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Abstract 

We explore the potential correlation between income and exposure to air pollution for the city of Madrid, Spain, 
and its neighboring municipalities. Statistical analyses were carried out using electoral district level data on gross 
household income, and NO2 and PM2.5 concentrations in air obtained from a mesoscale air quality model for the 
study area. Household income data were summarized at the grid level through a zonal statistics operation, carried 
out at four different cell resolutions for both 1 x 1 km and 2 x 2 km grids in order to account for modifiable aerial 
units and data conversion uncertainty. Our findings point to a clear negative correlation between level of house-
hold income and exposure to both pollutants, which was clearly present at all resolutions and both grid sizes, 
though with a high degree of variability depending on the resolution and grid size chosen. The strongest associ-
ation between income and air pollution was found for minimum gross household income (MGHI) and NO2, and 
MGHI and PM2.5. The global regression models explained between 10% and 20% of the variance for MGHI and 
NO2, and between 12% and 19% of the variance for MGHI and PM2.5, depending on resolution and grid size 
chosen. Standard residual error varied between 0.55-0.58 for MGHI and NO2 and between 0.28-0.30 for MGHI 
and PM2.5. To address the high degree of variability in the models we explored the spatial heterogeneity of the 
correlation effect, finding stronger decrease in contamination exposure as minimum rent increases in the north 
of the city of Madrid and the municipalities of Tres Cantos and Colmenar Viejo. In the centre and south of the 
metropolitan area, the slope of the regression line is shallower. This may be partly due to the fact that contaminant 
concentrations in the centre of the study area are uniformly higher than elsewhere, offering less opportunity to 
reduce exposure within this area. In the east of the metropolitan area no relationship between the variables was 
detected at the scale of the analysis. Our results suggest income-based inequality in exposure to air pollution in 
Madrid. They highlight the usefulness of electoral district level income data and simulated concentrations from 
Eulerian photochemical air quality models (a Community Multiscale Air Quality model – CMAQ, in this case) 
for understanding environmental inequality. Further work would be needed to explore the patterns observed at 
the district and neighborhood level. 

 

Keywords: Environmental Justice; Air Pollution; CMAQ model; Inequality; GWR 

 

1 Introduction 

Outdoor air pollution is known to cause serious health impacts and to increase mortality, and is considered 
by the World Health Organization (WHO) as the world’s greatest threat to environmental health (Izquierdo et 
al 2020, WHO 2016). The proportion of the global population living in urban areas is on the rise and expected 
to increase further in future (ref). Population exposure, and consequently increased mortality in urban areas, is 
therefore likely to rise unless action is taken. Improving air quality in cities is therefore an important priority 
for international bodies like the WHO and the European Union (EU). Increasingly the issue is being taken up 
by city authorities, e.g. (ref, ref, ref). Specifically, air pollution refers to high ambient air concentration levels 
of specific contaminants, usually from motorized vehicles and the burning of fossil fuels for energy and heat 
(Gurjar et al., 2014.; World Health Organization (WHO), 2013). Particulate matter (PM), nitrogen dioxide 
(NO2) and ground-level ozone (O3), are regarded as especially dangerous for human health (EEA 2018). Given 
the great diversity of heating and transport systems in cities, as well as climatic factors, ambient air concentra-
tion levels vary widely in time and space. Air quality models, such as Community Multiscale Air Quality Mod-
els (CMAQ), offer an opportunity to examine this variability at medium-high spatial resolution (ref).  

At the same time, most cities today tend to be spatially segregated by socioeconomic group. Property prices 
tend to be higher in well-connected areas with high quality amenities (ref), and lower income residents tend to 
be forced out of these areas to the urban periphery (ref). Poor air quality and its related drivers (proximity to 
roads and industry) is likely to be a factor in residents’ neighborhood choice, with the least well-off being least 
able to choose (ref). In this sense, many studies have sought to investigate whether there is a relationship 
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between socioeconomic factors and exposure to air pollution, reflected by various indicators, e.g. immigration 
status, race, age profile, or educational level (Moreno Jiménez & Cañada Torrecilla, 2007, Giang & Castellani, 
2019, Prieto-Flores et al., 2021). In this study we investigate whether any correlation can be found between 
lower incomes and higher levels of air pollution in the city of Madrid and its neighboring municipalities. To do 
this, we use simulated concentrations output from a CMAQ model for two airborne pollutants, NO2 and PM2.5 

together with freely-available data on gross household income at the level of the census district.   

2 Study Area 

The city of Madrid is an urban municipality in centre of Spain with an area of 604.3km2 and over 3 million 
inhabitants (Figure 1).  

 

Figure 1. The municipality of Madrid (red) and suburban municipalities comprising the metropolitan area. 
Source: Own work based on data from Spanish National Geographical Institute; classifications according to 

Lozano (2002) 

The city council has estimated that approximately 2.5 million vehicles start or finish in the city of Madrid on a 
typical weekday, with around 40 million km being driven on a typical day in the city (Izquierdo et al 2020); 
this inevitably generates major concentrations of airborne contaminants. Air pollution in Madrid causes an 
estimated 88 deaths per year from particulate matter (PM) and 519 from nitrogen dioxide (NO2), which is 
equivalent to 4 deaths per 100,000 inhabitants in the first case, and 23 deaths per 100,000 cases in the second 
(Izquierdo et al 2020). Within the municipality of Madrid it has been estimated that 74.4% of all local NO2 
emissions (i.e. those arising from within the city itself), are attributable to road traffic (Madrid City Council 
2019). Like many modern cities, the core urban area comprising the municipality of Madrid is surrounded by 
adjacent commuter towns which are home to large populations attracted by easy access to the city centre and 
comparatively lower property prices. These adjacent municipalities comprise the metropolitan periphery (Co-
rona Metropolitana on Figure 1) (Ballesteros & Berzal, 2002), and are important centers of population and 
industry, but also strongly residential in character, and highly unequal socioeconomically. Two such munici-
palities, Pozuelo de Alarcón and Boadilla del Monte, to the west of the city, contain several census districts 
with gross household income levels among the highest in Spain (all 129,750€) (INE 2022, data from 2019). 
Four others, Alcalá de Henares to the east of the city, and Parla, Getafe and Leganes to the south each contain 
a census district with household incomes among the lowest in Spain (all < 25,000€) (INE 2022, data from 2019).   

The high population density in the metropolitan periphery together with the high volume of motorized vehicle 
journeys at peak times leads to traffic congestion at key entrances, exits and intersection points into the city 
(traffic-related hotspots: see, e.g. Quaassdorff et al 2016) NO2 and PM2.5 concentrations tend to be higher at 
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these points, as well as on the roads and nearby areas, showing that road traffic is clearly the main contributor 
to air pollution levels in Madrid (Borge et al 2014) However, the typical daily meteorological cycle also plays 
an important role in resulting ambient concentration levels, especially the late evening NO2 peak (Artiñano et 
al 2003, Borge et al 2018)     

For these reasons, we chose a study area including the whole metropolitan area, incorporating both the munic-
ipality of Madrid and the metropolitan periphery described above (Figure 1). The study area therefore includes 
income disparities that are among the largest in Spain, as well as key urban pollution hotspots.         

3 Data and Methods 

Data comprised two different groups: 1) air pollution concentrations, and 2) gross household income data in 
Euros collected between 2015 and 2018. 

3.1 Air pollution data 

For air pollution, we used spatially-resolved simulated concentrations of nitrogen dioxide (NO2) and particulate 
matter less than 2.5 micrometers in diameter (PM2.5), output from the Community Multiscale Air Quality Model 
(CMAQ) for Madrid. These two pollutants have already been used in other articles to measure social inequality 
(Rosofsky et al., 2018) and are the most relevant regarding health impacts of air pollution specifically in Madrid 
(Izquierdo et al., 2020). The CMAQ model estimates the concentration in µg/m3 of NO2 and PM2.5 for the 
year 2015 for the whole of the Community of Madrid. These data take the form of a square grid of 1km² cells, 
in which each cell in the grid is a unique georeferenced polygon object in vector GIS format with attached 
attribute containing the estimated concentration value.  For these pollutants, the World Health Organisation 
(WHO) establishes a series of limit values according to their danger to humans, with the maximum values to 
which a person can be exposed in a 1 year time period being 40 µg/m3 for NO2 and and 25 µg/m3 for PM2.5 

(World Health Organisation (WHO), 2021). European Directive 2008/50/EC establishes annual maximum per-
mitted exposure levels of 40 µg/m3 for NO2 and 20 µg/m3 for PM2.5, both of which limits are replicated in 
Spanish law (RD 102/2011).    

Figure 2 shows the spatial distribution of both pollutants in the study area as estimated by the CMAQ model. 
For NO2 (Fig 2a) concentrations tend to be found in the centre of the study area in the city of Madrid and 
decrease as the distance from the centre increases. The lowest NO2 concentration levels are found in the north-
ern part of the Madrid metropolitan area and in the east of the municipality of Alcalá de Henares. For PM2.5 
(Fig 2b), the central area shows concentrations of between 10 and 15 µg/m3, with some areas in the northeast 
and south showing higher concentrations, between 15 and 25 µg/m3. The high estimated concentration values 
in the south correspond to the Madrid district of Villa de Vallecas, and the adjacent metropolitan municipalities 
of Getafe, Pinto and Leganés. Although these concentrations are not found in the census districts, which may 
be because these emissions come from road traffic or from industries located in these areas. As with NO2 con-
centrations, the lowest values are found in the northwest and east of the municipality of Alcalá de Henares. 
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Figure 2. Map of concentrations of NO2 (left) and PM2.5 (right) pollutants according to World Health Organi-

sation (WHO) limit values (Source; CMAQ). 

In view of the limited coverage provided by air quality monitoring stations, these simulated concentrations 
represent the best available information on the spatial extent of these two pollutants. Nonetheless, as with any 
simulation model output, these data sources should be approached with caution, as a result of the unavoidable 
uncertainty and error arising from the modelling process.    
 
3.2 Household Income data 

For household incomes, we used the Atlas of Household Income of the Spanish National Statistics Institute 
(INE 2022). We extracted gross household income (GHI) data at the level of the census tract, the highest res-
olution data currently publicly available for the year 2015, to match the date for which simulated air pollution 
data were available (Figure 3). Where data were not available for the year 2015, the nearest available date 
was chosen (2016,2017 or 2018). Census tracts are the statistical unit inferior to the municipality that is the 
basis of the statistical operations of National population censuses. Every municipality is divided into one or 
more census tracts and there is no part of any municipality that does not belong to a census tract. Census 
tracts vary in size according to the number of inhabitants, with the most populous municipalities having many 
more census tracts than those with few inhabitants. Madrid municipality has over 2400 census tracts, the pe-
ripheral municipality of Boadilla del Monte (Figure 1) has 27, and Zarzalejo, a rural municipality, has just 
one. In our study area, the smallest census tract is just 0.6 ha, the largest 1762 ha, though large census tracts 
are very uncommon (median approx 4.4 ha).  
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Figure 3. A (left) Distribution of annual gross income per household (GHI) in the metropolitan area and the 
city of Madrid (Source; Instituto Nacional de Estadística [INE]). Census tracts without information on gross 

household income (e.g. Retiro Park) marked in dark grey. B (right) Boxplot of GHI in the study area. 

GHI in the study area varies between 12,153€ and 128,571€, with median 37,940€. With SD=22,282€ and 
mean=45,574€ this gives a coefficient of variation of 48.89%. Figure 3 shows the high degree of variability 
between incomes in the study area, with a noticeable dividing line from lower left to upper right. The highest 
incomes (upper 10%, lightest colour) are uniformly located to the north of this line, while the lowest incomes 
(lower 10%, dark red) are all found to the south of this line. In the core city at the centre of the study area, 
census tracts are smaller, reflecting higher population density, and the pattern is more heterogenous, with a 
mixture of lower and higher income neighbourhoods.   

 

3.3 Data preparation and statistical analysis 

First, we transformed the vector polygon coverage of GHI by census tract obtained from INE into raster format 
(rasterization). We used a zonal statistics operation in GIS to extract and summarize the pixel level GHI data 
obtained from the rasterization operation for each km2 of the CMAQ model grid. The zonal statistics operation 
produced four outputs for each km2: 1) mean GHI within each km2; 2) maximum GHI within each km2; 3) 
minimum GHI within each km2; total GHI within each km2; 4) minimum GHI within each km2.  

We then carried out ordinary least squares regression (OLS) using simulated mean annual NO2 concentration 
for the year 2015 as the dependent variable (y), and each of the four variants of GHI as the independent variable 
(x). The process was repeated using simulated mean annual PM2.5 concentration for the year 2015 as the de-
pendent variable (y). Since only minimum GHI (minGHI) produced a significant response for p < 0.01 with > 
10% of the variance explained (for both NO2 and and PM2.5) and the GHI variants are clearly not independent 
from each other, a multiple regression model was not used. To ensure normal distribution of the residuals – a 
key assumption of linear regression – a log transformation was performed on both dependent and independent 
variables. 

To account for the Modifiable Aerial Unit Problem (Openshaw 1984), where statistical information can be 
shown to depend on the size of the zone in which it is sampled or reported, as well as uncertainty derived from 
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the rasterization operation (Diaz Pacheco et al 2018), we: 1)  rasterized the GHI vector layer at four different 
resolutions – 48m, being the most appropriate cell size for the GHI vector layer according to Piwowar’s rule 
(reported by Congleton et al), 100m, 200m and 500m; 2) we summarized the zonal statistics from GHI raster 
maps at 48m, 100m, 200m and 500m resolutions using a larger vector grid obtained by grouping pairs of indi-
vidual km2 together create a 4km2 grid. In this way, both the effect of cell resolution of the rasterization of the 
GHI data as well as the effect of the size of the reporting units were tested.  

As noted above, for both the simulated concentrations of NO2 and PM2.5 (Figure 2) and GHI (Figure 3) values 
appeared to cluster together in particular locations. This phenomenon, known as spatial autocorrelation, is vir-
tually ubiquitous in geographical data, but can be problematic if not accounted for in regression models. In 
particular, empirical studies have shown that OLS regression on spatially autocorrelated data leads to low pre-
cision (high variance, giving poor model fit) and Type 1 errors (claiming a correlation where no such correlation 
exists, or claiming no correlation where a correlation does exist) (Hazigüzeller 2020). Spatial autocorrelation 
was formally confirmed for NO2 and PM2.5 and min, max, mean and sum GHI using a Moran’s I test (Gimond 
2019: appendix I). To understand the implications of spatial autocorrelation across the study area the relation-
ship between NO2 and min GHI and PM2.5 and min GHI were explored using Geographically Weighted Re-
gression (GWmodel package in R). GWR is a well-known technique designed to overcome the limitations of 
global regression approaches where variables are highly spatially autocorrelated, and has been used in many 
comparable studies, especially in public heath. For example: Su et al (2017) examined the spatial variation of 
the relationship at district scale between indicators of social deprivation and non-communicable chronic dis-
eases; Cheng and Truong (2012), used GWR to explore the spatial variation of place-level disadvantages and 
obesity in Taiwan, Morrissey et al (2015) explored the spatial variability in the relationship between long-term 
limiting illness and area-level deprivation at the city scale. In this study, the GWR approach described by 
Brunsdon (2015) was followed. The approach involves dividing the study area up into local circular windows 
known as kernels, in which the diameter of the circle is known as the bandwidth, and carrying out individual 
local regressions within each kernel. Data points with the kernel are weighted according to their distance away 
from the centre of the kernel, giving them declining influence in the regression equation as distance increases 
(Brunsdon 2015). The smaller the kernel bandwidth, the smaller the dataset included in the regression equation. 
Clearly, there is a tradeoff between bandwidth and reliability, since a kernel bandwidth equal to or greater than 
the size of the study area may add no information that cannot be obtained through the global regression model, 
while a very small bandwidth may give unreliable results due to the small number of data points included in 
the regression equation. The problem can be addressed by estimating the standard error of the analysis at dif-
ferent bandwidths. GWR analysis was carried out for 10,000, 5,000 and 2,500 metre bandwidths, and standard 
error was computed for each set of results using the bootstrapping technique (Brunsdon 2015).       

4 Results 

4.1 Ordinary least squares regression 

Global level OLS regression revealed a clear negative correlation between level of household income and ex-
posure to both NO2, and PM2.5. Although the model goodness of fit did vary depending on the resolution and 
grid size chosen, the correlation was clearly present at all resolutions and both grid sizes (Table 1). The strongest 
association (highest coefficient of determination R2 and lowest residual standard error RSE) between income 
and air pollution was found for minimum gross household income (MGHI) and NO2, and MGHI and PM2.5 

(Figure 4). The global regression models explained between 10% and 20% of the variance for MGHI and NO2, 
and between 12% and 19% of the variance for MGHI and PM2.5, depending on resolution and grid size chosen 
(Table 1). Standard residual error varied between 0.55-0.58 for MGHI and NO2 and between 0.28-0.30 for 
MGHI and PM2.5. Though the 2km x 2km grids do show an apparent improvement in model fit, it should be 
remembered that the original simulated concentrations from the CMAQ model were generated for a 1x1km 
grid. Greater spatial generalization in this case departs from the original data but improves fit by eliminating 
outliers. Having established that the correlations are reliable at all resolutions and both grid sizes, the 1km x 
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1km grid was used with the 48 x 48m resolution GHI data for the GWR analysis, being the original model grid 
size and the recommended resolution according to Piwowar’s rule (Congleton 1997). As the best performing 
variable in the OLS analysis, only MGHI was retained as the independent variable in the GWR analysis.   

 

Table 1: Results of the OLS regression for minimum household income (MGHI) for different resolutions and 

grid sizes. All p < 0.0001. The name convention in the first column “NO2renta1_1_100clip” refers to the pol-
lutant used (e.g. NO2) as the dependent variable (yvar), followed by the grid dimensions (1_1 or 2_2), followed 
lastly by the cell resolution of the rasterized income map from which data were extracted (48,100,200 or 500).  

 

Figure 4. A (left): Scatter plot of Minimum GHI (x-axis) against NO2 (y-axis) for analysis of 1km x 1km grid 

 Analysis  Model  Coefficient  R2  RSE  dfree       F‐statistic 

1  NO2renta1_1_100  yvar ~ xmin  ‐0.482  0.137  0.569  1878  297.759

5  NO2renta1_1_200  yvar ~ xmin  ‐0.464  0.127  0.572  1878  273.417

9  NO2renta1_1_48  yvar ~ xmin  ‐0.489  0.14  0.568  1878  306.373

13  NO2renta1_1_500  yvar ~ xmin  ‐0.428  0.103  0.58  1878  216.674

17  NO2renta2_2_100  yvar ~ xmin  ‐0.607  0.196  0.548  502  122.353

21  NO2renta2_2_200  yvar ~ xmin  ‐0.585 0.18 0.553 502  110.192

25  NO2renta2_2_48  yvar ~ xmin  ‐0.592 0.188 0.551 502              116.45

29  NO2renta2_2_500  yvar ~ xmin  ‐0.58 0.17 0.557 502  102.872

33  PM25renta1_1_100  yvar ~ xmin  ‐0.251  0.139  0.294  1878  303.087

37  PM25renta1_1_200  yvar ~ xmin  ‐0.248  0.135  0.295  1878  293.933

41  PM25renta1_1_48  yvar ~ xmin  ‐0.254  0.141  0.294  1878  308.491

45  PM25renta1_1_500  yvar ~ xmin  ‐0.24  0.121  0.297  1878  258.155

49  PM25renta2_2_100  yvar ~ xmin  ‐0.306  0.185  0.286  502  114.268

53  PM25renta2_2_200  yvar ~ xmin  ‐0.3 0.176 0.288 502  107.085

57  PM25renta2_2_48  yvar ~ xmin  ‐0.3 0.18 0.287 502  110.171

61  PM25renta2_2_500  yvar ~ xmin  ‐0.292 0.161 0.29 502  96.005
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with GHI data from 48m x 48m raster (Table 1, #9), with OLS regression line fit (red). B (right): As A, for 
PM2.5 (y-axis) (Table 1, #41).  

3.2 Testing for spatial autocorrelation 

Moran’s I statistic was applied using the Monte Carlo simulation method described by Gimond (2019) and all 
variables were found to be highly spatially autocorrelated at all cell sizes and resolutions (p < 0.01). The low 
precision of the global regression models (Table 1) is likely to be at least partly due to the spatial autocorrelation 
phenomenon.    

3.3 Geographically Weighted Regression (GWR) 

To explore the degree of variation across the study area implied by the spatial autocorrelation test, we used the 
coplot function described by Brunsdon (2015) to split the study area into equal sized panels and visualize the 
relationships in each part of the study area using the separate panels. The coplots (Figure 5) show a steeper 
regression line in the central northern part of the study area (top centre), and a much shallower one elsewhere, 
with the tendency being flat or even slightly reversed at the easternmost extreme (right centre). This indicates 
a steeper rate of decrease in concentrations of contaminants as minimum income increases in the north of the 
study area, and a relationship which is either absent or undetectable in the east. There is little difference in the 
pattern between either of the two contaminants. Also notable in both plots is the smaller spread of the y-axis 
data, corresponding to NO2 (Fig 5A) and PM2.5 (Fig 5B), in the centre of the study area where nearly all con-
tamination concentrations are high, compared especially to the upper panels where there is more variation in 
contamination concentrations, with a larger number of lower values indicating cleaner air to the north of the 
study area.  



 

    
 
 

 

 

 

Figure 5. Left: A: coplot for NO2 indicating variation in regression relationships across the study area: Right: B: coplot for PM2.5 indicating variation 
in regression relationships across the study area. 



 

 
The coplots confirmed the impression of high spatial heterogeneity indicated by the Moran’s I test. The GWR 
results allowed this phenomenon to be explored in more detail, indicating a much greater range of variation in 
the regression coefficients that could be seen from the global OLS results (Table 2).  
 
Analysis Variables (y ~ x) Coefficient Coeffi-

cient Min 
Coefficient 
median 

Coefficient 
Max 

Global OLS NO2 NO2  ~ MinGHI  ‐0.489 _ _ _ 
GWR NO2 BW 10000 NO2  ~ MinGHI _ -0.602 -0.226 0.396 
GWR NO2 BW 5000 NO2  ~ MinGHI _ -0.809 -0.072 0.895 
GWR NO2 BW 2500 NO2  ~ MinGHI _ -1.160 0.006 1.512 
Global OLS PM2.5 PM2.5  ~ MinGHI  ‐0.254 _ _ _ 
GWR PM2.5 BW 10000 PM2.5  ~ MinGHI _ -0.291 -0.1 0.304 
GWR PM2.5 BW 5000 PM2.5  ~ MinGHI _ -0.455 0.011 0.594 
GWR PM2.5 BW 2500 PM2.5  ~ MinGHI _ -0.678 0.056 0.531 

     
Table 2: Results of GWR analysis, in comparison with results of OLS regression. 

 
While the global OLS regression equation estimated a coefficient value (m in the linear regression equation 
y=mx+c) across the whole study area of -0.489 (NO2) and -0.254 (PM2.5), GWR coefficient estimates unsur-
prisingly vary much more widely. For every one unit of change to the variable MinGHI, at bandwidth 10000m, 
the average increase in the response variable NO2 or PM2.5 varies from -0.602 to 0.396 (NO2) and -0.291 to 
0.304 (PM2.5) (Table 2). As the table shows, the variation increases as bandwidth decreases. Though these 
values are not intuitively meaningful because of the log transformation, the change of sign indicates an im-
portant difference in the regression line depending on the specific locality investigated. This analysis provides 
more detail than we could obtain from the coplots, and reliable quantification of the degree of variation in the 
relationships explored. 

 
Figure 7. GWR results for NO2log~minlog (left) and PM25log~minlog (right), for each bandwidth. In both 

cases, the sharpest decline in contaminant concentrations as minimum income per household increases (steep-
est trendline) are found in the north and central parts of the study area. Reducing the bandwidth seems to pro-
duce more highly resolved patterns, however, the extreme variation in the coefficient estimates across band-

widths indicates a high level of uncertainty. 
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The plots of these results (Figure 7) clearly shows variation in the relationship between contaminant concen-
trations and minimum income, with increasing minimum income leading to a steeper fall off in contamination 
in the northern and central parts of the study area.  Although smaller kernel bandwidths seem to produce more 
highly resolved patterns, the extreme variation in the coefficient estimates across bandwidths (Table 2) indicates 
a very high level of uncertainty. To investigate the reliability of the GWR analysis results, estimates of the 
standard error were computed using the bootstrapping technique (ref).  
 
The results of the bootstrap estimation of model standard error show that reducing the kernel size increases 
error in the coefficient estimates to an unacceptable degree (Table 3, Figure 8). For the 10000m bandwidth 
models, estimated standard error is around 20% of the coefficient estimate values for three quarters of the data 
(18.82 for NO2 and 22.37 for PM2.5 at the 3rd quartile). Though already quite large, the boxplot (Fig 8) shows 
how this error seems to increase sharply as the kernel bandwidth is reduced. For the largest bandwidth, though 
the spatial variation of the relationship is rather general, we can conclude that the north-south differential is 
likely to be real, since the errors in the north and west of the study area, where the spatial variation is most 
evident are relatively low (5-20% of coefficient estimate)  (Fig 9). Results from the eastern part of the study 
area are inconclusive, on the one hand because regression lines show very weak evidence of correlation (Fig 
6), and on the other, because the estimated standard errors are unacceptably large in this area (Fig 9).        
 

 
 

Table 3. Standard Error (SE) estimates for GWR as percentages of the coefficient estimates. 

 

Bandwidth Min 1st Quartile Median Mean 3rd Quartile Max 

NO2 10000 5.93 8.02 12.17 20.63 18.82 1124.60 

5000 8.27 17.20 28.05 80.62 50.42 7980.16 

2500 7.24 26.73 45.12 321.19 96.28 78945.14 

PM2.5 10000 6.01 8.28 13.04 35.59 22.37 8114.201 

5000 7.62 15.04 28.06 138.59 65.33 39806.03 
 

2500 7.95 24.81 44.14 251.66 99.37 83506.4 
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Figure 8. Standard Error (SE) estimates for GWR results for NO2 (left) and PM2.5 (right), for each bandwidth 
as a percentage of the coefficient estimates. Horizontal red lines indicate SE of 0% and 100% of coefficient 

estimates. Note that for the PM2.5 GWR analysis results, the percentage error is greater than for NO2 for both 
10000m and 2500m bandwidths. 

 
 
 
 



R. Hewitt et al. Understanding the spatial variation of air pollution and its impacts. INTRANCES working paper #1 
 

 

 

14 

 
 

Figure 9. Spatial distribution of estimated Standard Error in GWR models for bandwidth 10000 for NO2 (left) 
and PM2.5 (right). Compare with Figure 7 (top row). The lowest SEs are found in the central northern and 
western parts of the study area, where the GWR indicates a stronger decline in contamination exposure as 

minimum household income increases. 
 

4. Concluding discussion 

Our analysis indicates a negative correlation between levels of exposure to contamination from NO2 and PM2.5 
and gross household income. In general, within the metropolitan area of Madrid, comprising the city of Madrid 
and adjacent suburban municipalities, as minimum income increases, the concentrations of airborne contami-
nants as estimated by a Eulerian photochemical air quality model, decreases. It is notable that the most im-
portant income variable, by some margin, was minimum, rather than total, maximum or mean household income. 
This suggests that policy approaches that look to increase minimum incomes overall are likely to have positive 
impacts on quality of life.        
 
The pattern shows considerable spatial heterogeneity, in particular a sharper decline in contamination concen-
trations with increasing minimum income in central and northern parts of the study area, corresponding, ap-
proximately to the municipalities of Colmenar Viejo and Tres Cantos in the north, and Las Rozas, Majadaonda, 
Boadilla de Monte, Pozuelo de Alarcón to the north-west of the city, and the northern part of the municipality 
of Madrid (Fuencarral-El Pardo). The results are not altogether surprising, since these areas enjoy low urban 
and transport network density and many parks and other green areas. The slope of the regression line between 
contamination and minimum income (Figure 6) was shallower in central and central-southern areas, mainly 
because there were fewer localities in this area where contamination concentrations were low, unlike in the 
north.     
 
Some limitations should be noted, as follows. Our results are rather general, but attempts to spatially disaggre-
gate further by decreasing the GWR bandwidth increased uncertainty to unacceptable levels (SE as % of  coef-
ficient estimates >20% for 75% of the data). To remedy this, and understand how exposure to poor air quality 
varies at the individual district level, estimated contaminant concentrations would be needed at a finer spatial 
resolution than currently available from the air quality model used (1km2). This is unfortunately a rather difficult 
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task. Though higher spatial resolution products are known to exist, their reliability can be questioned (ref). At 
the same time, a different division of the territory than that of the census tracts (i.e household or street level 
data) would likewise improve the level of detail obtainable. However, for reasons of data protection, such data 
are not normally freely available. In future studies, the analysis could be extended by application to different 
pollutants, such as Ozone (O3), or Sulphur Dioxide (SO2). Finally, although we have used gross household 
income, in future research it would be interesting to use other indicators of social deprivation, such as separating 
population by work activity, level of education, age range, and so on. Composite indicators of multiple depri-
vation are available for some countries and regions (e.g., Scotland), and may be obtainable for the case of Spain.  
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Appendix 1: Results of the OLS regression for NO2 and GHI at 48m resolution and 1km x 1km grid. NO2  
(yaxis) vs (Clockwise from top left) Min GHI; Max GHI; Mean GHI; Total GHI.    

 

 

 

 



R. Hewitt et al. Understanding the spatial variation of air pollution and its impacts. INTRANCES working paper #1 
 

 

 

17

 

 

Appendix 2: Results of the OLS regression for PM2.5 and GHI at 48m resolution and 1km x 1km grid. NO2  
(yaxis) vs (Clockwise from top left) Min GHI; Max GHI; Mean GHI; Total GHI.    

 

  

 


