
DBlink: Dynamic localization microscopy in super 
spatiotemporal resolution via deep learning 

 

Alon Saguy1, Onit Alalouf1, Nadav Opatovski2, Soohyen Jang3,4, Mike Heilemann3,4, Yoav Shechtman1,† 

1 Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel  

2 Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa, Israel 

3 Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Germany 

4 Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Goethe-University Frankfurt, Germany 

† Corresponding Author 

Corresponding author mail address: yoavsh@bm.technion.ac.il  

Abstract 

Single molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the 

spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques 

require long acquisition times, typically a few minutes, to yield a single super-resolved image, because 

they depend on accumulation of many localizations over thousands of recorded frames. Hence, the 

capability of SMLM to observe dynamics at high temporal resolution has always been limited.  In this 

work, we present DBlink, a deep-learning-based method for super spatiotemporal resolution 

reconstruction from SMLM data. The input to DBlink is a recorded video of SMLM data and the output 

is a super spatiotemporal resolution video reconstruction. We use a convolutional neural network 

combined with a bi-directional long short-term memory (CNN-LSTM) network architecture, designed 

for capturing long-term dependencies between different input frames. We demonstrate DBlink 

performance on simulated filaments and mitochondria-like structures, on experimental SMLM data 

under controlled motion conditions, and finally on live cell dynamic SMLM. DBlink’s spatiotemporal 

interpolation constitutes an important advance in super-resolution imaging of dynamic processes in 

live cells. 

Main text 

Introduction 

The spatial resolution in standard optical microscopes is bounded by the diffraction limit at about half 

the wavelength of light, corresponding, in the visible range, to ~200-300 nm. Super-resolution 

microscopy (SRM) methods overcome this limitation and enable higher resolution. Notable methods 

of this family include stimulated emission depletion (STED)1, structured-illumination microscopy 

(SIM)2, as well as single molecule localization microscopy (SMLM)3. Prominent variants of SMLM 

include photoactivated localization microscopy4 (PALM), stochastic optical reconstruction 

microscopy5 (STORM), points accumulation for imaging in nanoscale topography6 (PAINT), and DNA-

PAINT7. The SMLM variants differ in their experimental conditions; however, they share a similar 

overall pipeline: First, fluorescent molecules are used to label structures in a specimen. Then, a 

sequence of frames is captured, in which only a sparse, random subset of molecules emit light per-

frame. Subsequently, each emission event is detected, and fit to a model of the system point spread 

function (PSF) allowing highly precise determination of the emitting fluorophore position. Finally, by 

accumulating the localizations of thousands of emitters, the output of SMLM is a single super-resolved 

image of the structure, typically with an order of magnitude resolution improvement compared to the 

diffraction limit. 
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An inherent limitation in SMLM is its temporal resolution. Accumulating a large enough number 

(typically millions) of single-molecule emission events to generate a continuous image takes a long 

time. Moreover, densely labeled structures present a challenge in the detection of single emitters, 

which limits the maximal number of localizations per frame. Indeed, the typical temporal resolution 

in SMLM is on the order of minutes, while tens-of-seconds resolutions have also been reported8,9. A 

possible way to increase temporal resolution in SMLM could be to increase the illumination intensity 

and decrease frame acquisition time10. However, high illumination intensity is inherently incompatible 

with live cell imaging due to phototoxicity11. Recent advances in deep learning algorithms have yielded 

computational algorithms that further improve the capabilities of SMLM. ANNA-PALM8 significantly 

reduces the number of frames needed for super-resolution reconstruction. Deep-STORM12,13 as well 

as DECODE14 enable researchers to analyze densely labeled SMLM experiments by training a neural 

network to perform multi-emitter fitting in super-resolution. Importantly, while these algorithms 

perform exceptionally well in visualization of nanoscale structures, they are still mostly applicable for 

the analysis of static data or processes with very slow dynamics.  

Existing methods are useful mostly for static data because the typical localization-based 

reconstruction process does not exploit structural-correlations over long periods of time (longer than 

the temporal window being reconstructed). Non SMLM based super-resolution methods15–17, that 

naturally exhibit high temporal resolution, either compromise on spatial resolution, or do not exploit 

the abundant super-resolved information of single molecule emission events.  A method that 

combines both spatial and long-range temporal interpolation would be optimal.  

Recently, methods utilizing both spatial and temporal information have emerged18–20. Super-

resolution radial fluctuations (SRRF)19 measures the image intensity gradients in subpixel accuracy and 

detects the imaged structure by searching gradient convergence points. Since single molecules often 

blink over multiple frames, additional pixelwise cross-correlation analysis helps distinguish adjacent 

fluorophores. Recently, enhanced SRRF (eSSRF)21 has enabled live-cell 3D video reconstruction at 

spatial resolution of ~70 nm and temporal resolution of ~1 reconstructed volume (20 x 20 x 3.6 𝜇𝑚3) 

per second. Although eSRRF achieves a significant improvement in the spatiotemporal resolution, it 

does not exploit long term temporal correlations, that contain valuable structural information.  

In this paper, we present DBlink, a novel method that increases the spatiotemporal resolution in the 

reconstruction of live-cell dynamic SMLM data. We use a convolutional bi-directional long short-term 

memory (CNN-LSTM) network, that receives as input a video containing super-resolved localization 

maps and outputs a video of a dynamic super-resolved structure (Fig. 1). The super-resolved 

localization maps can be obtained by using existing methods, e.g., Deep-STORM12 or 

ThunderSTORM22. In order to perform spatiotemporal interpolation, DBlink relies on long-term inter-

frame structural-correlation, and on prior information regarding the imaged sample – namely, its type 

(e.g. microtubules, mitochondria, etc.). We first demonstrate the ability of DBlink to reconstruct super 

spatiotemporal resolution videos of simulated filament dynamics. Then, we validate our network 

performance on experimental data in controlled conditions where we possess ground truth 

information. Next, we present super spatiotemporal resolution reconstructions of microtubule and 

endoplasmic reticulum (ER) dynamics in live cells, achieving spatial resolution of ~30 nm and temporal 

resolution of 15 ms. Finally, we demonstrate the reconstruction of mitochondrial dynamics from live-

cell PAINT data using a non-covalent, weak affinity fluorophore label.  



 

Figure 1: DBlink concept. a Low-resolution frames containing stochastic blinking events are analyzed by a 

localization method, in our case, Deep-STORM12, which generates super-resolved localization maps for each 

input frame. The localization maps serve as input to a CNN-LSTM network that provides as output super-

resolution video reconstruction of the imaged structure. Scale bar = 2.5 𝜇𝑚. b Spatial resolution of different 

super-resolution microscopy methods23. The color represents temporal resolution.   

Results 

Our goal is to extend the temporal resolution of SMLM beyond its inherent limitation, dictated by the 

trade-off between emitter density and localization ability, while maintaining high-spatial resolution. 

Conceptually, the problem at hand is spatiotemporal interpolation of a 3D manifold (2D + time), that 

describes the continuous movement of a 2D object, from noisy discrete samples in space (2D 

localizations) and time (due to the camera acquisition rate). Clearly, there is insufficient information 

per frame, and there are multiple valid solutions, mathematically. The strategy we chose here is to 

train a neural network with realistic regularization based on prior knowledge on the imaged sample. 

Injecting relevant prior knowledge to our network requires thousands of videos containing ground 

truth information at super spatiotemporal resolution. Experimental acquisition of this amount of data 

is extremely challenging; furthermore, ground truth information is not available at high 



spatiotemporal resolution. Therefore, we took the approach of simulating the training videos based 

on relatively simple static biological models and applying to them time-varying affine transformations. 

The challenge in simulation-based training is to generate simulations that resemble experimental 

data; in our case, the biological models facilitated this step, and we only had to tune several 

experimental parameters (e.g. blinking density, motion velocities, etc.) to generate realistic simulated 

videos. To capture long term dependencies between different video frames, we employ an LSTM 

network architecture, which has previously proven itself as a good solution for this task24,25. LSTM 

networks are suitable for sequential analysis tasks since each layer is designed to carry information 

from previous frames throughout the sequential analysis of the video. Because our method analyzes 

experiments in retrospect, we also possess information from future frames; therefore, we use a bi-

directional LSTM network, and concatenate the forward pass and the backward pass. As expected, 

this strategy boosts the performance in comparison to a one-directional LSTM network architecture 

(see one-directional LSTM evaluation section in the SI and Supplementary Video S15). Each LSTM cell 

consists of a convolutional layer aiming to capture local spatial correlations between adjacent pixels. 

Each output element of the CNN-LSTM network is analyzed by an additional convolutional neural 

network (CNN) that provides the final reconstructed frame (Supplementary Fig. S1). In the following 

example applications, we show that this approach is feasible and produces high quality results. In 

addition, the recurrent part of the network is not sensitive to different temporal blinking patterns; 

hence, we obtain clean and uniform structures in the reconstructions. 

 

Figure 2: Generation and analysis of simulated filament data. a We simulated a random number of filaments in 

the field of view (FOV) according to the model of Shariff, et al26. b Then, we applied gradually increasing affine 

transformations over a predefined video length of N frames. c Next, we generated random blinking localizations 



based on the simulated structure. d Finally, we summed the simulated localizations every 10 frames and inserted 

the summed frames (total of N/10 frames) to the LSTM. The output of the LSTM was a super-resolution 

reconstruction video of length N/10. Scale bar = 2.5 𝜇𝑚. 

First, we tested our approach on simulated data (Fig. 2). To do so, we generated simulated filaments 

according to the model of Shariff et al.26 (see methods section); then, we shifted and rotated them 

randomly, while maintaining structural smoothness and continuity in time (see filament simulation 

section in the SI). The neural network was able to reconstruct random shifting structures over time 

with high accuracy (Supplementary Video S1), namely, 90% of the simulated binary map matched the 

predicted structure, and only 1.3% of the predicted structure was hallucinated (see reconstruction 

accuracy section in the SI). In this simulation, the temporal resolution corresponds to 1 reconstructed 

frame per 10 simulated blinking frames.  

To quantify the spatial resolution of the reconstruction, we performed Fourier ring correlation (FRC) 

analysis27 as well as decorrelation analysis28 between the network reconstruction and a STORM 

reconstruction on a static sample. The network result was consistent with standard STORM 

reconstruction using Deep-STORM12 up to a resolution of 29 nm according to FRC and up to 30 nm 

according to decorrelation analysis (see spatial resolution quantification section in the SI).  Next, as a 

first validation of our method on experimental data, we reconstructed a static structure which was 

shifting laterally over time. For this, we captured a STORM experiment of fixed microtubules exhibiting 

naturally occurring lateral sample-drift. We estimated the drift using Deep-STORM drift correction 

mechanism, which is based on cross-correlation, and received a total shift of 240 nm in y direction and 

400 nm in x direction (Fig 3a). Next, we used the localization maps provided by Deep-STORM and 

summed them over windows of 100 frames with 50 ms acquisition time. Finally, we input the summed 

localization maps into our network and received a super spatiotemporal reconstruction of the shifting 

data at a temporal resolution of 0.2 frames per second (Supplementary Video S2). We predicted the 

drift according to the cross-correlation between the first reconstructed frame of our network and 

every other frame in the reconstructed video. The mean distance between our drift prediction and 

Deep-STORM prediction over the course of the experiment was 38 nm (Fig. S3). Notably, the network 

did not have any prior knowledge that the sample is static and drifting, namely, that the only motion 

was a global shift; rather, the network treated this data the same as general dynamic data. A global-

motion prior would improve the performance significantly, at the cost of a less generalized solution.   

To demonstrate our method performance on a more complex type of motion than lateral shift, while 

still possessing knowledge of the sample structure to serve as validation, we captured a STORM video 

of static microtubules while rotating the camera manually (Fig. 3b). We added to the sample 

fluorescent beads to serve as fiducial markers reporting on sample rotation. At the end of the 

experiment, we stopped rotating the camera and let the blinking continue for ~15,000 more frames, 

from which the ground truth structure was obtained using Deep-STORM. To test reconstruction 

performance, we computationally rotated back the predicted structure in each frame according to the 

calculated rotation angle. Then, we compared the computationally-rotated video to the static 

reconstruction obtained by Deep-STORM (Supplementary Video S3). To quantify the prediction error, 

we measured the consistency between the reconstructed video frames based on the cross-correlation 

between every two frames in the reconstructed video, achieving a mean consistency score of 0.91, 

which indicates a consistent reconstruction (see reconstruction accuracy quantification section in the 

SI). In this experiment, we used a window size of 40 summed frames to generate the reconstructed 

video, with acquisition time of 20 ms per frame, resulting in temporal resolution of 1.25 frames per 

second. 



 

Figure 3: Static structure reconstruction during global motion. a STORM experiment containing undesirable drift 

was captured over 10,000 frames. We used Deep-STORM12 to obtain a super-resolution reconstruction of the 

microtubule structure. Then, we used Deep-STORM’s drift correction tool to predict the drift over the course of 

the experiment and acquire a single reconstructed frame in super resolution. The same localizations, without 

drift correction, are analyzed using DBlink. Scale bar = 2.5 𝜇𝑚. b A STORM movie of static microtubules is 

captured while manually rotating the camera. Fluorescent beads (red arrows) serve as fiducial markers reporting 

on the rotation. At some point, rotation is stopped, and a static STORM video is captured for 15,000 more 

frames. This video is used to produce a ground truth static structure via Deep-STORM. The static structure is 

then compared to each frame in the dynamic reconstructed video, rotated appropriately. Scale bar = 2.5 𝜇𝑚. 

For the validation of DBlink on experimental data that contained dynamic morphological changes, and 

for which we could also possess ground-truth information at super-resolution, we reconstructed 

dynamic motion of dynein motors moving on static microtubules29 (Supplementary Video S4). The 

static microtubule reconstruction served as the structural ground truth in super-resolution for the 

traces that the dynein motors could track. To simulate moving filaments, instead of single molecules, 

we summed the localization of dynein motors over short spatiotemporal windows. For independent 



reconstruction validation, we used a different algorithm for the static localization (ThunderSTORM) 

and for the dynamic DBlink localization-inputs (Deep-STORM). DBlink reconstruction of the dynein 

dynamics agreed with the static reconstruction of ThunderSTORM spatially (Fig. 4 and Supplementary 

Video S5). Quantitatively the hallucination percentage of DBlink reconstruction relative to 

ThunderSTORM’s reconstruction was 0.1 % (see reconstruction accuracy quantification section in the 

SI). To validate the temporal aspect of the reconstruction, we marked the edges of the temporal 

window containing the input localizations for DBlink.  

 

Figure 4: Tracking dynein motors dynamically moving on microtubules. a Fluorescently labeled microtubules are 

scattered in the field-of-view. Dynein motors labeled with HALO Alexa 488 are moving on the microtubules. The 

blinking data of the entire experiment is localized using ThunderSTORM to generate the ground truth structure 

in super-resolution. b Then, dynein motor localization is performed using Deep-STORM; the localization maps 

are multiplied by a temporally changing window to simulate the movement of a short filament-like structure. 

The localizations within the temporally moving window serve as the input to DBlink, that provides as output the 

reconstruction of the dynamic simulated filaments at super spatio-temporal resolution. c Overlay of the 

microtubule static reconstruction (blue) and the dynein motor dynamic reconstruction (white). The edges of the 

temporally moving window are marked in yellow. Temporal resolution = 50 s (25 frames with intervals of 2 

seconds). 

Additional quantification of performance as a function of deviations between training data and testing 

data are reported in the additional performance quantification section in the SI. 



Next, we tracked microtubule and endoplasmic reticulum dynamics in live cells. Because ground truth 

information is not available in this case, we compared our network reconstructions to four alternative 

solutions: a) Deep-STORM reconstructions based on short temporal windows (Supplementary Video 

S6); b) Deep-STORM reconstructions combined with a previously reported blind inpainting algorithm9; 

c) DECODE14 reconstruction algorithm (Supplementary Video S7); d) eSRRF21 reconstruction algorithm 

(Supplementary Video S8). The input to DBlink was the sum of localizations over windows of 40 frames 

for the ER experiment and 20 frames for the microtubules experiment.  

 

Figure 5: Qualitative comparison of DBlink to other state-of-the-art methods. a Left to right: A single diffraction 

limited frame of microtubules in live-cell experiment (ROI marked in red dashed rectangle); Deep-STORM 

reconstruction based on 300 frames; application of blind inpainting algorithm on Deep-STORM temporal-

window; DECODE reconstruction based on 500 frames; eSRRF reconstruction based on 100 frames; DBlink 

reconstruction at temporal resolution of a single blinking frame. b Left to right: A single diffraction limited frame 

of ER in live-cell experiment (ROI marked in red dashed rectangle); Deep-STORM reconstruction based on 300 

frames; application of blind inpainting on temporally-windowed Deep-STORM; DECODE reconstruction based 

on 300 frames; eSRRF reconstruction based on 250 frames; DBlink reconstruction at temporal resolution of a 

single blinking frame. c Left: the confidence map of a reconstructed ROI; blue colored pixel intensities are 

increased for better visualization. DBlink has higher confidence in red colored pixels than in blue colored pixels. 

Right: the actual reconstructed image.  

Notably, the reconstructed video is at the same temporal resolution as the input video, which is 

achieved by using overlapping windows with one frame shifts. While this comes with a price of longer 



inference time ranging from few minutes up to few hours, the result is a super-resolved video at the 

temporal resolution of a single blinking frame. Importantly, the same exact network was used to 

recover both the ER data and the microtubule data, with no retraining; this serves as a demonstration 

of the generalizability of DBlink beyond its training data. The decision on the window sizes for each 

reconstruction algorithm is described in the window size optimization section in the SI. 

Qualitatively, DBlink reconstructions consistently outperformed the other methods. Although blind 

inpainting has managed to filter most of the noise in Deep-STORM data, it performed poorly in densely 

labeled areas. Furthermore, rapid dynamics caused motion blur in temporally-windowed Deep-

STORM and DECODE reconstructions (Fig. 5), while DBlink provided a more stable reconstruction in 

areas exhibiting rapid motion. Moreover, eSRRF has managed to overcome motion blur and provide a 

stable reconstruction; nonetheless, achieving the same temporal resolution as DBlink with eSRRF 

entails losing some structural information in the reconstruction (Supplementary Video S8). Notably, 

the temporal resolution achieved by DBlink in these experiments was 15 ms (66.6 frames per second), 

compared to eSRRF temporal resolution of 1.5 s and 3.75 s (0.66 and 0.26 frames per second) for the 

microtubule and the ER experiments respectively. The spatial resolution of DBlink reconstructions 

measured by decorrelation analysis was 30 nm.  

In order to enable the evaluation of the quality of the reconstruction, we supply DBlink’s confidence 

measure as an additional explainable output (Fig. 5c). The confidence map highlights areas in which 

the network reconstructions are more likely to miss the correct structure. To validate the usefulness 

of the confidence map, we measured the hallucination percentage in low confidence areas in 

comparison to high confidence areas. For more details see confidence hallucination calculation section 

in the SI. While the hallucination level is very low in both cases, the mean hallucination percentage 

was 1.5% in low confidence areas and 0.1% in high confidence areas, indicating that high confidence 

regions indeed correlate with fewer errors in the reconstructed frame.  

Next, we reconstructed the dynamics of mitochondria in live cells from high-density single-molecule 

data recorded using cells labelled for the mitochondrial protein COX8. We extended the observation 

time in live cell imaging by using a HaloTag7 fusion in combination with a non-covalent, weak affinity 

fluorophore tag that binds to and unbinds from the target and acts as an exchangeable fluorophore 

label30 (Supplementary Videos S9, S10). In this case, training required a model for mitochondrion size 

and shape, labeling density, motion type and speed, etc. For this purpose, we developed a dynamic 

simplified-mitochondria simulator (see mitochondria simulation section in the SI). After training the 

neural network, we analyzed a SMLM video of live cell imaging data of mitochondria labeled with 

HaloTag7 (see methods section) and followed the structural dynamics (Fig. 6). We could clearly 

visualize morphological changes of mitochondria, including fusion, fission, and drift, at different 

velocities. The temporal resolution we achieved in this experiment is 20 frames per second and the 

spatial resolution is 75 nm, determined from decorrelation analysis28.  

DBlink managed to detect mitochondrial dynamics with high fidelity to the observed data (Fig. 6), 

despite the fact that the training data contained simple pixelated-structures and motions 

(Supplementary Video S11). This validates the generalizability and applicability of our network for the 

analysis of various biological samples, contingent on appropriate training. The structural changes 

observed were similar to previously published work on mitochondrial dynamics31, extended by a faster 

temporal resolution, longer observation time, and additional sub-diffraction structural information. 

Previous work on live-cell STED microscopy of mitochondrial dynamics has shown the potential of 

long-term observations of mitochondria, yet at the expense of extended time periods for fluorophore 

recovery that limits the temporal resolution32. DBlink in combination with exchangeable fluorophores 

increases the temporal resolution while not requiring time for signal recovery. This opens the door to 



study the relationship between ultra-structural organization and dynamics of mitochondria, which are 

key processes in the life cycle of cells and are tightly regulated in health and disease33,34. So far, many 

of the underlying mechanisms remain elusive, because of their inherent heterogeneity, and because 

of a limited spatiotemporal resolution35.  

 

Figure 6: Reconstruction of 12.5 minutes long video of mitochondria dynamics in a live cell. a eSRRF21 

reconstruction of mitochondrial dynamics using temporal windows of 10 frames. b eSRRF reconstruction using 

temporal windows of 250 frames. c DBlink reconstruction at the temporal resolution of the blinking data, 

namely, 20 frames per second. Each column represents a different timepoint. Yellow arrow marks the rapid 

formation of a circular mitochondria structure that could not be clearly observed by analyzing long temporal 

windows, due to motion blur. Red arrows mark missing structure not resolved by eSRRF due to the short 

analyzed temporal window. Scale bar = 3 𝜇𝑚. d ROI #1: DBlink reconstruction enables tracking of mitochondrial 

fusion and fission dynamics in high spatiotemporal resolution. Scale bar = 1 𝜇𝑚. e ROI #2: DBlink reconstruction 

containing previously mitochondria thinning prior to a fission event36,37. Scale bar = 1 𝜇𝑚. 

Finally, we compared our reconstructed video to eSRRF. The reconstructions of DBlink and eSRRF 

agreed spatially in areas containing slow dynamics; however, eSRRF reconstruction presented motion 



blur due to the fast dynamics even using the optimal temporal window (250 frames, based on ImageJ 

plugin the parameter sweep in ImageJ plugin).  

Discussion 

In this paper, we present a method for super spatiotemporal resolution reconstruction of dynamic 

SMLM data. Our solution utilizes two main assumptions: 1) the imaged-sample class is known (e.g. 

filaments, mitochondria), and 2) dynamically varying objects maintain some degree of structural 

similarity over time, allowing the network to exploit this information. In other words – the information 

used by our network to recover a SMLM video with a temporal window of 20 frames is not contained 

in these 20 frames alone – but rather also in a window of hundreds of frames around it. Notably, both 

assumptions are necessary to achieve the spatiotemporal resolutions demonstrated in this work and 

must hold for accurate reconstructions.  

To overcome the challenge of verifying the network results, we tested several cases in which 

estimation of ground truth position was possible, including numerical simulation, whole-sample 

motion, i.e. sample-drift and camera rotation, and motion of dynein motors on static microtubules.  

In simulations, the network could reconstruct nanoscale rapid movement of simulated filaments with 

90% of the structure correctly classified per video, assuming certain SMLM conditions (e.g. ~20 nm 

localization precision, ~1 emitter per 𝜇𝑚2); naturally, prediction accuracy varies as a function of 

fluorophore density, motion speed and other experimental parameters.  

Ultimately, a main goal of our method is to enable live SMLM. For this purpose, we have analyzed 

SMLM videos of live-cell microtubule dynamics, provided by R. Tachibana, et al.38 as well as videos of 

ER dynamics previously analyzed by DECODE14. Since no ground truth structure is available in such an 

experiment, we have qualitatively assessed the reconstruction accuracy by comparison to other state-

of-the-art solutions for dynamic SMLM. While state-of-the-art methods suffered from loss of 

structural information due to the analysis of short temporal windows, DBlink reconstructions 

presented a more complete description of the entire structure.  

As in all model-based neural-net reconstruction algorithms, the network’s ability to generalize will 

always be limited by the training data, and caution should be exercised when applying the method; 

specifically, training data must resemble the experimental structure to avoid hallucinations39–41. To 

guide DBlink users in choosing the appropriate SMLM training data and in the interpretation of the 

reconstructions we have reported multiple ablation studies, the confidence map, and further 

discussion in the additional performance quantification section and the confidence hallucination 

calculation in the SI. Moreover, to validate the applicability of DBlink to structures with higher 

structural complexity than filaments, we tracked mitochondrial dynamics. First, we trained the neural 

network on simulated mitochondria-like structures, drifting and wobbling in time. Then, we used 

weak-affinity, non-covalent fluorophore labels that allow extended observation time42. The 

combination of these dyes with our high spatiotemporal reconstruction enables tracking dynamics in 

live cells at high spatiotemporal resolution in SMLM imaging over long observation times. 

Future work can include extensions to other structures in live cells, expanding the types of motion in 

the training data to simulate elongation, contraction, wobbling and more complex dynamics, and 

systematic parameter optimization, e.g. optimal sample densities, sample-motion-rate to acquisition-

rate ratio, and more. Additionally, although in this work we used the same network architecture to 

reconstruct different types of samples, this is not always the optimal solution. For example, in case 

that the imaged sample is relatively large, increased receptive fields in the convolutional layers might 

be beneficial. Moreover, reducing the inference time of our network would also be very useful; novel 



self-attention-based neural network architectures such as Transformers43,44 might be exploited for this 

task. Also, expanding the ability of the network to analyze 3D information is also a desirable extension 

for this work. This would require good 4D (3D+time) models of different biological structures to 

generate the training data.  

Finally, our LSTM-based framework is versatile in terms of its input data; here, we have used single-

molecule localization maps as inputs; however, other inputs may provide even better performance. 

For example, DBlink can be used in combination with eSRRF, receiving as input radial gradient maps, 

which is suitable for analysis of densely labeled samples and may further improve performance. Our 

neural network based spatiotemporal interpolation could enable higher quality observation and 

ultimately facilitate discovery in various applications including cellular dynamics45, colocalization of 

nanoparticles with organelles46,47, synthetic materials48, and more. 
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Methods 

Training scheme 

The network architecture is described in detail in the neural network architecture section in the SI. To 

train the neural network we used 1000 pairs of localization videos and ground truth structure videos 

(see filament/ mitochondria simulation sections in the SI) as a training set, and 250 pairs as validation 

set. Our loss function is comprised of three main terms: (i) Mean Squared Error (MSE); (ii) consistency 

loss; (iii) total variation loss. The consistency loss is calculated by the sum of pixelwise distance 

between every two adjacent frames: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑓𝑟𝑎𝑚𝑒𝑖[𝑥, 𝑦] − 𝑓𝑟𝑎𝑚𝑒𝑖−1[𝑥, 𝑦]

𝑥,𝑦

𝑉𝑖𝑑𝑒𝑜 𝐿𝑒𝑛𝑔𝑡ℎ

𝑖=1

           (1) 

Additionally, we used the Adam optimizer (betas = [0.99, 0.999]) with reduce on plateau mechanism 

(patience = 3). The network was trained on a single Titan RTX GPU for approximately 3 days. 

Dynamic data acquisition 

Sample preparation and imaging of global motion  

To prepare fixed cells for imaging, we cleaned cover glasses (#1.5H, 22X22 mm, Marienfeld) in an 

ultrasonic bath (DCG-120H, mrc) with 5% Decon90 at 60 °C for 30 min. Then we washed the cover 

glasses with water, incubated them in ethanol absolute for 30 min, and sterilized them with 70% 

filtered ethanol for 30 min. The cover glasses were then seeded with COS7 cells and grown for 24 h in 

a six-well plate using phenol-free Dulbecco′s Modified Eagle′s medium (Gibco) with 1 g/l D-Glucose 

(i.e., low glucose), supplemented with fetal bovine serum, penicillin–streptomycin and 

glutamine (Biological industries) at 37 °C and 5% CO2. The Cells were fixed with 4% 



paraformaldehyde and 0.2% glutaraldehyde in PBS (37 °C, pH 7.3) for 45 min, washed, and incubated 

in 0.3 M glycine/PBS solution for 15 min. The cover glasses were transferred into a clean six-well plate 

and incubated in a blocking solution for 2 h (10% goat serum, 3% BSA, 2.2% glycine, and 0.1% Triton-

X in 1X PBS, filtered with 0.45-μm PVDF filter unit, Millex). The cells were then immunostained 

overnight with anti-α-tubulin-AF647 (ab190573, Abcam) and anti-β-tubulin-AF647 (ab235759, 

Abcam) diluted 1:250 in the blocking buffer. After staining, the samples were washed five times with 

PBS. To prevent detachment of the anti-tubulin antibodies, the sample was again treated with 4% 

paraformaldehyde and 0.2% glutaraldehyde in PBS (pH 7.3) for 10 min at room temperature, washed, 

and incubated in 0.3 M glycine/PBS solution for 10 min.  

For super-resolution imaging, a PDMS chamber was attached to a glass coverslip holding fluorescently 

labeled COS7 cells. Blinking buffer, containing 100 mM β-mercaptoethylamine hydrochloride, 20% 

sodium lactate, and 3% OxyFluor (Sigma Aldrich) in 1X PBS and pH 8–8.5, was added, and a clean 

coverslip was placed on top while minimizing any residual air bubbles in the chamber. In the 

microtubule experiments the sample was illuminated with 640 nm laser (~ 300 
𝑊

𝑐𝑚2), and 10,000 

images were captured at 50 ms exposure. For the drift correction experiment we used Photometrics 

Prime 95B camera and for the camera rotation experiment we used an EMCCD (iXon, Andor) camera. 

Cell Culture – mitochondria experiment 

U2OS cells were cultured in T-75 flasks (Greiner) at 37℃ and 5% CO2 in Dulbecco`s Modified Eagle 

Medium (DMEM) / F-12 (Gibco, Thermo Fisher, USA) containing 10% (v/v) fetal bovine serum (FBS) 

(Corning, USA), 1% penicillin-streptomycin (w/v) (Gibco, ThermoFisher, USA) and 1% GlutaMAX (v/v) 

(Gibco, USA).  

Cells were transiently transfected with the plasmid pCDNA5/FRT/TO- COX8A-HaloTag7. For this 

purpose, 2 x 104 U2OS cells were seeded on fibronectin-coated 8-well chamber (Sarstedt, Germany). 

After 24 h incubation (37℃, 5% CO2), cells were transfected using Lipofectamine 3000 transfection 

reagent (Gibco, ThermoFisher, USA). Briefly, 0.31 μL Lipofectamine 3000 was diluted in 10.42 μL 

OptiMEM medium (Gibco, Thermo Fisher, USA), and 210 ng vector DNA was diluted in 10.42 μL 

OptiMEM medium with 0.42 μL P3000 reagent (Gibco, ThermoFisher, USA). Diluted DNA solution was 

added to Lipofectamine diluent in a 1:1 ratio and incubated for 20 min at RT. After adding the DNA-

lipid complex, cells were further incubated for 16-24 h at 37°C and 5% CO2. 

Prior to imaging, the cells were washed with pre-warmed live cell imaging solution (LCIS, 
ThermoFisher) and temperature adjusted to avoid lateral and axial drift. 
 

Dynein motors on microtubules imaging 

The dynein data was provided by Stefan Niekamp and Ronald Vale, acquired as described previously29. 
 

Live cell imaging 

Live cell data of microtubules was generously provided as reported previously in R. Tachibana et al38. 

Briefly, SMLM imaging was carried out using an inverted fluorescence microscope (Eclipse Ti-E; Nikon) 

with an oil-immersion objective (CFI Apo TIRF 100X Oil, NA 1.49; Nikon), and irradiation laser at 

wavelength of 561 nm (Sapphire 561 LP; Coherent). The microtubules were labeled by 4(5)-Halo-

HMCR550 conjugated to HaloTag proteins. For more details on sample preparation see R. Tachibana 

et al35. For live-cell confocal imaging of U2OS expressing COX8-HaloTag7, the exchangeable HT ligand 

HSAm carrying the fluorophore JF635 was added to the live cell imaging solution (LCIS, ThermoFisher, 

USA) at a final concentration of 500 nM. After an incubation time of 10 minutes, confocal microscopy 



was carried out on a Leica SP8 (Leica, Germany) equipped with an oil immersion objective (HC PL APO 

CS2 63x, NA 1.4) and an 633nm HeNe laser. Fluorophores were excited with an intensity setting of 1% 

633 nm and a pinhole diameter of 1 Airy Unit. 300 frames were acquired using the HyD detector with 

a gain of 100 and at a scan speed of 400 Hz in xyt acquisition mode. Leica LASX software was used for 

the microscope control and data acquisition. 

The imaging setup and the sample preparations of the live cell endoplasmic reticulum data are 

described in detail online14.  

For live-cell SMLM imaging of U2OS expressing COX8-HaloTag7, the exchangeable HT ligand HSAm 

carrying the fluorophore JF635 was added to the pre-warmed live cell imaging solution (LCIS, 

ThermoFisher, USA) at a final concentration of 1 nM. After an incubation time of 10 minutes, imaging 

was carried out on a N-STORM microscope (Nikon, Japan) equipped with an oil immersion objective 

(Apo, 100x, NA 1.49) and an EMCCD camera (DU-897U-CS0-#BV, Andor Technology, Ireland). 

Fluorophores were excited with a collimated 647 nm laser beam at an intensity of 400 
𝑊

𝑐𝑚2 (measured 

at the objective) at highly inclined and laminated optical sheet (HILO) mode. 20,000-60,000 

consecutive frames were acquired at 50 Hz in active frame transfer mode with an EMCCD gain of 200, 

a pre amp gain of 3, readout mode of 17MHz and at an effective pixel size of 158 nm. NIS Elements 

(Nikon, Japan), LCControl (Agilent, USA), and Micro-Manager were used for the optical setup and the 

data acquisition.  

Data availability 

The datasets analyzed during the current study are available from the corresponding author upon 

request. The datasets generated during this study are available online:  

https://doi.org/10.5281/zenodo.7023414. 

Code availability 

The code is available online at: https://github.com/alonsaguy/DBlink. 

https://doi.org/10.5281/zenodo.7023414
https://github.com/alonsaguy/Dynamic-STORM

