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1. Simulations 

1.1. Filament simulation 

The initial ground truth structures were simulated according to the model suggested by Shariff, et al1. 

The simulated ground truth for each video was a binary map containing ones where there was a 

filament and zeros everywhere else. Then, we applied affine temporally changing transformations to 

the original structure over predetermined video length (see Table S1). We applied on the initial ground 

truth structure two types of movements: global shift and global rotation. The shift velocities were 

chosen from a uniform distribution in the range of [-4, 4] nm per frame, and the rotation velocities were 

chosen from a uniform distribution in the range of [-3, 3] degrees per frame. Next, we randomly chose 

the number of blinking events per frame according to a blinking density parameter that states the 

percentage of the structure that would blink at each frame; namely, the number of pixels that are 

apparent (‘on’) in the frame, divided by the total number of pixels that are part of the structure (contain 

a value of ‘1’ in the ground-truth). We determined the position of each simulated blinking event 

according to the ground truth structure with additional localization noise randomly chosen from a 

uniform distribution in the range of [-20, 20] nm. We added additional localizations at random positions 

in the field of view (FOV) as noise. To simulate motion within a single acquisition frame, we summed 

the localizations over temporal windows of 10 simulated frames. The temporal window size, together 

with the blinking density and the movement velocity, sets the maximal temporal resolution of our 

method. Since there are multiple degrees of freedom in these parameters, we chose to keep the 

number of summed frames at a constant of 10 frames and to change the emitter density and the 

velocities in a range that matches our experimental data. The result was pairs of simulated localization 

video and underlying dynamic structure video. 

Parameters Video length 
[frames] 

Pixel size [𝜇𝑚] Field of view 
[𝑝𝑖𝑥𝑒𝑙2] 

Blink density 
[%] 

Blink density 

[
1

𝜇𝑚2] 

Values 1000 0.16 32 x 32 0.2 0.78 

Table S1: Filament simulation parameters. 

1.2. Mitochondria simulation 

Here we followed a similar scheme of simulation, but we changed the ground truth and the simulation 

parameters. First, we chosen N random center-of-mass (CM) positions for N mitochondria in the 

simulated field of view (FOV). Then, around each position we have chosen a random number of edge 

points from a uniform distribution of [30, 50] points. Each point was assigned with an angle in the range 

of [0, 2𝜋] and a distance from the center of mass according to the known size of mitochondria (see 

Table S2). Finally, we acquired the ground truth structures of each mitochondrion by drawing a polygon 

based on the randomly chosen edge points. 

Parameters Video 
length 

[frames] 

Pixel size 
[𝜇𝑚] 

Field of 
view 

[𝑝𝑖𝑥𝑒𝑙2] 

Distance 
from CM 

[𝜇𝑚] 

Blink 
density [%] 

Blink 
density 

[
1

𝜇𝑚2] 

Values 1000 0.16 32 x 32 0.5 – 1.2 0.5 1.95 

 Table S2: Mitochondria simulation parameters. 

We have simulated two types of dynamic movements for each mitochondrion: global shift, with 

velocities in the range of [-20, 20] nm per frame; and mitochondrion warping. The warping was done 

by choosing K edge points and move them periodically according to a sine function. 

The blinking videos were simulated in a similar fashion to the simulations of filaments, but some 

parameters have changed (see Table S2). 
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2. Neural network architecture 
Super spatio-temporal resolution reconstruction falls within the domain of sequence-to-sequence 

(seq2seq) objectives. In our case, the input is a sequence of high-precision localization maps of single 

molecules in an SMLM experiment, and the output is a sequence of images containing high-resolution 

reconstruction of the imaged structure.  

Previous work has shown that combining information from multiple frames is beneficial in means of 

reconstruction accuracy and temporal resolution improvement2,3. However, the suggested algorithms 

are based on Convolutional Neural Networks (CNNs) which are sub-optimal solution for seq2seq 

objectives. A more commonly used architecture for seq2seq tasks is Recurrent neural network (RNN). 

 

Figure S1: Neural network architecture. a We implemented bi-directional LSTM network with two layers. The first 

layer blocks get as input single low-resolution frames and the hidden states of the previous block. The second 

layer blocks output single super-resolved frames. In the forward pass (green arrows) the information propagates 

chronologically, while in the backward pass (red arrows) the images are inserted to the same network in reverse 

order. The output frames of both the forward and the backward pass are inserted to a CNN as two input channels. 

The output of the CNN is the super-resolved reconstruction of the entire video. b The architecture of the final 

CNN. c The architecture of the LSTM cells. 

RNNs combine temporal information along the input sequence to provide better reconstructions in the 

output sequence. The weights in each RNN block are recycled during the inference process; therefore, 
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RNNs are composed of less parameters than CNNs. Nevertheless, RNNs outperforms CNNs in many 

seq2seq objectives. In our work, we implement a variant of RNNs named bi-directional long short term 

memory (LSTM) network (Supplementary Fig. S1). LSTMs are known for their ability to propagate 

important information throughout long input sequences. This advantage, along with the low memory 

demand, makes them perfect for the analysis of videos. 

In addition to the suggested architecture, we have added another post-processing step to our analysis. 

In this step, we transform the output image to binary mask by defining all the pixels with values greater 

than some threshold as ones and the rest as zeros. Since the output image of the neural network 𝐼(𝑥, 𝑦) 

may be seen as a heatmap indicating the confidence of the network in the presence of a structure in 

each reconstructed pixel, we weighted each pixel in the binary map 𝐵(𝑥, 𝑦) according to the network 

confidence.  Therefore, we drew a patch around each pixel and multiplied this patch by a 2D gaussian 

with standard deviation that equals to one over the original pixel value: 

𝐵(𝑥𝑖, 𝑦𝑖) =  
1 , 𝐼(𝑥𝑖 , 𝑦𝑖) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

0 , 𝐼(𝑥𝑖, 𝑦𝑖) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) ⋅
1

√2𝜋 ⋅ 𝐼(𝑥𝑖, 𝑦𝑖)
⋅ 𝑒

−(𝑥−𝑥𝑖)2−(𝑦−𝑦𝑖)2

2⋅𝐼2(𝑥𝑖,𝑦𝑖)     , 𝑥, 𝑦 ∈ {𝑝𝑎𝑡𝑐ℎ 𝑎𝑟𝑜𝑢𝑛𝑑 𝑥𝑖, 𝑦𝑖} 

This function would decrease the pixel intensity where the network confidence is low and maintain high 

pixel intensity otherwise. The resulting frame of this analysis would keep the intensity of high 

confidence pixels and reduce the intensity of low confidence pixels. 

3. Accuracy quantification 

3.1. Reconstruction accuracy quantification 

The ground truth in our simulations were binary masks containing ones at simulated positions of 

emitters and zeros at the background. The outputs of our network were heatmaps containing different 

values in the range of [0, 1]. Higher pixel values meant that the network had higher confidence in 

estimating the structure at those pixels.  

Finding the optimal accuracy measure for comparison between the predictions and ground truth is not 

a trivial task. The pixel-wise mean squared error (MSE) is a widely used measure for   this purpose; 

however, in some cases it poorly describes the quality as we would expect. For example, when the 

sample is small relative to the FOV, most of the pixels in the ground truth image would have zero 

intensity. Therefore, consistently predicting matrices full of zero values would yield a very low error 

using the MSE. Structure similarity (SSIM)4 will suffer from similar problems as MSE, due to the fact it 

relies on comparison between the mean intensity and standard deviation of the predicted image and 

the ground truth. Jaccard index5 might be used to describe the similarity between two groups: the 

group of predicted localizations and the group of ground truth localizations. But in our case, we 

compare matrices and not localization lists and it is hard to compare between the predicted heatmaps 

provided by our neural network and the ground truth binary maps representing the sample.  

Therefore, we decided to quantify DBlink performance on simulated data according to two different 

metrics: the reconstruction fidelity to the ground truth structure; and the network hallucinations 

displayed in its reconstructions. The reconstruction fidelity term is measured by the following steps: 

binarizing the predicted image based a predefined threshold of half the maximal intensity; counting the 

number of pixels marked as ones in both the predicted image and the ground truth; dividing that 

number by the total number of pixels marked as ones in the ground truth image.  
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(1)       𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
⋅ 100 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             

Where P are the pixels containing structure in the ground truth, N are the pixels related to background 

in the ground truth, F means wrong classification (predicting structure as background and vice versa), 

and T means correct classification. The hallucination term was measured by the following steps: 

summing the number of pixels marked as ones in the predicted image and as zeros at the ground truth 

image (wrong structure predictions, namely FP); dividing this number by the number of pixels marked 

as zeros in the ground truth (correct background predictions and wrong structure predictions, TN and 

FP respectively).“(2) 𝐻𝑎𝑙𝑙𝑢𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
⋅ 100 =

𝐹𝑃

𝑇𝑁+𝐹𝑃
 

In the experiment that contained unwanted stage drift, we quantified the accuracy as follows: First, we 

generated the ground truth image using Deep-STORM3 reconstruction with drift correction and density 

filter tools. Next, we shifted back our reconstructed video frames according to the framewise drift 

prediction. Then, we binarized both our reconstructions and the ground truth reconstruction with 

thresholds that equal to the 75th percentile of each image intensity histogram (Supplementary Fig. S2). 

Finally, we quantified the reconstruction accuracy by measuring the cross-correlation between the re-

shifted reconstructions (𝑦̂𝑖) and the static ground truth image (𝑦). The final normalized term we used 

is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
max(𝑦̂𝑖 ⋆  𝑦)

√(𝑦̂𝑖 ⋆  𝑦𝑖̂) ⋅ (𝑦 ⋆  𝑦)
 

Where ⋆ marks the cross-correlation operator. The mean accuracy we obtained was 0.89.  

 

Figure S2: Quantifying the reconstruction accuracy in drifting sample experiment. Left: The ground truth structure 

obtained by Deep-STORM reconstruction in addition to application of drift correction and density filtration. Right: 

A single reconstructed frame of DBlink. Both images were binarized according to the 75th percentile of each image. 

Scale bar = 2 𝜇𝑚. 

In addition to the similarity calculation between our reconstructed frames and Deep-STORM’s 

reconstruction, we calculated the drift according to our reconstruction and compared it to the 

prediction we obtained using Deep-STORM drift correction mechanism (Supplementary Fig S3). We 

showed that both drift estimations agree with mean error of 38 [nm]. 
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Figure S3: Deep-STORM drift prediction (dashed line) is consistent with DBlink’s motion prediction (solid line); 

error bars, marked in black and red for x and y direction respectively, depict +/- standard deviation of the 

estimated drift over n=10 repetitive frames and a single frame (e.g. drift estimation between the first frame and 

frames 51-60). 

In the experiment that contained camera rotation, due to the finite numerical limitation to exactly 

rotate and shift back each frame we quantified a different property of our reconstructions – the 

consistency. To do so, we have measured the cross-correlation between every two frames in the 

reconstructed video: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑗 =
max(𝑦̂𝑖 ⋆ 𝑦̂𝑗)

√(𝑦̂𝑖 ⋆  𝑦𝑖̂) ⋅ (𝑦̂𝑗 ⋆ 𝑦𝑗̂)

 

The result of this measurement is a matrix containing ones in the diagonal and normalized cross-

correlations elsewhere. We achieved a mean consistency term of 0.91, over 20 neighboring frames, 

indicating that our reconstructed structure indeed maintains a high level of temporal uniformity 

throughout the reconstructed video (Supplementary Fig. S4). 
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Figure S4: Consistency quantification. We measured the normalized cross-correlation between every two frames 

in the reconstructed video. The diagonal values mark the autocorrelations of each frame with itself; hence, they 

contain ones.  

In the experiment containing dynein motors that moved on static microtubules, the hallucination 

quantification was similar to the experiment where unwanted drift has occurred. First we binarized 

ThunderSTORM and DBlink reconstructions according to the 75th percentile in each reconstructed 

frame. Then, we used eq. 1 to calculate the hallucination percentage in DBlink’s reconstruction. We 

obtained mean hallucination percentage of 0.1 %.  

3.2. Spatial resolution quantification 

We quantified the spatial resolution according to Fourier ring correlation (FRC)6. In this method, we 

used DBlink reconstruction of static data along with super-resolution reconstruction of the same 

structure using Deep-STORM. Then, we multiplied the Fourier transform of each subsample. Finally, we 

measure the mean value of the multiplication image over rings with an increasing size. When the mean 

pixel intensity of a ring drops below a certain threshold, we mark the radius of that ring as the maximal 

spatial frequency that occurs in our reconstruction (Supplementary Fig. S5). The resolution is estimated 

by one over the maximal spatial frequency we achieved. We used the previously suggested 2𝜎 

threshold as our decision threshold. This threshold is computed by dividing 2 over the square root of 

half the number of pixels in each ring. 
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Figure S5: Fourier ring correlation analysis for spatial resolution quantification. First, we take two random 

subsamples of the data; then, we multiply the Fourier transform of the subsamples. Finally, we calculate the FRC 

according to the mean intensity value of all the pixels in a ring increasing in size. The resolution is determined 

according one over the cut-off frequency we achieved in the meeting point between the FRC curve and the 

predetermined threshold. 

In addition to FRC, we also used decorrelation analysis7 for resolution estimation. According to 

decorrelation analysis DBlink obtained spatial resolution of 30 nm (Supplementary Fig. S6). 

 

Figure S6: Decorrelation analysis. The output of decorrelation analysis algorithm published by A. Descloux et al7. 

The maximal spatial frequency in our reconstruction was the ~68th percentile of the maximal achievable frequency 

in our system. In our experiment this number matched spatial resolution of ~30 nm. 

3.3. Additional performance quantification 

In this section, we report additional simulations quantifying DBlink performance in case that the testing 

data deviates from the training data. Our first experiment was planned to rule out the existence of 

reconstructed features appearing at the wrong time, namely, appearance/ disappearance of ground 

truth features from past/ future frames. To test this, we generated new simulations containing 

appearing and disappearing structures (see Supplementary Video S16). We have quantified the 

temporal distance between the appearance/ disappearance of these structure in the reconstructed 
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video compared to their actual appearance/ disappearance time in the ground truth. The mean error 

of the appearance/ disappearance time between the ground truth and the reconstructed video is 

presented in Table S3. We use the notation “partial appearance” as rough quantification of cases in 

which some structure features occurred before the entire structure was visible; these cases are of 

interest since they indicate reconstruction artifacts from future frames. Analogously, we use the 

notation “partial disappearance” in cases a significant amount of structure features has disappeared 

from the reconstruction, but some features remain (reconstruction artifacts from past frames). 

 Partial 
appearance 
error [frames] 

Full 
appearance 
error [frames] 

Partial 
disappearance 
error [frames] 

Full 
Disappearance 
error [frames] 

Mean error (signed) -3.875 1.625 -2.875 2.5 

Mean error (absolute) 3.875 3.875 2.875 3.25 

Table S3: appearance/ disappearance error in simulated data. Negative sign indicates the appearance / 

disappearance of a structure before its appearance / disappearance in the ground truth data. 

Table S3 shows that DBlink reconstructions present features from far past/ future frames within a 

temporal window of ~3 frames, which is equivalent, for example, to 45 ms in the case of the 

microtubule/ ER reconstruction presented in our paper. Finally, it is important to note that these 

simulations depict extreme cases, in which the entire structure appears/ disappears in a single frame. 

In the case of experimental data, where structures do not instantly appear/ disappear, more 

information would be available for DBlink to estimate the correct appearance/ disappearance time.  

Additionally, we have tested DBlink robustness to more extreme deviations from the training data by 

simulations aiming to quantify DBlink performance when the amount of structural information per time 

point is reduced. To reduce the amount of structural information per time point, one can either make 

the structure move faster, or reduce the number of localizations per frame. First, we generated 

simulations of mitochondria moving in increasing velocities and checked the velocity effect on DBlink 

reconstruction fidelity to the ground truth (Supplementary Fig. S7). 
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Figure S7: DBlink reconstruction fidelity to the ground truth vs mitochondrial movement velocity. The training 

data contained mitochondria-like structures moving slower than 0.5 pixels/ frame.  

DBlink performance remained stable when the test data moved in similar velocities to the velocities 

presented in the training data (or slower). DBlink performance was significantly hindered (dropping 

from ~90% to 60%) when the movement velocity was 3 times higher than the maximal training velocity. 

Importantly, the reduced accuracy in DBlink reconstructions in this case, was not only due to deviation 

from the training data, but also due to the challenge in reconstructing very fast dynamics, where the 

blinking data is insufficient for sampling the motion correctly. 

In addition to velocity variations, we have also tested the effect of varying the blinking density. Since 

the common definition of blinking density (number of emitters per area unit) is affected by the relation 

between the structure size and the field of view size, it sometime fails to describe the amount of 

structural information available per frame. For example, let’s imagine two fields of view (FOV) of the 

same size; in one FOV there is a structure of size 𝑋 and on the other FOV there is a structure of size 5 ⋅

𝑋. Assuming the labeling density and the fluorophore blinking kinetics are the same for both structures, 

we would observe roughly 5 times more emitters in the second FOV than in the first FOV. Since in the 

FOV we have 5 times more emission emitters, the blinking density in the second FOV would be 5 times 

higher than in the first FOV. Namely, despite the fact that the blinking densities would be different, the 

mean percentage of structural information (which limits reconstruction algorithm performance) visible 

in each recorded frame would be the same (assuming that the fluorophores are homogeneously 

distributed along the structures). Therefore, we have used the following definition for the blinking 

density: the percentage of ground truth pixels that appears in each localization frame. For example: a 

50% blinking density would mean that in each localization map, half of the pixels in the ground truth 

structure would be visible. In our simulations, we have varied the blinking density parameter and 

recorded the reconstruction fidelity to the ground truth (Supplementary Fig. S8). 

 

Figure S8: DBlink reconstruction fidelity to the ground truth vs blinking density DBlink was trained on blinking 

density of 2 % of the pixels in each localization map. 

In this experiment, we have shown that deviations from the training blinking density have little effect 

on the reconstruction accuracy, namely, we observed ~10% reduction in the reconstruction accuracy 

when reducing the blinking density by a factor of 4 or by increasing the blinking density by a factor of 

2.5 in compared to the training blinking density. 
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Finally, in order to test DBlink on biologically relevant dynamics at super-resolution, we have conducted 

live STED imaging of mitochondria, which served as the basis for a blinking simulation. In this 

experiment-based simulation, the ground truth structure was a STED reconstruction of mitochondrial 

dynamics, and we simulated the input localization maps for DBlink by randomly sampling this data. 

Reconstruction consisted of super-resolved dynamics at temporal resolution of 1.2 s per frame, 

corresponding to the STED frame rate, which is slow relative to the reported temporal resolution in our 

manuscript. Nevertheless, we are mainly interested here in the realistic structure and morphological 

changes that occurred in an experiment containing live-cell mitochondrial dynamics.  

To generate the localization data from the STED ground truth video, we filtered noise artifacts using a 

median filter and binarized the image using a constant intensity threshold; then, we randomly chose 

structure pixels from the ground truth to serve as localizations per frame. The number of localizations 

per frame was chosen according to the blinking density we have used in our training data. Because of 

the low temporal resolution of the STED video, simulating a single localization frame per STED frame 

did not yield enough information to achieve a good reconstruction of the dynamics; therefore, we have 

generated 5 localization frames per STED frame. Next, we input the localizations to DBlink and 

compared its reconstruction to the ground truth STED video (Supplementary Fig. S9 and Supplementary 

Video S17). 

 

Figure S9: DBlink reconstruction of quasi-simulated data based on STED imaging of mitochondrial dynamics. a) 

recorded frame using STED; b) binarized data; c) ground truth structure after noise filtration; d) generation of 

multiple blinking frames; e) DBlink reconstruction based on the simulated blinking frames. Scale bar = 1𝜇𝑚. 

DBlink was able to reconstruct the mitochondrial dynamics in the STED ground truth data with mean 

fidelity score of 89.1% and mean hallucination percentage of 5.6%. Remarkably, no retraining of the 

network was needed, namely, the network could reconstruct morphologies and dynamics that never 

occurred in the training data. 

To summarize this section, although DBlink is not error free, the experiments described above supply 

additional validation to the generalizability of DBlink to various changes in morphology and dynamics 

that did not occur in the training data. Furthermore, it is always possible to observe the confidence map 

outputs that DBlink provides for further inspection of reconstruction quality. 

4. STED experiment sample preparation and imaging method 
U2OS-TOM20-dHT7-CalR-HT7-KDEL stable cell lines (a kind gift from Julian Kompa and Kai Johnsson, 

MPI for Medical Research, Heidelberg)  were cultured in T-74 flasks (Greiner, Germany) at 37°C and in 

5% CO2 in Dulbeco’s Modified Eagle Medium (DMEM)/F-12 (Gibco, Thermo Fisher, USA) supplemented 

with 10% (v/v) fetal bovine serum (FBS) (Coring, USA), 1% penicillin-streptomycin (w/v) (Gibco, Thermo 
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Fisher, USA), and 1% GlutaMAX (v/v) (Gibco, USA). 1-2 days before imaging, 2x104 cells were seeded 

on fibronectin-coated (Sigma-Aldrich, Germany) 8-well chambers (Sarstedt, Germany).  

For STED live-cell imaging, cells were washed with pre-warmed 1x Dulbeco’s phosphate-buffered saline 

twice. Then, 300 nM of Hy4-SiR dissolved in Live Cell Imaging Solution (LCIS, Thermo) was added to cells 

for imaging. STED imaging was performed on the Abberior STED Expert Line microscope (Abberior 

Instruments, Göttingen, Germany) equipped with an Olympus IX83 inverted microscope (Olympus, 

Japan) with an UPLXAPO 60x (NA 1.42) oil immersion objective (Olympus, Japan). Imspector software 

(v16.3.15507, Abberior Instruments, Göttingen, Germany) was used for microscope control and image 

acquisition. Fluorophores were excited by a 640 nm laser and the fluorescence depleted with a 775 nm 

pulsed laser. The fluorescence signal was detected in the wavelength range of 650 - 755 nm using 

avalanche photodiodes (APDs) and a gating of 0.75-8 ns. The pinhole was set to 1.0 AU and the pixel 

size was set to 20 nm. Images were recorded in line sequential mode with line accumulation of 1, and 

dwell time of 5 𝜇𝑠.  

5. Window size optimization 
We set the number of input frames for Deep-STORM windows and blind inpainting to be 300 frames. 

This number was chosen by optimizing the window size for the best reconstruction result (see 

Supplementary Fig. S10). The number of input frames for DECODE was similarly optimized to be 500 

and 300 for the ER and microtubule experiments, respectively. The window size of eSRRF was chosen 

to be 250 frames and 100 frames for the ER experiment and the microtubules experiment respectively; 

eSRRF window size was optimized using the parameter sweep mechanism provided by the eSRRF 

ImageJ plugin. 

 

Figure S10: Blind inpainting evaluation8. Upper row: summation frame of localization maps over temporal 

windows with varying length. Bottom row: reconstruction of the summation frame by applying blind inpainting 

algorithm on it. All the reconstructions in the bottom row managed to filter noise and emphasize relevant features 

of the sample. However, summing 100 localization frames is not sufficient for the reconstruction of the entire 

sample; on the other hand, summing 500 frames generated motion blur that blind inpainting could not resolve 
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(yellow and blue arrows). Empirically, the best compromise between motion blur and reconstruction accuracy 

was obtained when we summed 300 frames. Scale bar = 2.5 µm. 

6. Confidence hallucination calculation 
Many neural-net-based reconstruction algorithms are usually considered as a black-box, and the 

outputs of these algorithms are hard to interpret. Hence, in this work we added an explainable output 

to DBlink acting as a guide in the interpretation of DBlink reconstructions (Supplementary Video S11, 

Supplementary Video S12, Supplementary Video S13). 

The confidence measure we utilize is based on the pixelwise network predictions. We hypothesized 

that predicted pixel values that are farther than 0/255 (background/ structure values in the ground 

truth data) correspond to low network prediction confidence. To prove this claim, we have calculated 

the mean hallucination percentage in low confidence areas and in high confidence areas. We have 

defined high confidence pixel values as pixel values in the range of [0, 0.1] or in the range [0.9, 1], the 

rest of the pixel values are regarded as low confidence areas. The mean hallucination percentage was 

1.5% in low confidence areas and 0.1% in high confidence areas. This indicates that the confidence 

measure we use correlates with prediction accuracy. 

7. One-directional LSTM analysis 
Before using bi-directional LSTM architecture, we first tested a one-directional LSTM architecture 

(Supplementary Video S14). As expected, the first few frames generated by the one-directional network 

did not contain enough structural information due to lack of accumulated information over the input 

sequence. Moreover, the ability of the one-directional network to detect and filter noisy localizations 

is lacking in comparison to the bi-directional network. It could be explained by the abundance of 

information from both the past and the future in the bi-directional network.  

8. Supplementary video captions 
Supplementary Video S1. Super spatiotemporal resolution reconstruction of simulated filaments. The 

temporal resolution of the reconstruction is 1 reconstructed frame per 10 simulated blinking frames. 

Supplementary Video S2. DBlink reconstruction of a static STORM experiment exhibiting unwanted 

drift. Temporal resolution = 5 s (0.2 fps). 

Supplementary Video S3. DBlink reconstruction of a static STORM experiment exhibiting global motion 

due to camera rotation. Temporal resolution = 0.8 s (1.25 fps). 

Supplementary Video S4. Raw data of dynein motors (white) moving on static microtubules (red).  

Supplementary Video S5. DBlink reconstruction based on Deep-STORM localizations of dynein motors 

moving on static microtubules reconstruction generated by ThunderSTORM9. Temporal resolution = 50 

s (0.02 fps). 

Supplementary Video S6. At the beginning of the video, we show Deep-STORM reconstructions of live-

cell microtubules when summing localizations over temporal windows of lengths 500, 100, 20 frames. 

Finally, we show DBlink reconstruction at super spatiotemporal resolution. Spatial resolution = 30 nm; 

temporal resolution = 15 ms (66.6 fps). 

Supplementary Video S7. Reconstruction of live-cell endoplasmic reticulum (ER). Comparison between 

DBlink and DECODE10. DBlink spatial resolution = 30 nm; temporal resolution = 15 ms (66.6 fps). 

Supplementary Video S8. Reconstruction of live-cell microtubules. Comparison between DBlink at 66.6 

fps and eSRRF11 at 0.66 and 3.33 fps. 
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Supplementary Video S9. DBlink reconstruction of live-cell mitochondria over extended experiment 

duration of 12.5 minutes at super spatiotemporal resolution. Spatial resolution = 75 nm; temporal 

resolution = 500 ms (2 fps). 

Supplementary Video S10. Focus on two regions of interest from the live-cell mitochondria sample. 

Spatial resolution = 75 nm; temporal resolution = 50 ms (20 fps).  

Supplementary Video S11. Comparison between mitochondria training data and DBlink reconstruction 

of experimental data. The reconstruction contains new structures and motions never seen in the 

training stage, demonstrating the generalizability of the DBlink model. 

Supplementary Video S12. Confidence map of reconstructed data in simulation. 

Supplementary Video S13. Confidence map of reconstructed live-cell microtubule experiment. Spatial 

resolution = 30 nm; temporal resolution = 15 ms (66.6 fps).  

Supplementary Video S14. Confidence map of reconstructed live-cell mitochondria experiment. Spatial 

resolution = 75 nm; temporal resolution = 500 ms (2 fps).  

Supplementary Video S15. Performance comparison between one-directional and bi-directional LSTM. 

Supplementary Video S16. Simulated videos of filament data. At a certain time point the experiment 

some filaments appear, and after some time they disappear. Left: localization maps (input to DBlink); 

Center: DBlink reconstruction; Right: Ground truth. 

Supplementary Video S17. DBlink reconstruction of simulated data based on STED imaging of 

mitochondrial dynamics. Left to right: input localization maps; DBlink reconstruction; ground truth data 

generated by STED experiment; simulated diffraction limited data. Scale bar = 2 𝜇𝑚. 
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