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© 2022 IBM Corporation 4

Product?

Retrosynthesis?

Yield?

Related 
reactions?

Experimental 
conditions?



AI and chemical reactivity
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State-of-the-art

Applicability?

Usefulness?

End user?

Accuracy
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Applicability?

Usefulness?End user?

Training data must cover adequate chemistry

What models are needed? How are they used?



AI and chemical reactivity – data sources
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- Patents (USPTO [1], Pistachio [2], SciWalker [3]) 
- Scientific publications
- Proprietary reactions (industry)
- Publishers (Reaxys, CASFinder, Thieme)
- Others (Open Reaction Database [4])
- Etc.

[1] https://dx.doi.org/10.6084/m9.figshare.5104873.v1
[2] https://www.nextmovesoftware.com/pistachio.html
[3] https://www.sciwalker.com
[4] https://open-reaction-database.org

https://dx.doi.org/10.6084/m9.figshare.5104873.v1
https://www.nextmovesoftware.com/pistachio.html
https://www.sciwalker.com/
https://open-reaction-database.org/
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AI and chemical reactivity – going beyond patents
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- Patent data:
- Good coverage of mid-size organic compounds
- Good coverage of common organic reactions
- essential for development of data-driven models

- Limitations:
- Reporting errors
- Incorrect extraction
- Reproducibility concerns
- Limited coverage of reaction space



AI and chemical reactivity – going beyond patents
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- If patent data is not enough:
- Fine-tuning models for specific application
- Push for more general models

- Open questions:
- What data sources?
- Data safety?

- Study: reactivity models trained on curated data



AI and chemical reactivity – IBM RXN & Thieme SOS
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Combine IBM RXN models with curated data from Thieme
- How useful are the predictions for chemists?
- How valuable is the curated data for ML applications?
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Curated data (Thieme)
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Science of Synthesis

~450,000 reactions
Collections & volumes covering 

diverse topics in chemical 
synthesis

Synfacts

~16,000 reactions (2017-2018)
Highlights in chemical synthesis

Focus on total synthesis



Data
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Synfacts 2021; 17(12): 1314
DOI: 10.1055/s-0041-1737090
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A .  V . G A V A I *  E T  A L .  ( B R I S T O L  M Y E R S  S Q U I B B  C O M P A N Y ,  P R I N C E T O N ,  U S A )
Discovery and Preclinical Pharmacology of an Oral Bromodomain and Extra-Terminal (BET) Inhibitor Using Scaffold-Hopping 
and Structure-Guided Drug Design
J. Med. Chem. 2021, 64, 14247–14265, DOI: 10.1021/acs.jmedchem.1c00625.

Synthesis of BMS-986158

Significance: BMS-986158 is an inhibitor of the 
bromodomain and extra-terminal (BET) family of 
adaptor proteins that are involved in the transcrip-
tional regulation of key oncogenes. It has entered 
phase 1/2a clinical trials in patients with advanced 
cancers and hematologic indications including 
myelofibrosis.

Comment: Key steps in the small-scale discovery 
synthesis of the 5H-pyrido[3,2-b]indole core of 
BMS-986158 are (1) the copper-catalyzed oxidative 
coupling of the chloropyridine C with the boronic 
acid D (Chan–Lam coupling) and (2) the palladium-
catalyzed C–H activation reaction E → F.
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Science of Synthesis Reference Library 
Stereoselective Synthesis Volume 1, section 1.13.1.2

1-Methyl-3-(octan-2-yl)imidazolidin-2-one (2, R1 = Me); Typical Procedure:[21]

A suspension of 1-methylimidazolidin-2-one (20 mg, 0.20 mmol), oct-1-ene (1.3 g,
12 mmol), (AuCl)2[(S)-1] (8.0 mg, 5.0 !mol), and AgOTf (2.6 mg, 10 !mol) in m-xylene
(0.5 mL) was stirred at 100 8C for 48 h. The crude mixture was filtered through a plug of
silica gel, concentrated, and chromatographed (hexanes/EtOAc 5:1 to 1:1) to give a color-
less oil; yield: 37 mg (86%); 76% ee.

1.13.1.2 Cyclization of Aminoalkenes

1.13.1.2.1 Using Chiral Alkali Metal Based Catalysts

The first reports on base-catalyzed additions of amines to alkenes date back 60 years. In
particular, multiple catalyst systems utilizing alkali metals have been reported.[9,10,13]

However, application of chiral alkali metal complexes in the asymmetric hydroamination
of nonactivated aminoalkenes has drawn little attention to date.[22,23] Attempts to perform
asymmetric hydroamination utilizing chiral alkaline earth metal complexes have been
thwarted by facile Schlenk equilibria of the metal species in solution.[24,25]

The proline-derived dimeric diamidobinaphthyl dilithium salt (S,S,S)-3, which is pre-
pared via deprotonation of the corresponding tetraamine with butyllithium, catalyzes
asymmetric intramolecular hydroamination reactions of aminopentenes 4 at or below
ambient temperatures to form pyrrolidines 5 with enantioselectivities of up to 74% ee
(Scheme 3).[22,26] The enantioselectivities may be improved to up to 85% ee by lowering
the reaction temperature to –10 8C.[26] The unique reactivity of (S,S,S)-3 is believed to derive
from the close proximity of the two lithium centers chelated by the proline substituents,
because more simple lithium amides require significantly higher reaction temperatures
and give inferior selectivities.

Scheme 3 Lithium-Catalyzed Asymmetric Hydroamination/Cyclization of
Aminoalkenes[22,26]
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R1 R2 Catalyst (mol%) Temp (8C) Time (h) Yield (%) ee (%) Ref

Me Me 2.5 22 45 93 67 [22]

(CH2)5 5 20 2 82 74 [22]

(CH2)5 2 –10 22 84 85 [26]

1.13.1 Hydroamination of Simple Alkenes 691

for references see p 727



Data - summary
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PDF, XML and RDF files

Science of Synthesis

76,011 documents

Synfacts (2017-2018)

2,597 documents



Target reaction format
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Reaction SMILES:
C(=NC1CCCCC1)=NC1CCCCC1.ClCCl.CC1(C)CC(=O)Nc2cc(C(=O)O)
ccc21.Nc1ccccc1>>CC1(C)CC(=O)Nc2cc(C(=O)Nc3ccccc3)ccc21

Reagent
Solvent

Reactants



Data Processing
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Steps to produce training data:

1. Conversion to reaction SMILES

2. Standardization

3. Sanity checks and filters



Processed Data
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Science of Synthesis

318,383 reactions

Synfacts (2017-2018)

13,818 reactions



Processed Data
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Science of Synthesis

318,383 reactions

Synfacts (2017-2018)

13,818 reactions

Pistachio

~2M reactions
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Split -> “sequences of atoms”

à Borrow methods developed for human languages 

Atoms as letters, molecules as words



Training the models
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Forward reaction prediction and retrosynthesis



Patent data

SOSSynfacts

Training the models

© 2022 IBM Corporation 23

3 sources included for training (weighted differently)



Model accuracy (top-1)
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Forward reaction prediction Retrosynthesis

Patent-only: 22.9% Patent-only: 1.1%

Patent + Thieme: 69.5% Patent + Thieme: 17.8%
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Forward model: inspection of a few predictions
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Correct product predicted



Forward model: inspection of a few predictions
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Correct product predicted



Forward model: inspection of a few predictions
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Invalid SMILES: 1.0% of predictions

Predicted productThieme reaction



Forward model: inspection of a few predictions

© 2022 IBM Corporation 29

Predicted product

Predicted product



Forward model: inspection of a few predictions
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Predicted product



Forward model: inspection of a few predictions
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27%: identical molecular formula

stereochemistry

tautomers

regiochemistry



- What we asked:

- Does curated data help?

- What would make the models even more useful?

- Feedback:

- Curated data helps! Considerable difference to patent-only.

- There are still some errors

- Comments on diversity, usability (see next slides)

Expert feedback
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Related reactions

© 2022 IBM Corporation 33

“It would be nice to see literature references for similar/related reactions.”



Diversity of predictions

© 2022 IBM Corporation 34

“The retrosynthetic sequences lack variety.”

SOS

Synfacts

Patent



Photochemical and thermal reactions
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“Photochemistry and unimolecular reactions do not work.”



Photochemical and thermal reactions
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Tantillo, Seeman, Chem. Eur. J. 
2021, 27, 7000 – 7016 

🙅‍‍‍

🙅‍‍‍



Photochemical and thermal reactions
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🙅‍‍‍

Closest reactions come 
from patents and are 
questionable



To keep in mind: still some work to do!
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- “The configuration of the 
proposed epoxide is wrong!”

- “The computer model does 
not seem to know/understand 
OH-directed epoxidations.”

- “The model does not consider 
a cycloaddition (Hetero Diels-
Alder) reaction.” 



Challenges: Multiple products

© 2022 IBM Corporation 39



Challenges: Compound representation
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PDF Extracted structure

- Hydrogen atoms added to P
- Standardization failing 

(hypervalent chlorine)



Challenges
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- Multiple products

- Compound representation

- Standardization, normalization

- Reagents with no SMILES

- Multiple steps drawn as one reaction

- Etc.

Note: Most of these challenges apply to all datasets!
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- Curated data does have value for ML

- Handling of proprietary data for ML:
- Data safety must be preserved

- Train models on trusted servers? Federated learning?

- Address concern of data leaking

- Possibility to select which data to train new models on

- Keep listening to and learning from chemists! 

Where do we go from here?
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