowledge error, and 𝑟𝑠𝑚 is the range from the
spacecraft to the moon.

18



The location of the moon’s center-of-mass (CM) pixel, as contrasted to the
target’s center of brightness (CB), must be determined from captured photos.
Image processing faults can be approximated as a percent of the moon’s diameter
for errors in the CM pixel position. As they have stated “When the imaged moon
is relatively close to the spacecraft, errors in CM pixel position will dominate.
When the image’s moon is further away, the image center-finding bias becomes
insignificant and is dominated by measurement noise [11].” Center finding errors
may directly cause position errors since it is dependent on the center and expected
point. Therefore, the camera most possibly produces some noise because of the
environment’s continuous work. They have finalized their study by stating that
the autonomous algorithm uses the results/images obtained from the camera, to
design or create a simple model. When image processing is used in combination
with the analysis, a basic model describing the uncertainty in Auto-Nav’s moon
measurement can be provided [11].

3.2 Gerald M. Levine, “A method of orbital navigation using optical sightings to
unknown landmarks” (1966)

Estimating the velocity and position of a spacecraft has been studied for a
long time. Although this paper may be classified as ancient, it is worth to be
reviewed since the navigation systems are also old enough to rely on. Gerald
M. Levis (1966) conducted a study on orbital navigation using optical sightings.
The paper introduces estimations of the position and speed of the spacecraft and
compares them with the values obtained from actual measurements. The correctly
calculated angles between the considered celestial bodies allow the Auto-Nav
system to operate. This navigation system produces the desired information as
a result of the operations to be performed with two images taken from the same
location [12].

Comparison between the estimated and measured values leads us to determine
the speed and position of the spacecraft. Error transition matrix, 𝑊 , is used so
that the obtained measurement data can be included in the process efficiently. The
reason for not using the covariance matrix is that it is difficult to maintain the pos-
itive covariance matrix during long space missions. Therefore, the error transition
matrix is used rather than the covariance matrix. The essentials for the navigation
procedure to be used and the landmarks to be detected from the spacecraft are
assumed to be the optical instrument, the inertial platform, and a computer. They
have presented the unknown-landmark orbital navigation procedure as follows:

Looking at a landmark at time 𝑡0, the unit vector measured from the spacecraft
to the landmark is defined as u0. When the landmark point is targeted, it is
assumed that the key is pressed and the 𝑡0 and u0 values are automatically saved
in the computer’s memory.
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Of course, a single measured value is useless. The spacecraft re-targets the
same landmark a few seconds later, and a second sight u1 is obtained and stored
again. A plane is created from points r0 to r1, and the velocity vector of the
spacecraft, between these two points, does not have a component perpendicular to
the generated plane, which can be called the normal point, r. Let 𝜃 be the angle
between r0 and r1, and the angle between r0 and 𝑟 be 𝜙. Then, solving the Kepler’s
equation, allows us to obtain the conic position r1 at time 𝑡1 from the position and
velocity estimates, r0 and v0 at 𝑡0. And, determining the angle 𝜙 from,

𝜃 =
tan−1( |r0 × r1 |)

(r0Tr1)
(3)

𝜙 =
𝜃

2
+ 2 tan−1

[
1 − (𝑟0/𝑟1)1/2

1 + (𝑟0/𝑟1)1/2 tan 𝜃
4

]
(4)

Then, calculating the estimated time 𝑡, that the spacecraft was at the normal
point by using the angle 𝜃 and Kepler’s equation. Use the position estimate of the
r1 to convert u1 to u′

1 to account the Earth’s rotation as well. Integrating the values
of r0 and v0 into time, 𝑡, to get the r′ and v′ values. Let n be the unit vector in
the direction of u0 × u′

1. Accordingly, see Fig. 1 in Levine, the geometry vector is

given by, 𝑏 =

©­­­«
0
0
0
𝑛

ª®®®¬. Taking n as a measured quantity, the measured value Q′ is zero,

and the estimated value Q′′ is nTv′. Therefore, subtracting the measured from the
estimated gives:

Q′ − Q′′ = −n𝑇v′ (5)

Finally, calculating the new estimates r and v, and the updated error transition
matrix, 𝑊 , allow to proceed from time 𝑡, which concludes the basis of Levine’s
method of orbital navigation using optical sightings to unknown landmarks [12].

3.3 S. Li, et al. “Image processing algorithms for deep-space autonomous optical
navigation” (2013)

S. Li, et al. presented a study in 2013 on image processing algorithms for
spacecraft traveling through deep-space, stressing the fact that image processing is
quite crucial for autonomous optical navigation systems since they rely on extract-
ing observables from an image. They have introduced three new image processing
algorithms. The first one is the multiple-image pre-processing which intends to
prepare the image before the actual processing by eliminating uninteresting areas
to widen the interest area without extra information, and the Canny edge detection
algorithm which aims to determine the edges of target bodies to eliminate the
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possible false edges by reducing the noise and accurately positioning the edge
points. Then, they presented two limb profile fitting algorithms which are essen-
tially established from the Least Squares method and the Levenberg-Marquardt
algorithm, presuming that the celestial body completes an elliptical shape on the
image plane. Using the Least Squares method, they represented the elliptic section
as an implicit quadratic equation and designed a solution numerically by using
Newton-Raphson method. On the other hand, using the Levenberg-Marquardt
algorithm, they minimized the non-linearity of the function. Finally, they have
obtained the LOS vector from the spacecraft to the centroid of the body corre-
sponding to the ellipse equation of the fitted limb profile, which is acknowledged
as the navigation measurement observable and introduced to the algorithm as an
input to determine the current position of the spacecraft.

To obtain a more explicit result, they have tested the algorithms both on real
images and on synthetically created images. Both of the tests have given an
accurate and satisfactory output by successfully extracting the observables from
images.The error of the LOS vector came up less than 1.67×10−4 radians, and the
maximum ellipse fitting errors were less than 3 pixels which support the deep-space
autonomous navigation needs and prove the accomplishment of this study [13].

3.4 L. A. Soderblom, et al. ‘Observations of comet 19P/Borrelly by the miniature
integrated camera and spectrometer aboard Deep Space 1” (2002)

Deep Space 1 (DS1) mission is the first ion-propulsion (IPS) spacecraft that
traveled through deep-space. During the mission, a spectrometer and a miniature
integrated camera worked on finding and collecting visible-wavelength images
and short-wavelength infrared spectra [14]. This article specifically examines the
sunlight that appears on the left of the image frame.

During the DS1 mission, a CCD camera was assigned to take images of the
comet 19b/Borelly. However, DS1 failed in the main mission which was detecting
its current position, instead, it noticed this comet, and DS1 visited the comet
in 2001. On May 28th, 2015, the comet passed through perihelion (q) (nearest
approach to the Sun), and it is calculated to do it again on February 1, 2022. From
3,400 kilometers distant, DS1 captured images of the comet’s core. It was the best
quality image of a comet ever seen, at 45 meters per pixel. The miniature integrated
camera produced such images that, “The surface of Borelly’s nucleus was covered
by dark material, having an average geometric albedo of only 0.03 ± 0.005, with
darker spots ranging down to ∼ 0.01 [14].” Dark areas near the boundary suggest
a very slight phase change, which is a feature of the coma. With solar phase angle,
the dark areas centered in the illuminated end of the nucleus alter in brightness.
And, the topographic model they introduced shows that those spots are around 45◦
from the subsolar point.
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They found that the albedo ranges from ∼ 0.01 to ∼ 0.035, which is generally
accepted as 0.04 in studies, with a factor of 3 between the darkest and the brightest
areas. It is possible that the darkest albedo spots are made up of various materials
or have various particle measurements and compaction effects.

Borrelly always demonstrated a conspicuous sunward asymmetry in its coma.
The coma elongates in the direction of the Sun as a consequence of this fact. As
they state “During the approach, the coma’s sunward asymmetry was reduced to
a broad dust beam, just a few kilometers wide at its base, arising from the nucleus
broad central basin. This jet-like dust feature, which we call the 𝛼 jet, was canted
about 30◦ from the direct Sun line [14].” And, they observed in the DS1 images
that it ranges to 100 kilometers where its brightness goes out of the detection limit.
Fig. 8(A) in Soderblom, includes the image captured with a range of ∼ 13, 130
km, resolution of 173 m/pixel, phase angle of ∼ 79.6◦, and (B) with a range of
∼ 4825 km, resolution of 63 m/pixel, phase angle of ∼ 62.5◦. The major jet of
Borrelly has been spotted several weeks earlier to the encounter. Images were
taken 11 to 34 hours before the collision contain enough detail to demonstrate
that the main jet’s orientation is within around 5 degrees of what was seen at the
encounter. Consequently, the main jet was reported to be stagnant for longer than
the 26 hour period. They determined that the main jet is almost parallel to the
nucleus’ rotation axis. During perihelion (q) passage, the subsolar latitude is 60◦
N, and the pole receives continual sunshine. The direction of the pole is adaptable
with the steady rotation of the nucleus along its shorter axis. The almost on-axis
main jet’s non-gravitational forces then have a negligible influence on this stable
rotational state [14].

3.5 David G. Hoag, “The history of Apollo onboard guidance, navigation, and
control” (1983)

The control systems used in Apollo mission were covered by David G. Hoag
in 1983. In Apollo mission they used “a space sextant to make periodic naviga-
tion angle measurements between pairs of celestial objects”. Similar to the Mars
probe but more improved space sextant has been used to operate the autonomous
navigation measurements. They included two-single axis gyroscopes and an ac-
celerometer for angle and velocity change measurements. Satisfactory sextant
design as a result of long studies was fixed along “the axis of penetration of the
spacecraft hull” and affiliated with “the Earth or the Moon side of the navigation”.
“The other line-of-sight (LOS) associated with the reference star was split from
the first and tipped away by an articulating mirror in a way that the navigation
angle could be successfully measured in any plane. The angle of tilt of the mirror,
in conventional sextant fashion, was the desired measurement and was encoded
for use by the computer navigation and alignment algorithms [15].”
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To maintain the power of the spacecraft, the inertial system had to be shut
down for most of its mission, so various optical systems were developed and
tested. Afterward, a sextant study was performed that corrected its angle with
respect to the stars and prevented the inertial measurement unit shift in orientation
once or twice a day periodically, and problems caused by a small field of view
diffused sunlight. In this work, the sextant were used gimbal angles to orient the
star line to the targeted star. The gyro drift of the star in the sextant FOV was
small enough that it always appeared bright. The image needs to be centered
with the data needed to realign the inertial unit. This ensured correct inertial
alignment throughout the mission. Also, the computer can orient the spacecraft
to targets specified by the onboard crew. Despite the scattered light problem they
have encountered with targets, the scanning telescope provided a good tracking
tool for navigational observations of the Earth and Moon in low orbit around these
objects. The crew measured the LOS to the surface target, then the navigation
angle with the scanning telescope, using the inertial measurement unit that had
been pre-aligned by the computer. Orientation relationships between the inertial
unit and optical sight lines, both instruments designed a common mounting bracket
inside to ensure the stability of the alignment between these instruments.

The joint mounting bracket, called the navigation base, was designed in a
lightweight but rigid structure then fastened to the spacecraft by kinematic mount-
ing to isolate the spacecraft strains. Automated star tracker and accompanying
sextant designed to solve the Earth and the Moon navigational compatibility is-
sues. After these were removed for cost and confusion, the images of the Earth
horizon were reexamined for navigation use and a simulator with photometric
accuracy was designed. And, a locator could be selected on the blurred horizon,
which could be replicated with remarkable accuracy [15].

4 Methodology

4.1 Position of a celestial body in the reference frame of a spacecraft

The captured image will demonstrate the stellar field of the spacecraft’s current
location. The initial step is determining the positions of the stars appearing in
that image. Since stars do not emerge as dots but as scattered pixels in an image,
determining the 𝑥 and 𝑦 coordinates of that disc shape is not deceptive yet possible.
The origin of the 𝑥 and 𝑦 coordinates of the disc is called “centroid”, and finding
the center of the star is called “centroiding”. Once we obtain the center of the
star, coordinates of each star in that stellar field can be identified by using a star
catalog, and “Astrometry.net” can be benefited in this sense since it is an extremely
accurate and strong astrometric calibration service.
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After identifying the centroids of the stars, the asteroids in that stellar field
can also be identified using the ephemeris, which is the step where NASA’s
“Horizons System” introduces itself. Horizons System is a FOSS and a highly-
accurate ephemeris computation service designed and constantly updated by JPL’s
Solar System Dynamics group who are responsible for the Mission Design and
Navigation section. The website provides physical parameters and motions mainly
of natural planets, satellites, and asteroids [16]. The fundamental intention of
this project is setting RA/Dec of the spacecraft, and obtaining the RA/Dec of a
certain asteroid to build the trigonometrical relationship and calculate the parallax
according to the movement of the spacecraft over a period of time while observing
a certain stellar field from the spacecraft’s location. Our supervisor, Dr. Fabrizio
Pinto reached out to the developers of Horizons, and we sadly found out from Mr.
Jon Giorgini who is in charge of the Horizons system and radar astrometry section
at JPL, that “An asteroid’s RA/Dec can be obtained with respect to a spacecraft
but the spacecraft must be pre-defined in Horizons with an SPK file.” And, he
stressed that “Users cannot manually input a single state and get RA/Dec relative
to the spacecraft.” which is essentially what we intend to perform.

4.1.1 Elements of autonomous optical navigation

As introduced earlier in Sec. 2.2, the operational concept behind the optical
navigation system initializes with capturing an image of a stellar field, and pro-
cessing that image to acquire data from the targeted celestial body through an
optical imaging sensor (camera). Then, associating the identified asteroid with
the ephemeris information to calculate the trigonometric relationship (parallax)
between the spacecraft and the asteroid in order to autonomously determine the
position, therefore the velocity of the spacecraft.

According to D. Wang and others, data for navigation can be determined with
center-point, edge-point, and feature-point information [2]. This project intends to
follow the center-point method which can be expressed as determining the RA/Dec
of the centroid of the celestial body to incorporate with the spacecraft’s attitude
to determine its position and velocity information through a filtering algorithm
which is planned to be executed by Mathematica.

Celestial bodies in the FOV of the spacecraft can be used as navigational
beacons if their ephemeris information is known. For an accurate operation, the
beacons need to be chosen carefully. D. Wang and others present a three-step
path-way for this issue:

1. Select 𝑚 number of beacons from the ephemeris as initial possibilities.
2. Then, select 𝑛 number of beacons from the initial 𝑚 possibilities to observe

if they are in the LOS and observable.
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3. Finally, designing the observing stage as efficient as possible by initializing
from the starting attitude, and observing the 𝑛 number of beacons with
maneuvering and arriving to the starting attitude at the end of the whole
observing stage.

SC

Sun

Celestial body for navigation

LOS vector

Figure 3: Optical autonomous navigation based on LOS. (Adapted from Ref. [2],
sketched via diagrams.net)

Considering a similar sketch as Fig. 1, Fig. 3 displays the geometric relationship
between the spacecraft and the target object based on LOS direction information,
where Rb is the position vector of the beacon relative to the Sun. The solar phase
angle, 𝛼, the angle between the Sun and the spacecraft relative to the center of the
celestial object, can be calculated as,

𝛼 = arccos
[

(ra − r) · ra
| |ra − r| | · | |ra | |

]
(6)

where in Eq. 6, ra is the position of the celestial object in a heliocentric ecliptic
frame and ra is the position of the spacecraft in the heliocentric coordinate system.
If 𝛼 is equal to 180◦, light coming from the Sun would enter the camera directly
which is not ideal, and needs to be avoided in order to obtain a useful image of the
stellar field.

Referring back to Fig. 3, set nc as the LOS direction of navigation beacon
expressed in the camera frame, F𝑐, and nn as expressed in the navigation frame,
F𝑛.

nc = C𝑐
𝑛nn + 𝜈 (7)

where in Eq. 7, C𝑐
𝑛 is the attitude transformation matrix from F𝑛 to F𝑐, and 𝜈 is the

observation noise caused by the camera. Then,

nn =
R𝑛

𝑏
− r𝑛

| |R𝑛
𝑏
− r𝑛 | | (8)
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Combining Eq. 8 and Eq. 7, the measurement equation based on LOS direction
information can be determined as,

nc = C𝑐
𝑛

R𝑛
𝑏
− r𝑛

| |R𝑛
𝑏
− r𝑛 | | + 𝜈 (9)

Therefore, if R𝑛
𝑏
= 0, then the targeted celestial object is the beacon whose the

measurement is LOS direction, which would occur in the approaching and orbiting
phases. Rewriting Eq. 9 according to that would result to,

nc = −C𝑐
𝑛

r𝑛

| |r𝑛 | | + 𝜈 (10)

However this project investigates the case of, 0 < 𝑅𝑛
𝑏
< ∞, and R𝑛

𝑏
is known by

ephemeris. Meaning that the beacon is a large distant object such as asteroids, and
the type of flight may be a deep-space transferring or orbiting. Also, if the camera
has a large FOV, it may detect more than one LOS which would decrease the errors
in attitude determination. Considering the given case, Eq. 9 can be rewritten as,

𝜃12 = arccos(n𝑛
1 · n𝑛

2) + 𝜈 = arccos

(
R𝑛

𝑏,1 − r𝑛

| |R𝑛
𝑏,1 − r𝑛 | | ·

R𝑛
𝑏,2 − r𝑛

| |R𝑛
𝑏,2 − r𝑛 | |

)
+ 𝜈 (11)

where 𝜃12 is the angle between the two LOS directions, R𝑛
𝑏,1 and R𝑛

𝑏,2 are the
position vectors of the two beacons expressed in the navigation frame, F𝑛 [2].

4.1.2 Image analysis

As introduced in Sec. 2.3, the onboard camera produces images in pixels form
which is a two-dimensional smallest element of an image, which allows us to
write a measurement equation with 𝑥 and 𝑦 axes. Fig. 4 shows a sketch of the
measurement basis of an optical imaging camera, where 𝑥𝑐𝑦𝑐 is the plane of the
image and 𝑧𝑐 is the axis of the focal length. Implementing the camera frame into
the sensor coordinate system [2],

nc =
1√︁

𝑥2
𝑐 + 𝑦2

𝑐 + 𝑓 2


−𝑥𝑐
−𝑦𝑐
𝑓

 (12)

where 𝑓 is the focal length of the camera.
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Figure 4: Measurement basis of optical imaging sensor. (Adapted from Ref. [17],
sketched via diagrams.net)

Writing R𝑛
𝑏

and r𝑛 as:

R𝑛
𝑏 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]𝑇

r𝑛 = [𝑥, 𝑦, 𝑧]𝑇
(13)

Yields to,

R𝑛
𝑏
− r𝑛

| |R𝑛
𝑏
− r𝑛 | | =

1√︁
(𝑥𝑑 − 𝑥)2 + (𝑦𝑑 − 𝑦)2 + (𝑧𝑑 − 𝑧)2


𝑥𝑑 − 𝑥

𝑦𝑑 − 𝑦

𝑧𝑑 − 𝑧

 (14)

Then, substituting Eq. 12 and Eq. 14 into Eq. 9 without considering the mea-
surement noise,

𝑥𝑐 = − 𝑓
𝑎11(𝑥𝑑 − 𝑥) + 𝑎12(𝑦𝑑 − 𝑦) + 𝑎13(𝑧𝑑 − 𝑧)
𝑎31(𝑥𝑑 − 𝑥) + 𝑎32(𝑦𝑑 − 𝑦) + 𝑎33(𝑧𝑑 − 𝑧)

𝑦𝑐 = − 𝑓
𝑎21(𝑥𝑑 − 𝑥) + 𝑎22(𝑦𝑑 − 𝑦) + 𝑎23(𝑧𝑑 − 𝑧)
𝑎31(𝑥𝑑 − 𝑥) + 𝑎32(𝑦𝑑 − 𝑦) + 𝑎33(𝑧𝑑 − 𝑧)

(15)

where 𝑎𝑖 𝑗 (𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3) are the corresponding elements in the direction
of attitude transformation matrix, 𝐶𝑐

𝑛 . The projection coordinates of the imaging
point on the focal plane can be assigned as (𝑝, 𝑙). And, considering the influence
of distortion, (𝑝, 𝑙) is given as [2],[

𝑝

𝑙

]
= k


𝑥𝑐
𝑦𝑐
𝑧𝑐

 +
[
𝑝0
𝑙0

]
+

[
𝜈𝑝
𝜈𝑙

]
(16)
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where 𝑝0 is the image element, 𝑙0 is the image line the sensor center, 𝜈𝑝 and 𝜈𝑙 are
the measurement noise, and k is the conversion matrix from Cartesian coordinates
to pixels denoted as,

k =

[
𝑘𝑥 𝑘𝑥𝑦 𝑘𝑥𝑥𝑦
𝑘𝑦𝑥 𝑘𝑦 𝑘𝑦𝑥𝑦

]
(17)

The influence of distortion can be neglected, since the values of 𝑘𝑥𝑦, 𝑘𝑦𝑥 , 𝑘𝑥𝑥𝑦 and

𝑘𝑦𝑥𝑦 are very small, which yields to k =

[
𝑘𝑥 0 0
0 𝑘𝑦 0

]
. Then rewriting Eq. 16,[

𝑝

𝑙

]
=

[
𝑘𝑥𝑥𝑐
𝑘𝑦𝑦𝑐

]
+

[
𝑝0
𝑙0

]
+

[
𝜈𝑝,𝑖
𝜈𝑙,𝑖

]
(18)

Finally, substituting Eq. 18 into Eq. 15 considering the measurement noise
would give [2],

𝑝 = −𝑘𝑥 𝑓
𝑎11(𝑥𝑑 − 𝑥) + 𝑎12(𝑦𝑑 − 𝑦) + 𝑎13(𝑧𝑑 − 𝑧)
𝑎31(𝑥𝑑 − 𝑥) + 𝑎32(𝑦𝑑 − 𝑦) + 𝑎33(𝑧𝑑 − 𝑧) + 𝑝0 + 𝜈𝑝

𝑙 = −𝑘𝑦 𝑓
𝑎21(𝑥𝑑 − 𝑥) + 𝑎22(𝑦𝑑 − 𝑦) + 𝑎23(𝑧𝑑 − 𝑧)
𝑎31(𝑥𝑑 − 𝑥) + 𝑎32(𝑦𝑑 − 𝑦) + 𝑎33(𝑧𝑑 − 𝑧) + 𝑙0 + 𝜈𝑙

(19)

4.2 Workflow block diagram
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Figure 5: Autonomous navigation block diagram (sketched via diagrams.net)
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The general workflow of the procedure is shown in Fig. 5. The basis behind the
optical and inertial navigation systems are expressed as block diagrams individu-
ally. Combining the information obtained from those two sections and processing
them through filtering algorithms with the correct operation would yield the cur-
rent position and velocity of the spacecraft. Then, the current estimate gets sent to
the solar-sail gyroscopes as feedback to use as a previous estimate during the next
cycle to reduce the errors in calculation.

4.3 Elements of solar-sailing

A conventional chemical substance burner engine rely on Tsiolkovsky’s famous
rocket equation, which produces the change in velocity due to the amount of fuel
that has been burned throughout. The rocket equation can be written as,

Δ𝑣 = 𝑣e ln
(
𝑚in
𝑚fin

)
(20)

where Δ𝑣 is the change in velocity, 𝑣𝑒 is the fuel exhaust velocity, 𝑚in and 𝑚fin
are the initial and final mass fo te spacecraft respectively [18]. According to the
Eq. 20, as the exhaust velocity gets bigger, the spacecraft performs a greater change
in velocity. However, the burning substance limits the exhaust velocity and does
not allow the spacecraft to travel through deep-space with a reasonable amount of
fuel [19].

On the other hand, solar-sails do not make use of the rocket equation, since
they are not propelled with a conventional engine but with solar radiation pressure.

Sun

reflected sunlight

solar-sail

incident sunlight

Figure 6: Simplified solar-sail sketch (Adapted from Ref. [19], sketched via dia-
grams.net)
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Fig.6 shows a sketch of a simplified, flat surfaced solar-sail where Fp is the
solar radiation pressure which is normal to the solar-sail, 𝐹G is the gravitational
pull facing the Sun which can be neglected for interplanetary missions. Then the
solar radiation pressure, Fp can be written as,

Fp =
2𝑟 cos(𝜃𝑖)n̂ + 𝛼r̂

𝑐
𝑆𝐴 (21)

where 𝑟 is the sail reflectivity across the solar spectrum, 𝛼 is the coefficient
of solar absorptivity, cos(𝜃𝑖) = n̂ · r̂ is the angle of incidence, r̂ is the radial unit
vector in the direction of sunlight, and n̂ is a normal vector to the sail surface. The
solar irradiance, 𝑆, is equal to 𝑆1,AU((1AU)2/𝑟2) where r is the radial distance
between the solar-sail and the center of the Sun [19]. Implementing this into the
equation of motion,

d2r
d𝑡2

= −GM⊙
𝑟3 r + 2𝑟 (n̂ · r̂) + 𝛼

𝑐

(1AU)
𝑟2 𝑆1,AU

𝐴

𝑚
n̂ (22)

where in Eq. 22, r is the radius vector from the center of the Sun to the solar sail,
G and M⊙ are the gravitational constant and the solar mass respectively.

As the orbit gets smaller the effect of the solar radiation pressure increases,
and this increased influence can be used to sail faster, therefore allows to reach the
spacecraft to a hyperbolic trajectory with a slingshot maneuver, which is possible
at perihelion since the spacecraft is facing towards the Sun, to travel through distant
stars/planetary systems [19]. In the case of n̂ = r̂, meaning that 𝜃𝑖 = 0, Eq. 22 can
be rewritten as,

d2r
d𝑡2

= −𝜇eff

𝑟3 r (23)

where 𝜇eff is now the effective gravitational parameter and equal to GM⊙ − (2𝑟 +
𝛼)𝑆 1,AU

𝑐
(1AU)2 𝐴

𝑚
. Finally, the cruise velocity of the spacecraft can be determined

after it reaches to the hyperbolic trajectory,

𝑣∞ ≃
√︂
𝑣2

0 − 2
𝜇eff
𝑟0

(24)

where 𝑣0 is the velocity and 𝑟0 is the position of the spacecraft at the perihelion
prior the slingshot maneuver [19].
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4.4 Proof of concept of centroiding

4.4.1 Astrometry activities

In 1807, astronomer Heinrich Wilhelm Olbers discovered the second largest
body in the main asteroid belt, Vesta. In 2011, NASA’s Dawn spacecraft traveled
through the area. Since it has almost a spherical shape, it is practically classified
as a dwarf planet. Vesta was the fourth asteroid discovered in history and also one
of three bodies which we have samples here on Earth [20]. It has a diameter of
530 kilometers and a mass of 2.67 × 1020 kilograms with an irregular shape and
rough surface [21].

Applying the blinking technique to the images that our supervisor Asst. Prof.
Fabrizio Pinto provided using a Cannon 5000D, we re-detected the asteroid Vesta
using the software ASTAP. Two images of the night sky have been captured on the
19th and 20th of April 2021 and processed through Astrometry.net. Fig. 7 is the
night sky captured in 19th of April at 21 : 00 : 06 UT time and the asteroids are
annotated. The coordinates measured in ASTAP gave an average uncertainty of
0, 000225259 and −7, 63962× 105 in right ascension and declination respectively,
compared to Stellarium data.

Figure 7: ASTAP frame of April 19th with detected asteroids. (courtesy Fabrizio
Pinto)
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Figure 8: ASTAP frame of April 20th with detected asteroids. (courtesy Fabrizio
Pinto)

The same procedure was applied to the image taken on the 20th of April
(Fig. 8). The coordinates measured in ASTAP for the 20th of April image resulted
in an average uncertainty of 0, 00023639 and −0, 0001067 respectively. Although,
the photographs look tilted after turning them into monochromatic form, and they
contain pure black parts, ASTAP still provided the features laid in that part and
solved the image with a 0.0 offset. Therefore, the error between the ASTAP
measurements and the real data from Stellarium is incredibly small as shown in
the tables above which proves that ASTAP is a very satisfactory tool for image
stacking and solving. Comparing the declination values obtained from Stellarium,
we can clearly see that Vesta moved from +18◦32′05.8′′ to +18◦29′35.4′′ which
corresponds to 0.041777 degrees of difference [22].

Later on, we measured the apparent magnitudes of a stellar field in a specified
frame of an image. 58 stars were chosen and investigated through ASTAP and
Stellarium. Also, studied the variable star 𝛽 Lyræ for four different frames, and
its variation in magnitude is observed. The average percent errors and differences
between the two values were calculated considering the provided Stellarium mag-
nitudes and the measured magnitudes. Finally, both magnitude values are plotted
in gnuplot for further investigation.
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Figure 9: Overlapped photo to observe Vesta’s movement (courtesy Fabrizio Pinto)

Figure 10: Magnitudes obtained from Stellarium vs ASTAP.
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Above Fig. 10 shows the magnitude values obtained from Stellarium versus
the magnitude values measured on ASTAP. The purple line indicates the apparent
magnitude value without any errors, which is the case of ASTAP measurements
assumed to be the same with Stellarium values. The green line demonstrates the
measured ASTAP magnitudes with the corresponding values indicated with blue
dots. As the graph displays, stars with larger magnitude values resulted in minor
errors comparing the stars with less magnitude. In other words, the greatest errors
occurred in the measurement of brighter stars, whereas the dimmer ones ended up
being more accurate in terms of the measurement of apparent magnitudes.

The average percent error in magnitude and the average difference in magni-
tude values are calculated as 4.82% and 0.28 respectively. According to Fig. 11,
the highest errors occurred in the measurement of the brighter stars, more pre-
cisely in our interest, 𝛽 Lyræ. ASTAP solver shows less accuracy in measuring
brighter stars yet respectively higher accuracy in dimmer ones. Although there
are some genuinely correct measured stars still, this method does not appear to be
a satisfactory approximation to the Stellarium data. The main reason, however, is
the difficulty in distinguishing and processing brighter pixels compared to dimmer
ones since they may appear more subtle [23].
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Figure 11: Percent error distribution.

Another crucial parameter is the B-V color index of the star, and it plays a
proper role in a star’s magnitude. Brighter stars emit more energy, therefore, are
hotter than the dimmer ones. If the color indices of two stars are the same and one
of them is brighter, this shows that it is smaller in radius compared to the other
[24]. Cold stars emerge in red color while the hot ones in blue. And if the star is
cold, it has a B-V color index close to +2, whereas the hot stars have negative or
close to 0 color index [25].
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5 CCDs, PSF Method and Synthetic Star Genera-
tion

5.1 Charge-coupled Device (CCD)

The position and movement of celestial bodies are determined by angular
differences over a certain time. Photographs are used to determine the coordinates
of stars and planets. In addition to these photographs, identification is facilitated
with the help of a catalog or atlas of other stars in the surrounding area. By defining
several stars with coordinates from the Position and Proper Motion Catalogue, at
least three reference stars can be obtained to be used to determine the coordinates of
the object. Using as many neighboring stars as possible will increase the precision
of the coordinates.

A CCD is a small microchip onto which the light collected by the telescope
is focused. The microchip is made up of a vast grid of individual light-sensing
devices known as pixels. When light falls on the pixels, electrons are released from
the atoms in the pixels and the amount of light falling on each pixel is obtained
by counting these electrons. The more exposed the CCD camera is to the sky, the
more photons fall on it, allowing objects to be viewed farther away than would
normally be seen. Keeping CCD cameras at a low temperature minimizes the
effects of thermal noise [29]. CCD devices are also widely utilized in consumer
electronic products, as well as medical and scientific applications, to create digital
images.

5.1.1 Imaging technique

CCD camera exposures are typically several seconds, with intervals between
first and second exposures being measured in seconds also. Secondary exposures
are created quickly due to the short intervals needed in universal practice. For
faint-looking asteroids, the telescope is held at stellar speed by making a series
of short exposures to the required area [30]. The resulting star images can be
stacked on top of each other to stabilize as a dot view, while asteroid images can
be stacked on top of each other to stabilize the stars as a row of dot views. The
dot-like sequence for the asteroid location can then be measured from the image.
The telescope lens collects the light emitted from the stars at a single point at the
focal length which is then found by the projection to the center point of the light
beam of the point, where the star is displayed.

- Image calibration
Dark Frames, also known as "thermal frames," are utilized to compensate for

the dark current received by the detector. The effects of the electrical charge
delivered to the detector before the exposure are removed by bias frames.
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If one is utilizing a dark frame scaling approach, they will need to apply a
second bias frame. Flat field frames compensate for uneven lighting in the field.
Before one attempts to align data frames for stacking, each of the calibration
frames must be applied, otherwise the pictures will be altered from their original
orientation, resulting in the dark, bias frames, and flat field frames not having the
desired impact [31].

• Dark frames: Dark frame subtraction is a technique used in digital photog-
raphy to minimize picture noise in images captured with longer exposure times,
high ISO sensor sensitivities, or at high temperatures. It takes the use of two
imaging noise components that are constant from shot to shot, dark current and
fixed-pattern noise. Heated pixels, which light up brighter than surrounding pixels,
are a part of the image sensor noise. The method works by capturing a picture
with the shutter closed and then removing it from the original shot with the noise.
An image captured with the sensor in complete darkness is known as a dark frame.
A dark frame is simply an image of sensor noise. To adjust for fixed-pattern
noise, a dark frame, or an average of multiple dark frames, can be removed from
succeeding images. Since the brightness of fixed pixel noise is based on both, it’s
critical for dark frames to be captured at the same ISO sensitivity and exposure
period as the original photo. A single dark frame can be removed from several
shots taken at these settings, saving time by providing noise reduction for stacked
star trail shots that do not permit interruption [31].

• Bias frames: A bias frame is an image created from an optoelectronic image
sensor with no real exposure time in digital photography. The imagery obtained
only comprises undesirable signals related to the electronics that develop the sensor
data, not an unwanted signal from carrier concentration within the sensor. A bias
frame is similar to a dark frame, which has the same charge integration time
as a bias frame but it is dark. Because a dark frame contains unwanted signal
such as a repaired noise component, some of which relates to the bias frame and
some of which is owing to dark current and is proportional to the exposure period.
Subtracting a bias frame from a dark frame yields an image that only represents the
dark-current component. When multiplied by a factor based on exposure duration
and then added back to the bias frame, the resultant image allows for the creation
of an ‘artificial’ dark frame [31][32].

• Flat-field frames: Flat-field correction is a method for improving digital
imaging quality. It removes the impacts of visual artifacts produced by differences
in the detector’s pixel-to-pixel sensitivity and optical path distortions. It’s a typical
and commonly-used calibration method, from personal digital cameras to huge
telescopes. The technique of correcting for varying gains and dark currents in a
detector is known as ‘flat fielding’. A uniform signal will provide a uniform output
once a detector has been flat-fielded properly.
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This indicates that any subsequent signals are attributable to the phenomena
being discovered rather than a systematic mistake [33]. A flat-field picture is
created by imaging an evenly lighted screen, resulting in a color and brightness
image that is consistent across the frame. A sheet of paper held at arm’s length
can serve as a screen for handheld cameras, but a telescope will often photograph
a clean area of the sky during twilight when the lighting is consistent and there are
few if any, stars seen. Processing can begin after the photos have been obtained. A
flat field is made up of two integers for each pixel: gain and dark current (or dark
frame). The gain of a pixel is the variation in the quantity of signal provided by
the detector as a function of the amount of light (or equivalent). Because the gain
is nearly always a linear quantity, it is easily expressed as the ratio of input and
output signals. When there is no incident light, the dark current is the amount of
signal put out by the detector. This can be a function of time in various detectors;
for example, with astronomical telescopes, it is usual to capture a dark frame at the
same time as the scheduled light exposure. Using a series of neutral density filters
to provide input/output signal information and a least-squares fit to acquire the
values for the dark current and gain for optical systems, the gain and dark-frame
may also be determined [31].

C =
(R − D) × m
(F − D) = (R − D) × G (25)

where C is the corrected image, R is the raw image, F represents the flat-field
image, D is the dark field or dark frame, m is the image-averaged value of (F − D)
and G is the gain, G = m

(F−D) . To obtain a light frame, an astrophotographer must
set a light source over the imaging instrument’s objective lens, ensuring that the
light source is equally distributed through the user’s optics. When looking at
the histogram of the image, the photographer must change the exposure of their
imaging device (CCD) or digital single-lens reflex camera (DSLR) such that a peak
reaches roughly 40–70% of the imaging device’s dynamic range (maximum range
of pixel values). The photographer usually captures 15–20 light frames and uses
median stacking to combine them. After obtaining the necessary light frames, the
objective lens is covered to prevent light from entering, and 15–20 dark frames of
equal exposure are captured. Then, the objective lens is covered to prevent light
from entering, and 15–20 dark frames, each with the same exposure duration as the
light frames, are shot which are called dark-flat frames [31]. D. Jacobsen (2016)
provides a list of actions to summarize the calibration procedure [31],
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1. Acquire data frames,
2. Acquire dark frames,
3. Acquire bias frames if using scalable darks,
4. Acquire flat-field frames,
5. Acquire dark frames for flat field frames of the same exposure time as

flat-field frames,
6. Create master dark frames,

a. For master dark frames of the same exposure time as the data frames,
make a median combined master dark frame.
b. If using scalable darks,
I. First, create a master bias frame by median combining the individual bias
frames,
II. Subtract the master bias from each dark frame,
III. Median combine all dark frames to create a scalable dark frame.

7. Create master flat-field frames,
a. Median combines the matching dark frames to create a master flat-field
dark frame,
b. Subtract the master flat-field dark frame from each of the individual
flat-field frames,
c. Median combine all calibrated flat-field frames to create a master flat-field
frame.

8. Apply the master bias frames created in step 6bI above to each data frame if
using scalable dark frames,

9. Apply master dark frames to each data frame,
10. Apply the master flat field to each data frame,
11. Align all data frames,
12. Stack data frames by adding, averaging, median combining,
13. Perform final image processing.

- Calibration of RGB data: The processes for calibrating raw RGB or LRGB
data frames are almost identical to those for monochrome photos. If scalable dark
frames are utilized (a reason to generate scaled dark frames) or if each of the
sub-exposure times via the appropriate color filter is similar, the dark and bias
master frames can be used for each color set. Otherwise, a distinct set of dark
frames are needed for each of the sub-frame sets for each color filter and each
exposure duration. If you’re using LRGB, you’ll need to make a distinct set of
master flat-field frames for each color and the luminance frame [31].
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5.1.2 Synthetic CCD-frame generation, Point Spread Function (PSF) and centroid-
ing

The framed pages below are generated from the Jupyter Notebook provided
by our supervisor Asst. Prof. Fabrizio Pinto, which includes Mathematica codes
for synthetic CCD-frame generation, Point Spread Function (PSF) and centroid-
ing [26]. Below notebook introduces a simulation of a star image using the Point
Spread Function (PSF). The images generated by a point light source spreads
to several pixels, therefore differs from their original shape. In other words, it
develops a diffused image from a single point light source. It is an aspect of
optical systems and generated by a Point Spread Function (PSF) in the below
notebook [28].

It is examined in detail by passing through many sources of telescopes that
make sky surveys over the world. While examining the images obtained from
the telescope, the necessary and ideal conditions may not be provided due to the
turbulence events caused in the atmosphere, visual noises and the problems due
the telescope mechanisms. In order to reach the original state of the images, a
system called adaptive optics is utilized which allows to correct and filter out the
distorted images. Another purpose of adaptive optics is to determine the position
of the stars and the surrounding objects by taking that star as a reference [34].

Various mathematical methods can be applied to minimize the image distor-
tions. With Gaussian pattern matching, the center of mass of the reference star is
calculated which can also be supported by the Kalman Filtering method. The most
common and the most effective method used so far in finding the center of mass
of a star is Point Spread Function (PSF). To date, Point Spread Function (PSF) has
been used to improve and finalize previously acquired images.
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fabrizio-pinto-feng-group-1-PSF

May 29, 2022

1 Synthetic CCD-frame generation, Point Spread Function (PSF) and
centroiding

Fabrizio Pinto

1.1 Natural constants

[1]: cLight = 2.997925 10^8 ;

hBar = 1.054 10^(-34) ;

1.2 Flux calibration

Assume an arbitrary number of photons striking an infinite sensor during the exposure time

[3]: NTotalPhotons = 10^7;

1.3 Point Spread Function (PSF)

[4]: PSF[xcmth01_, ycmth01_, x_, y_, Gammax_, Gammay_] = Exp[-(((x - xcmth01)^2)/((2 

↪→Gammax)^2))- (((y -ycmth01)^2)/((2 Gammay)^2))]

[4]: 2 2 2 2

-(1/4) (x - xcmth01) /Gammax - (y - ycmth01) /(4 Gammay )

E

[6]: PLOT3D1 = Plot3D [PSF[50, 50, x, y, 15, 15],{x,1,100},{y,1,100},PlotRange->All,

ColorFunction -> Function[{x, y, z}, Hue[.65 (1 - z)]],PlotPoints->{200,200}]
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We now integrate over the entire plane to obtain the normalization constant corresponding to the
total number of photons:

[8]: PSFInt[xcmth01_, ycmth01_, Gammax_, Gammay_] := NIntegrate[

PSF[xcmth01, ycmth01, x, y, Gammax, Gammay], {x, -\[Infinity], \[Infinity]}, 

↪→{y, -\[Infinity], \[Infinity]},

Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 10000,

Method -> "GaussKronrodRule"}, MaxRecursion -> 20,

WorkingPrecision -> 18]

Creating a particular case as (50, 50) is the coordinates of the centroid, and (15, 15) is the spread
of the function.

[10]: PSFInt[50, 50, 15, 15]

[10]: 2827.43338820896789

The caibration constant can be written as:

[11]: Intensity0 [xcmth01_, ycmth01_, Gammax_, Gammay_]:= NTotalPhotons/

↪→PSFInt[xcmth01, ycmth01, Gammax, Gammay]

Then, we calibrate by defining the intensity based on the number of photons that we are assuming
are being hit.

The calculation is numerically more effective if specific values are chosen:

[13]: Int0 = Intensity0 [50, 50, 15, 15]

[13]: 3536.77651318055642

We can now check that the integral over the infinite plane yields back the total number of photons.

[14]: CCDIntensity [x_, y_]:= Int0 PSF[50, 50,x, y, 15,15]

[15]: CCDIntensity [1, 1]
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[15]: 17.0374769860012622

[16]: Plot3D [CCDIntensity[x, y],{x,1,100},{y,1,100},PlotRange->All,

ColorFunction -> Function[{x, y, z}, Hue[.65 (1 - z)]],PlotPoints->{200,200}]

[17]: PLOT1 = Plot3D [CCDIntensity[x, y],{x,21,80},{y,21,80},PlotRange->All,

ColorFunction -> Function[{x, y, z}, Hue[.65 (1 - z)]],PlotPoints->{200,200}]

Now, we have this function which describes an artificial star which is centered in the field. And,
assuming that each of the squares on the plot are pixels, although it cannot be true since they
are not separated by unit length. What needs to be investigated is the amount of radiation that
is going through each of those squares, which we can calculate as a continuous number, yet still
won’t be enough since the number of photons is not a real number but an integer. And, it is also
managed by Poisson distribution which generates random numbers out of that distribution. But
still, the average output would give the expected result with the given intensity.

[14]: NIntegrate[ CCDIntensity[x, y], {x, -\[Infinity], \[Infinity]}, {y, 

↪→-\[Infinity], \[Infinity]},

Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 10000,

Method -> "GaussKronrodRule"}, MaxRecursion -> 20,

WorkingPrecision -> 18]
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[14]: 7

1.00000000000000000 10

1.4 Synthetic count (ADU) per pixel

Now we shall populate every pixel with a number of photons randomly extracted from a Poisson
distribution consistent with the chosen PSF. For example, we calculate the expected number of
photons, which must be rounded to an integer:

[21]: Round[NIntegrate[CCDIntensity[x, y], {x, 70, 71}, {y, 50, 51}]]

[21]: 2216

We are integrating between x = 70, x = 71, and y = 50, y = 51. We are calculating the number of
photons that falls into that square, which came out as 2216. This result is the expected value based
on the intensity of the CCD.

Drawing from a Poisson distribution (check that clicking in the cell you get different, pseudoran-
dom values):

[47]: RandomVariate[PoissonDistribution[Round[NIntegrate[CCDIntensity[x, y], {x, 70, 

↪→71}, {y, 50, 51}]]],1][[1]]

[47]: 2253

Let us populate a table corresponding to a small square area in the center of a larger CCD sensor:

[54]: xmin = IntegerPart[80] ;

xmax = IntegerPart[180] ;

ymin = IntegerPart[80] ;

ymax = IntegerPart[180] ;

CCDGain = 1.0 ;

Since we will writing the results to simulate a TIFF Mono-16 file, we divide the results by 216:

[59]: 2^(16)

[59]: 65536

Now, we are creating a table by choosing pixels and calculating the number of photons present in
each pixel based on the Poisson distribution.

[72]: OBDspotSyntheticPixels1 = 

↪→Table[RandomVariate[PoissonDistribution[Round[NIntegrate[CCDIntensity[x, y], 

↪→{x, i, i+1}, {y, j, j+1}]]],1][[1]]/(2^(16)), {j, 21, 80}, {i, 21, 80}];

[73]: OBDspotSyntheticImage1 = Image[OBDspotSyntheticPixels1]

4



It is the 3x3, 16 bit picture which is going to be filled with a synthetic star.

[74]: xmin = 1

xmax = ImageDimensions[OBDspotSyntheticImage1][[1]]

ymin = 1

ymax = ImageDimensions[OBDspotSyntheticImage1][[2]]

Max[ImageData[OBDspotSyntheticImage1][[ymin ;; ymax, xmin ;; xmax ]]]

[74]: 1

60

1

60

0.0555878

[79]: PixelThreshold = 0.0 ;

[80]: OBDspotSyntheticImageRenorm1 = 

↪→ListContourPlot[ImageData[OBDspotSyntheticImage1][[ymin ;; ymax, xmin ;; xmax 

↪→]]/

Max[ImageData[OBDspotSyntheticImage1][[ymin ;; ymax, xmin ;; xmax ]]], 

↪→Contours -> Automatic, ContourStyle -> Black,

ContourShading -> None, InterpolationOrder -> None, PlotRange -> {Full, Full, 

↪→{PixelThreshold, 1.0}}]
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[90]: OBDScience1DP = ListDensityPlot[ImageData[OBDspotSyntheticImage1][[ymin ;; ymax, 

↪→xmin ;; xmax ]]/1, InterpolationOrder -> None, ColorFunction -> GrayLevel, 

↪→PlotRange -> {Full, Full, {0. PixelThreshold N[(2^12 - 1)/(2^16 - 1)], 1.0 

↪→N[(2^12 - 1)/(2^16 - 1)]}}]

The plot of the star.

[92]: OBDspotxCross = ListPlot[ImageData[OBDspotSyntheticImage1][[50, xmin ;; xmax ]], 

↪→PlotRange -> All]

[94]: OBDspotxCross2 = ListPlot3D[ImageData[OBDspotSyntheticImage1][[ymin ;; ymax, 

↪→xmin ;; xmax ]], PlotRange -> All, ColorFunction -> Function[{x, y, z}, Hue[.

↪→65 (1 - z)]]]
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[96]: PLOTALL = GraphicsRow[{PLOT1,OBDspotxCross2}]

The graph on the left hand side displays the ideal image of the star came out from the ideal dis-
tribution of the PSF based on statistics. But, the CCD image produces the one we see on the right
hand side with integer numbers and not continuous a function. And, the center of the star pro-
duced by the CCD needs to be corrected to the ideal one, meaning that the content of each of
these squares should be a random quantitiy with an average equal to what it is determined by the
graph on the left, which is not a trivial task since there are such challenges as: the number of bits
of the camera, thermal noise, bias and the vibration of the spacecraft itself which may disturb the
process.
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During sky photography, a small amount of light reaches the camera lens.
Therefore, the lens needs to be exposed to more light in order to obtain clearer
images. A determined part of the sky needs to be photographed several times
with a CCD camera within a certain period of time. During this process, the
rotation of the earth must be taken into account and the surface telescope must be
positioned accordingly. The images obtained from the telescope must be filtered
from atmospheric turbulence, CCD interference, and distortions from the telescope
mechanism, regardless of the telescope position. Although, the biggest cause of
disturbances is usually atmospheric turbulence. Depending on the telescope’s
position on Earth, not only atmospheric turbulence but even light from nearby
sources can cause distortions. In the images obtained from the telescope with
the CCD detector, the dark parts include more noise while the CCD needs to
make a long exposure in order to get the best quality shots. The mechanism
problems of the telescope are caused by factors such as temperature, wind and
precipitation. These are somehow manageable, but the methods for atmospheric
turbulence effects are different. Point Spread Function (PSF) comes first among
these methods. The distortions in the obtained images can be characterized by the
Point Spread Function (PSF) method written as [34],

𝜇(𝑥, 𝑦) = 1
2𝜋𝛿

exp
[
− (𝑥 − 𝑋)2 + (𝑦 − 𝑌 )2

2𝛿2

]
(26)

where 𝛿 is the standard deviation and the 𝑋 and 𝑌 values are the coordinates of
the center point with the highest value. The image of the same section of the
sky is obtained within a certain period of time and these images are used for
testing purposes and the resulting Point Spread Function (PSF) is then calculated
as a model function. Although the approximate Point Spread Function (PSF)
calculation takes a bit of time, this is done only for the reference star and then
used to calculate the position of the other stars. The star to be referenced for this
calculation is very important. It should be a star that the CCD can detect in the
best way and its brightness is as high as possible. If the required brightness is not
available, calculations may give incorrect results due to excess noise. If there are
more than a dozen stars in the sky section that is imaged as a reference, the desired
conditions can be easily met and even automatically realized [34].

5.2 Synthetic asteroid generation

(Further details for this section is publicly available at Ref. [26])
The celestial coordinates of the asteroid Hygiea as seen from the spacecraft

which the calculation is introduced in Sec. 7.5.1, is entered into SIMBAD as shown
in Fig. 12 below.
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Figure 12: Simbad interface

SIMBAD provides the image of the corresponding frame in the sky where the
synthetic asteroid needs to be placed, which is provided by colleague Nida Ocak
from the Physics department. She generates the stellar view on SIMBAD, using
the celestial coordinates that we provided. The image developed by SIMBAD is
then imported into Jupyter Notebook to be overlapped with the synthetic asteroid
image which was produced by making the assumption of 106 photons striking an
infinite sensor during the exposure time where a number of photons randomly
extracted from a Poisson distribution consistent with the chosen Point Spread
Function (PSF). So by layering the synthetic asteroid image with the one that was
obtained from SIMBAD, the fake asteroid is playacted to be in that frame. Hence,
for a better accuracy, developing this pretend asteroid for three different time slots
is going to allow us to target and apply the optical navigation procedure itself.
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Figure 13: Synthetic star and stellar field [26].
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6 Asteroid Detection and Orbit Determination

6.1 Detection of the asteroid 10 Hygiea

Similar to what we have mentioned before in Sec. 4.4.1, another astrometry
activity was conducted on a more recent night sky observation, with the intention of
studying the motion of the asteroid 10 Hygiea, and calculating its orbital elements.
Below Fig. 14, 15 and 16 are captured and provided by Dr. Pinto on April 13th,
14th and 15th, 2022. Photographs were calibrated using ASTAP and processed
with Astrometry.net to obtain the calibration information which can be tabulated
as follows,

Table 1: April 13th, 14th and 15th, 2022, Astrometry.net calibration information

April 13th April 14th April 15th

Center (Ra, Dec) (216.650, -18.867) (215.980, -19.603) (216.691, -19.482)

Center (RA, hms) 14h 26m 35.884s 14h 23m 55.197s 14h 26m 45.798s

Center (Dec, dms) -18° 52’ 00.354" -19° 36’ 11.223" -19° 28’ 56.592"

Size 8.49 x 6.1 deg 8.28 x 6.15 deg 8.29 x 6.05 deg

Radius 5.228 deg 5.156 deg 5.133 deg

Pixel scale 7.11 arcsec/pixel 7.06 arcsec/pixel 7.05 arcsec/pixel

Orientation Up is 170 degrees E of N Up is 183 degrees E of N Up is 186 degrees E of N

Figure 14: Raw ASTAP frame of April 13th, 2022. (courtesy Fabrizio Pinto [27])
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Figure 15: Raw ASTAP frame of April 14th, 2022. (Fabrizio Pinto [27])

Figure 16: Raw ASTAP frame of April 15th, 2022. (courtesy Fabrizio Pinto [27])
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The upload page at http://nova.astrometry.net/upload was utilized to
determine the calibration information. After converting the .FITS file to .JPG form
via ASTAP, the image turns into an ideal uploadable form to Astrometry.net, to
identify the stellar objects in the frame and provide the FOV. Although it accepts
.FITS format, it would take way too long for it to process since it is a larger file
than a .JPG file.

Figure 17: Astrometry.net, results page

Astrometry.net provides the RA/Dec values of the center and field of view size
of the image as shown in above Fig. 17, which then to be utilized in ASTAP to solve
the image and determine stellar objects. It also provides information about nearby
reference stars and the correspondences between the image and the reference stars
in .FITS format if needed. Using one astronomical image, Astrometry.net does a
great job in producing the orientation, scale, field of view and more to users.
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In Fig. 18 below, top left corner of the main page of ASTAP is shown where
RA/Dec values of the center of the image obtained from Astrometry.net are entered,
𝛼 and 𝛿 as in right ascension and declination respectively.

Figure 18: ASTAP, right ascension (𝛼) and declination (𝛿) values.

Then, going to the section called “Stack” from the top tool bar, we enter the
correct alignment information to solve the image. As shown in Fig. 19 below, field
of view was obtained from Astrometry.net which is second of the two numbers
under the “Size” item. Radius search are is chosen as 20◦ and H18 star database is
used to help ASTAP with many starts for comparison. Finally by clicking “Solve
current image”, ASTAP solves the image within 0.2 seconds with 0.0′′ offset value.

Figure 19: ASTAP, alignment information.

To annotate the stellar objects identified in the field, a large ASCII file called
“MPCORB.DAT” is downloaded and entered by going to the section “Tools” and
“Asteroid & comet annotation” from the top tool bar as shown in below Fig. 20.
Date of observation, obtained as 2022 − 04 − 12T23 : 58 : 00 (given in UT
time) from the FITS header created after solving process, is entered. Dates of
observation for April 14th and 15th are obtained as 2022 − 04 − 13T22 : 56 : 00
and 2022 − 04 − 14T22 : 42 : 00 respectively. Since FITS header provides the
date of observation in UT time, it corresponds to UT+3h in Izmir, Turkey, where
the observation was conducted. Finally, the latitude and longitude values of the
observation place are entered as 38.3573 and −26.7795 respectively.
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Figure 20: ASTAP, asteroid and comet annotation.

Finally, clicking the annotate button produces the Fig. 21 shown below, which
is the main page of ASTAP with the night sky captured on April 13th.

Figure 21: ASTAP, April 13th image solved and annotated.

This whole procedure is also applied to the images captured on April 14th
and 15th to calibrate and annotate the stars and asteroids, therefore the blinking
method can be conducted to observe the movement of a possible asteriod in the
given stellar field. The below Figs. 22, 23 and 24 include the zoomed in view of
the asteroid 10 Hygiea, captured on April 13th, 14th and 15th respectively.
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Figure 22: ASTAP frame of April 13th, 2022, with detected asteroids, Hygiea
centered. (courtesy Fabrizio Pinto [27])

Figure 23: ASTAP frame of April 14th, 2022, with detected asteroids, Hygiea
centered. (courtesy Fabrizio Pinto [27])

Figure 24: ASTAP frame of April 15th, 2022, with detected asteroids, Hygiea
centered. (courtesy Fabrizio Pinto [27])
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To measure the RA/Dec values of asteroid, the image was zoomed in to the
asteroid Hygiea as much as possible in order to obtain an accurate measurement.
The brightest pixel appears at the middle of the scattered pixel view of stars.
Hence, putting the cursor onto the brightest pixel gives the center of that object.
And, the measurement of the RA/Dec values corresponding to that center is called
centroiding. Also, measuring the RA/Dec values of fainter surrounding pixels
gives us a range of best estimate. Below list shows the center coordinates of
Hygiea measured for each day with uncertainties:

• April 13th, RA/Dec (𝛼, 𝛿) = 14h 29m 13.49s ± 1.74 s / −20◦26′37.3′′ ± 1.9′′

• April 14th, RA/Dec (𝛼, 𝛿) = 14h 28m 33.17s ± 2.08 s / −20◦23′49.5′′ ± 1.9′′

• April 15th, RA/Dec (𝛼, 𝛿) = 14h 27m 52.14s ± 1.45 s / −20◦20′46.3′′ ± 2.6′′

Table 2 shows the comparison of the measured RA/Dec values to the real data
obtained from Stellarium, including the error between the measurements and the
real data in degrees. As the table states, the errors are quite small which allows us
to consider these measurements as a success.

Table 2: Comparison of the right ascension and declination values of Hygiea
measured on ASTAP and obtained from Stellarium

RA and Dec

ASTAP Stellarium Error in RA (deg) Error in Dec (deg)

13.04.2022 14h 29m 13.49s -20° 26’ 37.3” 14h 29m 14.10s -20° 26’ 44.7” 1,19645×10−5 0,000100754

14.04.2022 14h 28m 33.17s -20° 23’ 49.5” 14h 28m 34.49s -20° 23’ 55.8” 2,53288×10−5 8,57892×10−5

15.04.2022 14h 27m 52.14s -20° 20’ 46.3” 14h 27m 52.59s -20° 20’ 54.0” 8,29611×10−6 0,000105168

As mentioned earlier, blinking technique is used to observe if there is any
moving object present in the field. To apply, go to “Blink” tab and “Browse” the
calibrated .FITS files as shown in Fig. 25 and check them to be aligned while
blinking occurs.

Figure 25: ASTAP, blinking the three images.

Concentrating on the asteroid 10 Hygiea, circled in red and shown in Fig. 26, we
can clearly observe its movement from the RA/Dec of 14h 29m 14.10s/−20◦ 26′ 44.7′′
to 14h 28m 34.49s/−20◦ 23′ 55.8′′ in 23 hours, and then to 14h 27m 52.9s/−20◦ 20′ 54.0′′.
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Figure 26: Asteroid 10 Hygiea on April 13th, 14th and 15th [27].
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6.2 Orbital elements of the asteroid 10 Hygiea

To calculate the orbital elements of Hygiea, a software called “Find_Orb” is
utilized, that is provided by Project Pluto which supplies astronomical software,
both commercial and freeware, for the use of amateur and professional astronomers.
Information regarding the software can be found in the following link: https:
//www.projectpluto.com/.

Find_Orb calculates the orbital elements with given observational information
which are nothing but the right ascension and the declination values of Hygiea that
are already been measured and indicated in Table 2. It utilizes the ephemerides
provided by NASA JPL. There are several options and the file in the following link
is used here: http://andrew-lowe.ca/lnxp1600p2200.405. To make the
software obtain an orbit with given information, an ASCII file with a length of 80
characters needs to be created. Detailed information regarding the format for astro-
metric observations of minor planets is provided by the International Astronomical
Union at the following link: https://minorplanetcenter.net//iau/info/
ObsFormat.html. Since our observation does not have an International Astro-
nomical Union three letter code, it is designated as 247 and its coordinates must
be provided at every line of the ASCII file. This means the observatory device is
considered a "rover," that is, an observer not attached to a specific location.

Fig. 27 shows the main page of Find_Orb. To import the ASCII file, go to the
option “Select file containing astrometry” and browse the file.

Figure 27: Find_Orb, main page

With the given ASCII file, Find_Orb generates the information shown in Fig. 28
as a .txt file which contains the orbital elements of Hygiea during its revolution
around the Sun.
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Figure 28: Find_Orb, orbit determination

NASA JPL Small Body Database is used to compare what we have obtained via
our calculations with the real data https://ssd.jpl.nasa.gov/tools/sbdb_
lookup.html#/?sstr=hygiea.

Table 3: Orbital elements comparison

Find_Orb Real Data

eccentricity (e) 0.2512331 ± 0.169 0.11162598

semi-major axis (a) 3.12258774 ± 0.556 3.141867559

perihelion (q) 2.33809007 ± 0.478 2.791153513

inclination (i) 4.48614 ± 0.7 3.830928946

longitude of the as-
cending node (Ω)

281.59190 ± 8 283.1841897

aragument of peri-
helion (𝜔)

95.15082 ± 90 312.493311

mean anomaly (M) 211.89961294 ± 110 328.8968608

period (T) 5.52 5.56916408

mean motion (n) 0.17862082 ± 0.0477 0.176979214

aphelion (Q) 3.90708541 ± 1.49 3.492581605

Considering the uncertainties given in measured data (Find_Orb), most of
them fall into the real data range except the aragument of perihelion (𝜔), mean
anomaly (M), and the period (T) with a minimum of 127.342491◦, 6.99734786◦
and 0.04916408 years of error respectively which can be considered relatively
small errors acknowledging the fact that only three images with 15 seconds expo-
sure times each were utilized during the process.
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7 Centroid pixel coordinate determination and trans-
formation to celestial coordinates

7.1 Photographic Imaging

Introducing the basis of photographic imaging by printing the RA/Dec of a star
on the reference plate where the point P shown in Fig. 29 is the imaging point, F
is the focal length behind the objective, and O represents the center of the camera
lens. Considering the coordinate system u, v and w, the vector e can be written
as [35],

e =
©­«
cos(𝛿) cos(𝛼 − 𝛼0)
cos(𝛿) sin(𝛼 − 𝛼0)

sin(𝛿)
ª®¬ (27)

which represents the direction of a star located at a RA/Dec (𝛼, 𝛿). Therefore, the
vector e0 is,

e0 =
©­«
cos(𝛿0)

0
sin(𝛿0)

ª®¬ (28)

which represents the point (𝛼0, 𝛿0) at which the axis of the camera is pointing [35].
The vectors F = −F · e0 and p = −p · e refer to the paths followed by a ray of

light from the camera lens to the center of the plate, and to the imaging point P
respectively. The angle, 𝜑, in between where,

cos(𝜑) = e0 · e = cos(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) + sin(𝛿0) sin(𝛿) (29)

Considering the image plane, ex and ey,

ex =
©­«
0
1
0

ª®¬ and ey =
©­«

sin(𝛿0)
0

− cos(𝛿0)
ª®¬ (30)

represent a coordinate system on the image plane for measuring the plate which
is oriented as North-South and East-West, just like RA/Dec. Recognizing the
Standard Coordinates X and Y of point P in terms of the focal length F, p can be
written as,

p = F + (F · X) · eX + (F · Y) · eY (31)

Combining the equations, we can obtain the relationship between the star’s
RA/Dec and the coordinates 𝑋 and 𝑌 as,
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Camera lens

Figure 29: Image formation in photographing a star field, sketched via diagrams.net

p cos(𝛿) cos(𝛼 − 𝛼0) = F cos(𝛿0) − FY sin(𝛿0)
p cos(𝛿) sin(𝛼 − 𝛼0) = −FX

p sin(𝛿) = F sin(𝛿0) + FY cos(𝛿0)

where
p = |p| = F

√
1 + X2 + Y2

or
p = F/cos(𝜑) = F/(cos(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) + sin(𝛿0) sin(𝛿)).
Finally solving for the spherical coordinates, we determine 𝛼, 𝛿 as,

𝛼 = 𝛼0 + arctan
(

−X
cos(𝛿0) − Y sin(𝛿0)

)
(32)

𝛿 = arcsin
(
sin(𝛿0) + Y cos(𝛿0)√

1 + X2 + Y2

)
(33)

Transitioning to (𝛼, 𝛿) → (X,Y) by taking the inverse,

60



X = − cos(𝛿) sin(𝛼 − 𝛼0)
cos(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) + sin(𝛿0) sin(𝛿) (34)

Y = −sin(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) − cos(𝛿0) sin(𝛿)
cos(𝛿0) cos(𝛿) cos(𝛼 − 𝛼0) + sin(𝛿0) sin(𝛿) (35)

which we utilize to solve our direct problem in

7.2 Plate constants

Plate constants are derived by measuring the standard coordinates for at least
three reference stars whose RA/Dec are known, hence the Standard Coordinates
can be computed. (𝑋,𝑌 ) coordinates are positioned according to the coordinate
system oriented parallel to the meridian passing through the center [36]. These
coordinates are independent coordinates that do not depend on the focal length of
the optic. For plate reduction, the (𝑥, 𝑦) coordinates must be divided by the focal
length. In the case where the origin of the coordinate system does not coincide with
the optical axis, it can be matched with the modification created by the equations
below [35],

X =
x
F
, Y =

y
F

(36)

X =
x
F
− Δx

F
, Y =

y
F
− Δy

F
(37)

Coordinate axes can be rotated by the angle 𝛾, measured relative to the North-
South line. The shift that may occur in the coordinate system does not affect the
equational relationship between the measured and Standard Coordinates. However,
the equations that should be used for possible bending and distortion are,

X =
x · cos(𝛾) − y · sin(𝛾)

F
− Δx

F
(38)

Y =
x · sin(𝛾) + y · cos(𝛾)

F
− Δy

F
(39)

X = a · x + b · y + c (40)

Y = d · x + e · y + f (41)

Six plate constants (a, b, c, d, e, f) are used in the conversion between coordi-
nates [35]. Plate constants are determined using the equatorial coordinates of the
predetermining reference stars. When working with a magnification of unknown
scale, it is advantageous that the focal length information of the camera optics is
not needed. Sec. 7.4.2 below [35].
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Coordinate determination can never be completely error-free, so using the
maximum number of stars will help to obtain optimum values in this case [37].
Plate constants can be determined by solving two equations with three unknowns
and uses the least squares method when the equations cannot be solved any further.

7.3 Sub-pixel centroid coordinate determination

In this section, we introduce the procedure conducted on the Jupyter Notebook
provided by our supervisor Dr. Pinto which is publicly available at Ref. [38].

Now, we work on detecting the centroid position of the asteroid Hygiea in
the three images. There are two main methods for determining an estimate of the
centroid of a star/asteroid: moment analysis and Point Spread Function (PSF) [39],
which was briefly introduced in Sec. 5.1.2. Instead, we utilize moment analysis to
find the centroid position by calculating the center of mass of the pixels located
at the center. Meaning that, the image of a star does not appear as a point but
as spread-out pixels, covering some area, which allows us to determine accurate
centroiding of sub-pixel level [40]. Whereas, in Point Spread Function (PSF)
fitting, a function models the CCD sensor pixels to express the energy flux on the
sensor, then the free parameters of the Point Spread Function (PSF) are obtained
by best-fitting [34].

7.3.1 Creating a sub-frame

The procedure starts with importing the three images given in Figs. 14, 15
and 16 into Jupyter Notebook. Mathematica does a great job in terms of image
adjusting, even supports .FITS files. Initially, the dimensions of each image are
extracted to define the size of the palettes in use.

Figure 30: Gray-level and contour sub-frame plots of the image taken on April,
14th.
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Since the main focus is the asteroid Hygiea, we want to create a sub-frame with
the asteroid centered in it. Then the contour and gray-level plot of the selected
sub-frame is obtained as shown in Figs. 28 and 30 for each image. Below Fig. 31,
displays the 3D image of the signals covered in that area. The background noise is
shown in blue color, and the highest signal in the frame is shown in green, yellow
and red color progression which is where the asteroid is located.

Figure 31: 3D sub-frame plot of the image taken on April, 14th.

A parameter called ‘threshold’ indicates the fact that there is no pixel without
any noise. So, it allows us to eliminate the signals that we do not want to observe
and to isolate the image of the asteroid from the background signal created by
noise sources. In the 1D plot shown in below Fig. 32, we observe a more stable
signal which shows that there is a noisy background, and where the signal peaks,
we have the star itself.

Figure 32: 2D sub-frame plot of the image taken on April, 14th.
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7.3.2 Calculating the coordinates of the centroid center of mass (1st moment)

The center of mass can be defined as the point where the weighted relative
position of the spread-out mass sums up to zero [41]. The summation of all
spread-out mass of the image is,

𝑀tot =
∑︁
𝑗 ,𝑘

𝑀 𝑗 𝑘 , (42)

where 𝑗 and 𝑘 range over all pixel values of the subframe.
The (𝑥, 𝑦) coordinates of the center of mass of the centroid of the entire frame

are,

𝑥cm =
1

𝑀tot

∑︁
𝑗 ,𝑘

(𝑥 𝑗 )𝑀 𝑗 𝑘 , (43)

𝑦cm =
1

𝑀tot

∑︁
𝑗 ,𝑘

(𝑦 𝑗 )𝑀 𝑗 𝑘 , (44)

where the pixel coordinates are located at the pixel center obtained by subtracting
a value of 1

2 .
The uncertainty on the pixel location can be estimated by computing the higher

moments of the mass distribution [39],

𝜎2
𝑥 =

∑︁
𝑗 ,𝑘

𝑥2
𝑗 𝑀 𝑗 𝑘 −

1
𝑀tot

(∑︁
𝑗 ,𝑘

𝑥 𝑗 𝑀 𝑗 𝑘

)2
, (45)

𝜎2
𝑦 =

∑︁
𝑗 ,𝑘

𝑦2
𝑗 𝑀 𝑗 𝑘 −

1
𝑀tot

(∑︁
𝑗 ,𝑘

𝑦 𝑗 𝑀 𝑗 𝑘

)2
, (46)

Then, the whole image’s true coordinates of the center of mass can be calculated
by adding the corner coordinates of the region of interest, which were previously
measured by putting the cursor on an estimated corner. Calculations resulted quite
accurately as 1578.11 for 𝑥 and 1129.98 for 𝑦 coordinate, which were originally
chosen as 1577 and 1129. The uncertainties in 𝑥, 𝑦 coordinates are %0.0704 and
%0, 0868 respectively. This calculation was done without any thresholding value,
meaning that the background noise was also accounted. The threshold parameter,
𝑚thr, can be expressed as,

𝑀 𝑗 𝑘

max{𝑀 𝑗 𝑘 }
≥ 𝑚thr ,

If the same calculation is conducted with isolating the star, PixelThreshold =

1.0, we obtain 1577 and 1129 for 𝑥 and 𝑦 coordinate respectively which is obviously
unrealistic since we only consider the brightest pixel. Fig. 33 shows the centroid
position of the asteroid Hygiea on the contour plot.
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Figure 33: Centroid position of Hygiea on April, 14th.

7.4 From centroid pixel coordinates to celestial coordinates

The main objective is to obtain the celestial coordinates of the centroid using
what we have, pixel centroid position, we will make a transition to the celestial
coordinates of the centroid in RA/Dec (𝛼, 𝛿), by means of the Plate Constants.
The solutions given by Astrometry.net and ASTAP are both considered in this
procedure to achieve a better accuracy. Also spherical trigonometry and matrix
transformations are used to conduct direct and inverse problems. In our case,
the direct problem is defined as transitioning from pixel centroid coordinates to
celestial coordinates. Whereas the inverse problem is the opposite, from celestial
coordinates to pixel centroid coordinates. Eventually, we would like to obtain the
RA/Dec of the spacecraft when all is said and done, using the solution for the
inverse problem by transitioning from the celestial coordinates of the asteroid to
the sensor frame, which is where the spacecraft is essentially located.

7.4.1 Using Astrometry.net output file

Starting off with the solution given by the Astrometry.net which was computed
by using the image taken on April 14th. The extensive log file produces the
information given below,

crval = (214.958,−18.9653)
crpix = (2583.8, 1916.74)

CD =
(
−0.0019605 −0.00010009

−9.1251𝑒 − 05 0.0019582

)
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The solution provides two vectors called ‘crval’ and ‘crpix’ which represents
the (x,y) coordinates of the origin that Astrometry.net chooses to use and RA/Dec
of that origin in the real sky respectively. The CD matrix indicates the plate
constants which describes the transition from the reference frame in pixels in the
sky with the origin Astrometry.net chooses.

To conduct the process, we need to introduce three coordinate frames,
1. The sensor reference frame
The sensor reference frame is the the frame that is seen in ASTAP demonstrated

by the (𝑋,𝑌 ) coordinates. It is assumed that the origin, O𝑠, of this frame is placed
at the top left of the image and its axes are parallel to the sensor main sides
where the 𝑦-axis aligned downwards. Since the (𝑋,𝑌 ) letters generally refer to
the Standard Coordinates, we demonstrate the coordinates of the sensor frame by
(𝑥, 𝑦).

2. The intermediate reference frame
The origin of the intermediate reference frame, O𝑖 with the coordinates of

(𝑥𝑐, 𝑦𝑐) which also correspond to crpix vector, located in the O𝑠 frame with the
axes parallel to that frame. The coordinates of this frame is demonstrated by (𝜉, 𝜂).
On the other hand, the celestial coordinates of the origin (𝑥𝑐, 𝑦𝑐) is also indicated
by (𝛼𝑐, 𝛿𝑐) which corresponds to crval vector. To be more clear,

𝑥𝑐 = 𝐶𝑅𝑃𝐼𝑋1, 𝑦𝑐 = 𝐶𝑅𝑃𝐼𝑋2

𝛼𝑐 = 𝐶𝑅𝑉𝐴𝐿1, 𝛿𝑐 = 𝐶𝑅𝑉𝐴𝐿2

3. The Standard Reference Frame (SRF)
The origin of the SRF is located again at the origin of the intermediate reference

frame, OSRF = O𝑖, with its axes aligned according to the Plate Constants. The
celestial coordinates of the origin OSRF are (𝛼𝑐, 𝛿𝑐).

- Direct coordinate reference frame transformations
The transformations O𝑠 → O𝑖,

𝜉 = 𝑥 − 𝑥𝑐 , (47)

𝜂 = 𝑦 − 𝑦𝑐 (48)

where r = (𝑥, 𝑦) and w = (𝜉, 𝜂).
Introducing the plate constant matrix:

CD =

(
CD11 CD12
CD21 CD22

)
(49)
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The transformation O𝑖 → OSRF becomes,

v =

(
𝑋

𝑌

)
= CD w (50)

which can also be expressed as,

𝑋 = CD11 𝜉 + CD12 𝜂 , (51)
𝑌 = CD21 𝜉 + CD22 𝜂 (52)

- Inverse coordinate reference frame transformations
The transformation OSRF → O𝑖,

w = CD−1 v = CD−1
(
𝑋

𝑌

)
(53)

The transformation O𝑖 → O𝑠,

𝑥 = 𝜉 + 𝑥𝑐 , (54)
𝑦 = 𝜂 + 𝑦𝑐 (55)

- Scale factor
The scale factor of the transformation can be calculated by taking the square

root of the determinant of the CD matrix, which was also provided by the solution
given by Astrometry.net.

ℎSCp = |CD|1/2 = 7.06204 (56)

- The Standard Reference Frame within the digital image frame

To demonstrate the Standard Reference Frame within the digital image refer-
ence frame, we shall solve the equations that will yield to 𝑋 (where 𝑌 = 0) and 𝑌

(where 𝑋 = 0) axes by using the Eqs. 51 and 52,
Solving for 𝑋 = 0,

0 = 𝑋 = CD11(𝑥 − 𝑥𝑐) + CD12(𝑦 − 𝑦𝑐) , (57)

Hence 𝑦 becomes,
𝑦 = −CD11

CD12
(𝑥 − 𝑥𝑐) + 𝑦𝑐 (58)

Solving for 𝑌 = 0,

0 = 𝑌 = CD21(𝑥 − 𝑥𝑐) + 𝑦𝑐 , (59)
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or,
𝑦 = −CD21

CD22
(𝑥 − 𝑥𝑐) + 𝑦𝑐 (60)

Now, we have the equations to draw the 𝑋 and 𝑌 axes in the image plane as
shown in below Fig. 34

Figure 34: The 𝑋 and 𝑌 axes in the digital image plane

The frame shown above demonstrates only a similar vision of our original
image, in other words, this frame may be rotated or reflected in some ways by
Astrometry.net. Therefore, it does not demonstrate the image itself. Normally, the
𝑋 and 𝑌 axes should be perpendicular to each other but they look slightly tilted.
And, one can calculate the slope of straight lines using the equation,

𝑚𝑌 = −1/𝑚𝑋

where 𝑚𝑌 and 𝑚𝑋 are,

𝑚𝑌 = −CD11
CD12

(61)

𝑚𝑋 = −CD21
CD22

(62)

This requires:

−CD11
CD12

= + 1
CD21
CD22

=⇒ −CD11
CD12

=
CD22
CD21

=⇒ −CD11
CD12

CD21
CD22

= 1 (63)

Where in our calculation, Eqn. 63 yields to,

−CD11
CD12

CD21
CD22

= 0.91276 (64)
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Therefore to calculate the angle of rotation of the 𝑌 -axis away from the 𝑦-axis
(vertical sensor axis) and the corresponding angle for the 𝑋-axis are, in degrees,

𝜃𝑌 = 90◦ + arctan
CD11
CD12

(65)

𝜃𝑋 = arctan
CD21
CD22

(66)

Above Eqs. 65 and 66 numerically yield to 2.9226◦ and 2.66802◦ respectively
which proves that these two axes are in fact not perpendicular to each other.

The Eqs. 51 and 52 are approximations of non-linear cases. In other words,
we have assumed the relation between the celestial coordinates and the Standard
Coordinates is linear. According to R. Buchheim (2007), wide field lenses are
affected by field distortions that would demand for more advanced methods to
achieve the best fit [42]. Meaning that the axes of the celestial coordinate system
may be curves over the plate. Therefore, we need to make the assumption to handle
the procedure.

7.4.2 Using the ASTAP best-fit solution

From now on, we are using the best-fit solution provided by ASTAP for the
image taken on April 14th, which is more reliable compared to the solution As-
trometry.net gives. As shown in Fig. 21, we can see the ASTAP solution on the
right-hand corner of the image. Since the two programs do not make the same
choices of reference stars, there are differences in signs and certain values. ASTAP
stars from the coordinate of the starfield center which Astrometry.net finds blindly.
We also use a .JPG file to be solved on Astrometry.net whereas higher quality .FITS
file is used in ASTAP which may also create a difference in terms of accuracy.

ASTAP reports:

CRPIX1 = 2.110500000000E+003 / X of reference pixel
CRPIX2 = 1.567500000000E+003 / Y of reference pixel
CRVAL1 = 2.159756776388E+002 / RA of reference pixel (deg)
CRVAL2 = -1.960051075017E+001 / DEC of reference pixel (deg)
CDELT1 = -1.958306637531E-003 / X pixel size (deg)
CDELT2 = 1.959152044370E-003 / Y pixel size (deg)
CROTA1 = 3.135104821469E+000 / Image twist of X axis (deg)
CROTA2 = 3.130121910333E+000 / Image twist of Y axis (deg)
CD11 = -1.955385043129E-003 / CD matrix to convert (x,y) to (Ra, Dec)
CD12 = -1.071472026387E-004 / CD matrix to convert (x,y) to (Ra, Dec)
CD21 = -1.069309109067E-004 / CD matrix to convert (x,y) to (Ra, Dec)
CD22 = 1.956219877704E-003 / CD matrix to convert (x,y) to (Ra, Dec)
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Comparing the ‘crpix’ values, we notice that ASTAP makes different choices
for the origin of the Standard Reference Frame. Since both methods use different
choices in terms of defining the reference frame, the signs of the plate constant
matrix are also different. This usually happens when the image is flipped or
reflected, so that the 𝑧-axis would come from the right hand rule to 𝑥 and 𝑦

axes instead of a left handed system. Therefore, the scale factor comes out to
be imaginary. Accordingly, we arranged the signs of the components of the CD
matrix so to obtain real numbers for the scale.

Conducting the same procedure using the ASTAP solution, we can draw the 𝑋

and 𝑌 axes in the image plane as,

Figure 35: The 𝑋 and 𝑌 axes in the digital image plane using ASTAP solution

Since Astrometry.net and ASTAP do not choose the same origin for the center
of the image, we do not obtain any agreement between their outputs. As seen on
Stellarium, the Right Ascension increases leftwards, and Declination increases up-
wards. To determine the correct coordinates, we need to consider the 𝜉-coordinate
as running in the opposite direction than the 𝑥-coordinate on the sensor. Compar-
ing our plot with Stellarium, the axes we obtained are parallel to the North-South
and East-West directions in Right Ascension and Declination. We can also notice
a similar tilt between the axes, and the information regarding the perpendicularity
of the axes is given by ASTAP as ‘CROTA1’ and ‘CROTA2’ above.

Before going into direct and inverse problem details, we conducted the trans-
formation from sensor coordinates (𝑋,𝑌 ) to celestial coordinates (𝛼, 𝛿) according
to the calculations given above. In order to obtain,

𝛼 ± Δ𝛼

𝛿 ± Δ𝛿
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Plugging the values of the centroid coordinates found from the center-of-mass
method into the functions given above, we obtain the RA/Dec as 14: 28 31.5157
and −20◦ 23 50.716 respectively. And Δ𝛼, Δ𝛿 as 0.0073783 and 0.00147147
respectively. Considering the real data obtained by Stellarium, the RA/Dec of the
asteroid Hygiea on April 14th are given as 14: 28 34.43 and −20◦ 23 55.8. There-
fore, the absolute errors are calculated as 0.0121429 and 0.00141223 respectively.

The direct and inverse problem may be defined otherwise in books but for our
case, we refer to the calculation of (𝑋 , 𝑌 ) → (𝛼, 𝛿) as the inverse problem and
(𝛼, 𝛿) → (𝑋 , 𝑌 ) as the direct problem.

- The direct problem
The equations to implement the transition (𝛼, 𝛿) → (𝑋 , 𝑌 ),

𝑋 = − cos 𝛿 sin(𝛼 − 𝛼𝑐)
cos 𝛿𝑐 cos 𝛿 cos(𝛼 − 𝛼𝑐) + sin 𝛿𝑐 sin 𝛿

(67)

𝑌 = −sin 𝛿𝑐 cos 𝛿 cos(𝛼 − 𝛼𝑐) − cos 𝛿𝑐 sin 𝛿
cos 𝛿𝑐 cos 𝛿 cos(𝛼 − 𝛼𝑐) + sin 𝛿𝑐 sin 𝛿

(68)

where (𝛼𝑐, 𝛿𝑐) are the coordinates of the origin of the Standard Coordinate
Reference Frame.

In conclusion, we aim to calculate the RA/Dec of the spacecraft using the
measured RA/Dec values of asteroids. The direct problem to locate an object of
known celestial coordinates on the plate is,

(𝛼𝑐, 𝛿𝑐) → (𝑋,𝑌 ) → (𝜉, 𝜂) → (𝑥, 𝑦) (69)

Figure 36: Centroid position viewed in sensor reference frame
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After executing the transition (𝛼𝑐, 𝛿𝑐) → (𝑋,𝑌 ) and obtaining the Standard
Coordinates, using the matrix inversion, we can make the transitioning of (𝑋,𝑌 ) →
(𝜉, 𝜂) where we obtain coordinates of the intermediate reference frame. Finally by
the procedure of (𝜉, 𝜂) → (𝑥, 𝑦), we can have the final solution in sensor reference
frame as shown in Fig. 36, we also imitated the lines of equal Right Ascension and
Declination in the plate for convenience [38].

7.5 On-board optical navigation

Introducing the procedure for optical navigation conducted on the Jupyter Note-
book provided by our supervisor Dr. Pinto and is publicly available at Ref. [43].
The elements of optical navigation was introduced by Vertregt in 1956, to deter-
mine the position and velocity of a spacecraft using optical measurements and
observations made by on-board computers/navigators. A very recent paper by
Brum and Schuindt (2022) gives a detailed description and a general formulation
of optical navigation and its algorithms [44].

There are two networks in the sky, where the first one pointing to the North star,
which is also the north pole of the celestial coordinate system, named equatorial
coordinates. The other coordinate system is based on the plane of the orbit of the
Earth which is called the ecliptic coordinate system (MJ2000). In Fig. 37 below,
the ecliptic coordinates and equatorial coordinates are shown in orange and blue
respectively.

Figure 37: Asteroid Hygiea on April 13th, 2037, shown in Stellarium
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Accordingly shown in Fig. 38, the triangular plane ˆABS defines the reference
plane in conversation. The constellation of Aries, the place where the ascending
node of the Sun is located, is the origin of the ecliptic system and the RA/Dec
system. The Sun intersects the celestial equator while passing through that node,
from negative to positive declination.

The z axis is perpendicular to the plane of the orbit of the Earth where the point
in Aries is the origin where we start counting the ecliptical longitudes. Defining
the x, y and z axes, where the ecliptic longitude of the spacecraft, 𝜆, is located
around the Sun, pointing to Aries and going counterclockwise until it encounters
with the projection of the spacecraft. The ecliptic longitude of the beacon asteroid,
𝜆𝑃, the ecliptic latitudes of the spacecraft and the beacon asteroid are, 𝛽 and 𝛽𝑃
respectively. The latitudes represent the positive or negative inclination that the
spacecraft and the beacond have from the ecliptic coordinate plane. Finally, the
radius vector, r, of the spacecraft are associated to the rectangular coordinates
as [45],

x = 𝑟 cos 𝛽 cos𝜆 (70)

y = r cos 𝛽 sin𝜆 (71)

z = r sin 𝛽 (72)

An optical observation is sketched where point SC is the spacecraft itself, P is
the asteroid that is observed and S is the Sun with the direction of ascending node
of where the Sun is at the beginning of spring. Since the longitude 𝜆𝑃, latitude
𝛽𝑃 and the radius vector rP of the asteroid with respect to Sun is known, using the
ephemeris information, the spacecraft can measure the apparent longitude of the
Sun, 𝜆′Sun, the apparent longitude of the asteroid, 𝜆′

𝑃
and the apparent latitude of

the Sun, 𝛽′Sun.

A

B

SC P

Sun

Figure 38: Optical observation sketch (Adapted from Ref. [45], sketched via
diagrams.net)

73



In other words, the spacecraft is suppose to measure the asteroid’s position in
the ecliptic coordinates that originates from the spacecraft itself.

AS = r cos 𝛽 , BS = rP cos 𝛽𝑃 (73)

Using the triangle ˆABS shown in Fig. 38,

AS
sin ˆABS

=
BS

sin ˆBAS
(74)

r cos 𝛽
sin ˆABS

=
rP cos 𝛽𝑃
sin ˆBAS

(75)

Since,
ˆABS = 360◦ + 𝜆𝑃 − 𝜆′𝑃 (76)

ˆBAS = 𝜆′𝑃 − 𝜆′Sun (77)
Therefore the distance between the spacecraft and the Sun, which correlates with
the solution of the inverse problem for our case, can be found as,

r = 𝑟𝑃
cos 𝛽𝑃 sin(𝜆𝑃 − 𝜆′

𝑃
)

cos 𝛽Sun sin(𝜆′
𝑃
− 𝜆′Sun)

(78)

r cos 𝛽 sin(𝜆′P − 𝜆′Sun) = rP cos 𝛽P sin(360◦ + 𝜆P − 𝜆′P) (79)
Also considering,

𝜆 = 180◦ + 𝜆′Sun (80)

𝛽′𝑃 = arcsin
(zP − z)

rVP
(81)

where in Eq. 81, z𝑃 and z are the position of the spacecraft and the asteroid in
the 𝑧-axis, and rV𝑃 is the spherical distance between them which the expression
is available in Ref. [38] and obtained by using Mathematica. The coordinates of
the spacecraft as in, r, 𝜆 and 𝛽 at a certain time can be found. Therefore by using
Eq. 70, 71 and 72 the rectangular coordinates of x, y and z can be calculated,
hence, we can solve for 𝜆′

𝑃
, also to compare it with the ephemeris file obtained

from GMAT which is provided by Group 3. Also with enough measurements, ¤𝑥,
¤𝑦 and ¤𝑧 can be estimated in time using Kalman Filtering [45].

7.5.1 Conversion from ecliptic coordinates to celestial coordinates

When an astronomical measurement is done by a telescope, people do not aim
it according to the ecliptic coordinates but to the celestial coordinates. Since the
sky rotates around the axis that goes through the North star, aiming according to
celestial coordinates is more common. Therefore, we make the transitioning from
ecliptic coordinates to celestial coordinates given by J. Meeus (1998) [46],
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tan𝛼 =
sin𝜆 cos 𝜖 − tan 𝛽 sin 𝜖

cos𝜆
(82)

sin 𝛿 = sin 𝛽 cos 𝜖 + cos 𝛽 sin 𝜖 sin𝜆 (83)

where 𝜖 is the obliquity of the ecliptic, defined as:

𝜖 = 23◦.4457889

- Precession corrections (J2000 → to-date)
The direction of the rotational axis of the Earth experience a small change

in time, called precession, which arises due to the gravitational attraction of the
Sun and the unusual movement of the Moon on Earth’s equatorial bulge. The
northern celestial pole turns around the pole of the ecliptic in ∼ 26000 years which
corresponds to 50′′ per year along the ecliptic. The plane of the ecliptic of the
equator and the vernal equinox are the rising points of the two main coordinate
systems mentioned in Sec. 7.5 above, the ecliptic and the equatorial coordinate
systems. Therefore, even the coordinates of the fixed stars are changing due to
precession which is the reason why star catalogs update the RA/Dec values in a
certain time, such as 1900.0, 1950.0 and 2000.0 [46]. Thus, we apply the procedure
of converting the RA/Dec values in J2000 reference frame to the corresponding
values for ecliptic-to-date values. Considering an accurate method, let (JD)0 and
(JD) are the Julian Days for initial and final epoch,

𝑇 =
(𝐽𝐷)0 − 2451545.0

36525
, 𝑡 =

(𝐽𝐷) − (𝐽𝐷)0
36525

(84)

where 𝑡 is the interval between the starting and final epoch and 𝑇 is the intervals
between J2000.0 and the starting epoch, in Julian centuries. For accurate reduction
of positions from one equinox to other with the starting epoch as J2000.0, therefore
𝑇 = 0 [46],

𝜂 = 47.0029𝑡 − 0.03302(𝑡2) + 0.000060(𝑡3)
𝜋 = 174.876384 − (869.8089/3600)𝑡 + (0.03536/3600) (𝑡2)
𝑝 = 5029.0966𝑡 + 1.11113(𝑡2) − 0.000006(𝑡3)

- Correction due to the aberration of light
The Earth’s direction of motion changes as it orbits the Sun and stars move

relative to the spacecraft which causes a difference in their position that is called
aberration. Suppose an observer on the Earth moves with its moving frame, then
the direction of approaching starlight observed from the Earth would be tilted
relative to the angle observed in the Sun’s frame. In 1725, James Bradley was
investigating the position of the star Eltanin which moves in a circular orbit with an
angular diameter of approximately 40.5′′ and expecting a change in the apparent
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position of the star due to parallax by observing it over a year. Bradley tried to
observe a shift in the apparent position of a star in different months of a year which
the star was expected to change its position following a circular shape. Yet, he
observed an unexpected shift that leads him to discover stellar aberration [47][48].

Considering the geometric coordinates of the star as (𝜆, 𝛽),

Δ𝜆 =
−𝜅 cos(𝜆⊙ − 𝜆) + 𝑒𝜅 cos(𝜋 − 𝜆)

cos 𝛽

Δ𝛽 = −𝜅 sin 𝛽

[
sin(𝜆⊙ − 𝜆) − 𝑒 sin(𝜋 − 𝜆)

]
where 𝜅 is the constant of aberration (𝜅 = 20.49552′′), 𝜆⊙ is the geometric ecliptic
longitude of the Sun and 𝑒 is the eccentricity of the orbit of the Earth.

Direct problem
Now, applying the procedures of the direct problem for the asteroid Hygiea

on April, 13th 2037 at 03:18:17.00 UTC. We chose that exact date and time due
to the mission simulated on GMAT by Group 3. Since we know the heliocentric
position of the spacecraft, rSC = (𝑟𝑆𝐶 , 𝜆𝑆𝐶 , 𝛽𝑆𝐶), and the heliocentric position of
an asteroid, rP = (𝑟𝑃, 𝜆𝑃, 𝛽𝑃) at time 𝑡, both expressed in ecliptic coordinates,
for instance, in the J2000.0 system, we can obtain both the ecliptic coordinates
(𝜆𝑃,𝑆𝐶 , 𝛽𝑃,𝑆𝐶) and celestial coordinates (𝛼𝑃,𝑆𝐶 , 𝛿𝑃,𝑆𝐶) of the asteroid in the refer-
ence frame of the observer. In order to generate ephemerides data in the Horizons
System, there are some preparation steps that needs to be considered as shown in
the Fig. 39 below.

Figure 39: Horizons Web Application

Initially, the ephemeris type can be selected as one of the following: observer
table, vector table, osculating orbital elements, small-body SPK file. ‘Target Body’
is the object that is going to be observed from the specified ‘Observer Location’.
Target body can be defined as a specific body or using TLEs. The observer location
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can be specified by using geodetic or cylindrical coordinates, selecting a location
either on Earth or a location in space, and again using TLEs. ‘Time Specification’
is the time span that we want to generate the ephemerides data. And, finally there
is a whole bunch of observer table settings which one can customize according to
their needs.

Test 1:
As a first example, we defined the Earth as a target body and selected the Sun

as the coordinate center with a starting time on 2037-04-13 03:18 and the stopping
time on 2037-04-13 03:19 with a step size of 60 equal intervals and generated the
following positions of X,Y and Z.

X = −1.380426541938914 × 108

Y = −5.867896628300961 × 107

Z = 6.116780017375946 × 103

Using the Eqs. 70, 71 and 72 given above we calculate the heliocentric ecliptic
coordinates 𝜆, 𝛽 and r as

r =
√︃

x2 + y2 + z2 = 1.49997 × 108

𝜆 = arctan
(
y
x

)
= 23.0293

𝛽 = arcsin
(
z
r

)
= 0.00233649

And, the Horizons gives the 𝜆 and 𝛽 on 2037-04-13 03:18:17.00 in J2000.0 as
23.5421159◦ and −0.0021704◦ respectively. Double checking using Stellarium,
it gives the ecliptic longitude in J2000.0 and to-date as 23.0257◦ and 23.5422◦
respectively. And, the ecliptic latitude as −0.0045◦ and −0.0022◦. Comparing the
results with the Stellarium data, we obtain 0.0156347% and 48.078% of an error,
which the uncertainty in latitude needs to be reconsidered during the procedure
but the main reason should be the fact that Horizons equip the ecliptic-of-date
coordinates, although we are using the Cartesian heliocentric ecliptic coordinates
in the J2000 reference frame. The difference between the data generated by
JPL/Horizons ans Stellarium happens due to the difference between their initial
assumptions. Keeping in mind that a 10−3◦ of uncertainty yields to 3”.

Fig. 40 below, shows the topocentric ecliptic longitude and the heliocentric
ecliptic longitude in blue and orange colored curves respectively where the blue
dot represents the Earth with the direction of the first point of Aries and the ecliptic
coordinates coinciding with the 𝑥−axis.
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Figure 40: The topocentric and heliocentric longitudes

Conducting the precession correction procedure using Eq. 84 and utilizing
the following website provided by NASA [https://heasarc.gsfc.nasa.gov/
cgi-bin/Tools/xTime/xTime.pl] to convert the ISO 8601 date and time, 2037-
04-13 03:18:17 in this case, to Julian Date which results to 2465161.63769676.
Finally, correcting 𝜆 and 𝛽 from J2000.0 to on-date, we obtain 23.5501◦ and
0.00463922◦. Comparing with the real data given in Stellarium, the accuracy in
longitude is quite satisfactory while the latitude still has an unreasonably large
error.

Test 2:
Applying the same procedure for the asteroid Hygiea.
•Hygiea - Heliocentric polar and Cartesian ecliptic coordinates: 10 Hygiea

chosen as the target body and the Sun as the coordinate center. Horizons generates,

𝜆 = 98.4268043◦ 𝛽 = 0.2711006◦

X = −7.445637672833471 × 107

Y = 5.024188718664897 × 108

Z = 2.401538910083234 × 106

Using these values for the calculations of 𝜆, 𝛽 and r yield to,
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r =
√︃

x2 + y2 + z2 = 5.07912 × 108

𝜆 = arctan
(
y
x

)
= −81.5704

𝛽 = arcsin
(
z
r

)
= 0.270907

Considering the Eq. 80 above,

𝜆 = 180◦ + 𝜆′Sun = 98.4296 (85)

Comparing the data produced by Horizons, our calculations of the heliocentric
ecliptic longitude and latitude result to a pretty accurate measurement. Fig. 41
shows the asteroid Hygiea as seen from the Sun where the orange arc represents
the heliocentric ecliptic longitude, 𝜆, of Hygiea.
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Figure 41: Asteroid Hygiea as seen from the Sun

• Hygiea - Heliocentric polar ecliptic coordinates (𝜆SC, ast, 𝛽SC, ast) as seen
from the spacecraft (in this case, the Earth observer): The observer location
is chosen as where the asteroid detection was made in the first place, Urla Iskele,
26.7795◦ E, 38.3573◦ N, and with a 10 meters of altitude. In this case, we need to
determine 𝜆′

𝑃
in Eq. 79 above by defining the function, 𝐹𝑃 (𝜆′𝑃) as,
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𝐹𝑃 (𝜆′𝑃) = 𝑟 cos 𝛽 sin(𝜆′𝑃 − 𝜆′Sun) − 𝑟𝑃 cos 𝛽𝑃 sin(360◦ + 𝜆𝑃 − 𝜆′𝑃) (86)

Solving for the ecliptic longitude using Mathematica,

𝐹𝑃 (𝜆′𝑃) = 0

We obtain the ecliptic longitude, 𝜆′
𝑃
, as 83.5346◦ and the ecliptic latitude,

𝛽′
𝑃
, as 0.268574◦ which Horizons generated as 84.0458431◦ and 0.2475506◦

respectively. In the below Fig. 42, the asteroid Hygiea is represented with the
black dot on the (−x, y) portion of the graph as seen from the observer located in
the given coordinates which is also represented with the black dot on the (−x,−y)
portion of the graph. The orange curve indicates the heliocentric ecliptic longitude
of the Earth observer and the black curve indicates the observer-centric ecliptic
longitude, 𝜆′

𝑃
, of Hygiea. Finally, the blue arc is the ecliptic longitude of the Sun

as seen from the Earth observer.
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Figure 42: Asteroid Hygiea as seen from the Earth observer

Finally, converting the ecliptic coordinates to celestial coordinates, we obtain
𝛼 = 05h 31m 46.6481s as the right ascension and 𝛿 = 23◦ 32′ 58.7623′′ as the
declination.
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Test 3:
• Vesta - Heliocentric polar and Cartesian ecliptic coordinates: This time,

considering the asteroid Vesta as seen from the Sun, the polar and Cartesian
coordinates produced by Horizons are,

𝜆 = 342.3659374◦ 𝛽 = −6.1139607◦

X = 3.309611563339154 × 108

Y = −1.051812605930014 × 108

Z = −3.719972554952545 × 107

Our calculated values for the ecliptic longitude and latitude are 342.369◦ and
−6.11419◦ respectively, which are almost the same with the real data. Fig. 43
displays the asteroid Vesta with a blue dot on the (x,−y) portion of the graph
where the blue dot at the origin represents the Sun. The arc shown in orange
indicates the heliocentric longitude of the asteroid Vesta and the blue arc is the
ecliptic longitude of the Sun.
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Figure 43: Asteroid Vesta as seen from the Sun
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• Hygiea - Polar and Cartesian ecliptic coordinates as seen from Vesta: As
another example, we assume the asteroid Vesta as our spacecraft which is targeted
to the asteroid Hygiea. Entering the target body in Horizons as Hygiea and the
observer location as the asteroid Vesta, we obtain the following polar and Cartesian
coordinates,

𝜆 = 123.7072557◦ 𝛽 = 3.1031669◦

X = −4.054175172300563 × 108

Y = 6.076001883280268 × 108

Z = 3.960127406336501 × 107

The transcendental equation given above as Eq. 78 is now solved again by Mathe-
matica to find the spacecraft-centric longitude and latitude of the asteroid Hygiea
which was calculated as 𝜆′

𝑃
= 122.851◦. The spacecraft-centric ecliptic latitude

can be calculated using 360 − 𝜆SC and 180 + 𝜆𝑃 which yield to 342.369◦ and
95.4296◦ respectively. Therefore the spacecraft-centric ecliptic latitude is calcu-
lated as 𝛽′

𝑃
= 3.10329◦. We have a decent accuracy considering the real data

obtained from Horizons. Although, one reason for slight uncertainties, which is
0.692163% for the longitude in this case, could be the distance, almost 1 billion
kilometers, between the asteroids.
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Figure 44: Asteroid Hygiea as seen from the asteroid Vesta
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In the Fig. 44 above, the black arc represents the spacecraft-centric ecliptic
longitude of the asteroid Hygiea where the black dot on the (x,−y) portion of the
graph represent Vesta and the other one is Hygiea itself. The blue angle is the
spacecraft-centric ecliptic longitude of the Sun, 𝜆′Sun, and finally, the orange arc
represents the heliocentric ecliptic longitude of the spacecraft, Vesta. Converting
what we have to celestial coordinates result in 𝛼 = 08h 23m 37.5964s and 𝛿 =

22◦ 32′ 27.635′′, although, there is almost a 4 minutes difference between the right
ascension values and 12 minutes of difference between the declination values given
in Horizons.

Test 4:
• Hygiea as seen from our solar-sail spacecraft: In this test, we use the

ephemerides file corresponding to the Pluto mission that Group 3 designs. The
ephemerides file produced by GMAT provides the Cartesian ecliptic coordinates
in the reference frame of MJ2000 of the solar-sail spacecraft calculated for some
arbitrary intervals of time. Therefore, we now use the spacecraft itself as the
observer instead of Vesta, the Sun or an Earth-based observer. The Cartesian
coordinates on April, 13th, 03:19:10 are given by GMAT are the following,

X = 4.112280615952520 × 109

Y = −3.280906185651609 × 109

Z = −8.434386640596744 × 108
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Figure 45: The Sun as seen from the solar-sail spacecraft
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Using the Cartesian ecliptic coordinates, the heliocentric ecliptic longitude and
latitude of the spacecraft in the J200 system are calculated as, 𝜆SC = 321.416◦
and 𝛽SC = −9.10857◦ where the orange arc in the Fig. 45 above represents the
heliocentric ecliptic longitude of the spacecraft. Moving onto Horizons again, the
heliocentric ecliptic Cartesian coordinates of the asteroid Hygiea on April, 13th,
03:19:10 are given as,

X = −7.445718023934111 × 107

Y = 5.024186977030435 × 108

Z = 2.401483651916653 × 106

Again, the heliocentric ecliptic longitude and latitude are calculated as
𝜆P = 98.4297◦ and 𝛽P = 0.270904◦ respectively. The Fig. 46 below shows the

asteroid Hygiea orbiting around the Sun and the spacecraft is out of the plotting
range since it is arriving to pluto, 6 billion kilometers away from the Sun.
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Figure 46: Asteroid Hygiea and the Sun

Finally, the spacecraft-centric ecliptic longitude and latitude of the asteroid are
calculated as 𝜆′P = 145.468◦ and 𝛽′P = 8.52486◦. Transitioning to the celestial
coordinates of the asteroid Hygiea as seen from the spacecraft yields to 𝛼 =

14h 20m 32.2679s and 𝛿 = 04◦ 59′ 26.0412′′. Fig. 47 shows the asteroid Hygiea,
the black dot on top, as seen from the spacecraft, the black dot at the bottom, with
the Sun at the center.
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Figure 47: Asteroid Hygiea as seen from the solar-sail spacecraft

• Vesta as seen from our solar-sail spacecraft: Same procedure above is
applied to the asteroid Vesta. The heliocentric ecliptic latitude and longitude are
calculated as 𝜆P = 162.37◦ and 𝛽P = −6.1142◦ respectively. The spacecraft-
centric ecliptic longitude and latitude are calculated as 𝜆′P = 139.975◦ and 𝛽′P =

9.27304◦.
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Figure 48: Asteroid Vesta and Hygiea as seen from the solar-sail spacecraft
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Transitioning to the celestial coordinates of the asteroid Vesta as seen from the
spacecraft yields to 𝛼 = 9h 42m 14.486s and 𝛿 = 23◦ 35′ 53.2621′′. Fig. 48 shows
the asteroid Vesta, the black dot on the right-hand side of the Sun, the asteroid
Hygiea, the black dot on the left-hand side of the Sun, as seen from the spacecraft,
the black dot on the bottom, with the Sun at the center.

• Pluto as seen from our solar-sail spacecraft: Since arrival to Pluto is only
months ahead at this point, we can also execute the same calculations to Pluto for
visual understanding purposes. The Cartesian coordinates of Pluto on April, 13th,
03:19:10 obtained from Horizons,

X = 4.375997733464246 × 109

Y = −3.593855513601380 × 109

Z = −8.811619203715653 × 108

In the Fig. 49 above, we can clearly see how our spacecraft is close to Pluto.
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Figure 49: Pluto as seen from the solar-sail spacecraft

The LOS from the spacecraft into the inner solar system is very similar with
the LOS of Pluto going into the same direction. The spacecraft-centric ecliptic
longitude and latitude of Pluto are calculated as𝜆′P = 130.12◦ and 𝛽′P = −5.26647◦.
Finally, calculating the RA/Dec of Pluto as seen from the spacecraft, we obtain
𝛼 = 08h 44m 27.917s and 𝛿 = 22◦ 46′ 28.6657′′.
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Plotting all of the celestial bodies in conversation and the spacecraft in the
same graph to make the process conceivable and for the sake of seeing the bigger
picture in Fig. 50
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Figure 50: Asteroid Vesta and Hygiea, the Sun, Pluto and the solar-sail spacecraft

Figure 51: TheSkyLive view of the solar system with Hygiea and Vesta in the LOS
of Pluto

87



2. Inverse problem
Since we have determined the RA/Dec of the asteroid from the observations,

we can now obtain the Cartesian ecliptic coordinates of the spacecraft/observer.
We also make the assumption that the observer measures the apparent longitude
and the apparent latitude of the Sun, 𝜆′Sun and 𝛽′Sun, and the apparent longitude of
the asteroid, 𝜆′

𝑃
.

𝑟 = 𝑟𝑃
cos 𝛽𝑃
cos 𝛽′

𝑆

sin(360◦ + 𝜆𝑃 − 𝜆′
𝑃
)

sin(𝜆′
𝑃
− 𝜆′

𝑆
) = 𝑟𝑃

cos 𝛽𝑃
cos 𝛽′

𝑆

sin(𝜆𝑃 − 𝜆′
𝑃
)

sin(𝜆′
𝑃
− 𝜆′

𝑆
) (87)

𝜆 = 180◦ + 𝜆′𝑆 (88)

−𝛽 = −𝛽′𝑆 (89)

7.5.2 Conversion from celestial coordinates to ecliptic coordinates

As is obvious from the Direct case, the determination of the centroid coordi-
nates shall provide those quantities in terms of Right Ascension and Declination.
On the other hand, the determination of the position of the spacecraft shown above
requires knowledge of the centroid of the beacon asteroid in terms of ecliptic
coordinates. Therefore the first step is to state the equations needed for such
transformations,

tan𝜆 =
sin𝛼 cos 𝜖 + tan 𝛿 sin 𝜖

cos𝛼
(90)

tan 𝛽 = sin 𝛿 cos 𝜖 − cos 𝛿 sin 𝜖 sin𝛼 (91)

Using the Eqs. 78, 79, 80 and 81 provided by A. Roy
Test 1:
• Ecliptic coordinates of an Earth-based observer: Considering the again

the case of observing Hygiea from our solar-sail spacecraft,

𝜆′𝑃 = 139.975◦ , 𝛽′𝑃 = 9.27304◦

𝛼′
𝑃 = 8.74109 h , 𝛿′𝑃 = −22.7746◦

Utilizing above coordinates we obtain the ecliptic longitude and latitude for the
inverse case as, 𝜆INV = 141.439◦ and 𝛽INV = −4.52259◦ respectively.
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Figure 52: Map of optical navigation

8 Kalman Filter
A Kalman Filter can be used in any situation when you have ambiguous

information about a dynamic system and want to make an educated bet about what
the system will do next. Even if muddy reality gets in the way of the smooth
motion you predicted, the Kalman Filter is usually quite good at figuring out what
happened. It can also take advantage of links between bizarre phenomena that
you might not have considered utilizing and are also convenient for systems that
regularly change. They have the benefit of being memory-light and extremely
quick, making them ideal for real-time challenges and embedded devices [49].

Kalman Filtering method is also called Linear Quadratic Estimation. The
algorithm uses conceptual and series of calculations measurements spotted over
time and contains statistical noises and inaccuracies. Kalman Filter produces
approximates of unknown values that tend to be more accurate by estimating the
joint probability distribution which is the associated probability dispersion on all
possible measurements. The method can be used when it is hard to measure
something directly so with the results of indirect measurement, accurate results
can be reached eventually. Another way to do that can be the calculation of the
results obtained from different measurement methods, results can be classified and
specified from the intersection set [49].
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Introducing the block diagram of the system and the concept of state observer,
K, shown in Fig. 53:

K

Figure 53: Kalman Filter block diagram (Adapted from Ref. [50], sketched via
diagrams.net)

The input of the system is given as 𝑢𝑘 and the output is 𝑦𝑘 , where we assume
to have a single state for simplicity, also noise sources are neglected. The Kalman
Filters take place in combining the measurements 𝑦𝑘 and 𝑥𝑘 and making a predic-
tion to find the optimal estimate for the output. The state observer, K, allows us to
classify and eliminate the error in the previous calculation.

The effect of Kalman Filtering can be visualized using probability density
functions. The estimated position can be anywhere around 𝑥𝑘−1 at the initial
time step, 𝑘 − 1. In other words, the position will be most likely around the
mean of the distribution. In time step 𝑘 , let’s assume that the uncertainty in the
estimate increased which causes a larger variance. The measurement 𝑦𝑘 is another
source of information on the distance in the 𝑥 direction, where the true position
can be anywhere around the mean. Therefore, the prediction and measurement
yield an estimation given by their multiplication. Finally, the mean of that function
indicates the optimal current estimate for the position. Eventually, the combination
of indirect measurements and estimations results in a value that can be reached
with better accuracy with a high number of measurements [50].

Now, considering a solar-sail lost in deep space which is in need of navigation

with a simplest given state vector of ®𝑥𝑘 =
[
®𝑝
®𝑣

]
, indicating the position and velocity.

Note that the state is simply a list of numbers describing a system’s underlying
setup; it may be anything. It may be data on the amount of fluid in a tank, the
temperature of a car engine, or any number of other things you need to keep track
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of. Both position and velocity are assumed to be random and Gaussian distributed
in the Kalman Filter. Each variable has a mean value, 𝜇, which is the center of the
random distribution, and a variance, 𝜎2, which is the degree of uncertainty [51],

Position and velocity are uncorrelated, which means that the state of one
variable has no bearing on the state of the other. Something more intriguing can
be seen in such case that the two variables of position and velocity are intertwined.
The possibility of viewing a specific position is determined by the velocity. This
type of situation could exist if we’re estimating a new location-based on an old
one. This relationship is crucial to keep track of since it provides us with more
information, one measurement hints at what the others might be. And that is the
purpose of the Kalman Filter: to extract as much information as possible from
our questionable measurements. In our case, Kalman Filtering is a perfect tool for
updating the estimated measurements over some time to converge to the solution.
Obviously, enough measurements are needed in order to utilize it.

9 Results and Discussion
Since we have introduced ourselves into the field of autonomous navigation

during our literature research, we are now aware of the state of the art of this
timely technology. Our supervisor Dr. Fabrizio Pinto was kind enough to reach
out to people at NASA who are specialized in this field, to transfer the latest
achievements and status which guided us through. As stated in Sec. 3, the DS1
mission is the first and last to successfully utilize Auto-Nav technology, therefore
it is quite contemporary and up-to-date. The most recent mission planned to
travel through a targeted asteroid is “Near-Earth Asteroid Scout (NEA Scout)”
which is going to be launched as a part of the Artemis 1 mission planned due
on March 2022. NEA Scout is a solar-sail propelled CubeSat class spacecraft,
designed to target the asteroid 2020 GE (which may be changed due to the date
of launch), and aims to explore the asteroid with robotic devices [52], which
is going to be using ground-based navigation, not Auto-Nav. Thanks to Dr.
Shyam Bhaskaran, we have found out the software package “MONTE” which was
designed to be a general-purpose astrodynamic library under Python environment,
to be used in deep-space navigation, and is going to be used for navigation of
the NEA Scout mission. MONTE was initially used for navigating the spacecraft
of Mars Science Laboratory in 2012. It is developed by JPL where they used
a FORTRAN-based software called “DPTRAJ/ODP” back in the 1990s for the
DS1 mission. And, recent developments of MONTE was importing the library
into Python environment to further improve and develop astrodynamic features
of MONTE [53]. Yet, there are still no missions announced to associate both
Auto-Nav and solar-sailing technologies together.
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The Fig. 54 below displays a flow diagram for the whole procedure of the
project.
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Figure 54: General workflow block diagram, sketched via diagrams.net
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10 Conclusion
In this project, we introduced a detailed procedure for the application of optical

navigation. The procedure includes the following: Stellar field observation with
a camera produces calibration frames and raw frames for DeepSkyStacker to
generate the master frames, align and stack the light frames to obtain a calibrated
image at the end. Feeding that calibrated image to Astrometry.net generates log
files including the RA/Dec of the center of the image, scale and plate constant
for the given stellar field which are used in ASTAP to stack and solve the image,
aiming to detect the asteroid by blinking technique using three observations of the
same stellar field. The first approximation of the pixel coordinates of the detected
asteroid then becomes a sub-frame in the Jupyter Notebook, coded in Mathematica,
to be isolated out of the whole image frame that allows us to determine its centroid
coordinate. Then, either the synthetically generated or the physically observed
asteroid centroid pixel coordinates are now converted into ecliptic coordinates as
seen by the spacecraft which are going to be utilized in the determination of the
heliocentric ecliptic coordinates of the beacon asteroid. Finally, the estimated
position of the spacecraft can be obtained by conducting the given direct problem.
With enough measurements, the position would converge to true value utilizing
Kalman Filtering as the updating method.

We have also discussed how the Auto-Nav technology can be beneficial in
terms of what current and future space mission needs. The hustling of the DSN is
starting to become an obstacle to expanding missions, meaning that it will even-
tually be unable to acknowledge the requests and meet the demands. Especially,
the deep-space/interplanetary missions need to evolve into onboard navigation,
rather than ground-based navigation in order to both allow near-Earth missions
to appropriately use DSN. And, to be able to operate by itself since they cannot
rely on ground-based navigation systems due to their distance from the Earth. The
groundbreaking solution in increasing the traveling distance has been, of course,
the solar-sail technology, which makes it possible for the spacecraft to explore
through deep-space without the need of conventional propulsion systems. We
have introduced some of the cutting-edge technologies and missions throughout
the paper, such as Deep Space 1, IKAROS, Voyager, and LightSail missions.
However, there is not any mission that has combined Auto-Nav and solar-sail
technologies, which is what we aim to prove the concept of.
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