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Abstract: Optical fibers provide a favorable medium for nonlinear optical processes owing to
the small mode field size and concurrently high optical intensity combined with the extended
interaction lengths. Second harmonic generation (SHG) is one of those processes that has been
demonstrated in silica glass optical fibers. Since silica is centrosymmetric, generating SHG in
an optical fiber requires poling of the glass. In addition and when one wants to use ultrashort
pulses for SHG, achieving both phase and group velocity matching is crucial. Although fibers
that feature either modal phase velocity or group velocity matching for SHG have been reported,
the possibility of simultaneous modal phase and group velocity matching was never reported
before. In this paper we address this challenge, and for the first time to our knowledge, we show
that it is feasible to do so with silica microstructured optical fibers featuring at least one ring of
air holes in the cladding and a heavily Germanium doped core (above 25 mol.%) by exploiting
the LP01(ω) and LP02(2ω) modes at 1.06 µm pump and 0.53 µm second harmonic wavelengths.
This finding can greatly impact applications requiring waveguide based SHG generation with
ultrashort pulses, including microscopy, material characterization and nonlinear imaging.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Second Harmonic Generation (SHG) is a nonlinear optical process in which a pair of photons
at identical frequencies interact with a nonlinear material and form a new photon at twice the
pump frequency. Shortly after the invention of the laser, SHG emerged as an important technique
for several applications. Besides providing an efficient means to generate coherent light at
new and short wavelengths, SHG has been used for the characterization of the amplitude and
phase of ultrashort pulses [1–3], as well as for the characterization of crystalline materials, more
specifically for spotting conglomerates [4,5], for monitoring the formation of phase diagrams
[6,7] and for studying the symmetry properties of crystals [8,9]. More recently, SHG has been
applied to in-vivo biological imaging, where it allows identifying collagen structures in view of
supporting early diagnosis of cancer [10–14]. This technique relies on the use of ultrashort-pulsed
lasers, which calls for addressing specific challenges that stem from the broadband nature of the
signal [1–3,8–12,14].

The first and the most important condition for enabling efficient SHG in a non-linear medium
is to establish phase matching between the pump and the second harmonic wave. In addition, for
ultrashort pulses, the group velocity mismatch limits the interaction length and thus the SHG
conversion efficiency [15]. Achieving both phase matching and zero group velocity mismatch
(zero-GVM) are therefore critical for SHG with ultrashort pulses [16]. This has been demonstrated
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in several nonlinear crystals such as PPKN, PPLN, and β-BaB2O4 by means of quasi-phase
matching (QPM) [17–20]. However, QPM requires tuning of the quadratic nonlinearity with a
periodic poling technique which also limits the size of the crystal and thus the interaction length.

Alternatively, SHG in optical fibers has been long considered as it can allow for longer
interaction lengths. Even though the silica glass from which optical fibers are manufactured
features inversion symmetry and therefore a negligible second-order nonlinearity, SHG in optical
fibers has been demonstrated for the first time in 1986 by means of self-induced poling of the
doped core regions. Such a technique is referred to as all-optical poling [21]. In this process, a
grating is formed by the interference of the pump with the second harmonic light, which in its
turn forces positive and negative charges to move to opposite sides of the fiber core, leading to the
existence of a static electric field along the fiber length and breaking of the inversion symmetry.
SHG in optical fibers with electrical and thermal poling mechanisms has been demonstrated
as well [22]. In optical fibers, QPM with periodic poling was used. However, and essentially
similarly to SHG in bulk materials, periodic poling limits the fiber sample length and complicates
the preparation of the nonlinear medium. In an alternative route, modal phase matching (MPM)
was introduced to achieve phase-matching by using different modes of the fiber for the pump
and harmonic signals [23]. MPM in standard step-index fibers can be achieved, for example,
by tapering standard multi-mode fiber [24] and by using higher order modes [25–28]. Periodic
poling of the quadratic nonlinearity is then not required. Moreover, the small efficiency of MPM
due to limited mode overlap can be compensated by increasing the fiber length to some extent.

The introduction of microstructured optical fibers (MOF) marked an important milestone for
enforcing SHG in optical fibers owing to the unprecedented design flexibility offered by the holey
cladding of such fibers. More particularly, it was shown that hexagonal lattice microstructured
fibers can achieve zero-GVM between the pump and the second harmonic signals across a wide
range of cladding parameters. As a result, temporal walk-off can be avoided even for ultrashort
pulse conversion, which infers broader spectral coverage of the SHG process [29]. Several
MOFs enabling MPM for SHG were reported using either plain silica glass [30], high index
inclusions embedded in silica glass [31] or chalcogenide glass [27]. Efficient SHG has also been
demonstrated in hollow core Xe-filled MOF. For the latter, the Xe-gas pressure was changed to
tune the modal properties of the fiber so as to satisfy the phase matching condition and to achieve
efficient SHG [25]. Nonetheless, simultaneous MPM and zero-GVM for SHG in fibers has not
yet been reported.

In this article we identify a wide range of microstructured fiber designs that allow simultaneously
achieving MPM and zero-GVM for SHG. These fibers feature a standard hexagonal lattice of
airholes in the cladding and a relatively high refractive index region in the core doped with
Germanium. Our case study applies to pump and second harmonic wavelengths of 1.06 µm and
0.53 µm, respectively, but our approach can be extended to other wavelengths in the near infrared
region. Note that although the required Ge-doping level is relatively high, MOFs with such a
doping level were already successfully demonstrated for nonlinear applications [32–34].

Our paper is structured as follows: in Section 2 we introduce the fiber designs under study
and their main properties. Section 3 deals with the unique dispersion properties of the heavily
Ge-doped microstructured fibers with double MPM and double GVM points. Section 4 describes
a design technique for simultaneous MPM and zero-GVM. In Section 5, we show the possibility
of tuning the microstructure geometry at which MPM and zero-GVM are achieved by means of
tailoring the doping level of the core region. In Section 6 we discuss and position our results
with respect to the state-of-the-art. The last section contains concluding remarks.

2. Methods

We start our numerical study by considering two silica fiber configurations illustrated in Fig. 1: a
step-index fiber and a MOF with a single ring of 6 air holes in a hexagonal configuration, both
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with a Ge-doped region in the core. The main MOF cladding parameters are the air hole pitch
(Λ), air hole diameter (d) and the resulting air filling factor (AFF = d/Λ). We also consider the
doping level and the radius of the doped core region as design parameters. In particular, we
focus on fibers with heavily Ge-doped cores (GeO2 concentrations above 25 mol.%) similar to
the ones that have already been successfully used for other nonlinear applications, such as four
wave mixing and supercontinuum generation [33,34].

Fig. 1. Schematic illustrations of: (a) a step-index fiber and (b) a single-ring hexagonal
lattice MOF with a heavily Ge-doped region.

We work with a pump wavelength of 1.06 µm, which is the Nd:YAG laser wavelength that
is traditionally used for such purposes. Most of our results, however, can be adapted to other
wavelengths in the near infrared region. For the modeling of the dispersion properties of the
fibers we used a Device MODE Simulator from ANSYS/Lumerical Inc. [35]. For mode analysis
we defined a simulation region that covers the extended core region of the fiber: doped core, air
holed cladding and the surrounding silica glass. We implemented perfectly matched layer (PML)
conditions at the boundaries. We preformed convergence tests on the size of the boundary region
to make sure that the PML has minimal influence on the simulation results. The refractive indices
of the Ge-doped and pure silica glasses materials were calculated from Sellmeier equations [36].
To validate our approach, we first modeled MOFs intended for zero-GVM as presented by Bache
et al. [29] using a pure silica core hexagonal lattice MOFs, while assuming QPM. We verified
the design for a 1.06 µm pump wavelength. The geometrical parameters for a zero-GVM MOF
identified in [29] are as follows: AFF = 0.72; Λ= 0.85 µm and d = 0.612 µm. Our approach
returns an identical AFF with air hole pitch and air hole diameter values Λ= 0.846 µm and
d = 0.609 µm. These agree therefore very well with those in [29]. We also verified and compared
the zero-GVM bandwidth of this MOF design. The value reported in [29] was ∆λ= 77 nm for a
corresponding Gaussian pulse width τ = 21 fs. Our model (see calculation approach in Chapter
5) yields ∆λ= 61 nm for τ = 27 fs, which is in very reasonable agreement with [29].

A key characteristic of the SHG process is the conversion efficiency η, which can be expressed
as follows [37]:

η = P l2F sinc2
(︃
∆βlF

2

)︃
1

Aovl

2ω2d2

n2ω
eff (nωeff )

2c3ε0
× 100%, (1)

where P is the power of the pump beam; lF is the fiber length, ∆β is the phase mismatch expressed
by means of propagation constants (detailed below with Eq. (3)); Aovl is the effective area that
depends on the overlap integral between the interacting fields; ω is the angular frequency of the
pump light; d = χ(2)/2π is the nonlinearity factor, which includes the second order susceptibility
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χ(2); nωeff and n2ω
eff are the effective refractive indexes of the pump and second harmonic modes in

the fiber respectively; c is the speed of light and ε0 is the permittivity of vacuum.
The SHG conversion efficiency can thus be increased not only by increasing the pump power

P, but also by reducing the effective area Aovl, and increasing the fiber length lF. First, we can
decrease Aovl by selecting adequate modes, since it is defined as [38]:

Aovl =

|︁|︁|︁|︁∫∫
E∗

SHGE2
pumpdxdy

|︁|︁|︁|︁−2
, (2)

where Epump and ESHG are the normalized mode profiles of the pump and the second harmonic
modes, respectively. A non-zero effective area can hence be obtained by exploiting modes
featuring an identical symmetry. In our study, we consider the fundamental LP01(ω) mode for the
pump and the higher order LP02(2ω) mode for the second harmonic. Note that this mode pair has
been frequently exploited in literature on nonlinear optics with optical fibers [25–27,39,40]. The
effective area for the mode pair LP01(ω) and LP02(2ω) has the smallest non-zero value right after
that of the pair formed by LP01(ω) and LP01(2ω). Second, we can increase the useful fiber length
by tailoring the dispersion properties of the propagation constants of the fiber. To understand
this, we express the phase matching condition (phase and group velocities) as a Taylor expansion
of the phase mismatch of the propagation constants ∆β around the central pump frequency ω0:

∆β(ω0) = β(2ω0) − 2β(ω0)

+ 2(ω − ω0)

(︃
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∂ω
−
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(3b)

In Eq. (3a) above, β(ω0) and β(2ω0) are the propagation constants of the pump and the second
harmonic signals, respectively. ω0 is the central angular frequency of the pump wave in the
Taylor expansion. Equation (3a) can be rewritten as Eq. (3b), where n2ω

g and nωg correspond
to the group indices of the second harmonic and pump wave. GVDω. and GVD2ω are the
group velocity dispersions. O(ω − ω0)

n refers to the higher order derivatives inside the Taylor
expansion. Note that the first order derivative in the Taylor expansion corresponds to the inverse
of the group velocity vg = ∂ω/∂β, which we will express in terms of the group index: ng = c/vg.

The effective or useful fiber length or SHG is now limited by the coherence length (lcoh) and
the temporal walk-off length (lw). The coherence length depends on the first difference term in
Eq. (3a) and is expressed as lcoh = π/(β(2ω0) − 2β(ω0)). It is thus inversely proportional to the
mismatch between the propagation constants of the pump and the second harmonic and represents
the fiber length over which the phase difference between the pump and second harmonic waves
becomes π, which in its turn leads to back-conversion of the second harmonic into the pump
frequency [41]. The difference β(2ω0) − 2β(ω0) can be expressed by means of the corresponding
effective refractive indices (see Eq. (3b)).

The second difference term in Eq. (3a), ∂β(2ω0)/∂ω − ∂β(ω0)/∂ω, relates to the group
velocity mismatch (GVM), and defines the so-called temporal walk-off length. The latter can
be written as lw = ∆τ/GVM, where ∆τ is the temporal pulse width and GVM is the group



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 12030

velocity mismatch, which is in its turn defined as the difference of the inverse group velocities
of the fundamental and second harmonic modes: 1/vωg − 1/v2ω

g . The temporal walk-off length
lw quantifies the fiber length over which the pump and the second harmonic pulses spatially
overlap. The group velocity mismatch or temporal walk-off can be expressed in terms of the
corresponding group index difference (see Eq. (3b)).

When MPM and zero-GVM are achieved in a fiber, lcoh and lw are no longer limiting the
effective fiber length for SHG. The limit is then set by the higher order terms in Eq. (3a) and
Eq. (3b). As we will show in Section 5, this allows considering ultrashort pulses since this
significantly broadens the bandwidth of the SHG process [29,39].

3. Dispersion characteristics of heavily Ge-doped fibers

At this stage we can start with studying the dispersion characteristics of the fibers shown in Fig. 1
as a function of the design features. In the initial model, we consider a silica step-index fiber with
a 36 mol.% Ge-doped core region and a pump signal at a 1.06 µm wavelength. Note that this
particular doping level was already used for nonlinear optics in heavily doped MOFs [33,34,42].

We initiated our study by considering the dependence of the phase and group velocity in
a regular step-index fiber (expressed by ways of neff and ng) on the radius of the doped core
region, which is shown in Fig. 2(a) and 2(b). Figure 2(a) shows that it is possible to match the
effective refractive indices of the LP01(ω) and LP02(2ω) modes of the pump and the second
harmonic respectively, and hence to achieve MPM, by changing the radius of the doped core
region. However, group velocity matching between the LP01(ω) and LP02(2ω) modes is not
achieved. Figure 2(b) shows that for a small core radius, i.e. for a low value of Rcore, the fiber
enters single-mode operation, which prevents the intersection of the LP01(ω) and LP02(2ω)
curves. The cut-off radius for this step-index fiber is shown with a dashed vertical line in Fig. 2(a)
and 2(b).

Let us now consider the MOF shown in Fig. 1(b), which is obtained by adding a single ring of
air holes with AFF= 0.9 and Λ= 2.75 µm to the step-index fiber design. The results for neff and
ng are shown in Fig. 2(c) and 2(d) respectively. The MOF behaves in a similar manner as the
step-index fiber above the cut-off radius of the latter. However, the properties of the higher order
LP02 mode are notably different. Owing to the microstructure, the LP02 mode still exists for
smaller doped core regions and a second MPM point appears as shown in Fig. 2(c). Remarkably,
the group refractive index curves for the pump and the second harmonic wavelengths demonstrate
a comparable behavior for smaller doped core sizes and we observe 2 zero-GVM points as
shown on Fig. 2(d). To the best of our knowledge, this is the first report about the existence of 2
MPM and 2 zero-GVM points for LP01(ω) and LP02(2ω) modes in any type of optical fiber or
waveguide intended for SHG.

To understand the appearance of the 2nd MPM and the 2nd zero-GVM points, we consider
the mode intensity distribution patterns for the MOF LP01(ω) and LP02(2ω) modes as shown in
Fig. 3. The MOF design modeled here has a doped core radius of 0.450 µm, an air hole pitch
of 2.75 µm and an AFF of 0.9. Such a small core region is well within the reach of modern
fabrication technologies. In [34], for example, the authors demonstrated a MOF with a 36 mol.%
Ge-doping level and with a doped core radius of 0.325 µm. Owing to the presence of the air
holes in the cladding region, we have multimode guidance and a well confined LP02(2ω) mode
(see Fig. 3(b)). Whilst the LP01(ω) mode is mostly located in the doped region (see Fig. 3(a)),
the LP02(2ω) mode has a central intensity distribution across the doped region and a higher order
mode ring-shaped intensity distribution in the pure silica portion, between the doped region and
the holey cladding. As Rcore decreases, the LP02(2ω) mode has a larger overlap with the pure
silica region with lower refractive index than the doped region. This eventually allows observing
the 2nd MPM and 2nd zero-GVM points.
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Fig. 2. The dependence of the effective refractive index ((a) and (c)) and the group index
((b) and (d)) of the LP01 mode at 1.06 µm and of the LP02 mode at 0.53 µm in a step-index
fiber ((a) and (b)) and in a MOF ((c) and (d)) on the radius of the 36 mol.% Ge-doped core
region. The MOF has an air hole pitch Λ = 2.75 µm and an AFF= 0.9.

Fig. 3. Normalized electric field distribution of: (a) fundamental LP01 and (b) second
harmonic LP02 modes for a MOF with an air hole pitch Λ = 2.75 µm and an AFF= 0.9
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4. Simultaneous MPM and zero-GVM in a MOF

We now take further advantage of the conclusion that the 2nd MPM and 2nd zero-GVM points
demonstrated in the previous section appear for Rcore values of the doped core that are close to
each other. To investigate the possibility of achieving the 2nd MPM and 2nd zero-GVM points
for the same fiber design, we check what happens when we adapt the air hole pitch Λ of the
microstructured cladding for a fixed AFF= 0.9. For each value of Λ, we can identify for which
Rcore we find MPM and zero-GVM. This is illustrated in Fig. 4, which considers airhole pitches
larger than the initial Λ= 2.75 µm. As we increase the airhole pitch, the 2nd MPM point shifts
towards larger doped core radii. At the same time, the 2nd zero-GVM point shifts towards smaller
doped core radii. This allows identifying a combination of airhole pitch and doped core radius
values for which we have simultaneous MPM and zero-GVM. Figure 4 reveals such a MOF
design (marked with a star) obtained with Λ=3.075 µm and Rcore = 0.473 µm. To the best of our
knowledge, this is the first report of a MOF design intended for SHG that features simultaneous
MPM and zero-GVM.

Fig. 4. (a) Effective refractive index as a function of the doped core region radius and (b)
group index as a function of the doped core region radius for different values of the air
hole pitch and fixed AFF= 0.9. The plots allow visualizing for which designs MPM (a)
and zero-GVM (b) are obtained, and for which particular design simultaneous MPM and
zero-GVM is found. The arrows indicate the direction of the shift of the MPM points (a)
and zero-GVM points (b) with increasing air hole pitch. Note: arrows on graphs show shift
in MPM or zero-GVM while Λ increases

5. Simultaneous MPM & zero-GVM for different Ge-doping levels and MOF air
filling factors

Starting from our strategy for identifying MOF designs with simultaneous MPM and zero-GVM
outlined above, we can now investigate whether we can obtain such MOF designs for other
Ge-doping concentrations as well. In other words, we take different fixed doping levels, we keep
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the AFF= 0.9 constant and we identify Λ and Rcore combinations that allow for simultaneous
MPM and zero-GVM with the approach explained in Section 4. The dependencies of neff and ng
on the doped core radius are shown in Fig. 5 for core doping levels of 25, 36 and 50 mol.%. The
designs for which we find simultaneous MPM and zero-GVM are indicated with a star. We can
see that decreasing the doping level brings the 2nd MPM and 2nd zero-GVM points closer to each
other. For the 50 mol.% Ge-doped core, the difference between the core radii of the double MPM
points is 0.79 µm, while for 25 mol.% it is 0.54 µm (see Fig. 5(a)). For the double zero-GVM
points the difference in core radii for 50 mol.% is 0.27 µm, while for 25 mol.% it is 0.09 µm
(see Fig. 5(b)). Since this last value is very small, 25 mol.% level can be considered as a lower
limit for achieving simultaneous MPM and zero-GVM. For MOFs with lower Ge-doping levels,
we can achieve simultaneous MPM and zero-GVM points with larger core radii, which can be
important in view of easing the manufacturability of the fiber.

Fig. 5. (a) Effective refractive index as a function of the doped core region radius and
(b) group index as a function of the doped core region radius for different values of the
Ge-doping level and a fixed AFF= 0.9. The plots allow visualizing for which designs
simultaneous MPM and zero-GVM are obtained.

We can also consider the influence of the AFF. Our simulations show that for a fixed Ge-doping
level, decreasing the AFF from 0.9 to 0.8 and 0.7 calls for smaller pitch values to achieve
simultaneous MPM and zero-GVM. This is shown in Fig. 6(a) for different Ge-doping levels
of the core. Note that for each configuration, the air hole size is different, but there is little
influence on the optimal Rcore size (±1 nm). AFF values below 0.7 did not allow for modal phase
matching for smaller size cores. Figure 6 clearly reveals that the largest size of the air hole pitch
Λ= 4.214 µm for simultaneous MPM and zero-GVM is obtained with a 25 mol.% doping level
and AFF= 0.9.

Figure 6(b) shows the different MOF designs superimposed onto each other for a fixed doping
level of the doped core region radius. It is remarkable that these geometries for simultaneous
MPM and zero-GVM are such that the radius Λ(1 − AFF/2) of the circle delimiting the location
of the inner boundaries of the air holes drawn in blue in Fig. 6(b) remains quasi constant. By
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Fig. 6. (a) Simultaneous MPM and zero-GVM points for different Λ— AFF and doping
level combinations and (b) illustration of the superimposed MOF geometries concept for a
fixed doping level.

using the radius of this circle, it is possible to find MPM and zero-GVM MOF designs for
different AFFs, once one design is computed.

Note that we have also studied hexagonal lattice MOFs with more airhole rings and found that
the additional rings have negligible influence on the simultaneous MPM and zero-GVM fiber
design parameters.

Table 1 summarizes our results for MOFs featuring simultaneous MPM & zero-GVM and
compiles the design parameters of the fibers with the results of the calculations of the effective
area and the corresponding SHG bandwidth for a central pump wavelength of 1.06 µm. The latter
is defined as the wavelength range over which the sinc2(∆β/L) factor in the expression for the
SHG conversion efficiency (Eq. (1)) remains ≥ 0.5, when considering fiber lengths of 10 cm
[29,38]. This value should be considered as an upper limit for the bandwidth of the ultrashort
pulses for which these conditions would be fulfilled. The calculated SHG bandwidths are in
the range of tens of nanometers, which correspond to pulse lengths down to the femtosecond
range (for a Gaussian pulse shape). For example, a MOF with 36 mol.% Ge and AFF= 0.9 has a
bandwidth of 23.4 nm, which corresponds to a Gaussian pump pulse with a duration of about 70
fs. For sake of comparison, we note that in standard step index fibers the bandwidth for LP01(ω)
– LP02(2ω) SHG conversion for a pump wavelength of 1.06 µm is only 0.1 nm due to the high
value of the GVM around 82 fs/mm. For a Gaussian pulse this corresponds with a pulse width of
16 ps, which is more than two orders of magnitude larger than the values presented for our MOF
designs.
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Table 1. List of MOF designs featuring simultaneous MPM and zero-GVM

AFF mol. % Ge Λ, µm Rair hole, µm Rcore, µm Aovl, µm2 aBW, nm

0.9

50 2.570 1.157 0.356 9.06 11.5

40 2.885 1.298 0.429 11.55 31.1

36 3.075 1.384 0.473 13.19 23.4

30 3.507 1.578 0.568 17.26 12.3

25 4.214 1.896 0.706 24.05 12.1

0.8

50 2.329 0.931 0.356 9.10 11.5

40 2.613 1.045 0.429 11.58 31.7

36 2.784 1.114 0.472 13.21 23.1

30 3.176 1.270 0.567 17.27 12.3

25 3.818 1.527 0.705 24.04 12.1

0.7

50 2.112 0.739 0.355 9.24 11.6

40 2.367 0.828 0.428 11.63 38.4

36 2.529 0.885 0.471 13.34 23.8

30 2.888 1.011 0.567 17.46 12.1

25 3.465 1.213 0.704 24.14 12.1

aThe bandwidth is calculated for a fiber length lF = 10 cm

6. Discussion

Since the first demonstration of SHG by Franken et al. [43], the research efforts in this domain
aimed essentially to increase the conversion efficiency. As a result, several classical phase
matching concepts were developed: MPM [28], all-optical poling (AOP) [44] and QPM [22,45].
With the introduction of ultrashort pulse lasers, the community focused on group-velocity
matching as another important dispersion mechanism that allows for conversion with a broader
bandwidth. Research efforts therefore turned to investigating structures in which both phase- and
group velocity matching can support effective ultrashort pulse conversion. One pioneering idea
was proposed by Zhang et al. [17], where noncollinear pulses were phase- and group velocity
matched in a nonlinear crystal. However, limitations imposed by the relatively short crystal
length and by the complicated optical setups called for developing more efficient concepts. In
the meantime, for fiber- and waveguide-based applications, QPM with a zero-GVM [19,20,29]
and AOP with a zero-GVM [46] had appeared as alternatives. Nonetheless, in the case of QPM,
external poling by means of periodically arranged electrodes still limits the fiber length and
complicates the preparation of the nonlinear medium. Like crystals, waveguides exploiting QPM
or AOP have a relatively small interaction length resulting in a limited overall SHG efficiency.
AOP can be considered as an extension of QPM, where periodic poling is implemented by
means of light. The effective nonlinear coefficient is modulated over a period which is twice of
the coherence length. This fundamental limitation can be overcome only in the case of equal
phase-velocities or, in other words, in the case of MPM.

With our work, we show for the first time that MPM and zero-GVM are feasible in optical
waveguides – and in our approach in optical fibers – for SHG. While we demonstrate this matching
in a MOF here, it can be generalized to optical waveguides assuming the existence of double
MPM with double zero-GVM points between the LP01(ω) pump and LP02(2ω) second harmonic
modes.

Note first though that our finding of double phase matching points for SHG shows similarities
with previously reported results in the field of nonlinear optics. For example, double phase
matching for third order nonlinear processes was predicted by Tsvetkov et al. in a narrow range
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of Ge-doping levels (23.44–23.77 mol.%) in a step-index fiber, and this between the HE11(ω)
pump and HE13(3ω) third harmonic modes [23]. It is remarkable that such a narrow range of
Ge-doping concentrations required for the double phase matching in [23] was mostly limited
by the higher order mode’s cutoff point. Our study extends well on the possibility of obtaining
double MPM points, this time for SHG rather than for a third order nonlinear process, and as
stated before, the appearance of double matching points in view of efficient ultrashort-pulse
laser-based SHG is reported for the first time to the best of our knowledge. We show that double
phase matching points in a small core fiber appear when relatively high ∆n condition is applied
for: a) Ge-doped core — surrounding silica region and b) doped core surrounding silica region
— air holed cladding.

Second, note also that the possibility for achieving zero-GVM between different fiber modes
with an identical symmetry and at the same time MPM was experimentally shown by Demas et
al. for the third-order nonlinear process of four-wave mixing [39]. MPM between the high-order
LP04 and LP05 modes (for pump — anti-Stokes and pump — Stokes pairs respectively), resulted
in a zero-GVM between the anti-Stokes — Stokes pair. Our study, however, shows simultaneous
MPM and zero-GVM in the cases where the pump is the fundamental LP01 mode and the
second-order nonlinear process generates light in the LP02 mode. Our use of low-order modes
simplifies the intermodal group-velocity matching scheme, here applied to SHG for the first time
as well.

Finally, whilst available literature has reported many times on either phase velocity — or group
velocity matching, our work manifests the possibility of simultaneous MPM and zero-GVM for
SHG in a single fiber design. The leitmotif for achieving MPM is to enable the nonlinear process
over much longer interaction lengths. MPM, in contrast to QPM, does not need any periodically
induced nonlinearity, which simplifies fiber preparation. A standard thermal poling over the
whole fiber length can still be used for breaking glass symmetry. In addition to MPM, zero-GVM
increases the SHG bandwidth, which allows for ultrashort pulse conversion. Such ultrashort
second harmonic pulse generation is much sought after in view of pushing the frontiers of material
science and in-vivo bio-imaging applications. Simultaneous MPM with zero-GVM as reported
in our paper fills a gap in the search for methods on simultaneous phase- and group-velocity
matching for SHG as shown previously for QPM with zero-GVM and AOP with zero-GVM.

7. Conclusion

We have studied phase matching and group velocity matching for SHG in heavily Ge-doped
microstructured optical fibers. First, we have identified, for the first time to our knowledge, the
existence of two MPM and two zero-GVM points between the LP01(ω) pump and LP02(2ω)
second harmonic modes. Second, we have shown that by tuning the microstructure parameters,
simultaneous MPM and zero-GVM are possible. Such microstructured fibers could impact fiber-
based SHG by providing unique phase-matching conditions over extended interaction lengths. In
practice, this would enable SHG with ultrashort pulse lengths down to the femtosecond range.
Finally, and most importantly, our parameter study evidences that such properties are achievable
with a wide range of MOF designs with features that are well within established fabrication limits.
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