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Abstract: This paper presents a multinomial theorem on the binomial coefficients for
combinatorial geometric series. The coefficient for each term in combinatorial geometric series
denotes a binomial coefficient. These ideas can enable the scientific researchers to solve the real
life problems.
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1. Introduction

When the author of this article was trying to develop the multiple summations of geometric
series, a new idea was stimulated his mind to create a combinatorial geometric series [1-9]. The
combinatorial geometric series is a geometric series whose coefficient of each term of the
geometric series denotes the binomial coefficient ;. In this article, binomial identities and
multinomial theorem is provided using the binomial coefficients for combinatorial geometric
series.

2. Combinatorial Geometric Series
The combinatorial geometric series [1-9] is derived from the multiple summations of geometric
series The coefficient of each term in the combinatorial refers to the binomial coefficient 1],
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where n > 0,r>1 and n,re N={0,1,2,3,--- }.
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Here, Z V! x! refers to the combinatorial geometric series and
i=0
V7 is the binomial coefficient for combinatorial geometric series.

Binomial identities [1-5] on the binomial coefficients V,"* for combinatorial geometric series are
given below:
@ VW2=v}=1forn=0,1,2,3,

ity vy =V, (m,r=1& m,r € N).
(iii).Vn” =201 (n>1 & n€N).
(iv). Vi = 2vkn=1 (n,k > 1 & n,k € N).
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W).VE =204 (n>d>0 & d,n€N).
(wi). Ve =241 (n >d >0 & d,n €N).

n

Wid). Vg + VI + V5 -+ Ul =V* (on) V7 + Vi + W+ + V= Vi,

(n+1)!

Theorem 2.1: T =17, wheren,r >0 & n,r € N.
n+r)! n+r)! n+1(n+2)(n+3)-(n+r
Proof.(n+r)= ( ) =( )=( )( )( ) ( )=Vn’”.
n nl(n+r—n)! n!r! 7!
'
n+1)(n+2)(n+3)-(n+r n+i
Mhatis iy = CHDEHDEED - @rn Pt
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i=1

From the above expressions, we conclude that
(n+r) — (m+1Dn+2)(n+3)--(n+7)

A ,wheren,r >0 & n,r € N.

n'r! !

Theorem 2.2 : For any k nonnegative integers n,, n,, ns, --- and ny,
_(np+ny+ng+ -+ my)!

(nllnz!n3! nk')

Nny+nz+ng+---+n Nnz+ng+--+n Nng+ns+--+n n
V 2 3 4 k X V 3 4 k X V 4 5 k X oo X V k
ni nz ns Ng—1

Proof.Let us apply Theorem 2.1 to the following expression:
Vn2+n3+n4+"'+nk X 11117;3+n4+"'+nk % 1/717;4+n5+"'+nk X oo X Vle

ny Ng—-1
(it ny+ng+ -+ my)! (ny +nz + - +ny)! (n3 +ny + -+ ny)!

oy gt n)! Tyl (ng g+ )l ngl (ng +ns + o+ 0!
% (nk_1 + nk)' _ (n1 + n, + ns + -+ nk)'

Ny_1! ng! nyinying!---ny!

(Tll + n, + ns + -+ nk)'
nyIny!ng!--ng!

Thus,

Ny+nz+ng+---4+n N3+ng+-+n Ng+ng+--+n n
:Vz 3T kXV3 4 kXV4 5 kX"'XVk.
nq n; ns Ng—1

Conclusion

In this article, the combinatorial geometric series and binomial identities on the binomial
coefficients for combinatorial geometric series were given and a multinomial theorem discussed
with detailed proofs for research and development further.
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