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Abstract 

This work seeks to debunk the claim that the Elovich isotherm is vastly inferior to the Langmuir 

or Freundlich isotherm in the correlation of adsorption equilibrium data. This mistaken finding, 

reported in many published articles, is a result of comparing linearized versions of the three 

isotherms, which are based on different sets of transformed data. When isotherm discrimination 

is performed on the basis of untransformed data (the conventional adsorbed phase 

concentration versus solution phase concentration plot), the Elovich isotherm is shown to be 

highly and consistently competitive against the Langmuir or Freundlich isotherm. Predictions 

of untransformed data can be obtained from the three isotherms by using parameter estimates 

generated by either linear or nonlinear regression. To promote a wider application of the 



2 

 

Elovich isotherm in adsorption research, this work shows how a modified form of the Elovich 

isotherm can be used to evaluate the energy distribution of heterogeneous surfaces. 

Keywords: Energy distribution; Equilibrium data; Implicit isotherm; Isotherm comparison; 

Isotherm ranking; Lambert W function. 

 

1. Introduction 

A variety of isotherm models are used to correlate liquid phase adsorption equilibrium 

data. Some of these isotherm models may offer mechanistic interpretations, but the majority of 

studies seek to identify the best fitting model. Although statistical experimental designs have 

been recommended for isotherm discrimination [1], most studies employ simple goodness-of-

fit measures such as the coefficient of determination R2 to rank isotherm equations. The 

equations of Freundlich and Langmuir have historically been compared and are still being 

compared by many investigators. Irving Langmuir was the first scientist to tackle the problem 

of choosing between his namesake equation and the Freundlich equation. In a 1918 paper, 

Langmuir applied his newly proposed equation and the Freundlich equation to several gas 

adsorption data sets [2]. He plotted the data in the form of p/q versus p, where p is the 

equilibrium gas pressure and q is the amount of gas adsorbed. A logarithmic transformation 

was used to linearize the Freundlich equation. Straight lines were drawn manually to pass as 

nearly as possible through the transformed data. Although R2 values were not calculated for 

the linear fits, Langmuir concluded that the linearized form of his equation outperformed the 

linearized version of the Freundlich equation. 

Today, researchers are not restricted to choosing between the Freundlich and Langmuir 

equations as the pool of isotherm models has expanded considerably. Some commonly used 

ones include the equations of Dubinin and Radushkevich, Temkin, and Elovich. One reason 

for the appeal of these two-parameter isotherms is that, like the Freundlich and Langmuir 
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equations, they can be transformed into linear forms, and linear regression can then be used for 

data correlation and parameter estimation. Table 1 presents some recent studies in which 

linearized versions of the Freundlich, Langmuir, Dubinin–Radushkevich, Temkin, and Elovich 

equations (plus a few others) have been evaluated and ranked on the basis of R2 scores [3–28]. 

As can be seen in Table 1, in the majority of cases, the linearized Langmuir equation was the 

best performing model, while the linearized Freundlich equation was also quite effective. It is 

significant that in the cases listed in Table 1, in no instance has the linearized Elovich equation 

been ranked first. In fact, of the 56 cases of isotherm comparison, the Elovich equation has 

been ranked last in 31 cases (55%). The isotherm ranking results in Table 1 unequivocally 

show that the linearized Elovich equation is much inferior to the linearized Freundlich or 

Langmuir equation. 

The motivation of the present study is to rehabilitate the sullied image of the Elovich 

equation in the modeling of water contaminant adsorption by solid materials. We seek to 

demonstrate that, despite the convincing body of evidence presented in Table 1, the Elovich 

equation is not in any way inferior to the Freundlich or Langmuir equation. By making use of 

literature adsorption data for four water contaminants (sulfadiazine, methylene blue, chromium, 

and reactive blue-4), we show that a flawed method has been used in previous studies to 

compare the three isotherms. Specifically, the practice of ranking the three isotherms according 

to the R2 scores for linear fits leads to erroneous conclusions. When the three isotherms are 

compared on the basis of untransformed data (adsorbed phase concentration versus solution 

phase concentration), the resulting R2 values reveal that the Elovich equation is highly and 

consistently competitive against the Freundlich or Langmuir equation. 

Furthermore, although many researchers have applied the Elovich equation in their 

work, very few are aware of its theoretical derivation, which was published in a little-cited 

French paper. As such, the secondary aim of this work is to provide some background 
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information on the theoretical foundation of the Elovich equation and to promote the citation 

of its original source. Finally, we describe a new application of the Elovich equation in 

adsorption research. For the first time, we show how a hybrid model, called the “Langmuir–

Elovich isotherm”, can be used to evaluate the energy distribution of adsorption sites existing 

on energetically heterogeneous surfaces. 

 

Table 1. Discrimination of linearized adsorption isotherms reported in some recent studies. a 

Ref. No. of 

data sets 

Isotherm ranking based on R2 scores 

1st 2nd 3rd 4th 5th 6th 7th 

Joshi and Kumar [3] 3 L 

F 

L 

F 

L 

F 

E 

E 

E 

    

Abbas [4] 1 T L E F    

Zulfiqar et al. [5] 1 L F T E    

Biswal et al. [6] 1 T L DR E F   

Tewari et al. [7] 1 To L T F E   

Taghavi et al. [8] 1 LF F L T RP E  

Jana et al. [9] 1 F L E     

Ozcelik et al. [10] 1 F L T E    

Meng et al. [11] 6 F 

L 

F 

L 

T 

T 

T 

T 

T 

T 

L 

L 

L 

F 

L 

F 

F 

F 

E 

DR 

DR 

E 

DR 

DR 

DR 

E 

E 

DR 

E 

E 

  

Yu et al. [12] 3 L 

L 

F 

E 

F 

L 

F 

E 

E 

    

Nikzad et al. [13] 1 LF F T L E   

Zulfiqar et al. [14] 1 L F E T DR   

Manjunath et al. [15] 3 L 

L 

L 

F 

F 

F 

DR 

T 

E 

T 

DR 

T 

E 

E 

DR 

  

Xie et al. [16] 1 L DR T E H F HJ 

Moosavi et al. [17] 2 L 

L 

F 

F 

E 

E 

    

Abbas [18] 2 L 

L 

RP 

F 

F 

T 

T 

E 

E 

 

  

Ordonez et al. [19] 6 L 

J 

T 

T 

ML 

T 

L 

L 

L 

L 

F 

F 

F 

J 

F 

ML 

ML 

J 

F 

T 

J 

T 

ML 

E 

E 

E 

E 

E 

ML 

J 
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T F L J E ML 

Saxena et al. [20] 1 L T RP F E   

Patil et al. [21] 1 L F T E    

Zulfiqar et al. [22] 1 L F E T DR   

Singh et al. [23] 4 DR 

DR 

DR 

DR 

RP 

E 

E 

E 

E 

RP 

RP 

RP 

    

Gupt et al. [24] 3 L 

L 

L 

E 

E 

E 

F 

F 

F 

    

Jabłońska [25] 6 LF 

LF 

LF 

LF 

LF 

LF 

L 

DR 

DR 

L 

L/DR 

L 

DR 

L 

L 

DR 

– 

T 

E 

F 

F 

E 

F 

DR 

F 

E 

E 

F 

E 

F 

T 

T 

T 

T 

T 

E 

 

Joshi et al. [26] 3 F 

F 

F 

L/T 

E 

T 

– 

T 

L 

E 

L 

E 

   

Sahoo et al. [27] 1 L F T/E     

Panda et al. [28] 1 F T L E    
a DR: Dubinin–Radushkevich; E: Elovich; F: Freundlich; H: Halsey; HJ: Harkins–Jura; J: 

Jovanovic; L: Langmuir; LF: Langmuir–Freundlich; ML: Modified Langmuir; RP: Redlich–

Peterson; T: Temkin; To: Toth. 

 

2. Isotherm equations 

2.1. The original Elovich isotherm 

A literature search reveals that a 1991 paper published by Dusart et al. [29] is the 

original source of the Elovich isotherm. As an aside, we mention that it was not difficult to 

accurately pinpoint the original source because one of us (JCB) has personal knowledge of the 

research work by Dusart et al. conducted at the University of Limoges in the early 1990s. To 

derive the Elovich isotherm, Dusart et al. [29] adopted the kinetic argument of Langmuir [2] 

for the simple reaction defined by Eq. (1), where A is a chemical substance and S is a solid 

surface capable of adsorbing A. 

A S AS+ ⇌           (1) 
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In Langmuir’s kinetic theory for saturable adsorption of gases to solid surfaces, adapted 

for aqueous adsorption systems (the original partial pressure term is replaced by the solution 

phase concentration term), the rate of adsorption on the surface (ra) is given by Eq. (2), and the 

rate of desorption from the surface (rd) is given by Eq. (3), where ka is the rate coefficient in 

the forward direction, c is the solution phase concentration, θ is the fraction of the surface 

covered, and kd is the reverse rate coefficient. Equating the rate of adsorption and the rate of 

desorption gives us the celebrated Langmuir isotherm. 

( )1a ar k c θ= −           (2) 

d dr k θ=           (3) 

Dusart et al. [29] made one major change to Langmuir’s kinetic argument: they replaced 

the original rate of adsorption defined by Eq. (2) with Eq. (4), which dictates that the rate of 

adsorption decreases exponentially with increasing θ. At equilibrium, the rate of adsorption 

must equal the rate of desorption, so we obtain Eq. (5). 

( )* expa ar k c θ= −          (4) 

( )* expa dk c kθ θ− =          (5) 

 Rearranging Eq. (5) yields Eq. (6). If we define *

a d Ek k b=  and θ = q/qE, where bE is 

an equilibrium constant, q is the adsorbed phase concentration, and qE is the adsorption capacity, 

Eq. (6) may be rewritten as Eq. (7). Dusart et al. [29] called Eq. (7) the Elovich isotherm 

because the exponential function used in Eq. (4) was often attributed to Elovich in the catalysis 

literature. However, the exponential function was first proposed by Roginsky and Zeldovich 

[30,31]. Consequently, the “Elovich isotherm” label adopted for Eq. (7) is a misnomer. 

( )
*

expa

d

k
c

k
θ θ= −          (6) 

exp
E E

E

q
q q b c

q

 
= − 

 
         (7) 
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Dusart et al. [29] rearranged Eq. (7) to the form given by Eq. (8), which is linear in the 

two parameters. If ln(q/c) is plotted as a function of q, the slope is equal to –1/qE and the 

intercept gives ln(qEbE). 

( )
1

ln ln
E E

E

q
q b q

c q

 
= − 

 
         (8) 

Dusart et al. [29] used the linearized Elovich equation to describe the adsorption of 

amino acids by activated carbon. A follow-up study published in 1995 by Ferrandon et al. [32] 

applied the linearized expression to the adsorption data of several water pollutants. (For 

information: the first author of both references [29] and [32] is one and the same person. Indeed, 

after her divorce, the married Odile Dusart took back her maiden’s name to become Odile 

Ferrandon.) It seems that the two papers [29,32] attracted little or no attention, and the Elovich 

equation lay dormant until the mid-2000s when Meçabih et al. [33], Hamdaoui [34], and 

Hamdaoui and Naffrechoux [35] used the linearized Elovich expression to fit the adsorption 

data of several water contaminants. Subsequently, Ncibi [36] and Ncibi et al. [37] used both 

the linear and nonlinear versions of the Elovich equation to describe the adsorption data of dyes. 

Today, when using the Elovich equation to fit water contaminant adsorption data, the linearized 

form is preferred. 

2.2. The Langmuir–Elovich isotherm, a new model 

The original Elovich equation, Eq. (7), is implicit in q. It can be inverted by means of 

the Lambert W function [38,39] to yield an expression explicit in q, as shown in Eq. (9), where 

W denotes the Lambert W function with argument bEc. When q = qE, W(bEc) = 1, so that c = 

exp(1)/bE. So, qE is less than Langmuir’s saturation capacity parameter qm [Eq. (11)]. 

( )E Eq q W b c=           (9) 

It has been shown that most adsorption isotherms arise from statistical distributions of 

binding energies [40]. However, the original Elovich equation does not allow one to compute 
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such a distribution since q tends to infinity, just like with the Freundlich equation. To overcome 

this problem, we define a “Langmuir–Elovich” equation in the form of the Langmuir–

Freundlich equation and the loading-explicit Elovich equation. The final expression is given 

by Eq. (10), where bE is the binding constant and L = qE/qm is such that 0 < L < 1. This equation 

reduces to the original form at the lowest concentrations and/or lowest values of L. 

( )

( )1

m E

E

q L W b c
q

L W b c

⋅
=

+ ⋅
         (10) 

2.3. The Langmuir and Freundlich isotherms 

For the data fitting examples examined in this work, the Elovich equation is compared 

to the Langmuir [Eq. (11)] or Freundlich equation [Eq. (12)]. In these two equations, qm, bL, K, 

and n are adjustable parameters. These parameters are usually treated as empirical, but they 

can also be interpreted in a physical sense, e.g., as free energies of adsorption.   

1

m L

L

q b c
q

b c
=

+
          (11) 

Fn

Fq K c=           (12) 

In the environmental adsorption literature, the Langmuir and Freundlich isotherms are 

frequently linearized so that linear regression can be used to fit adsorption data. Eqs. (13) and 

(14) are two commonly used linear versions of the Langmuir equation, while Eq. (15) is the 

well-known logarithmic transformation of the Freundlich equation. Note that Eq. (14) was 

originally proposed by Langmuir [2]. 

1 1 1 1

m L m
q q b c q

= +          (13) 

1 1

m m L

c
c

q q q b
= +          (14) 

( ) ( ) ( )ln ln lnF Fq n c K= +         (15) 

2.4. Isotherm fitting and evaluation 
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The isotherm equations considered in this work (Elovich, Langmuir, and Freundlich) 

were fitted to previously published experimental data using linear or nonlinear regression. In 

the regression procedure, the sum of squared residuals (SSR) is minimized. The SSR, given 

here by Eq. (16), is defined as the difference between the measured and calculated adsorbed 

phase concentrations. In Eq. (16), qi,obs is the ith observed adsorbed phase concentration, qi,fit 

is the ith adsorbed phase concentration calculated from a particular isotherm, and m is the 

number of data points. 

( )
2

, ,1
SSR

m

i obs i fiti
q q

=
= −∑         (16) 

Since the Elovich, Langmuir, and Freundlich equations contain the same number of 

adjustable parameters, it is not necessary to use information-theoretic metrics such as the 

Akaike Information Criterion for isotherm comparison. As such, the coefficient of 

determination (R2) and the root mean square error (RMSE) are used as statistical indicators of 

the quality of fit. 

 

3. Results and discussion 

This section has two parts. The first part seeks to debunk the mistaken conclusion that 

the Elovich equation is inferior to the Langmuir or Freundlich equation. To do this, four cases 

taken from Table 1 are examined to verify the reported inferiority of the linearized Elovich 

equation. An exposition is then presented, outlining why the inferiority of the Elovich equation 

is due to the use of a flawed method to compare the isotherms. Finally, the practicality of 

comparing nonlinear versions of the three isotherms is explored. The second part introduces a 

modified form of the Elovich equation, termed the “Langmuir–Elovich isotherm”, which is 

used to evaluate the energy distribution of heterogeneous adsorbents. 

3.1. Cases 1 and 2: Langmuir versus Elovich 
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Case 1 is based on an experimental and modeling study on the adsorption of three 

antibiotics (sulfadiazine, metronidazole, and tetracycline) by an activated carbon adsorbent 

[15]. The authors used five isotherms (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, 

and Elovich) to correlate the measured equilibrium data. In the data fitting process, linear forms 

of the five isotherms were used. For all three antibiotics, the linearized Langmuir equation 

given by Eq. (13) was found to be the most effective isotherm, outperforming the linearized 

Elovich equation given by Eq. (8). Fig. 1 shows the linear fits of the Langmuir and Elovich 

equations to one of the three antibiotics (sulfadiazine). As can be seen in Fig. 1A, the Langmuir 

fit is satisfactory, returning an R2 score of 0.993. In contrast, Fig. 1B shows that the Elovich fit 

is rather poor, returning an R2 value of 0.898. The best-fitting sets of parameters obtained by 

the two fits are presented in Table 2. Fig. 1 confirms the finding of the original study [15], i.e., 

the Langmuir fit is superior to the Elovich fit. 

 

Fig. 1. Linear fits of sulfadiazine adsorption data [15]. (A) Langmuir, Eq. (13). (B) Elovich, 

Eq. (8). 
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Table 2. Fitted parameters and statistical metrics for the linear fits plotted in Figs. 1–4. a 

Case Linearized isotherm Parameter Statistical metric 

1 Langmuir, Eq. (13) 

Elovich, Eq. (8) 

qm = 18.57; bL = 2.88 

qE = 15.03; bE = 2.26 

R2 = 0.993; RMSE = 0.03 

R2 = 0.898; RMSE = 0.30 

2 Langmuir, Eq. (14) 

Elovich, Eq. (8) 

qm = 439.7; bL = 0.39 

qE = 87.59; bE = 8.85 

R2 = 0.991; RMSE = 0.007 

R2 = 0.818; RMSE = 0.82 

3 Freundlich, Eq. (15) 

Elovich, Eq. (8) 

nF = 0.23; KF = 11.67 

qE = 5.05; bE = 26.31 

R2 = 0.986; RMSE = 0.05 

R2 = 0.931; RMSE = 0.37 

4 Freundlich, Eq. (15) 

Elovich, Eq. (8) 

nF = 0.38; KF = 37.25 

qE = 31.22; bE = 4.51 

R2 = 0.989; RMSE = 0.05 

R2 = 0.894; RMSE = 0.27 
a qm, qE (mg g–1); bL, bE (L mg–1); nF (–); KF 

( )( )1 1
L mg gFF

nn − − ; RMSE (mg g–1). 

 

 In case 2, linearized versions of the Langmuir, Freundlich, Temkin, Redlich–Peterson, 

and Elovich equations were used to describe the adsorption of the dye methylene blue by a 

carbon nanotube material [20]. The data fitting results of the original study showed that the 

Langmuir equation outperformed the other four isotherms, with the Elovich equation being the 

worst performer. Here, the methylene blue data were fitted to the linearized Langmuir equation 

given by (14) and the linearized Elovich equation given by Eq. (8). With an R2 value of 0.991, 

the Langmuir fit shown in Fig. 2A tracks the experimental data well. Fig. 2B shows that the 

Elovich fit is markedly inferior to the Langmuir fit, returning an R2 value of 0.818. Fig. 2 

verifies the finding of the original study [20], i.e., the Elovich fit is inferior to the Langmuir fit. 

The parameter estimates obtained by the two fits are listed in Table 2. 
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Fig. 2. Linear fits of methylene blue adsorption data [20]. (A) Langmuir, Eq. (14). (B) Elovich, 

Eq. (8). 

 

3.2. Cases 3 and 4: Freundlich versus Elovich 

Case 3 describes the adsorption of hexavalent chromium by a modified textile fabric 

material [10]. The authors fitted the Langmuir, Freundlich, Temkin, and Elovich equations to 

the chromium adsorption data, reporting that the linearized Freundlich [Eq. (15)] and Elovich 

[Eq. (8)] equations were the best and worst isotherms, respectively. Fig. 3 shows the fits of the 

Freundlich (R2 = 0.986) and Elovich (R2 = 0.931) equations to the chromium data, confirming 

that the former is indeed superior to the latter. 
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Fig. 3. Linear fits of chromium adsorption data [10]. (A) Freundlich, Eq. (15). (B) Elovich, Eq. 

(8). 

 

Case 4 is based on a study on the adsorption of the anionic dye reactive blue-4 by a 

metal organic framework material [28]. Four isotherms (Langmuir, Freundlich, Temkin, and 

Elovich) were fitted to the dye adsorption data. According to the original study [28], the 

linearized Freundlich equation given by Eq. (15) outperformed the other three isotherms, and 

the linearized Elovich equation given by Eq. (8) was the least effective. Fig. 4 shows the fits 

of the linearized Freundlich and Elovich equations to the dye data. Fig. 4 corroborates the claim 

of the original study [28], i.e., the Elovich fit (R2 = 0.894) is inferior to the Freundlich fit (R2 = 

0.989). The best-fitting sets of parameters for cases 3 and 4 are given in Table 2. 
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Fig. 4. Linear fits of reactive blue-4 adsorption data [28]. (A) Freundlich, Eq. (15). (B) Elovich, 

Eq. (8). 

 

3.3. Unbiased comparison of isotherms 

In cases 1–4, it can be seen that the linearized Elovich equation is clearly inferior to the 

linearized Langmuir and Freundlich equations in correlating the experimental isotherms of 

sulfadiazine, methylene blue, hexavalent chromium, and reactive blue-4. In all cases, the R2 

values for the Langmuir and Freundlich fits are > 0.98, while those for the Elovich fits range 

from a low of 0.82 to a high of only 0.93. 

However, it is argued that the inferiority of the Elovich equation is due to the use of a 

flawed method to compare the isotherms. It is inappropriate to compare the R2 values for the 

linear fits because the linear regression procedure was applied to different sets of transformed 

data. For example, in case 1, the R2 value of 0.993 indicates the ability of the linearized 

Langmuir equation [Eq. (13)] to fit the data trend exhibited by the transformed variables 1/q 

and 1/c. The R2 score of 0.898 tells us the ability of the linearized Elovich equation [Eq. (8)] to 
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fit the data profile depicted by the transformed variable ln(q/c) and the untransformed variable 

q. 

 

Fig. 5. Comparison of adsorption data and q versus c curves calculated using parameter 

estimates obtained by the linear fits plotted in Figs. 1–4. (A) Case 1. (B) Case 2. (C) Case 3. 

(D) Case 4. 

 

To obtain unbiased results, different isotherms should be compared on the basis of 

common variables. One method of doing this is to evaluate how well different isotherms 

describe the data trends exhibited by the untransformed variables q and c. For case 1, Fig. 5A 

shows the q versus c curve calculated from the untransformed Langmuir equation [Eq. (11)] 

using the parameter estimates obtained by the linearized Langmuir fit (Table 2, case 1). Also 

shown in Fig. 5A is the q versus c curve calculated from the untransformed Elovich equation 

[Eq. (7)] using the parameter estimates produced by the linearized Elovich fit (Table 2, case 1). 

The q versus c curves for the isotherms evaluated in the other three cases can be calculated in 
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the same manner, using the parameter estimates obtained by the respective linear fits given in 

Table 2, and they are presented in Figs. 5B–5D. New R2 values calculated for all q versus c 

curves are shown in Fig. 5. 

For case 1, Fig. 5A shows that the q versus c curve calculated using the parameter 

estimates produced by the linearized Langmuir fit deviates significantly from the data trend (R2 

= 0.424). In particular, data points at high concentrations are poorly described. In contrast, the 

q versus c curve calculated using the parameter estimates obtained by the linearized Elovich fit 

closely tracks the data trend (R2 = 0.992). The result of Fig. 5A is the complete opposite of the 

result of Fig. 1. Going from Fig. 1 to Fig. 5A, we see a huge drop in the performance of the 

Langmuir equation but a significant enhancement in the performance of the Elovich equation.  

Similar observations can be made for case 2. Fig. 5B shows that the q versus c curve 

calculated using the parameter estimates produced by the linearized Langmuir fit cannot 

capture the overall shape of the data trend (R2 = 0.896). The q versus c curve calculated using 

the parameter estimates obtained by the linearized Elovich fit matches the data trend quite well 

(R2 = 0.958). Therefore, the result of Fig. 5B contradicts the result of Fig. 2. In summary, Figs. 

5A and 5B show that the Elovich equation is superior to the Langmuir equation in tracking the 

untransformed data of sulfadiazine and methylene blue, which are expressed in the form of q 

versus c. 

For case 3, Fig. 5C shows that the q versus c curve calculated using the parameter 

estimates obtained by the linearized Freundlich fit traces the data trend well (R2 = 0.980). 

Likewise, the q versus c curve calculated using the parameter estimates produced by the 

linearized Elovich fit agrees quite well with the data trend (R2 = 0.961). The result for case 4, 

as shown in Fig. 5D, is essentially the same as that for case 3. Although Figs. 3 and 4 suggest 

that the linearized Freundlich equation is much superior to the linearized Elovich equation in 

describing the transformed data of chromium and reactive blue-4, Figs. 5C and 5D indicate that 
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there are only slight differences between the two equations in tracing the same adsorption data 

expressed in the form of q versus c. 

When plotting the linearized Langmuir data as 1/q versus 1/c (Fig. 1) or c/q versus c 

(Fig. 2), a part of the experimental data points is grouped together, and this will contribute to 

giving a bias to the regression, although its R2 value is artificially excellent. Note that the 

representation of the Langmuir equation in Fig. 1 was considered the worst fitting approach 

[41], and this can cause important deviations when trying to trace the direct Langmuir isotherm 

q versus c again (as in Fig. 5A). As for the linearization of the Freundlich equation, it involves 

the logarithms of the two experimental values, as can be seen in Figs. 3 and 4. There is little 

deviation in the recalculated curves (Figs. 5C and 5D), probably because a suitable range of 

data is used [41]. 

Taken together, Fig. 5 clearly shows that the Elovich equation is not markedly inferior 

to the Langmuir or Freundlich equation, contradicting the results of Figs. 1–4. Although the 

linearized Elovich equation is rather poor at fitting the transformed data, the resulting 

parameter estimates are surprisingly useful. They allow the Elovich equation to accurately track 

the untransformed data of q versus c, easily outperforming the Langmuir equation and closely 

matching the performance of the Freundlich equation. Of the papers reviewed (Table 1) for this 

study, none have investigated the ability of the three isotherms to describe data trends plotted 

in the form of q versus c. 

3.4. Comparison of nonlinear isotherms 

As discussed in Section 3.3, an impartial way to compare the Elovich, Langmuir, and 

Freundlich equations is by assessing their ability to describe isotherm data expressed in the 

direct form of q versus c. There is little or no merit in comparing the ability of their linearized 

versions to describe various types of transformed data. Therefore, it makes sense to fit their 

original functional forms to the adsorption data depicted in Fig. 5, which are expressed in the 
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form of q versus c. Given that the three isotherms are nonlinear in their parameters, this data 

fitting approach requires the use of an iterative algorithm to minimize the SSR defined by Eq. 

(16).  

In the case of the Langmuir or Freundlich equation, the value of qi,fit in the SSR can be 

easily calculated from Eq. (11) or (12). However, obtaining qi,fit from the Elovich equation is 

somewhat cumbersome because q in Eq. (7) appears on both sides of the equation. In other 

words, the Elovich equation is implicit in q. Therefore, it is necessary to incorporate a 

numerical scheme within the least-squares fitting algorithm to calculate qi,fit at each iteration. 

Software packages such as MATLAB and Mathematica provide a convenient way to 

implement such a least-squares fitting procedure. In this work, the loading-implicit Elovich 

equation was fitted to isotherm data using Mathematica. The nonlinear least-squares fitting was 

provided by the command NonlinearModelFit, while qi,fit was estimated at each iteration 

using the command FindRoot, which uses Newton’s method to solve Eq. (7). 

 Although the Elovich equation is treated as an expression implicit in q in the least-

squares fitting method described above, it is actually possible to convert the loading-implicit 

expression to a form that is explicit in q. The inversion of the loading-implicit Elovich equation 

is achieved by means of the Lambert W function, as explained in Section 2.2. 

Similar to the Langmuir and Freundlich equations, the inverted Elovich equation given 

by Eq. (9) can be fitted to adsorption data using a conventional nonlinear regression procedure 

to minimize the SSR. The Lambert W function is available in several software packages such 

as MATLAB, Maple, Mathematica, and Mathcad, but not Excel. Highly accurate analytical 

approximations can be used to evaluate the Lambert W function [42], e.g., in Excel. For 

numerical computations, a Fortran routine is also available [43]. 

The loading-explicit Elovich equation, Eq. (9), was fitted to the sulfadiazine adsorption 

data (case 1) using Mathematica. The commands used were NonlinearModelFit and 
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ProductLog/LambertW. The loading-explicit Elovich equation [Eq. (9)] was found to give 

identical parameter estimates to those produced by the loading-implicit Elovich equation [Eq. 

(7)]. 

 Fig. 6 shows the fits of the nonlinear Elovich [Eq. (7)], Langmuir, and Freundlich 

equations to the q versus c data depicted in Fig. 5A (case 1, sulfadiazine). It is at once evident 

that all three isotherms can capture the overall shape of the experimental data. According to 

the R2 scores, the Langmuir fit is the least accurate (R2 = 0.978), but it is still a huge 

improvement over the q versus c curve calculated using the parameter estimates produced by 

the linearized Langmuir fit (Fig. 5A, R2 = 0.414). With an R2 value of 0.996, the Elovich 

equation is the best performing model. 

It should be noted that the q versus c curve calculated using the parameter estimates 

obtained by the linearized Elovich fit (Fig. 5A, R2 = 0.992) is only slightly inferior to the 

nonlinear Elovich fit plotted in Fig. 6. This may be due to the fact that the minimum of SSR is 

ill-defined, as shown in Fig. 7, so that several combinations of parameters can give a good fit. 

It is a consequence of (a) the relatively low number of observations and (b) the dispersion of 

the points at the highest concentrations. Of course, it is not a general property of nonlinear 

regression. 

The result of Fig. 6 should put the final nail in the coffin of the claim that the Elovich 

equation is vastly inferior to the Langmuir and Freundlich equations. The Elovich equation is 

equally competitive against the Langmuir and Freundlich equations in the nonlinear correlation 

of the q versus c data depicted in Figs. 5B–5D (not shown). Table 3 summarizes the parameter 

estimates, their standard errors, and R2 scores for the isotherms plotted in Fig. 6. Note that the 

estimates of the Langmuir parameters produced by the nonlinear fit (Table 3) are much 

different from those obtained by the linear fit of Eq. (13) (Table 2, case 1). Although the 

deficiencies of Eq. (13) are well documented in the literature, it can give reliable estimates of 
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the Langmuir parameters if due attention is given to weighting [44]. Indeed, weighted linear 

regression based on all linear versions of the Langmuir isotherm will provide parameter 

estimates close to those produced by nonlinear regression [44]. 

 

Fig. 6. Nonlinear fits of the Langmuir, Freundlich, and loading-implicit Elovich equations to 

sulfadiazine adsorption data [15]. 

 

 

Fig. 7. 3D plot of the sum of squared residuals (SSR) as a function of the parameters qE and bE 

for the nonlinear least-squares fit of the Elovich equation to sulfadiazine adsorption data [15]. 
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Table 3. Fitted parameters, their standard errors, and R2 values for the nonlinear fits plotted in 

Fig. 6. a 

Isotherm Parameter Standard error R2 

Elovich, Eq. (7) qE = 20.60 

bE = 0.97 

3.44 

0.39 

0.996 

Langmuir, Eq. (11) 

 

qm = 47.96 

bL = 0.28 

5.07 

0.08 

0.978 

Freundlich, Eq. (12) 

 

nF = 0.50 

KF = 11.57 

0.04 

0.88 

0.990 

a qE, qm (mg g–1); bE, bL (L mg–1); nF (–); KF 
( )( )1 1

L mg gFF
nn − − . 

 

3.5. Evaluation of energy distribution 

If the adsorbent is heterogeneous, the parameter bE is statistically distributed among the 

various binding sites. The specific bE,fit value determined by nonlinear regression defines the 

apparent dissociation constant K = 1/bE,fit. K is expressed in mol L–1, assuming a standard state 

concentration C0 = 1 M. Eqs. (17) and (18) define the adsorption free energies E0 and E, where 

R is the gas constant and T is the absolute temperature. Eq. (19) defines the nondimensional 

variable ε. 

( )0 lnE RT K=           (17) 

( )ln EE RT b= −          (18) 

( )0 ln
E

E E
Kb

RT
ε

−
= = −         (19) 

The probability density function (p.d.f.) of the random variable ε can be computed from 

the “Langmuir–Elovich” isotherm by the “condensation approximation” method, as described 

in Appendix A. The final expression is given by Eq. (20). 

( )
( )

( ){ } ( ){ }
2

exp

1 exp 1 exp

LW
f

LW W
ε

ε
ε

ε ε

−  
=

+ − + −      

      (20) 
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As shown in Appendix B, the location of the mode of the distribution, i.e., the maximum 

density, is given by Eq. (21), where wmax is defined by Eq. (22). 

( )lnmax max maxw wε = − −          (21) 

1 8
1 1

4
max

w
L

 
= + − 

 
        (22) 

The curve is limited by two asymptotic distributions: a Pareto power law at the highest 

affinities and an exponential distribution at the lowest affinities, with densities of 1/(Lε2) and 

Lexp(−ε), respectively (Appendix C). 

The p.d.f. of the random variable E is obtained by equating the probabilities: 

( ) ( )d dEf E E fε ε ε=          (23) 

Hence: 

( ) ( )
( )d

d
E

f
f E f

E RT

ε

ε

εε
ε= =          (24) 

The maximum is located at: 

( )0 lnmax max maxE E RT RT Kε ε= + = +          (25) 

As an example, data for the adsorption of tyrosine on activated carbon at pH 4 and 

20 °C were taken from the work of Dusart et al. [29]. The Langmuir–Elovich isotherm was 

fitted by simulated annealing [45], using the computer program written by Barry et al. [43] to 

compute the Lambert W function. The fitted parameters are qE = 1.09 mmol g–1, L = 0.36, and 

bE,fit = 42.8 L mmol–1 = 42.8 × 103 L mol–1. From the preceding values the following parameters 

can be calculated: qm = qE/L ≈ 3 mmol g–1, K = 1/bE,fit ≈ 2.34 × 10−5 M, and E0 = RTln(K) ≈  

−26 kJ mol–1. Fig. 8 shows the fitted curve and the related energy distribution. The mode of the 

distribution (i.e., the most probable energy) is located at Emax ≈ –28 kJ mol–1. 
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Fig. 8. Adsorption of tyrosine on activated carbon at pH 4 [29]. Upper panel: nonlinear least-

squares fit of the Langmuir–Elovich isotherm. Lower panel: energy distribution (red) and its 

two limiting distributions: Pareto (green) and exponential (blue). 

 

4. Conclusions 

Arising from this study, the pertinent points relating to the Elovich equation are the 

following: 

• Many published reports have erroneously claimed that the Elovich equation is much 

inferior to the Langmuir or Freundlich equation in correlating adsorption equilibrium 

data. This mistaken conclusion stems from the questionable practice of evaluating and 

ranking linearized versions of the three isotherms. 

• When the parameter estimates of the linear fits are used to predict q versus c data trends, 

the performance of the Elovich equation is noticeably better than that of the Langmuir 
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equation and comparable to that of the Freundlich equation. These results reveal that the 

Elovich equation is highly competitive against the Langmuir or Freundlich equation in 

data correlation. Therefore, isotherms should be ranked according to how well they 

describe q versus c data trends. 

• Comparison of the nonlinear forms of the three isotherms further debunks the notion that 

the Elovich equation cannot fit adsorption data well. However, there is a somewhat 

significant difficulty in applying the nonlinear Elovich equation to experimental data: it 

is implicit in adsorbed phase concentration. In this work, two practical methods have 

been proposed to deal with the loading-implicit Elovich equation in nonlinear data fitting. 

• The functional form of the Elovich equation is not appropriate for the derivation of a 

physically meaningful energy distribution. A modified form, called the “Langmuir–

Elovich isotherm,” has been successfully introduced to evaluate the energy distribution 

of heterogeneous surfaces. 

 

Appendix A. Energy distribution 

The “condensation approximation” [46] assumes that the cumulative density function 

(c.d.f.) ( )
Eb EF b  of the random variable bE has the same form as the isotherm, as shown in Eq. 

(A.1), where K is the apparent dissociation constant. 

( )
( )

( )1E

E

b E

E

LW Kb
F b

LW Kb
=

+
        (A.1) 

The derivative of the Lambert W function is given by Eq. (A.2) [38]. 

 
( ) ( )

( )

d 1

d 1

W x W x

x x W x
=

+
         (A.2) 

The probability density function (p.d.f.) of bE is ( ) ( )d d
E Eb E b E Ef b F b b= , so: 
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( )
( )

( ) ( )
2

1

1 1
E

E

b E

E E E

LW Kb
f b

b LW Kb W Kb
=

+ +      

     (A.3) 

We get the p.d.f. of the random variable ε [defined by Eq. (19)] by equating the 

probabilities: 

( ) ( )d d
Eb E Ef f b bε ε ε =         (A.4) 

Hence, ( ) ( )
EE b Ef b f bε ε = , so: 

( )
( )

( ) ( )
2

1 1

E

E E

LW Kb
f

LW Kb W Kb
ε ε =

+ +      

      (A.5) 

Since KbE = exp(−ε) we obtain Eq. (20). 

 

Appendix B. Coordinates of maximum 

Setting w = W[exp(−ε)] and derivating Eq. (20) with respect to ε, we obtain: 

( )
( ) ( )

2
1 1

Lw
f

Lw w
ε ε =

+ +
        (B.1) 

( ) ( )
( ) ( )

2

3 3

2 1d

d 1 1

Lw Lw Lwf

Lw w

ε ε

ε

+ −
=

+ +
       (B.2) 

The derivative is null when 2Lw2 + Lw – 1 = 0. From the positive root wmax [Eq. (22)], 

we get the abscissa of the mode (maximum) of the distribution: 

( )expmax maxw W ε= −            (B.3) 

lnmax max maxw wε = − −          (B.4) 
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Appendix C. Asymptotic distributions 

The behavior of the energy distribution for the highest or lowest affinities, i.e., when ε 

→ −∞ or +∞, respectively, can be deduced from the properties of the Lambert W function. In 

what follows, N(a) denotes “the neighborhood of a”. 

We start with the relationship: 

( ) ( ) ( )ln lnW x W x x+ =            (C.1) 

According to the work of Corless et al. [38], Eq. (C.1) leads to Eq. (C.2) at N(+∞), 

where the notation o[ln(x)] indicates that ln[ln(x)]/ln(x) → 0 when x → +∞. 

( ) ( ) ( ) ( )ln ln ln lnW x x x o x= + +             (C.2) 

For the highest affinities, ε → –∞, which leads to Eq. (C.3) at N(–∞). 

( ) ( )exp ln expW ε ε ε− ≈ − = −              (C.3) 

The p.d.f. becomes Eq. (C.4) at N(–∞). 

( )
( ) ( )

2
1 1

L
f

L
ε

ε
ε

ε ε

−
≈

− −
        (C.4) 

Of course, if ε → –∞, −ε ≫ 1 and −Lε  ≫ 1, so the p.d.f. reduces to Eq. (C.5) at N(–∞). 

( )
2

1
f

L
ε

ε
ε

≈           (C.5) 

For the lowest affinities, ε → +∞ and x = exp(–ε) → 0. We use the relationship given 

by Eq. (C.6) at N(0). 

( )W x x≈            (C.6) 

So, at N(+∞), the p.d.f. becomes Eq. (C.7). 

 ( )
( )

( ) ( )
2

exp

1 exp 1 exp

L
f

L
ε

ε
ε

ε ε

−
≈

+ − + −      

      (C.7) 

Eq. (C.7) reduces to Eq. (C.8) at N(+∞). 
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( ) ( )expf Lε ε ε≈ −          (C.8) 

So, we have a Pareto power law distribution at the highest affinities and an exponential 

distribution at the lowest affinities. 
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