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EXECUTIVE SUMMARY 

This document describes the atmospheric data sets exploited in INTAROS WP2. These include 
in-situ particulate absorption, remote-sensing cloud products and total integrated water vapor 
from satellites. This document is intended to describe solely the datasets upgraded and the 
methodologies used. The requirements for the data collections and the assessment of the upgraded 
products are presented in D2.4 Sections 3—5 jointly with the assessment of existing data sets 
presented in D2.4 Section 2. 
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1. Introduction 
This report presents higher-level products from existing atmospheric measurements developed 
and derived within INTAROS WP2 by applying new methodologies for data processing and 
derivation of new quantities. The report will present both satellite derived atmospheric products 
as well as products from in situ observing systems. 

To avoid unnecessary repetition and to facilitate comparison and co-evaluation with un-
exploited datasets and products, the exploited higher-level products described in this report are 
evaluated with respect to requirements, capacities and gaps in Sect 4 of the companion report 
D2.4.  Conclusions and final recommendations on the exploited data are proved in Sect 5 of 
D2.4. 

This report thus only provides the descriptions of the higher-level products, while the properties 
of these are presented in D2.4. 

This deliverable (D2.5) covers the data exploitation done on atmospheric data. Corresponding 
work on ocean/sea ice data and terrestrial/cryospheric data is presented in deliverables D2.2 
and D2.8, respectively. 

2. Data exploitation 
 
This section includes the description of the work done on data exploitation, as well as the work 
to format and characterize the data (determining coverage, resolution, uncertainty, etc.) in order 
to allow their thorough assessment. 
 

2.1 Unified measurements of black carbon in the Arctic as part of WMO-
GAW/IASOA/ACTRIS networks (FMI) 

 
The Arctic climate is very susceptible to aerosols. One of the most crucial aerosol quantity in 
the Arctic is the aerosol absorbing fraction, or Black Carbon (BC). Shindell and Faluvegi (2009) 
suggested that over two thirds of the Arctic surface temperature increase experienced during 
the last decades is attributed to changes in the atmospheric concentrations of sulphate and black 
carbon (BC) aerosols. Contrary to most of the planet, on snow and ice -covered Arctic the 
overlying clouds can cause a positive forcing and thus increasing the aerosols can in fact 
enhance the warming (Walsh and Chapman, 1998; Mauritsen et al., 2010). Of particular 
importance in the Arctic is also the snow and ice albedo reduction by BC and organics 
containing particles, which can influence the snow coverage by warming the atmosphere, 
reducing surface-incident solar energy, and reducing snow reflectance after deposition (Flanner 
et al., 2009). The overall trend of BC in the Arctic during the past decades shows to be 
decreasing (AMAP, 2015). This, however, is based on a very view long-term measurements in 
the Arctic BC. The latest report of the Arctic Monitoring and Assessment Programme on Short-
Lived Climate Forcers such as BC in the Arctic (AMAP, 2015) specifically highlights the 
importance of consistent, harmonized observations of the Arctic absorbing aerosols and the 
need for their integration in the existing networks and monitoring programs. 
 
Indeed, when BC is considered the methodology and the terminology are not well-defined 
concepts that makes comparison between modelling studies or other measurement locations 
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complicated (e.g. Petzold et al., 2013). The most commonly used instrument to measure aerosol 
BC in the Arctic is an aethalometer (Backman et al., 2017). With the benefit of being an easy-
to-operate and maintain, this instrument suffers from various artefacts. Until the last years, in 
the lack of full consensus on how to correct for these artefacts, only the level 0 (ie. raw data) 
were submitted to the WMO aerosol database in NILU. However, in the recent WMO/GAW 
recommendation for aerosols, a correction scheme along with a unified C0-factor to correct for 
aethalometer data to levels 1 and 2, is proposed (WMO, 2016).  This factor is 3.5. 
 
Our question in INTAROS is: How representative such a global correction scheme may be for 
the Arctic? To answer this question, aethalometer data from the stations being part of 
IASOA/GAW/ACTRIS programmes and networks were analysed for the same time period of 
2012-2014 and using the same methods (Backman et al., 2017). By comparing with the 
reference methods a unified C0-factor for the Arctic was determined. This factor was found as 
3.45, being thus in good agreement with the WMO/GAW global recommendation. In addition, 
a new method of data analyses aiming at reducing the noise in data was proposed. 
 
Consequently, using this new harmonized data series of Arctic BC, seasonal and spatial 
variability were analysed and published (Schmeisser et al., 2018). One important lesson learned 
was the vast variability in concentrations and seasonal behavior between different locations in 
the Arctic, calling for a need of a harmonized and sufficiently dense network of Arctic BC 
measurements. 
 

2.2 Cloud products from ceilometers (FMI) 
 
Clouds are integral to the Arctic climate, and the modelling of many other feedbacks in the 
Arctic system depends on the correct representation of clouds in numerical models, including 
their radiative impact (e.g. Curry et al., 1996), and how they respond to changes in sea ice (e.g. 
Taylor et al., 2016). 
 
Direct long-term observations of clouds are required to evaluate the model representation, but 
with insufficient observations, meteorological reanalysis is poorly constrained in the Arctic. 
Forbes and Ahlgrimm (2014) showed that the operational NWP model at ECMWF had 
temperature biases at the surface (2-m temperature) in excess of 10 K relative to surface 
SYNOP observations (Fig. 1). Depending on the choice of cloud scheme, these biases were 
displayed in either direction, with the original scheme having too much supercooled liquid 
distributed in a thick layer producing a warm bias, and the initial new prognostic scheme 
producing ice-only layers leading to a cold bias. The bias was much reduced once the prognostic 
cloud scheme was updated to produce ‘realistic’ supercooled cloud layers. Identifying the cause 
of this bias would have been difficult without direct ceilometer observations at Sodankylä, 
Finland, immediately highlighting the supercooled liquid cloud layer issue. 
 
Forbes and Ahlgrimm (2014) shows the importance of having separate liquid and ice prognostic 
variables in a GCM for the representation of mixed-phase cloud, but also that introducing more 
degrees of freedom to represent the variability of the real atmosphere can lead to an increase in 
model errors in certain regimes. They highlighted other potential aspects to address such as 
boundary-layer turbulence, cloud radiative properties, and whether the model cloud layer is 
decoupled from the surface as often as observed. 
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.
Figure 1. 2-m temperature (°C) over Northern Europe at 0000 UTC 4 Jan 2011 for (a) SYNOP 
observation analysis, and 60-h forecasts for (b) DIAG simulation, (c) PROG simulation, and 
(d) PROG+ simulation. Figure reproduced from Forbes and Ahlgrimm (2014), Fig. 10, 
courtesy of Monthly Weather Review 
 
This highlights that not only is cloud phase important, but so is the vertical cloud structure. For 
most of the troposphere, the combination of the cloud radar and lidar onboard the satellites 
Cloudsat and CALIPSO provide an excellent means of extracting the vertical cloud structure, 
and cloud occurrence at each height. Fig. 2 (from Liu et al., 2012) shows low cloud frequency 
of occurrence from a combined Cloudsat/CALIPSO product for the Arctic region, however, 
there are some limitations for this product, which are particularly relevant to the Arctic. Data is 
limited to below 82.2 degrees North, and detection of clouds below about 1 km is severely 
hampered due to the surface return (Chan and Comiso, 2013).  In addition, Cloudsat does not 
detect non-precipitating liquid clouds (Stephens et al., 2002) and CALIPSO suffers from 
intervening layers and multiple scattering close to the surface. 
 
Ground-based measurements of cloud occurrence suggest the frequency-of-occurrence of cloud 
below 1 km is also significant, an altitude range which is not present in the climatology given 
in Fig. 2. With passive satellite instruments also struggling with robust detection of low cloud 
in the Arctic, a means of verifying low-cloud satellite climatologies is necessary, especially 
when these particular clouds may have a large role in certain feedbacks in the Arctic system. 
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Figure 2. Low-level cloud frequencies in winter, spring, summer, and autumn from RL-
GEOPROF from 2006 to 2011. Figure reproduced from Liu et al. (2012), Fig. 8, courtesy of 
Remote Sensing of Environment. 
 
Another important issue for the Arctic is whether precipitation (whether in the form of drizzle, 
rain, or snow) evaporates before reaching the surface. Cloudsat is the only satellite instrument 
capable of monitoring light precipitation (Stephens et al., 2018), but due to the aforementioned 
‘blind zone’ within 1 km of the surface, it does not inform whether this precipitation reaches 
the surface or not. 
 
To tackle these issues with low cloud, INTAROS can utilize ground-based active remote 
sensing of cloud profiles by ceilometers. Major advances in solid state laser technology have 
enabled manufacturing of ceilometers (low-cost automated lidars) with sufficient sensitivity 
and robustness to provide much more than the cloud base height. These instruments provide 
reliable liquid cloud base detection from 30 m in altitude up to 7 km or more with vertical and 
temporal resolution better than 15 m and 30 s. They also provide the attenuated backscatter 
profile with the same resolution, which can be exploited to deliver new atmospheric products. 
 
Reliable calibration methods for ceilometers are available (O’Connor et al., 2004; Wiegner et 
al., 2014), which, together with harmonized post-processing (Kotthaus et al., 2016), means that 
operational data delivery and quality control at the network level is now possible. This has been 
demonstrated in the E-PROFILE program (http://eumetnet.eu/activities/observations-
programme/current-activities/e-profile/alc-network/) coordinated by EUMETNET. 
 



	
Deliverable	2.5		

 

Version	1.4	 Date:	20	May	2018		 page	8	

A new classification scheme is under development at FMI to enable full exploitation of the 
ceilometer attenuated backscatter profile (Fig. 3). The scheme incorporates an improved liquid 
cloud base detection algorithm suitable for detecting thin layers (e.g. Van Tricht et al., 2014), 
together with phase discrimination between liquid and ice to enable robust identification of 
supercooled liquid water layers. New developments have extended the classification scheme to 
include the diagnosis of warm and cold precipitation, where cold precipitation covers the 
continuum between ice and snow. This scheme has already demonstrated robust operation for 
icing applications. 
 
Fig. 3 highlights that that there are often cloud layers within 500 m of the surface, and that cold 
precipitation often evaporates before reaching the surface. The precipitation diagnosis 
immediately provides the capability to determine whether precipitation reaches the surface or 
not, and ongoing developments include the potential for determining precipitation rates in 
drizzle, rain and snow. 

 

 
 
Figure 3. Time-height plots of attenuated backscatter (upper panel) and the hydrometeor 
classification derived from it (lower panel) for 48 hours of data, 10-12 February 2018, from a 
Vaisala CT25K ceilometer operated by FMI in Tiksi, Russia. This example contains 
supercooled liquid layers with ice precipitating below, a characteristic feature of mixed-phase 
clouds in the Arctic. 
 
With forward operators for attenuated backscatter profiles now being developed by NWP 
centres (Geisinger et al., 2017; Warren et al., 2018), both weather forecasting and chemical 
transport models will benefit from data assimilation of the vertical profiles of attenuated 
backscatter from the ceilometers currently operating in the Arctic. To address data gaps, it has 
recently been demonstrated that current automated lidar systems meet the low power and 
environmental constraints necessary to operate in the Arctic and are robust enough to be 
deployed remotely on the ice, or even on floating buoys (Mariage et al., 2017). 
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In addition, there are ceilometers deployed for non-research reasons. For pilots to land in poor 
visibility, airports typically operate an instrument landing system, with Category 3 providing 
the most support. The WMO and International Civil Aviation Organisation (ICAO) specify that 
automated systems capable of producing cloud coverage in oktas and cloud base altitude are 
required for Category 2 and 3 landing systems, and recommended for Category 1 (ICAO, 2010). 
This cloud information is provided by ceilometer, hence ceilometers are a requirement at most 
airports and integrated into the Automated Weather Observing System (AWOS), specifically 
AWOS level III and above. This means that there is an additional ‘network’ that could be 
exploited. Note, however, that current usage is limited to the provision of cloud coverage and 
cloud base height only, with no profile information available, and that changes would require 
stringent testing to ensure that aviation safety is not compromised. 

2.3 Atmospheric Integrated Water Vapor over Arctic sea ice and open water 
(UB) 

 
Atmospheric water vapor is an important constituent of the global hydrological cycle; it 
transports humidity and heat and it is the most important greenhouse gas. While over open 
ocean total precipitable water vapor (PW) is routinely surveyed with satellite microwave 
imagers like SSMI(S) and AMSR-E/2, large-scale observations in polar regions with low water 
vapor burden are much more difficult because of the low water vapor signal and, over sea ice 
and land ice, the high and highly varying surface emissivity. However, a procedure has been 
suggested exploiting the data of the satellite humidity sounders SSM/T2, AMSU-B and MHS 
aboard the DMSP, Aqua and Metop satellites or satellite series, respectively (Miao et al., 2001, 
Melsheimer et al., 2008). 
 
The basic idea is to use three channels of neighbouring frequencies. The surface contribution 
in the observed brightness temperatures is excluded by considering the ratio of brightness 
temperature differences. The resulting quotient is closely related to the atmospheric opacity 
from which in turn the PW can be inferred. The original version [Miao et al., 2001] used the 
three dual-band channels centred around the water vapor absorption line near 183 GHz (183 ± 
3, ± 5, and ± 7 GHz) plus the 150 GHz channels in two different 3-channel combinations for 
the ranges 0 to 1.5 kg/m2 and 1 to 7 kg/m2, resp.. Later, the procedure has been adapted to the 
microwave humidity sounders AMSU-B and MHS with channels at 183 ± 1, ± 3, and ± 7 GHz 
[Melsheimer et al., 2008]. Moreover, the method has been extended to also use the 89 GHz 
channel by introducing knowledge about the emissivity of Arctic sea ice. This allows for 
retrieval up to 14 kg/m2 (Scarlat et al., 2017). 
 
A procedure to combine the two data sets is currently being prepared, and based on this a 
seamless PW data set will be produced covering seamless the Arctic open ocean, sea ice and 
land ice. Fig. 4 shows a demonstration example with data of 1 Jan 2006. Note that this is the 
first example of PWV data covering simultaneously the open ocean, sea ice and land ice daily 
and also during polar night. While the microwave imager based method is well established and 
validated, more validation work is required for the microwave sounder based product. It is 
currently being validated, adjusted and made coherent with the microwave imager based 
retrievals prior to combine both retrievals into a common product. After producing a data set 
of several years the procedure will be implemented for near real time production. 
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Figure 4. AMSR-E precipitable water vapour (left) and merged precipitable water vapour 
from AMSR-E and AMSU-B (right) as of 1 Jan 2007. 
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