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Abstract

Static typechecking is an important feature of many standard programming lan-
guages. However, static typing focuses on data rather than communication, and
therefore does not help programmers correctly implement communication proto-
cols in distributed systems. The theory of session types provides a basis for tackling
this problem; we use it to develop two tools that support static typechecking of
communication protocols in Java. The first tool, Mungo, extends Java with types-
tate definitions, which allow classes to be associated with state machines defining
permitted sequences of method calls: for example, communication methods. The
second tool, StMungo, takes a session type describing a communication protocol,
and generates a typestate specification of the permitted sequences of messages in
the protocol. Protocol implementations can be validated by Mungo against their
typestate definitions and then compiled with a standard Java compiler. The result
is a toolchain for static typechecking of communication protocols in Java. We
formalise and prove soundness of the typestate inference system used by Mungo,
and show that our toolchain can be used to typecheck a client for the standard
Simple Mail Transfer Protocol (SMTP).

Keywords: Session types, object-oriented programming, typestate, type inference.

1. Introduction

Many popular programming languages use static typechecking to ensure cor-
rect manipulation of data. This offers significant practical benefit to software
developers. However, modern software is increasingly reliant on communication,
which must also be programmed correctly: messages must be sent and received in
the correct sequence and with the correct format, in order to implement a desired
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communication protocol. The theory of session types [25, 47] provides a basis for
supporting communication-based programming by static typechecking of commu-
nication operations; it allows the structure of communication to be codified as type
definitions, analogous to data type definitions, which can be used by compilers for
typechecking. However, session types are not yet a feature of standard mainstream
programming languages, so software developers are not able to benefit from them.

We present two tools that use the theory of session types to support static
typechecking of communication protocols in Java. Our first tool, Mungo,1 extends
Java with typestate definitions, which associate classes with state machines defining
permitted sequences of method calls [45]. To associate a typestate definition with
a class, the programmer adds a @Typestate annotation to the class telling Mungo
where to find the typestate definition file. Mungo then ensures that instances of
the class are used in a manner consistent with the declared typestate. To control
aliasing, objects with typestate definitions are used according to a linear type
discipline; this is analogous to the linear control of channels in session type
systems. Our second tool, StMungo (Scribble-to-Mungo), uses this typestate
feature to connect Java to the broader setting of communication protocols specified
as session types in the Scribble protocol language [43]. Given a Scribble protocol
projected to a particular endpoint (a so-called local protocol), StMungo generates
a typestate specification capturing the sequences of sends and receives permitted
along that endpoint. Each endpoint implementation can be validated separately
by Mungo against its typestate definition and then compiled as usual with javac.
The separate typechecking of each endpoint is integral to our approach, and is
justified by the theory of multiparty session types [26], the formal foundation of
Scribble. Multiparty session types provide an important safety guarantee: once
each endpoint implementation is known to conform to its local protocol, the various
implementations can be composed into a system free of communication errors.

Our work advances a line of research applying session types to real-world
programming languages [9, 15, 17, 16, 22, 29, 34, 35, 37, 41]. In particular, we
build on the work of Gay et al. [23], which connected session types to the object-
oriented notion of typestate. They observed that the valid sequences of messages for
a given endpoint could be captured by a typestate definition for a class, allowing the
channel endpoint to be modelled as an object. While an important idea, this earlier
work lacked a practical implementation and relied on typestate declarations on
parameters and return types. The Mungo/StMungo toolchain is the first integration

1Saint Mungo is the founder and patron saint of the city of Glasgow.
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of session types and a practical typestate system for checking the communication
behaviour of Java programs. Moreover, Mungo uses a typestate inference system
to eliminate the need for typestate declarations on parameters and return types. The
Mungo/StMungo toolchain offers other practical advances over previous efforts
to combine session types with objects. For example, SJ [29] only supports binary
session types, whereas StMungo generates Mungo specifications from multiparty
session types. Furthermore, Mungo permits objects with typestates to be stored in
fields, whereas SJ requires them to be created and fully used within methods. Using
the @Typestate annotation means we avoid any need for language extensions.

1.1. Contributions
Mungo. We describe the Mungo typestate checker for Java (§ 3). Mungo currently
supports a subset of Java; support for the full language is discussed in § 8.
StMungo. We describe StMungo (§ 2), which translates Scribble local protocols
into Mungo typestate specifications. StMungo also generates Java method stubs
for each endpoint. Both tools can be downloaded from [1].
SMTP case study. We present a statically typechecked SMTP client (§ 4), which
illustrates the toolchain provided by Scribble, StMungo and Mungo.
Typestate inference system. We formalise the essential features of Mungo as a
core object-oriented calculus (§ 5). We define a typestate inference system for that
language and prove its type safety (§ 6).

A summary of this work was presented at PPDP 2016 [31].

2. StMungo: Scribble-to-Mungo

The integration of session types and typestate, defined by Gay et al. [23],
consists of a formal translation of session types for communication channels into
typestate specifications for channel objects. The main idea is that a channel object
has methods for sending and receiving messages and the typestate specification
defines the order in which these methods can be called; therefore it is a specification
of the permitted sequences of messages, i.e. a channel protocol.

We extend this translation from binary to multiparty session types [26] and
implement it as the StMungo (Scribble to Mungo) tool, which translates Scrib-
ble [43, 49] local protocols into typestate specifications and skeleton socket-based
implementation code. The resulting code is typechecked using Mungo. A Scribble
local protocol describes the communication between one role and all the other
participants in a multiparty scenario, including the way in which messages sent to
different participants are interleaved. This interleaving is not captured by binary
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session types and by tools based on them, like SJ [29]. StMungo is based on
the principle that each role in the multiparty communication can be abstracted
as a Java class following the typestate corresponding to the role’s local protocol.
The typestate specification generated from StMungo together with the Mungo
typechecker can guide the user in the design and implementation of distributed
multiparty communication-based programs with guarantees on communication
safety and soundness. StMungo is the first tool to provide a practical embedding of
Scribble multiparty protocols into object-oriented languages with typestate.

We illustrate StMungo on a multiparty protocol that models the process of
booking flights through a university travel agent. There are three participants:
Researcher (abbreviated R), who intends to travel; Agent (A), who is able to make
travel reservations; and Finance (F), who approves expenditure from the budget.
After the request, quote and check messages requesting authorisation for a trip,
Finance can choose to approve or refuse the request. The global protocol is defined
as follows.

1 global protocol BuyTicket(role R, role A, role F){

2 request(Travel) from R to A; quote(Price) from A to R;

3 check(Price) from R to F;

4 choice at F {

5 approve(Code) from F to R,A;

6 ticket(String) from A to R;

7 invoice(Code) from A to F;

8 payment(Price) from F to A; }

9 or { refuse(String) from F to R,A; } }

The Scribble tool is used to check the above protocol definition for well-formedness
and to derive a local version of the protocol for each role, according to the mul-
tiparty session types theory [26]. This is known as endpoint projection. Here
we show the local protocol for Researcher, which describes only the messages
involving that role. The self keyword indicates that R is the local endpoint.

1 local protocol BuyTicket_R(self R,role A,role F){

2 request(Travel) to A;

3 quote(Price) from A;

4 check(Price) to F;

5 choice at F {

6 approve(Code) from F;

7 ticket(String) from A; }

8 or {

9 refuse(String) from F; } }

Notice that the exchange of invoice and payment between Agent and Finance is not
included. Similarly, the local projection for Agent omits the check message and the
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one for Finance omits the request, quote and ticket messages. StMungo converts
the BuyTicket_R local protocol into the RProtocol typestate protocol:

1 typestate RProtocol {

2 State0 = { void send_requestTravelToA(Travel): State1 }

3 State1 = { Price receive_quotePriceFromA(): State2 }

4 State2 = { void send_checkPriceToF(Price): State3 }

5 State3 = { Choice1 receive_Choice1LabelFromF():

6 <APPROVE:State4, REFUSE:State6> }

7 State4 = { Code receive_approveCodeFromF(): State5 }

8 State5 = { String receive_ticketStringFromA(): end }

9 State6 = { String receive_refuseTravelFromF(): end } }

StMungo generates an API for this role, class RRole, which provides an implemen-
tation of RProtocol. When instantiated, it connects to the other role objects in the
session (ARole and FRole). The method calls, describing the messages exchanged
with the other roles, follow the interleaving specified by the RProtocol typestate.
Alternatively, the developer may choose to ignore this API (and the Mungo socket
library that it depends on), and use only the generated typestate protocols to de-
velop his/her own implementation. He/she also has the ability to further refine the
generated state machine, e.g., give appropriate names to states, or use anonymous
states to have a coarser state refinement.

3. Mungo

Mungo extends Java with an optional typestate definition. The tool is im-
plemented in Java using the JastAdd framework [24], a meta-compiler based on
reference attribute grammars. Source files are typechecked in two phases: first
according to the regular Java type system, and then according to our typestate
extension. The source files can then be compiled using javac and executed in the
standard Java 1.8 runtime environment.

A typestate is attached to a Java class and it defines an object protocol in
the form of a state machine. Each state offers a set of methods that must be a
subset of the methods defined by the class; each method specifies a transition to
a successor state. Typestate definitions are provided in separate files, using the
Java-like syntax, shown in Example 1 below. A typestate definition is attached
to a class using the annotation @Typestate("ProtocolName"), where "ProtocolName"
names the file where the typestate is defined. The typestate inference algorithm,
presented in § 6, constructs the sequences of methods called on all objects asso-
ciated with a typestate, and then checks if the inferred typestate is a subtype of
the object’s declared typestate. Some Java features are not yet supported. Some
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we anticipate to be relatively straightforward extensions (synchronised statements,
the conditional operator ?:, inner and anonymous classes, and static initialisers).
Generics, inheritance and exceptions are non-trivial and are discussed in future
work (§ 8). Currently, generics are not supported; inheritance is supported for
classes without typestate definitions; and exceptions are supported syntactically but
are typechecked under the (unsound) assumption that no exceptions are thrown. (A
try-catch statement is typechecked by typechecking the try body; if an exception
is thrown a typestate violation may result.)

Example 1. We introduce Mungo through the example of an unbounded stack data
structure that follows a typestate specification. Given the following enumerated
type:

1 enum Check { EMPTY, NONEMPTY }

then one possible typestate protocol for a stack is as follows:
1 typestate StackProtocol {

2 Empty = {void push(int): NonEmpty,

3 void deallocate(): end}

4 NonEmpty = {void push(int): NonEmpty,

5 int pop(): Unknown}

6 Unknown = {void push(int): NonEmpty,

7 Check isEmpty(): <EMPTY: Empty,

8 NONEMPTY: NonEmpty >}}

This definition specifies that a stack is initially Empty. The Empty state declares two
methods: push(int) pushes an integer onto the stack and proceeds to the NonEmpty
state; deallocate() frees any resources used by the stack and terminates its usage.
The deallocate() method is not available in any other state, requiring a client to
empty the stack before it is done using it. In the NonEmpty state a client can either
push() an element onto the stack and remain in the same state, or pop() an element
from the stack and transition to Unknown. Unlike push(), pop() must leave the stack
in the Unknown state because the number of elements on the stack is not tracked by
the protocol. From the Unknown state, one can either push() and proceed to NonEmpty,
or call isEmpty() to explicitly test whether the stack is empty. Calling isEmpty()
returns a member of the enumeration Check defined earlier. This idiom, based on
Java enumerations, is the mechanism for communicating a choice made by the
callee synchronously back to the client, and is explained in more detail below.
Here, a stack implementation can choose between returning EMPTY and transitioning
to Empty, or returning NONEMPTY and transitioning to NonEmpty. We can now define
a stack implementation Stack that conforms to the StackProtocol specification,
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using an integer array to store the elements. The @Typestate("StackProtocol")
annotation is used to associate the typestate definition with the class:

1 @Typestate("StackProtocol")

2 class Stack {

3 private int[] stack; private int head;

4 Stack() { stack = new int[MAX]; head = 0; }

5 void push(int d) { stack[head++] = d; }

6 int pop() { return stack[head--]; }

7 Check isEmpty() {

8 if(head == 0) return Check.EMPTY;

9 return Check.NONEMPTY);

10 void deallocate() {} }

Finally, having implemented StackProtocol, we can define a stack client that uses
the Stack with Mungo verifying that Stack instances are used correctly.

1 class StackUser {

2 Stack pushN(Stack s, int n) {

3 do { s.push(n--); }

4 while(n>0);

5 return s; }

6 Stack popAll(Stack s)

7 { loop : do {

8 System.out.println(s.pop());

9 switch(s.isEmpty()) {

10 case EMPTY: break loop;

11 case NONEMPTY: continue loop;

12 } while(true);

13 return s; }

14 public static void main(String[] args)

15 { StackUser su = new StackUser();

16 Stack s = new Stack();

17 Stack s2;

18 s = su.pushN(s,16);

19 s2 = su.popAll(s);

20 s = su.pushN(s2,64);

21 s = su.popAll(s);

22 s.deallocate(); } }

For illustrative purposes, the client defines two helper methods. The first method,
pushN(Stack s, int n), for any n > 0, pushes the integers n, . . . , 1 onto the stack
s. The second, popAll(Stack s), pops all the elements of s. We now discuss some
details of the programming model, drawing on this example where appropriate.
Local variables, parameters, and return values. The main() method above
creates a single Stack instance, stores it in a local variable s, and then passes it to

7



various invocations of pushN and popAll, from which it is also returned as a result.
We also make use of the additional local variable s2. When returned from a method,
the stack has a potentially different typestate than it did as an argument. No explicit
typestate definitions are required for the parameter or return types of pushN and
popAll, since Mungo can infer them. An alternative to this “continuation-passing”
style, using fields, is discussed below.
Recursion and internal choice. Method pushN() illustrates the consumption of a
recursive typestate offering a choice. The loop of the form do-while(exp) requires
s to initially be either Empty or NonEmpty; at each iteration the client decides which
of the available methods to call. In this case it chooses to push another value onto
the stack. This leaves the stack in state NonEmpty, allowing another choice to be
made on the next iteration. This is compatible with the recursive structure of the
NonEmpty state, which permits an unbounded number of push() operations, looping
back to NonEmpty each time.
Recursion and external choice. Method popAll(Stack s) also illustrates the
consumption of a recursive typestate, but here the stack rather than the client
makes the choice. (In session type terminology, the client offers an external
choice.) This takes the form of a labelled do-while(true) in conjunction with a
switch. The switch statement inspects the Check enumeration returned by isEmpty:
in the NONEMPTY case, the loop continues, and in the EMPTY case the loop terminates.
Due to their particular control flow, loops of the form

label: do { switch { block } } while(true)

are a suitable pattern for consuming a recursive typestate when the condition on
the recursion is an external choice (i.e. based on an enumeration label).
Linear objects. Mungo ensures linear usage of objects that follow a typestate
protocol; aliasing on objects allows for different method calls on an object that
might lead to an inconsistent typestate. Notice that in line 19 of the StackUser
example:

19 s2 = su.popAll(s);

the return value of popAll() is assigned to s2. Now, suppose line 20 were replaced
with the following:

20 s = su.pushN(s,64);

In this case Mungo would report a linearity error on argument s in su.pushN(s, 64)
informing the programmer that variable s is used uninitialised, because the usage
of variable s in line 19 as an argument consumed its linear value.
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Inferring typestate for fields. Using fields to store objects can lead to a more
idiomatic object-oriented style than explicitly passing values between methods. To
illustrate this, we define a second client, StackUser2, that stores a Stack as a field.

1 class StackUser2 {

2 private Stack s;

3 StackUser2() { s = new Stack(); }

4 boolean pushN(int n) {

5 do{ s.push(n--); }

6 while(n>0);

7 return true;}

8 void popAll()

9 { loop : do {

10 System.out.println(s.pop());

11 switch(s.isEmpty()) {

12 case EMPTY: break loop;

13 case NONEMPTY: continue loop;

14 } while(true); }

15 void finish() { s.deallocate(); }

16 public static void main(String[] args)

17 { StackUser2 su = new StackUser2();

18 if(su.pushN(15)||su.pushN(32)) su.pushN(32);

19 su.popAll(); su.finish();

20 } }

To track the typestate of a field we need to know the possible sequences in which
methods of its containing class may be called, which in turn, requires having a
typestate for the containing class. To track the typestate of the field s, we need to
provide a typestate for StackUser2. This state machine will then drive typestate
checking for those fields of StackUser2 which have their own typestate definitions.
For example, we could define the following StackUserProtocol for StackUser2:

1 typestate StackUserProtocol {

2 Init = { boolean pushN(int): Cons,

3 void finish() : end}

4 Cons = { boolean pushN(int): Cons,

5 void popAll(): Init} }

Typechecking the field s of StackUser2 follows the possible sequences of method
calls specified by StackUserProtocol, and also takes into account the constructor
body of StackUser2. Then, Mungo can guarantee that if a StackUser2 instance is
used according to StackUserProtocol, then the Stack field of the object is also used
according to StackProtocol.
Short-circuit boolean expressions. Line 18 in the StackUser2 example above
illustrates a final technical detail of typestate inference. The inference algorithm
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takes into account the fact that logical disjunction short-circuits if the first disjunct
evaluates to true. Mungo will ensure that the typestate of su is consistent with
there being either one, two or three successive invocations of pushN().

4. Case Study: Typechecking SMTP

In order to show the practicality and robustness of our StMungo and Mungo
toolchain, we have developed a substantial case study in which we statically
typecheck an SMTP client. We use this client to communicate with the gmail
server. The full source code of the SMTP client can be found in [1].

SMTP (Simple Mail Transfer Protocol) is an Internet standard electronic mail
transfer protocol, which typically runs over a TCP (Transmission Control Protocol)
connection. We consider the version defined in RFC 5321 [44]. An SMTP interac-
tion consists of an exchange of text-based commands between the client and the
server. For example, the client sends the EHLO command to identify itself and open
the connection with the server. The commands MAIL FROM : <address> and RCPT TO
: <address> specify the e-mail address of the sender and the receiver of the e-mail,
respectively. The DATA command allows the client to specify the text of the e-mail.
The QUIT command is used to terminate the session and close the connection. The
responses from the server have the following format: three digits followed by an
optional dash “-”, such as 250-, and then some text, like OK. The server might reply
to EHLO with 250 <text> or to MAIL FROM or RCPT TO with 250 OK.

To typecheck the SMTP protocol using StMungo and Mungo, we first represent
the text-based commands as messages in a Scribble global protocol, based on Hu
and Yoshida [28].

1 global protocol SMTP(role S, role C) {

2 // Global interaction between server and client.

3 _220(String) from S to C;

4 rec X1 {

5 choice at S { 250dash(String) from S to C; continue X1; }

6 or { 250(String) from S to C; ... }

7 ... } }

Then, we use the Scribble tool to validate and project the above global protocol into
local protocols, one for each role. We focus only on the client side and describe
the SMTP_C local protocol. This fragment of code of the SMTP describes a loop
(rec X1), in which the server S performs a choice between the messages _250DASH
and _250. Next, other loops follow (rec Z1 and rec Z3), where in the second one
the client C chooses among the messages SUBJECT, to send the subject, DATALINE, to
send a line of text, or ATAD to terminate the e-mail by sending a dot.
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1 local protocol SMTP_C(role S, self C) {

2 _220(String) from S; ...

3 rec X1 {

4 choice at S { _250dash(String) from S; continue X1; }

5 or { _250(String) from S; ...

6 rec Z1 {

7 ... data(String) to S; ...

8 rec Z3 {

9 choice at C { subject(String) to S; continue Z3; }

10 or{dataline(String) to S;continue Z3;}

11 or{atad(String) to S;_250(String) from S;continue Z1;}

12 } } } ... } }

StMungo translates the local protocol (SMTP_C) into a typestate specification (CProtocol).
In addition, it generates a skeletal implementation based on sockets, although other
implementations are possible. Every interaction in the local protocol becomes a
method call in the typestate specification, as we will see shortly. State definitions
group methods into choices and impose sequencing.

Running the StMungo tool on SMTP_C produces the following files:

1. CProtocol.protocol, which captures the interactions local to the SMTP_C role
as a typestate specification.

2. CRole.java, which is a class that implements CProtocol by communication
over Java sockets. This is an API that can be used to implement the SMTP
client endpoint.

3. CMain.java, which is a skeletal implementation of the SMTP client endpoint.
It runs as a Java process and provides a main() method that uses CRole to
communicate with the other participants, in this case the SMTP server.

The CProtocol generated by StMungo is defined as follows.
1 typestate CProtocol {

2 State0 = { String receive_220StringFromS(): State1 }

3 ...

4 State3 = { Choice1 receive_Choice1LabelFromS():

5 <_250DASH:State4, _250:State5 > }

6 State4 = { String receive_250dashStringFromS(): State3 }

7 State5 = { String receive_250StringFromS(): State6 }

8 ...

9 State27 = { void send_dataStringToS(String): State28 }

10 ...

11 State29 = {void send_SUBJECTToS():State30,
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12 void send_DATALINEToS(): State31,

13 void send_ATADToS():State32} ...}

The receive and send messages in the SMTP_C local protocol are translated as types-
tate methods in the CProtocol typestate specification. For example, the message
_220(String) received from S in line 2 in SMTP_C becomes a method with signature:
String receive_220StringFromS()

given in line 2 in CProtocol. Similarly, the message data(String) sent to S and
given in line 7 of SMTP_C becomes a method with the following signature:
void send_dataStringToS(String)

given in line 9 in CProtocol.
Let us now comment on choice. The external choice made at role S different

from self is given in lines 4-18 of SMTP_C. For every external choice in the local
protocol there is an enumerated type in the typestate, such as the following:
enum Choice1 { _250DASH , _250; }

The values of Choice1 are determined by the first interaction of every branch in the
choice. The external choice itself is translated as a receive method returning the
enumerated type Choice1 and given in lines 4-5 of CProtocol:
State3 = { Choice1 receive_Choice1LabelFromS():

<_250DASH:State4, _250:State5 > }

After choosing one of the branches, _250DASH or _250, the payload of type String is
received via another method call, following receive_250dashStringFromS() in line
6 and receive_250StringFromS() in line 7, respectively for the available choices.

The internal choice made at self, namely role C (lines 11-17 of SMTP_C), is
translated into a set of send methods, one for each branch of the choice (lines
12-14 of CProtocol). When running the program, only one of these methods will
be called, thus performing a single message selection corresponding to it.
CRole implements all the methods in CProtocol. In this implementation, since

communication occurs on Java sockets, we declare and create a new socket to
connect to the gmail server. This is given in lines 3 and 5, respectively, in CRole.

1 @Typestate("CProtocol")

2 class CRole {

3 private Socket socketS = null; ...

4 public CRole()

5 { socketS = new Socket("smtp.gmail.com", 587); ...}

6 /* CProtocol method definitions */ }
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We now describe the correspondence between the text-based commands in SMTP
and the method calls in Mungo. Consider “SUBJECT: Hello World” which is an
atomic command composed of the keyword SUBJECT and the subject text. We
use an intermediate layer to split this command into two separate method calls,
shown in lines 7-9 in the main method below. The first, send_SUBJECTToS(), selects
the command SUBJECT. The second, send subjectStringToS("Hello World"), sends
the message “SUBJECT: Hello World”. The intermediate layer is also used when
receiving a command from the server. The command name is converted into a
value of an enumeration, and the associated text is treated as a separate message.

Finally, CMain.java contains the main method where the CRole object is created
and used to implement the client logic.

1 public static void main(String[] args) {

2 CRole currentC = new CRole();

3 ... _Z3:

4 do{ ...

5 switch(/*label to be sent*/) {

6 case /*SUBJECT*/:

7 currentC.send_SUBJECTToS();

8 String subject = // input subject;

9 currentC.send_subjectStringToS (/*subject*/); continue _Z3;

10 case /*DATALINE*/:

11 case /*ATAD*/:

12 currentC.send_ATADToS();

13 currentC.send_atadStringToS (/*single dot*/);

14 String _250msg = currentC.receive_250StringFromS();

15 continue _Z1; }

16 } while(true); }

Typically the programmer would flesh out the skeletal implementation with extra
logic that, for example, gets relevant input from the user or decides which choice
to make when several are available, or customise CMain by adding SSL connection
code for authentication with the gmail server. Mungo is able to statically check
CMain, or any code that uses a CRole object, to ensure that methods of the protocol
are called in a valid sequence and that all possible responses are handled. The
programmer is not required to use the skeleton implementation of CMain, or even
the CRole API. It is possible to write new code that uses the API, or to use the
typestate specification to guide the development of an alternative API, or to refactor
the typestate specification itself.
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Type Decl D ::= class C : S {F̃; M̃} | enum E {̃l}
Typestate S ::= H̃ | µX.S | X
Signature H ::= T m(T ) : S | E m(T ) : 〈S l〉l∈E

Field F ::= T f
Type T ::= C | E | bool | void
Method M ::= T m(T x) {e}
Constant c ::= l | tt | ff | null | ∗
Path r ::= this | r. f | x
Expr e ::= c | r | r.m(e) | r. f = e | e; e | r. f = new C | λ : e

| continue λ | switch (e) {el}l∈E | if (e) e else e

Figure 1: Top-level syntax

5. A Core Calculus for Mungo

We define the syntax and operational semantics of a core object-oriented
calculus, based on Gay et al. [23], which we use to formalise Mungo. We only
formalise the typestate inference system and not the ability of Mungo to work with
full Java, as this would require formalising a large subset of Java.
Syntax. The syntax of the calculus is given in Fig. 1. We use ·̃ to denote a possibly
empty set of elements that range over the subject meta-variable. A program is a
set of type declarations D̃, each of which declares either a class or an enumerated
type. A class declaration defines a class named C with typestate specification S ,
fields F̃ and methods M̃. An enumeration declaration defines an enumerated type
named E with a non-empty set l̃ of enum values. For simplicity, our language has
no support for inheritance or interfaces.

We assume as an implicit context a program D̃, where every class or enumera-
tion has a unique name, and the fields and methods of a given class also have unique
names. For any class C : S {F̃; M̃} ∈ D̃ we write fields(C) for F̃, methods(C)
for M̃, and typestate(C) for S . For any enum E {̃l} ∈ D̃ we write enums(E) for l̃.

A typestate definition S specifies a state machine that has as actions the methods
of a class. A typestate definition is either an internal choice H̃ of method signatures,
or a recursive typestate µX.S , which may contain the recursive typestate variable
X. A method signature H can have two forms, depending on whether the method
transitions to a state S , or it is an external choice E m(T ) : 〈l : S l〉l∈E with the
method signature defining the transition to one of the possible states 〈S l〉l∈E; in the
latter case the return type of the method must be E. The empty or inactive typestate
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Heap value o ::= C[ f̃ : o] | c
Runtime path r ::= root | r. f
Expression e ::= . . . | e@r
Value v ::= c | r
Typestate S ::= . . . | 〈S l〉l∈E

Typestate action s ::= T m(T ) | E m(T ) : l | l
Context E ::= [] | r.m(E) | r. f = E | E; e

| switch (E) {el}l∈E | E@r | if (E) e else e
Action ` ::= r. f .new C | r.〈l〉 | r.T m T ′ | r. f = v | τ | if

Figure 2: Runtime syntax

{} can also be written end. Well-formedness conditions ensure that state µX.X is
not well-formed and that all state definitions are closed. Although in the formal
calculus typestates are anonymous, in Mungo they have a nominal syntax, as the
examples in § 3 showed.

A type is either the name of a class or enumeration, void or bool. A field
declaration is a field name f associated with a type T . A method declaration
T m(T ′ x) {e} specifies a return type T , the name m of the method, the type T ′ of
the parameter x, and the expression e that comprises the method body. A path is
either the atomic path this denoting the current object (receiver), the composite
path r. f denoting the field f of the object denoted by r, or a parameter x. At runtime
paths are resolved to heap locations (see runtime syntax below). A constant is the
special value null, which is assignable to any class type, a literal value tt or ff of
type bool, a literal value ∗ of type void, or an enum value l.

In the expression forms method call r.m(e), field assignment r. f = e, and
object creation r. f = new C, the target object of the invocation or assignment is
restricted to a path r, rather than an arbitrary expression. This is to allow the
typestate of the target to be tracked by the type system. The other expression
forms include constants, paths, sequential composition e; e′, switch expressions, if
...else expressions, labelled expressions λ : e, and continue expressions that jump
to the enclosing expression labelled by λ.
Configurations and runtime syntax. Fig. 2 extends the source syntax with addi-
tional runtime constructs used by the operational semantics.

A configuration h, e is a pair of a heap h and runtime expression e. The heap
h is defined as an object C[ f̃ : o], where C is the class of the object and f̃ : o are
its fields; the contents o of each field is either a constant c or another object. The
“heap” is a tree of objects, with neither cycles nor sharing, due to the linearity of
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object references enforced by the type system (see § 6).
The expression e in a configuration h, e is a runtime expression in which every

(compile-time) path of the form this, r. f or x has been replaced by a runtime
path that refers to a heap value. A runtime path r in a heap h is either the atomic
path root denoting h itself or the composite path r′. f denoting the field f of the
object denoted by r′, where r′ is also a path in h. Runtime expressions also include
the form e@r, which is an expression e that has been tagged with @r to track
the active receiver. A value v is either a constant c or runtime path r. Every
runtime expression is either a value, or uniquely of the form E[e], where E is an
evaluation context (an expression with a hole). As usual, the notation E[e] denotes
the plugging of the hole in E with an expression e.

The operational semantics is annotated with labels ` that denote the creation
of a new object (r. f .new C), an enum value choice (r.〈l〉), method call (r.T m T ′),
assigning a field (r. f = v), the conditional label (if), and the silent label (τ). The
definition of states is extended to the set of enum values 〈l : S l〉l∈E and we define
action labels s for labels: internal choice T m(T ), external choice E m(T ) : l, and
for enum values l.
Labelled reduction semantics. We define heap access and update functions that
are used by the reduction relation in Fig. 3:

h(root) = h
h(r. f ) = o
h{r. f 7→ o′} = h{r 7→ C[ f̃ : o, f : o′]}

}
if h(r) = C[ f̃ : o, f : o]

The root object is accessed via h(root). The access of a field h(r. f ) is inductively
defined on the access of h(r). Similarly, we use the heap access function to update
object fields as in h{r. f 7→ o}.

Fig. 3 defines the labelled reduction semantics; hereafter by “expression” we
shall mean runtime expression, and by “path” runtime path, unless otherwise
indicated. Rule R-Ctx lifts the semantic rules to an arbitrary expression using an
evaluation context. Rule R-Seq discards the value v in a τ label and proceeds with
the evaluation of e. Rules R-True and R-False are the usual rules for the if ...else
expression and are annotated with label if. Rule R-New is labelled with r. f .new C
and overwrites the contents of the field r. f by a new object C[ ˜f = init(T )] whose
fields are all initialised to the value init(T ), where T is the type of the field, defined
by:

init(C) = null init(E) = Einit

init(bool) = ff init(void) = ∗
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R-Ctx
h, e

`
−−−→ h′, e′

h,E[e]
`
−−−→ h′,E[e′]

R-Seq

h, (v; e)
τ
−−−→ h, e

R-True

h, if (tt) e1 else e2
if
−−−→ h, e1

R-False

h, if (ff) e1 else e2
if
−−−→ h, e2

R-New
(fields(C) = T̃ f )

h, r. f = new C
r. f .new C
−−−→ h{r. f 7→ C[ ˜f : init(T )]}, ∗

R-AsgnC

h, r. f = c
τ
−−−→ h{r. f 7→ c}, ∗

R-AsgnR
(h′ = h{r′ 7→ null})

h, r. f = r′
r. f =r′
−−−→ h′{r. f 7→ h(r′)}, ∗

R-Value
(v , l)

h, v@r
τ
−−−→ h, v

R-Call
(h(r) = C[ f̃ : o] ∧ T m(T ′ x) {e} ∈ methods(C))

h, r.m(v)
r.T m T ′
−−−→ h, e{v/x}{r/this}@r

R-Switch
(l′ ∈ E)

h, switch (l′@r) {el}l∈E
r.〈l′〉
−−−→ h, el′

R-Label

h, λ : e
τ
−−−→ h, e{λ : e/continue λ}

Figure 3: Operational semantics

where for every enumerated type E we require there to be a distinguished element
Einit ∈ enums(E). The result of R-New is the void value ∗. The object is constructed
at a location within an already existing object r. f . There are two assignment rules,
depending on whether the value being assigned is a constant or an object path. Both
forms return the void value ∗. A constant c has no associated typestate and may
be used unrestrictedly; therefore the R-AsgnC rule is labelled with τ and simply
updates the heap to store c in r. f . A path r′, on the other hand, refers to an object
and must be used linearly. Therefore the effect of the R-AsgnR rule is to relocate
the object from r′ to h.r, leaving null at its old location. The annotation label for
R-AsgnR is r. f = r′. Although any existing object at h.r will be overwritten, the
type system (§ 6) only permits the assignment if the typestate of that object is fully
consumed.

The R-Call rule is labelled with r.T m T ′ and resolves the method m by first

17



looking up the receiver r in the heap, which must be an object C[ f̃ : o], and
then selecting the method m from the definition of C. Prior to executing the
selected method, we convert its body e, which is a source-level expression, into a
runtime expression by substituting the runtime path r for this and also v for the
formal parameter. In addition, the resulting runtime expression is tagged with @r,
recording the fact that r is the active receiver. The active receiver tag @r on a
value is removed using a τ label when the value is fully evaluated and it is not
an enum label, as defined by rule R-Value. If the value returned by the method
is an enum label l′, then it must occur as the scrutinee of a switch expression;
rule R-Switch defines the reduction via action r.〈l′〉, of the switch expression to
the branch indicated by l′. The r is used in the reduction label to indicate which
object made the choice. Rule R-Label is labelled with τ, and says that a labelled
expression λ : e discards the λ and substitutes a copy of the labelled expression for
every occurrence of continue λ that occurs in the loop body e.

It is easy to show that the operational semantics is deterministic. Assume a
heap consisting of an instance of class C, where given fields(C) = T̃ f , each field
of C is initialised with the corresponding value init(T ). Execution can then be
initiated using a top-level expression that substitutes path this with path root.

6. Typestate Inference

In this section we formalise the core of Mungo’s typestate inference system
and prove its safety properties. The formalisation makes a simplification, which
is that the body of a method is analysed every time the method is called. If the
implementation of Mungo used this simplification, then as well as being inefficient
it would be impossible to analyse recursive methods. Section 6.4 informally
explains how Mungo uses the concept of partial typestate to remove this restriction.

The typestate inference system infers a typestate specification for a class,
consistent with the static usage of instances of the class; the inferred typestate is
then checked against the declared typestate of the class. Proving the soundness of
the inference system requires proving that the trace of the execution of a well-typed
program is included in the trace of the inferred type for that program. A sound
inference system should be able to guarantee the progress property requiring that a
program either reduces or is a value. The syntax of the inferred types, ranged over
by U, and the typing context, ranged over by ∆, are defined below:

U ::= C[S ] | E | bool | void | bot ∆ ::= ∅ | ∆, r : U | ∆, λ : X

The inferred types U differ from top-level types T in that every class type C is
refined with a typestate specification S . There is a distinguished bottom type
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bot, which is used to type continue statements. It use will be illustrated when we
discuss recursion and choice, later in this section. Typing context ∆ is a partial
function from runtime paths r to types U, and from expression labels λ to recursive
type variables X. A type U that is not a class type is referred to as a constant type.

S-Start
∅ ` S 4sbt S ′

S 4sbt S ′
S-End

R ` end 4sbt end
S-Terminate

(S , S ′) ∈ R

R ` S 4sbt S ′

S-Method
R ` S 4sbt S ′

R ` T ′ m(T ) : S 4sbt T ′ m(T ) : S ′

S-Rec1
R ∪ {(S , µX.S ′)} ` S 4sbt S ′{µX.S ′/X}

R ` S 4sbt µX.S ′

S-Set
H̃ , ∅ ∀H ∈ H̃,∃H′ ∈ H̃′. R ` H 4sbt H′

R ` H̃ 4sbt H̃′

S-Enum
∀l ∈ E. R ` S l 4sbt S ′l

R ` E m(T ) : 〈S l〉l∈E 4sbt E m(T ) : 〈S ′l〉l∈E

S-Class
S 4sbt S ′

C[S ] 4sbt C[S ′]

S-Bot
bot 4sbt U

S-Grnd
U ∈ {E, bool, void}

U 4sbt U
S-Empty

∅ 4sbt ∆

S-Delta
∆ 4sbt ∆′ U 4sbt U′

∆, r : U 4sbt ∆′, r : U′
S-Lambda

∆ 4sbt ∆′

∆, λ : X 4sbt ∆′, λ : X

Figure 4: Subtyping relation (symmetric rule S-Rec2 omitted)

The inference system uses a subtyping relation 4sbt and a binary operator
join(·, ·).

Definition 2. (4sbt, =sbt, join) The following relations are defined on typestates,
inferred types and typing contexts.

• The subtyping relation 4sbt is defined by the rules in Fig. 4.

• The equivalence relation is defined as =sbt = 4sbt ∩ 4
−1
sbt.

• The join operator join(·, ·) is defined by the rules in Fig. 5.
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join(T m(T ′) : S , H̃) =

{T m(T ′) : join(S , S ′)} ∪ H̃′ if H̃ = {T m(T ′) : S ′} ∪ H̃′

{T m(T ′) : S } ∪ H̃ otherwise

join(E m(T ) : 〈S l〉l∈E , H̃) =

{E m(T ) : 〈l : join(S l, S ′l )〉l∈E} ∪ H̃′ if H̃ = {E m(T ) : 〈S ′l〉l∈E} ∪ H̃′

E m(T ) : 〈S l〉l∈E otherwise

join({H} ∪ H̃, H̃′) = join(H̃, join(H, H̃′))

join(end, end) = end

join(µX.S 1, S 2) = join(S 1{µX.S 1/X}, S 2)

join(C[S ],C[S ′]) = C[join(S , S ′)]

join(U, bot) = U

join(bot,U) = U

join(U,U) = U (U ∈ {E, bool, void})

join(∆,∆′) = {r : C[join(S , S ′)] | r : C[S ] ∈ ∆,

r : C[S ′] ∈ ∆′} ∪ (∆ \ ∆′) ∪ (∆′ \ ∆)

Figure 5: Join operator (symmetric recursion rule omitted)

Subtyping on typestates is essentially a simulation preorder and is given in an
algorithmic style [40, Chapter 21]. It constructs a set R of pairs of typestates
using rules S-Rec1 and S-Rec2. The algorithm terminates either when end matches
end (rule S-End) or when a pair of typestates is revisited (rule S-Terminate). Rule
S-Method checks for prefix-matching. Rule S-Set requires covariance on subtyping
with the empty set being treated as a special case. Rule S-Enummatches the external
choice prefix. It requires subtyping on typestates for every value of the enumerated
type. By analogy with subtyping on session types [21], it should be possible to
generalise the definition to allow contravariant subtyping in the set of enumerated
values. This might be relevant if we wanted to support inheritance, but it is not
necessary for the case studies that we have implemented so far.

The subtyping relation extends to inferred types and typing contexts. Proving
that it is a preorder is standard; we use reflexivity and transitivity in proofs anout
the type system.

The join operator computes an upper bound with respect to 4sbt. It is used to
compute a common typestate in typing rules that combine multiple execution paths.
The most interesting case of join on typestates is the join of method signatures.
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For methods common to the two typestates, the continuation typestates are joined;
the remaining methods are combined using set union. A join involving a recursive
typestate is defined by unfolding. The operation extends to inferred types U (in
particular, to types of the form C[S ]) and typing contexts. Finally, we define a
transition relation on typestates as follows.

Definition 3. (Transition on typestates) The transition relation S
s
−−→ S ′ is defined

by the following rules:

T m(T ) : S
T m(T )
−−−→ S

l′ ∈ enums(E)

E m(T ) : 〈S l〉l∈E
E m(T ):l′
−−−→ S l′

H ∈ H̃ H
s
−−−→ S

H̃
s
−−−→ S

S {µX.S /X}
s
−−−→ S ′

µX.S
s
−−−→ S ′

l′ ∈ enums(E)

〈S l〉l∈E
l′
−−−→ S l′

The first two rules state that a method-prefixed typestate reduces to its continuation,
using the method signature as the label. The next two rules are contextual, stating
that reduction can occur in a set of typestates and under recursion, respectively. The
last rule defines a reduction on a runtime typestate, as defined in Fig. 2. It states that
a branching typestate reduces to one of its components, using the corresponding

enumerated value as the label. Later we will use the notation S
s
−−→ S ′ for a

sequence of transitions, where s is a sequence of method signatures and labels.

6.1. Typestate Inference Rules
Before introducing the inference rules, we give the form of the judgements:

∆ ` e : U a ∆′ ∆ ` C[S ] ` class C : S {F̃; M̃} ` D̃

The first one is the typing judgement for expressions. The judgement is read from
right to left. It takes as input the typing context ∆′ and the expression e, and
algorithmically computes the type U. The effects of the expression on ∆′ are then
captured in ∆. (However, it is interesting to note that the judgement can also be
read from left to right in a type system fashion, where the expression “consumes”
∆ in order to produce ∆′.) The second judgement infers the typestates of the fields
of a class when the class is used according to its declared typestate. The last two
typing judgements state the well-formedness of classes and programs.

The typestate inference rules for expressions are given in Fig. 6. The rules
are syntax-directed, meaning that at any point in the derivation there is only one
rule which is applicable. Rules Void, Bool, Enum and Null type the constants with

21



Void
∆ ` ∗ : void a ∆

Bool
∆ ` tt, ff : bool a ∆

Enum
l ∈ enums(E)

∆ ` l : E a ∆

Null
class C : S {F̃; M̃} ∈ D̃

∆ ` null : C[end] a ∆

∆ ` e : U a ∆′ r < dom(∆′)

∆ ` e : U a ∆′, r : C[end]
Weaken

Strengthen
∆, r : C[end] ` e : U a ∆′

∆ ` e : U a ∆′

U , C[S ]

∆, r : U ` r : U a ∆, r : U
PathC

PathR
r , this

∆, r : C[S ] ` r : C[S ] a ∆, r : C[end]

∆ ` e : U a ∆′ ∆ =sbt ∆′′

∆′′ ` e : U a ∆′
Equiv

AsgnC

U , C[S ]
∆ ` e : U a ∆′, r : U

∆ ` r = e : void a ∆′, r : U

r , this
∆ ` e : C[S ] a ∆′, r : C[end]

∆ ` r = e : void a ∆′, r : C[S ]
AsgnR

New

r , this S 4sbt typestate(C)
∀r. f : C′[S ′] ∈ ∆ =⇒ S ′ = end

∆, r : C[end] ` r = new C : void a ∆, r : C[S ]

∆ ` e1 : U′ a ∆′′

∆′′ ` e2 : U a ∆′

U′ , C[S ] U′ , bot

∆ ` e1; e2 : U a ∆′
Seq

T m(T ′ x) {e′} ∈ methods(C) S ′ =sbt S
∆′′, r : C[S ′], x : U′ ` e′{r/this} : U a ∆′, r : C[S ], x : initT(T ′)

∆ ` e : U′ a ∆′′, r : C[{T m(T ′) : S }]

∆ ` r.m(e) : U a ∆′, r : C[S ]
Call

Switch

∀l ∈ E. ∆l, r : C[S l] ` el : Ul a ∆′

∆ ` r.m(e) : E a ∆′′ ∆′′ = join({∆l}l∈E)

∆ ` switch (r.m(e)) {el}l∈E : join({Ul}l∈E) a ∆′

∆1 ` e1 : U1 a ∆′ ∆2 ` e2 : U2 a ∆′

∆′′ = join(∆1,∆2) ∆ ` e : bool a ∆′′

∆ ` if (e) e1 else e2 : join(U1,U2) a ∆′
If

LExpr

∆′′ ` e : U a ∆′, λ : X X fresh
∆ = {r : C[µX.S ] | r : C[S ] ∈ ∆′′} ∪

{r : U′ | r : U′ ∈ ∆′′ and U′ , C′[S ′]}

∆ ` λ : e : U a ∆′

∆ = {r : C[X] | r : C[S ] ∈ ∆′} ∪

{r : U | r : U ∈ ∆′ and U , C′[S ′]}

∆ ` continue λ : bot a ∆′, λ : X
Continue

Figure 6: Typestate inference rules for expressions
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their corresponding types under any typing context without producing any effect
on it, namely the left and right typing contexts are the same. Rules Strengthen
and Weaken allow arbitrary removal and addition, respectively, of inactive (end)
typestate assumptions.
Typestate Linearity. The typestate inference system uses linearity to forbid alias-
ing. The following example explains the relevant rules: Seq, PathR, PathC, AsgnR,
AsgnC, and New. Consider the following code using the class Stack defined in § 3:

s = new Stack; k = s (1)
The expression matches rule Seq. Suppose

∆0 = s : Stack[end], k : Stack[S ]
is the input typing context where S 4sbt StackProtocol. Rule Seq processes the
second expression before the first, because the output typing context of the second
expression is an input for the first. To type the second expression, we use AsgnR
which in turn requires a typestate for s. The derivation is:

∆2 ` s : Stack[S ] a ∆1
PathR

∆2 ` k = s : void a ∆0
AsgnR

where ∆0 = s : Stack[end], k : Stack[S ], ∆1 = s : Stack[end], k : Stack[end] and
∆2 = s : Stack[S ], k : Stack[end]. The output typing context, ∆2, for PathR states
that k has an end typeWstate before the assignment. Rule PathR “guesses” a type
for a path expression. However, the combination of PathR and AsgnR enforces
a match on the type of s in the output typing context ∆2 and the type of k in
the input typing context ∆0. For the first expression in (1) we use rule New. By
assumption we satisfy its premise; we have S 4sbt StackProtocol, meaning path
s is used according to the StackProtocol typestate. Rule New always infers void;
this satisfies the premise of rule Seq, which requires the type of the first expression
to be neither a class type (so that discarding does not violate linearity) nor bot (to
forbid dead code after a continue λ expression – see rule Continue). The type of
the sequential expression is the type of the second expression, void. To summarise
the derivations described so far:

S 4sbt StackProtocol

∆3 ` s = new Stack : void a ∆2
New

. . .

∆2 ` k = s : void a ∆0
AsgnR

∆3 ` s = new Stack; k = s : void a ∆0
Seq

where ∆3 = s : Stack[end], k : Stack[end].
To preserve linearity, s and k exchange their typestates before and after assign-

ment. If the type of s in ∆0 were not end, path s would still be usable after being
read from, violating linearity, as in:
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s = new Stack; k = s; s.push(5) (3)
Note that, in rules AsgnR and New, the path this cannot be assigned to, otherwise
the current object would be overwritten in the heap. In rule PathR, the path this
cannot be read from, because using this in an expression would violate the linearity
condition that the unique reference to the object is at the call site.

The other rules for paths and assignments are as follows. Rule PathC infers a
constant type U for a path r and has no effect in the input typing context, if r is
mapped to U in the input typing context. Rule AsgnC is similar to AsgnR, except
that e has a constant type U that is left unchanged in the input and output typing
contexts.
Loops, Choice and Recursive Typestate We now explain how a loop can be
controlled by the enumerated value returned by a method, and how this leads to
the inference of a recursive typestate specification. The example illustrates rules
LExpr, Continue, Switch, and If. Consider the following class StackUser that defines
methods that use a Stack. Note that the example is expressed in the core calculus,
using Java-style formatting, so there is no return keyword.

1 class StackUser {

2 Stack pushVal(Stack x) { x.push(2); x }

3 Stack popAll(Stack x)

4 {loop:switch(x.isEmpty())

5 {case EMPTY:x,

6 case NOTEMPTY:x.pop(); continue loop}}}

and suppose the input typing context:
∆0 = x : Stack[end], this : StackUser[end]

The body of method popAll in line 4 is a labelled expression, and so rule LExpr
applies. The premise computes a typestate for the switch expression, using an
input context ∆0 augmented with the assumption loop : X, where X is fresh. Let
∆1 = ∆0, loop : X. LExpr closes all free occurrences of X in the output typing
context. For the switch expression, rule Switch computes a typestate for each
branch, using the typing context for the entire switch expression, ∆1, as the input
context. The inferred output contexts of the branches are then joined and used as
an input to infer a typestate for the method call expression which is the condition
of the switch. The condition should have an enumeration type that matches the
labels of the switch branches. Finally, the type of the switch is the join of the types
of its branches. For the EMPTY branch we use rule PathR:

PathR
∆2 ` x : Stack[S ] a ∆1

where ∆2 = x : Stack[S ], this : StackUser[end], loop : X. For the NONEMPTY
branch we first use rule Seq, and then rule Continue to infer the typestate of the
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continue loop expression. Continue requires loop to be mapped to a recursive
variable X in the input typing context. It outputs a typing context where all paths
mapped to a typestate are updated to the typestate X:

Continue
∆3 ` continue loop : bot a ∆1

where ∆3 = x : Stack[X], this : StackUser[X]. The type of a continue expression
is always bot, and so can always be joined with the type of another branch (cf.
Fig. 5). To complete the typing of the NONEMPTY branch, we apply rule Call for
x.pop() and conclude with rule Seq. The output typing context is:

∆4 = x : Stack[{int pop() : X}], this : StackUser[X]

We join the output typing contexts ∆2 and ∆4 of the EMPTY and NONEMPTY branches,
and use the result as an input typing context for the method call x.isEmpty(), as
per the second premise of Switch. The output typing context of Switch is:

∆5 = x : Stack[{Choice isEmpty() : join(S , int pop() : X)}],
this : StackUser[join(end, X)]

To complete the derivation for LExpr we close the recursive variable X in ∆5 and
obtain the output typing context for the labelled expression in lines 4-5, namely:

∆6 = x : Stack[µX.Choice isEmpty() : join(S , int pop() : X)],
this : StackUser[µX.join(end, X)]

Notice the equivalence of the type µX.join(end, X), that ∆6 assigns to path this, and
the type end, meaning that rule Equiv can be applied.

Rule If is similar to Switch. Both conditional branches are individually inferred
and then joined to obtain the output typing context of the conditional expression.
We further require that the condition has type bool.
Method Call. Rule Call records the method call trace of paths in a program, to
respect the principle that the trace of the execution of an object follows its inferred
typestate. It uses the function initT(·), defined by T , C =⇒ initT(T ) = T and
initT(C) = C[end]. Rule Call typechecks the method body every time a method is
called. This is a simplification for presentational purposes; an algorithm directly
extracted from the rules will be unable to construct a type for a recursive method
call. However, the rules can be used to derive typings if suitable pre- and post-
conditions are put into the derivation by hand. The implementation of Mungo’s
type inference system uses a more complex notion of partial typestate so that
method bodies do not need to be checked at every call site; recursive methods are
also supported.

Rule Call includes the hypothesis S ′ =sbt S . This condition means that the
typestate of this is preserved by the body of the method. The same condition
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Method-St
∆′ ` C[S ] T1 m(T2 x) {e} ∈ methods(C) S =sbt S ′

refines(U1,T1) refines(U2,T2)
∆, this : C[S ′], x : U2 ` e : U1 a ∆′, this : C[S ], x : initT(T ′)

∆ ` C[{T m(T ′) : S }]

Enum-St

∀l ∈ E. ∆l ` C[S l] E m(T x) {e} ∈ methods(C)
∆, x : C[S ′] ` E m(T x) {e} : E a ∆′′ ∆′′ = join({∆l}l∈E)

∆ ` C[E m(T ) : 〈S l〉l∈E]

Set-St

∀H ∈ H̃. ∆H ` C[{H}]
∆ = join({∆H}H∈H̃)

∆ ` C[H̃]
End-St

∆ = { f : C′[end] | C′ f ∈ fields(C)} ∪
{ f : T | T f ∈ fields(C) and T , C}

∆ ` C[end]

Rec-St

∆′ ` C[S ] ∆ = {r : C[µX.S ] | r : C[S ] ∈ ∆′} ∪

{r : U | r : U ∈ ∆′ and U , C′[S ′]}

∆ ` C[µX.S ]

Var-St
∆ = { f : C′[X] | C′ f ∈ fields(C)}
∪ { f : T | T f ∈ fields(C) and T , C}

∆ ` C[X]

Class
∆ ` C[S ]

∀ f : C′[S ] ∈ ∆ =⇒ S = end

` class C : S {F̃; M̃}

Program
∀D ∈ D̃.D = class C : S {F̃; M̃} =⇒ ` D

` D̃

Figure 7: Typestate inference rules for methods, fields, classes and programs

appears in rule Method-St in Fig. 7. To satisfy this condition, self-called methods
must not change the typestate.

As an example of the rule Call, consider the following code that uses class
StackUser:

s = c.pushVal(s)

where the input typing context is:
∆0 = s : Stack[S ], c : StackUser[{Stack popAll(Stack) : end}]

By applying rule AsgnR on the above assignment with input ∆0, the output typing
context in the premise of the rule is:
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∆1 = s : Stack[end], c : StackUser[{Stack popAll(Stack) : end}]

We can now apply rule Call on c.pushVal(s) as follows:

Call

Stack pushVal(Stack x) {x.push(2); x} ∈ methods(StackUser) (1)
∆2 ` (x.push(2); x){c/this} : Stack[S ] a ∆1 (2)
∆ ` s : Stack[{void push(int) : S }] a ∆3 (3)

∆ ` c.pushVal(s) : Stack[S ] a ∆1

Premise (1) looks up the definition of method pushVal in the class of the receiver,
StackUser. Premise (2) infers a typestate for the method body in which c has been
substituted for the keyword this. Both the method call and the body use the same
input typing context ∆1. The output typing context from the method body must
contain a typestate assumption for the method parameter and receiver:

∆2 = ∆1, x : Stack[{void push(int) : S }]

Then, premise (3) requires a typestate inference in order to match the typestate of
the method parameter with the type of the argument s. For this, rule PathR is used
where ∆3 also updates the type of the receiver:
∆3 = s : Stack[end], c : StackUser[{Stack pushN(Stack) : {Stack popAll(Stack) : end}}]
∆ = Stack[{void push(int) : S }], c : StackUser[{Stack pushVal(Stack) :

{Stack popAll(Stack) : end}}]

The parameter of a method must be consumed by the body of the method. This
is shown by the typing x : initT(T ′) in rule Call, where initT(T ′) is end if T ′ has
a typestate. This can be done in several ways: by following the typestate of the
parameter to end; by returning the parameter as the result of the method (perhaps
after following part of its typestate); by assigning the parameter to a field (again,
perhaps after following part of its typestate). Assigning a parameter to a field is
always possible as a default way of consuming the typestate of a parameter.

Rule Call requires that the types of the receiver c in the input and output typing
contexts for the body of the method are equivalent, according to the relation =sbt.
This avoids exposing to the caller how the method uses its receiver. For example,
assume method pushVal is defined as:

Stack pushVal(Stack x){ x.push(2); x = this.popAll(x); x }

Inferring a typestate for the body of pushVal with input context ∆1 yields an output
typing context, ∆′, such that:

∆′(c) = StackUser[Stack popAll(Stack) : {{Stack popAll(Stack) : end}}]

Given that ∆1(c) = StackUser[{{Stack popAll(Stack) : end}}], it is revealed that the
body of pushVal calls method popAll on its receiver, exposing this implementation
detail to the caller.
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Methods, Fields, Classes and Programs. The rules for methods, fields, classes
and programs are given in Fig. 7. Rule Method-St uses the relation refines(U,T ),
which means that U adds a typestate to T if T is a class. It is defined by:

refines(C[S ],C) if S is a state in typestate(C)
refines(T,T ) if T is not a class

Rule Method-St infers a method-prefixed typestate: it first computes the continua-
tion typestate, and then uses the output typing context to infer the method prefix,
by first inferring a typestate for its body. The auxiliary definition refines(Ui,Ti)
is used to check that the return type and parameter types declared in the syntax
of the method match the corresponding inferred types for return and parameters,
respectively; essentially, we expect to infer a typestate of type C[S ], for some
S , for (return and parameter) types that are declared with type C. As in Call, a
self-call should preserve the typestate of the receiver up to =sbt. Rule Enum-St is
similar to rule Method-St, inferring and then joining the typestates of all branches
and then inferring the method prefix. Rule Set-St requires the inference and join
of the typestates of all branches. Rule End-St requires all fields of the class to
finish in the end typestate. Rules Rec-St and Var-St are similar to rules LExpr
and Continue, binding and using a recursive variable, respectively. Rule Class
initiates the inference of the typestate of the class. It states that a class declaration
is well-typed if every field of the class has an end typestate in the typing context
computed in the premise of Class. Rule Program states that a program is well-typed
if all of its classes are well-typed.

The inference rules for runtime expressions are given in Fig. 8. We show only
those that differ from the ones in Fig. 6. Rule Switch-AtR is similar to Switch,
the difference being the condition of the switch, which is evaluated to an active
receiver rather than a method call. Rule AtR infers a typestate for e@r, by first
inferring a typestate for e. The other rules are used to type runtime configurations.
Rule Object, similarly to rule New, checks that the typestate of the objects in the
context matches the declared typestate of their class. Rule Heap uses rule Object
to check whether a typing context is consistent with all the objects in the heap.
Finally, rule Config infers a typestate for a runtime configuration, by first inferring
a typestate for the expression and then using its output typing context to type the
heap. The output typing context and the typestate of the configuration match those
of the expression.

6.2. Properties of the Typestate Inference System
Progress and type preservation require that the output typing context of an

expression mimic the reductions of the expression itself. To this end, we define
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Switch-AtR
∀l ∈ E. ∆l, r : C[S l] ` el : Ul a ∆′ ∆ ` e : E a ∆′′, r : C[〈S l〉l∈E]

∆′′ = join({∆l}l∈E)

∆ ` switch (e@r) {el}l∈E : join({Ul}l∈E) a ∆′

AtR
∆ ` e : U a ∆′

∆ ` e@r : U a ∆′
Object

S 4sbt typestate(C)

S
s
−−−→ S ′

∆ ` C[ f̃ : o] : C[S ′] a ∆

Heap

∀r : U ∈ ∆.

h(r) = o ∆ ` o : U a ∆

∆ ` h
Config

∆ ` h ∆ ` e : U a ∆′

∆ ` h, e : U a ∆′

Figure 8: Typestate inference rules for runtime syntax

a labelled reduction relation on the typing context in Fig. 9 which use the same
labels as the reductions on expressions. Rule Ty-Id states that ∆ remains unchanged
under a τ-reduction. Rule Ty-New states that a path in ∆ mapped to an end typestate
reduces under r. f .new C and its typestate is updated accordingly. Rules Ty-AsgnR
and Ty-AsgnC label the reduction with an assignment of a path and a constant,
respectively. The former ensures linearity is respected when an assignment takes
place; the latter leaves the typing context unchanged. Rule Ty-Call performs
a reduction of a method-prefixed typestate with the method prefix as the label.
Similarly, rule Ty-Label reduces with an enumerated value for paths that have a
runtime switch typestate. The behaviour of the if label is captured by rule Ty-If. In
both the last two rules the result of the reduction is a subtype of the starting typing
context.

We now state the progress and a type preservation theorem. The proof is given
in Appendix A.

Theorem 4. (Progress and Type Preservation) Assuming a program context D̃, let
e be a run time expression and suppose ∆ ` h, e : U a ∆′′. Then, either e is a value,

or there exist unique `, h′ and e′ such that h, e
`
−−→ h′, e′, and there exist ∆′ and U′

such that ∆
`
−−→ ∆′ and ∆′ ` h′, e′ : U′ a ∆′′ and U′ 4sbt U.

Type preservation implies the runtime safety property that for every object, the
sequence of method calls and enumerated return values is a path within the declared
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Ty-Id
∆

τ
−−−→ ∆

Ty-If
∆′ 4sbt ∆

∆
if
−−−→ ∆′

Ty-AsgnC
∆

r. f =c
−−−→ ∆

Ty-Call
∆, r : C[{T m(T ′) : S }]

r.T m T ′
−−−→ ∆, r : C[S ]

Ty-AsgnR
∆, r. f : C[end], r′ : C[S ]

r. f =r′
−−−→ ∆, r. f : C[S ], r′ : C[end]

Ty-New
(S 4sbt typestate(C) ∧ ∀r. f . f ′ : C′[S ′] ∈ ∆. S ′ = end)

∆, r. f : C[end]
r. f .new C
−−−→ ∆, r. f : C[S ]

Ty-Label
∆′ 4sbt ∆

∆, r : C[〈S l〉l∈E]
r.〈l′〉
−−−→ ∆′, r : C[S l′]

Figure 9: Reduction relation on typing contexts

typestate of the object’s class. The reasoning is the following. The type preservation
theorem, in the case when l is a method call or a return of an enumerated value,
states that l is the first step of a path in the inferred typestate. By repeatedly using
type preservation along a sequence of steps, we find that a sequence of method calls
and returns is always a path within the inferred typestate. When an object is created
(rule New), its inferred typestate is a subtype of its declared typestate. Subtyping
is essentially simulation, so it implies trace inclusion. Therefore the sequence of
method calls and enumerated return values is a path within the declared typestate.

Typability also guarantees that the program completely uses every object ac-
cording to its typestate, by following a path to end. This does not mean that every
object will be completely used at runtime, for example because there could be
non-terminating code before a particular method in the typestate is called. But
there must be code that can potentially follow every typestate to termination.

6.3. Typechecking expressions and typechecking programs
The proof of type preservation, and hence the runtime safety property, does not

require the program D̃ to be typable. That is, the rules in Fig. 7 are not used. The
type preservation theorem can be applied to an initial configuration of the form
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described at the end of § 5, and typability of the configuration uses the rules in
Figures 6 and 8. What, then, is the purpose of the rules in Fig. 7? These rules
check that the declared typestate of each class is consistent, in the sense that the
sequences of method calls allowed by the typestate are consistent with the effects
of the method calls on the typestates of the fields of the class. If we consider our
formal system without Fig. 7, typestates are inferred and then compared with the
declared typestates, but the declared typestates might be inconsistent: they might
allow additional sequences of method calls that are not consistent and could never
be inferred. This is not a problem for type safety, but the presence of “junk” in a
declared typestate would be undesirable from a documentation point of view.

If Fig. 7 is used to check consistency of the declared typestates, then an
additional property is guaranteed, which we state informally. For every class C, it
is possible to construct a typable expression that creates an object of class C and
uses all of the behaviour allowed by the declared typestate of C. StMungo does
this when it generates the skeleton main method that uses a generated API.

Mungo implements the rules from Fig. 7 for two reasons: (1) to avoid the
declaration of inconsistent and therefore confusing typestates; (2) to avoid checking
method definitions at every call site, as explained in §6.1.

6.4. Implementation of the Type System
The type system in this section captures most of the principles that are im-

plemented in Mungo. However, for the sake of simplicity not all features of the
implementation have been formalised.

Firstly, the formalisation omits some Java constructs that are not central to the
treatment of typestate.

Secondly, the formalisation associates a typestate specification with every class,
and therefore all objects are subject to linear typing in order to ensure unique
references. The implementation also supports classes that do not have typestate
specifications, and objects of such classes are not controlled by linear typing.

Thirdly, the most important feature not reflected in the formalisation is support
for recursive method calls and a related technique for avoiding repeated analysis of
method bodies. Mungo treats a method body in isolation by inferring a typestate
for all objects used within the method body. It also keeps track of the objects
referenced by the fields used within a method when the method is called and when
the method returns. At a method call, instead of re-analysing the method body,
Mungo combines the inferred typestates from the previous analysis of the method
body with the current usage of the fields. This technique also supports recursive
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method calls, by constructing cycles. The data structure that represents a typestate
resembles a state machine.

Formalising this aspect of Mungo would require defining a notion of partial
typestate. This is because the analysis of a method leaves the usage of some
objects referenced by fields incomplete, i.e. truncated. We leave formalising partial
typestate to future work, but here we illustrate the operation of Mungo on a simple
example.

Consider the Java code
public void m() {

f.m1();

if(cond) {

f.m2();

m();

}

f.m3();

}

where the body of method void m() uses field f and also makes a recursive call
within a conditional statement. The Mungo typechecker constructs the following
data structure to represent the typestate of field f.

begin m1()

m2()

m3() return

For each method call on field f, there is a node labelled by the name of the method.
Directed edges (arrows) between nodes represent the control flow. The initial arrow
comes from a control point that designates the beginning of the method body. The
continuation from m2() is the recursive call, which is represented by an arrow to
the initial control point. The control point that designates the return of the method
body has an arrow towards method m3(). This is because after a recursive call
the control flow proceeds to the call of m3(). If there were no recursive call then
the continuation from f.m2() would be f.m3(). A similar control flow structure is
created for every field that is used inside a method. These control flow structures
are what we mean by partial typestates, as the circular nodes are points at which
further typestate transitions can be added when other methods are typechecked.
The partial typestates can be regarded as truncated or fragmentary state machines.
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7. Related and Future Work

Session types and programming languages. The Session Java (SJ) language [29]
builds on earlier work [15, 14, 17] to add binary session type channels to Java. SJ
has been applied to a range of situations including scientific computation [39] and
event-driven programming [27]. SJ implements a library for binary sessions that
have a pre-defined interface. The Java syntax is extended with communication
statements that enable typechecking. The scope of a session is restricted to the
body of a single method. Mungo lifts these restrictions by allowing the abstraction
of multiparty session types as user-defined objects that can be passed and used
throughout different program scopes. Gay et al. [23] outlined an implementation
of their type system as a language called Bica, which is not currently maintained
and is unusable. Mungo improves on Bica by using type inference to remove
the need for typestate declarations on methods. Hu et al. [27] extend Session
Java with runtime type inspection and asynchronous communication semantics to
enable an event-driven framework based on binary session types. As a usecase
they implement a binary session-typed SMTP server that uses a reactive structure
to handle multiple clients concurrently. In our work we implement an SMTP client
by using StMungo, which automatically generates code from a global protocol.
Extending Mungo with runtime typestate inspection would enable us to investigate
event-driven programming with multiparty session types.

In Capecchi et al. [9] a class defines sessions instead of methods. A session
generalises a method to an extended session typed dialogue over a communication
channel As far as we know, this new paradigm has not yet been implemented.

Ng et al. [38] typecheck the operations of a library that implements multi-
party session types using a restricted set of MPI [32] primitives. In contrast, our
framework typechecks Java statements and expressions, instead of higher-level
operations. Ng et al. [37] use Scribble to automatically generate MPI code based
on user-defined kernels that produce and consume data. The generated code does
not require typechecking. On the other hand, the StMungo transpiler can be used
together with the Mungo typechecker to develop more flexible multiparty session
type implementations.
Monitoring based on Scribble. Neykova et al. [36] use Scribble protocol defi-
nitions to achieve dynamic monitoring in Python, by translating local protocols
into finite state machines that intercept communication and check the validity of
runtime messages. Subsequently, [35] implements a session-based Actor frame-
work that uses runtime monitoring to integrate multiparty session types. A hybrid
approach is used by Hu [28] to analyse an SMTP client in Java. Hu’s SMTP API
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implements multiparty session types using a pattern in which each communication
method returns the receiver object with a new type that determines which commu-
nication methods are available at the next step. If the pattern is used properly, then
standard Java typechecking can verify correctness of communication, but runtime
monitoring is needed to check linearity constraints. In contrast, our analysis of
SMTP is able to statically check all aspects of the protocol implementation.

The receiver-returning pattern is at the basis of functional programming with
session types [22] and has been used to achieve protocol checking in Idris [30] and
as a replacement for explicit typestate in Rust [42].
Typestate. There have been several projects to add typestate to practical languages,
since their introduction in [45]. Vault [12, 19] is an extension of C, and Fugue
[13] applies similar ideas to C#. Plural [6] is based on Java and has been used to
study access control systems [5] and transactional memory [4], and to evaluate
the effectiveness of typestate in Java APIs [6]. In contrast Mungo follows Gay
et al. which is inspired by session types; the possible sequences of method calls
are explicitly defined, rather than being consequences of pre- and post-conditions.
Like Plural, a typestate in Mungo can depend on the return value of a method call.

Sing# [18] is an extension of C# which was used to implement Singularity,
an operating system based on message-passing. It incorporates typestate-like
contracts, which are a form of session type, to specify protocols. Bono et al. [8]
have formalised a core calculus based on Sing# and proved type safety.

Aldrich et al. [2, 46] propose a new paradigm of typestate-oriented program-
ming, implemented in the Plaid language. Instead of class definitions, a program
consists of state definitions containing methods that cause transitions to other states.
Transitions are specified in a similar way to Plural’s pre- and post-conditions. Like
classes, states are organised into an inheritance hierarchy. Recent work [20, 48]
uses gradual typing to integrate static and dynamic typestate checking. We focus
on the object-oriented paradigm in order to be able to apply our results to Java.

Bodden and Hendren [7] developed the Clara framework, which combines
static typestate analysis with runtime monitoring. The monitoring is based on the
tracematches approach [3], using regular expressions to define allowed sequences
of method calls. The static analysis attempts to remove the need for runtime
monitoring, but if this is not possible, the runtime monitor is optimised. Mungo
uses a purely static analysis, and can allow the state after a method call to depend
on the method’s (enumerated type) result.

Typestate systems must control aliasing, otherwise method calls via aliases
can cause inconsistent state changes. Literature includes the “adoption and focus”
approach of Vault and Fugue, the permission-based approaches of Plural and Plaid,
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and an expressive fine-grained system by Militão et al. [33]. Also relevant is
recent work by Crafa and Padovani [11] which applies the chemical approach to
concurrent typestate oriented programming, allowing objects to be accessed and
modified concurrently by several processes, each potentially changing only part
of their state. We expect that many of these systems can be applied to Mungo.
However, linear typing has not been a limiting factor for the applications described
in the present paper.
Future Work. The combination of Mungo and StMungo is effective for statically
checking the correct implementation of communication protocols. We intend
to extend Mungo to increase its power for general-purpose programming with
typestate. Our first aim is to generalise the use of linear typing as a mechanism for
the alias control required by typestate systems. Candidates include the “adoption
and focus” technique of Vault and Fugue, the permission-based approaches of
Plural and Plaid, and the system by Militão et al. [33]. Another aim is to support
generics and inheritance. Inheritance between typestate classes requires a subtyping
relation between their typestate specifications, based on standard definitions of
subtyping for session types [21]. Method calls on an object whose type is a
generic parameter must be typechecked against the typestate specification of the
parameter’s upper bound. To extend typechecking to exception handlers, we
need to allow typestate specifications to define the state transitions corresponding
to exceptions, and check that these transitions are consistent with the states of
fields at the point where an exception is thrown. Existing work on exceptions in
session types [10] provides inspiration, but doesn’t address the complexities of
Java’s exception mechanism. Using these Mungo extensions with StMungo for
more sophisticated protocol verification will also require extensions to Scribble
to support generic protocols, inheritance between protocols, and more general
handling of exceptions.

8. Conclusion

We have presented two tools, Mungo and StMungo, which extend the Java
development process with support for static typechecking of communication pro-
tocols. Mungo extends Java with typestate definitions, which associate classes
with state machines defining permitted sequences of method calls. StMungo uses
the typestate feature to connect Java to Scribble, the latter being a language used
to specify communication protocols. In order to illustrate the practicality and
robustness of Mungo and StMungo, we have implemented a substantial case study,
an SMTP client, which we are able to statically typecheck. We use this client to
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communicate with the gmail server. Finally, we have formalised the essential fea-
tures of Mungo by defining a typestate inference system for a core object-oriented
language. We proved safety and progress properties (Theorem 4), which mean that
typestate inference guarantees correct behaviour of a program with respect to the
declared typestate specifications.
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Appendix A. Progress and Subject Reduction

We start this section with some auxiliary results. We use ∆{v : U} to denote ∆

where the value v is updated to the type U.

Lemma 5 (Typability of Heap Update). Let h be a heap and r a runtime path
such that ∆ ` h and r : U ∈ ∆.
1. If U , C[S ] and ∆ ` o : U a ∆, then ∆ ` h{r 7→ o}.
2. If U = C[S ] and ∆′ ` o : C[S ′] a ∆′, then ∆′ ` h{r 7→ o}, for ∆′ = ∆{r : C[S ′]}.

Proof. Both cases follow by using rule Heap and for 1. typing rules for constants
are used, and for 2. rule Object is used. �

Lemma 6 (Replacement). If
• d is a derivation for ∆ ` E[e] : U a ∆′′,
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• d′ is a subderivation of d concluding ∆ ` e : Ue a ∆e,
• the position of d′ in d corresponds to the position of the hole in E,
• ∆′ ` e′ : Ue′ a ∆e, such that Ue′ 4sbt Ue,

then ∆′ ` E[e′] : U′ a ∆′′ such that U′ 4sbt U.

Proof. Follows [23], by replacing the derivation d′ in d with the derivation for
∆′ ` e′ : Ue′ a ∆e. �

Lemma 7 (Substitution). 1. If ∆, x : U′ ` e : U a ∆′ and ∆{v : U′} ` v : U′ a ∆′′,
then ∆{v : U′} ` e{v/x} : U a ∆′.

2. Assume ∆1 ` e : U a ∆′, λ : X and ∆2 ` e′ : U a ∆′. Then, ∆ `

e{e′/continue λ} : U a ∆′ with
∆ = {r : C[S {S ′/X}] | r : C[S ] ∈ ∆1 and r : C[S ′] ∈ ∆2}

∪ {r : U′ | r : U′ ∈ (∆1 ∪ ∆2)U′ , C′[S ′]} ∪ ∆1\∆2 ∪ ∆2\∆1

Proof. By induction on the derivation of the typing judgement, with case analysis
on the last rule. Lemma 6 is used in 2. to replace continue λ with e′. �

Lemma 8 (Subtyping and join). The following relate subtyping and join on in-
ferred types U and typing contexts ∆.

1. Let U,U′ be inferred types such that join(U,U′) is defined. Then, U 4sbt

join(U,U′) and U′ 4sbt join(U,U′).
2. Let ∆,∆′ be such that join(∆,∆′) is defined. Then, ∆ 4sbt join(∆,∆′) and

∆′ 4sbt join(∆,∆′).

Proof. The proof follows immediately by combining the definition of subtyping in
Fig. 4 and the definition of join Fig. 5. �

Lemma 9 (Typability of Subterms). If d is a derivation for ∆ ` E[e] : U a ∆′′

then there exist ∆′ and U′ such that d has a subderivation d′ concluding ∆ ` e :
U′ a ∆′ and the position of d′ in d corresponds to the position of the hole in E.

Proof. The proof proceeds by induction on the structure of context E. We give the
most interesting cases.
• E = r.m(E′): by assumption ∆ ` r.m(E′[e]) : U a ∆′′. By inversion on

rule Call ∆ ` E′[e] : U′ a ∆′′′, r : C[{T m(T ′) : S }], where the typing context ∆′′′

and the type of r are inferred by the premise of Call. We conclude by induction
hypothesis on E′.
• E = r. f = E′: by assumption ∆ ` r. f = E′[e] : U a ∆′′. There are two rules

that can be applied for assignment, rule AsgnC and rule AsgnR. By inversion on the
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former we obtain ∆ ` E′[e] : U a ∆′′′, r : U; by inversion on the latter we obtain
∆ ` E′[e] : C[S ] a ∆′′′, r : C[end], where the typing context ∆′′′ and the type for r
are inferred by the premise of the rule. We conclude by induction hypothesis on E′.

�

Proof of Theorem 4: Assuming a program context D̃, let e be a run time expression
and suppose ∆ ` h, e : U a ∆′′. Then, either e is a value, or there exist unique `, h′

and e′ such that h, e
`
−−→ h′, e′, and there exist ∆′ and U′ such that ∆

`
−−→ ∆′ and

∆′ ` h′, e′ : U′ a ∆′′ and U′ 4sbt U.

Proof. The proof is by induction on the structure of the expression e wrt contexts.
Note that the uniqueness of `, h′ and e′ implies that the reduction is deterministic.

We present first the inductive case. Let e = E[e1] where e1 is not a value and
E , []. By assumption and inversion on rule Config we have ∆ ` E[e1] : U a ∆′′.
By Lemma 9 there exist ∆1 and U1 such that ∆ ` e1 : U1 a ∆1. By induction

hypothesis there exist h′, ` such that h, e1
`
−−→ h′, e2. By induction hypothesis

we also have ∆
`
−−→ ∆′ and ∆′ ` h, e2 : U2 a ∆1, which by inversion on Config

means that ∆′ ` h and ∆′ ` e2 : U2 a ∆1, where U2 4sbt U1. By rule R-Ctx we

have h,E[e1]
`
−−→ h′,E[e2]. By Lemma 6 we obtain ∆′ ` E[e2] : U′ a ∆′′ with

U′ 4sbt U. We conclude by rule Config.
The base cases when e is of the form E[v] with E elementary, not being of the

form E[E′] with E′ , [], and not of the form E[e1] are in the following. If e is a
value, then there is nothing to prove. If e is not a value, we give some of the most
interesting cases for e wrt contexts:

• Case e is (r. f = new C). By hypothesis and typing rule R-New we have

h, r. f = new C
r. f .new C
−−→ h{r. f 7→ C[ ˜f : init(T )]}, ∗

such that fields(C) = T̃ f . By hypothesis and typing rule Config ∆ ` h and
∆ ` r. f = new C : U a ∆′′. By inversion and typing rule New we have:

New
S 4sbt typestate(C) ∀r. f . f ′ : C′[S ′] ∈ ∆1 =⇒ S ′ = end

∆1, r. f : C[end] ` r. f = new C : void a ∆1, r. f : C[S ]

where ∆ = ∆1, r. f : C[end], U = void and ∆′′ = ∆1, r. f : C[S ]. By rule
Ty-New we have

∆1, r. f : C[end]
r. f .new C
−−→ ∆1, r. f : C[S ] = ∆′′
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such that S 4sbt typestate(C) and for all fields r. f . f ′ : C′[S ′] ∈ ∆1 and state
S ′ = end. By applying typing rule Void we have:

∆′′ ` ∗ : void a ∆′′

It remains to prove ∆′′ ` h′ namely,

∆1, r. f : C[S ] ` h{r. f 7→ C[ ˜f : init(T )]}

By hypothesis ∆1, r. f : C[end] ` h. Now we want to type the updated
reference r. f to C[ ˜f : init(T )]. By rule Object and an empty set of labels s

S 4sbt typestate(C)

∆1, r. f : C[S ] ` C[ ˜f : init(T )] : C[S ] a ∆1, r. f : C[S ]

We conclude by Lemma 5.

• Case e is r. f = r′. By hypothesis and by rule R-AsgnR we have

h, r. f = r′
r. f =r′
−−→ h′{r. f 7→ h(r′)}, ∗

where h′ = h{r′ 7→ null}. By hypothesis and by rule Config ∆ ` h and
∆ ` r. f = r′ : U a ∆′′. By inversion and typing rule AsgnR

∆ ` r′ : C[S ] a ∆1, r. f : C[end]

∆ ` r. f = r′ : void a ∆1, r. f : C[S ]

where U = void and ∆′′ = ∆1, r. f : C[S ], and for readability we let ∆2 =

∆1, r. f : C[end]. Let r′ , r. f . Since r′ is a path typed by C[S ], the premise
of the above derivation is obtained by PathR. This implies that contexts ∆ and
∆2 differ only in the typing of r′. By inversion, ∆(r. f ) = ∆2(r. f ) = C[end]
and ∆(r′) = C[S ] and ∆2(r′) = ∆1(r′) = C[end]. By rule Ty-AsgnR

∆3, r′ : C[S ], r. f : C[end]
r. f =r′
−−→ ∆3, r. f : C[S ], r′ : C[end]

where ∆ = ∆3, r′ : C[S ], r. f : C[end] and ∆′ = ∆3, r. f : C[S ], r′ : C[end].
Since ∆′′ = ∆′, by applying rule Void we conclude ∆′ ` ∗ : void a ∆′′. It
remains to prove that

∆3, r. f : C[S ], r′ : C[end] ` h′{r. f 7→ h(r′)}
where h′ = h{r′ 7→ null}. Recall that

∆3, r′ : C[S ], r. f : C[end] ` h

The result follows by applying Lemma 5 for r. f and r′. We conclude by
Config. Let r′ = r. f . By rewriting AsgnR with r. f instead of r′ we notice that
the derivation holds if S = end. Then the proof proceeds trivially.
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• Case e is r.m(v). By hypothesis and by rule R-Call

h, r.m(v)
r.T m T ′
−−→ h, e{v/x}{r/this}@r

such that h(r) = C[ f̃ : o] and T m(T ′ x) {e} ∈ methods(C). By hypothesis
and by rule Config ∆ ` h and ∆ ` r.m(v) : U a ∆′′. By inversion and typing
rule Call

T m(T ′ x) {e} ∈ methods(C) S ′ =sbt S
∆2, r : C[S ′], x : U′ ` e{r/this} : U a ∆1, r : C[S ]

∆ ` v : U′ a ∆2, r : C[{T m(T ′) : S ]}

∆ ` r.m(v) : U a ∆1, r : C[S ]
where ∆′′ = ∆1, r : C[S ] and for readability let ∆′′′ = ∆2, r : C[{T m(T ′) : S ]}.
Notice that v , r, otherwise the method call r.m(v) would not be well-typed.
Then, ∆(r) = ∆′′′(r) = C[{T m(T ′) : S }]. Let ∆ = ∆3, r : C[{T m(T ′) : S }]
By rule Ty-Call we have

∆3, r : C[{T m(T ′) : S }]
r.T m T ′
−−→ ∆3, r : C[S ]

We need to prove that ∆3, r : C[S ] ` h and

∆3, r : C[S ] ` e{v/x}{r/this}@r : U a ∆′′

By AtR it suffices to show ∆3, r : C[S ] ` e{v/x}{r/this} : U a ∆′′. By the
premise of Call,

∆2, r : C[S ′], x : U′ ` e{r/this} : U a ∆1, r : C[S ]

∆3, r : C[{T m(T ′) : S }] ` v : U′ a ∆2, r : C[{T m(T ′) : S ]}
it is the case that either ∆2 = ∆3 with ∆2(v) = ∆3(v) = U′, or ∆2(v) = U′′ and
∆3 = ∆2{v : U′/v : U′′}. By Lemma 7 we have

∆3, r : C[S ′] ` e{v/x}{r/this} : U a ∆1, r : C[S ]

Since S =sbt S ′, we conclude by rule Equiv. By rule Heap we have

h(r) = C[ f̃ : o] ∆ ` C[ f̃ : o] : C[{T m(T ′) : S }] a ∆

∆3, r : C[{T m(T ′) : S }] ` h

and by inversion of rule Object on the right-hand side premise we have

S C 4sbt typestate(C) ∃s. S C
s
−−→ {T m(T ′) : S }

∆ ` C[ f̃ : o] : C[{T m(T ′) : S }] a ∆
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We perform another reduction with label T m(T ) and we obtain

S C 4sbt typestate(C) ∃s. S C
s
−−→ {T m(T ′) : S }

T m(T ′)
−−→ S

∆3, r : C[S ] ` C[ f̃ : o] : C[S ] a ∆3, r : C[S ]

We now can obtain ∆3, r : C[S ] ` h by applying rule Heap, and conclude by
rule Config.

• Case e is switch (l′@r) {el}l∈E. By hypothesis and by rule R-Switch

h, switch (l′@r) {el}l∈E
r.〈l′〉
−−→ h, el′

for some l′ ∈ E. By hypothesis and by rule Config we have ∆ ` h and
∆ ` switch (l′@r) {el}l∈E : U a ∆′′. By inversion and rule Switch-AtR

∀l ∈ E ∆l, r : C[S l] ` el : Ul a ∆′′

∆ ` l′ : E a ∆1, r : C[〈l : S l〉l∈E] ∆1 =
⊎
l∈E

∆l

∆ ` switch (l′@r) {el}l∈E : join({Ul}l∈E) a ∆′′

where U = join({Ul}l∈E). By inversion and rule Enum we have that ∆ =

∆1, r : C[〈l : S l〉l∈E]. By Ty-Label

∆1, r : C[〈S l〉l∈E]
r.〈l′〉
−−→ ∆l′ , r : C[S l′]

where l′ ∈ E and ∆′ 4sbt ∆. By Lemma 8 we have that Ul′ 4sbt join({Ul}l∈E).
The typing judgement ∆l′ , r : C[S l′] ` el′ : Ul′ a ∆′′ holds by the premise of
Switch for l′ ∈ E. We need to prove that ∆l′ , r : C[S l′] ` h. Recall that, by
hypothesis ∆ ` h. By Heap and Object it means that there exist s, such that

S C 4sbt typestate(C) and S C
s
−−→ 〈l : S l〉l∈E and

∆ ` C[ f̃ : o] : C[〈l : S l〉l∈E] a ∆

By Definition 3, we have 〈l : S l〉l∈E
l′
−−→ S l′ . By applying rule Object on this

reduction, we have

∆l′ , r : C[S l′] ` C[ f̃ : o] : C[S l′] a ∆l′ , r : C[S l′]

We conclude by rules Heap and Config.
�
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