
International Journal of Reconfigurable and Embedded Systems (IJRES) 

Vol. 11, No. 1, March 2022, pp. 84~92 

ISSN: 2089-4864, DOI: 10.11591/ijres.v11.i1.pp84-92      84  

 

Journal homepage: http://ijres.iaescore.com 

Customization of GPRS, and Wi-Fi device drivers for PXA270 

of Linux OS based barcode scanner 
 

 

Prabhakar Pujeri, Sanket Dessai 

Departement of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied 
Sciences, Bengaluru, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 19, 2021 

Revised Jan 22, 2022 

Accepted Feb 10, 2022 

 

 To access any device, it is necessary to have an access point. A device driver 

is an entry point to access a device. This project is aimed to customize the 

Wi-Fi and general packet radio service (GPRS) device drivers in Linux OS 

for PXA270 (Intel Xscale ARM processor). Customizing a device driver is a 

special way of designing software that can be more easily ported from one 

architecture to another without rewriting it from scratch. The paper is 

discussing about the customisation of Wi-Fi and GPRS device driver in 

Linux OS for PXA270 (Intel Xscale ARM processor). To develop a device 

driver, it is necessary to understand the processor architecture and Linux 

kernel internals and other design constraints. Since dynamically loaded 

driver module is attached to the existing kernel, and any error in the driver 

will crash the entire system. Resource allocation and implementation for a 

device is one of the main concerns for device driver developers. The device 

resources are input/output, memory, IRQs and ports. The required toolchain 

to build the cross-complier for the Intel Xscale ARM processor was built on 

Linux platform. The customised device drivers of Wi-Fi, and GPRS was 

customised, and the customised images are made to port for PXA270 

processor architecture on EMX-270 board. With all the supporting 

parameters the kernel images with drivers are build and ported efficiently. 

Also, a successful verification and testing had been performed for their 

functionalities. 

Keywords: 

EMX-270 

GPRS 

Linux 

PXA270 

Wi-Fi  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sanket Dessai 

Departement of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. 

Ramaiah University of Applied Sciences 

University House, New BEL Rd, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India 

Email: sanketdessai0808@gmail.com 

 

 

1. INTRODUCTION 

The two major challenging works in the embedded Linux industry are to write a device driver in 

Linux and porting Linux operating system on to the target board giving a bigger challenge to the embedded 

designer, developer, validation, and testing teams. Device drivers play an important file to support the 

devices in the kernel of the Linux OS. When the application developer uses the device drivers as black boxes 

where the hardware devices communicate and perform transactions to a defined interface by hiding the 

details of the working of the device hardware. In this project paper the general packet radio service (GPRS) 

and Wi-Fi drivers are customisation had been carried out for the PXA270 board for the barcode scanner, 

where the porting of the Linux for the PXA270 board which is the board design for the barcode scanner 

along with the soft code designing and porting for the routines of the Wi-Fi and GPRS devices to establish a 

communication between the client and the outside world [1]–[6]. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Customization of GPRS, and Wi-Fi device drivers for PXA270 of Linux OS based … (Sanket Dessai) 

85 

The reason to choose PXA270 board is a low cost with integrated high end peripherials supporting 

on the chip and along with the robust processing 32-bit performance of the computer architecture. Linux is 

supporting the networking features in better and hence it is better suitable for designing the barcode scanner, 

and it is open source and freeware as compared with the other operating systems. The processor is more 

suitable based on its Xscale architecture characteristics [7]–[12]. 

To make the system or any sub-system there is necessary of both the hardware and the software, the 

software is of the type where the applications and the system software are used and the layer of the firmware 

which is controlling the hardware through the hardware abstraction layer. Hence there is a need to have a 

proper synchronisation between the firmware and the software and the hardware, and hence the device 

drivers are coming into the existence. When a newer development of the hardware takes place and there is 

necessary for the development of the firmware, software and the application for the developed hardware and 

the device driver a critical component to be developed for the control, programmability, and usability of the 

device, hence device driver development and its research are important areas of the research [7]–[12]. 

Computing architectures are developing and moving into multi-core and hence the Linux operating 

system or any other operating system need to have supporting APIs for the multi-core at the operating system 

through the kernel and user level. The solution procedure for this design deals with understanding the PXA 

architecture and understand its periperials and develop the device drivers for the networking devices which is 

the requirement for the barcode scanner for its applications [7]–[12].  

 

 

2. DESIGN AND IMPLEMENTATION  

To perform the porting of Linux on to the PXA270 target board, it is required to perform the build 

for a toolchain using the cross_complier, assembler, linker and other standard GNU tools which helps to 

create and generate an images for the Linux to support the Xscale architecture target board on the host system 

which is an x 86 PC system [7]–[13]. To build the toolchain, five necessary steps must be followed. 

− Binary utilities set-up,  

− Kernel headers set-up,  

− Bootstrap compiler set-up,  

− C library set-up,  

− glibc-linuxthreads and, full compiler set-up (which is optional).  

 

The internal of the Linux is open and can be modified by the used which is bigger advantages for 

the embedded system developer. The embedded system engineers using the standard APIs system called as 

system calls and other specific APIs at the user or kernel level for the development of the drivers and or 

customisations of the drivers, sometime the intermediate systemcalls are independent of the architecture are 

purely based on the software and need to map at the firmware of the system device drivers. Also, the device 

can be built separately from the kernel and can be plugged in when and when ever required at the runtime 

either dynamically or can be unplugged when not required. This portability and modularity of the device 

drivers make the Linux OS and its device driver easy to write for the point and there are hundreds of device 

drivers are available which are loaded and unloaded for the Linux OS [14]–[19]. This loading and unloading 

feature make the the Linux based system to grow and the embedded designer’s interest to write more and 

more driver and use the linux for the applications is growing. This growth helps the embedded designes to 

customisation of the device drivers for their applications as somewhere, someone must write the device 

driver and make the system work and based on this other designer can customise the device driver for their 

applications and make the applications work. So without the support of the device driver there is not system 

functionality will be able to function as today we deal with the co-design of the system where hardware and 

the software has to work in coordination with each other [20]–[25]. 

 

2.1.  GPRS and Wi-Fi driver communication  

Wireless systems are growing in all walks of the life where people used mobile phones and other 

applications where wireless components are used as shown in Figure 1. In this application, a barcode scanner 

needs wireless support. Initially, GPRS was very popular for data transmission over the wireless and now 

days Wi-Fi plays a significant role in short range and well long range communication along with the support 

of mobile phones. The wireless applications with the help of Wi-Fi are increasing due to the trends of mobile 

phones and their components such as bigger screen, processing capabilities and its features. Wi-Fi supporting 

on the laptop and other computing devices is an emerging alternative for the telephonic lines to convert the 

voice conversations using the Wi-Fi network for larger applications numbers. The Wi-Fi kind of classes are 

designed protocol to achive a higher speed internet access and by the standard of IEEE 802.11 b, a, g and so 

on based on the applications to applications and allowing the compatibility for the devices to connect and 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 84-92 

86 

communicate wirelessly where there is not intervention of the physical wiring connections. As the Wi-Fi 

technology is growing with its speed and characteristics there is more application happening for the 

betterment of the society where the domain specific language (DSL), TI services and internet access are 

performed through the Wi-Fi as become a well-established standard [14]–[25]. 

 

 

 
 

Figure 1. Wi-Fi based on 802.11 infrastructure node [22] 

 

GPRS is one of the most popular technologies where it is an internet protocol (IP) based services 

that provide fast and switching based on the packet access to the data network over the internet. The mobile 

services through the GPRS are improved with the peak-time capacity of a global system for mobile (GSM) 

network, and hence the GPRS provides packeting access with the external data with high network data 

transfer with its peak capacity. To support the IP network such as TCP/IP a GPRS is developed where the 

non-voice services are designed for transmitting the data. The method where the packets are sub-divided as 

separate packets for the transmission from the smartphone devices and transmit then to the destination in the 

external network as shown in Figure 2. Any applications based on the internet can run using the GPRS, and 

the peak throughputs provided are 40 Kbps that is around 53.6 Kbps in raw format. Where there is a sharing 

among the user who is active in the coverage cell area and hence the throughput will vary based on the active 

user in the provided cell and its available base-station tower nearest to it. 

 

 

 
 

Figure 2. GPRS driver design 

Mainly the dynamic IP addressing will be performed by the wireless technologies for data 

transmission over the static addresses, and the IP manager based systems are developed and implemented for 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Customization of GPRS, and Wi-Fi device drivers for PXA270 of Linux OS based … (Sanket Dessai) 

87 

a wireless dynamic domain name server that is dynamic domain name system (DDNS). IP manager will be 

tracking the current IP addresses which a modem will be assigning and the DDNS system has three main 

components which has its functionalities where one of the component functionalities is task to be performed 

in the firmware of the modem, and issue a notificatio to the IP manager server based on the new assigned IP 

addresses.  

 

2.2.  Network devices  

Each telecommunication to communicate needs to have a network and hence the network layer 

where mostly the device drivers are written are physical layer medium, which is accessed using the network 

adapter or the network interface. The physical layer is designed to communicate for the distances based on 

the technologies, in this application it is more based on the wireless mobile technologies. As shown in Figure 

3 to perform distance technologies-based communication interfaces need to support the following properties:  

− A through suitable interface between the designed particular hardware for specialized application in the 

network adapters and the protocol which are software based to communicate for this hardware.  

− A protocol stack with its input and output need to support the asynchronous in the kernel of the operating 

system.  

− The different vendors with their network adapters will be implementing with different layers at layer 1 

and the layer 2 protocol and hence it is necessary to design and develop to write or customize the piece of 

software for the different adapters to communicate with the hardware through the network adapter. 

− A designer must take care when customization of the driver which is a uniform interface for the access by 

the protocol instance which is consistent with the applications of the principle of the communications 

systems layers. Hence based on this layer a suitable implementation to be performed independently for a 

specific adaptor type.  

 

 

Figure 3. The structure of a network device 

 

 

2.3.  Hardware-specific fields  

− Rmem_end, rmem_start, mem_end, mem_start is the filed of the memory where the definition at the 

beginning of the memory, end of the memory spaces, and this memory spaces are shared among the 

network adapter and the kernel in the Linux operating systems. The location (mem_start? mem_end) is 

assigned for the buffers for sending the packets and (rmem_start->rmem_end) is assigned for the location 

for the receiving of the packets. The amount of size required for the buffer is the amount of storage 

supported by the card and by using the ifconfig the initialization of a network adapter is performed for 

memory location addresses. 

− Base_addr: The search of the device in the firmware and at the driver level for the I/O is performed with 

its basic address and from these base addresses drivers are memory mapped. To update the values and 

setting of the values are performed for the display and programmability is achived by ifconfig. Also, 

during the loading of the module, the I/O basic address can be specified as a kernel boot parameter. 

− Irq: irq is the interrupts, which are numbers based on the services requested in the network adapter. The 

setting of interrupts is performed for the drivers during the probing phase in which it is defined specifying 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 84-92 

88 

the process of when to load as a module into the kernel, or when to start the module in the kernel. To 

modify the interrupt number ifconfig is used.  

− DMA: is the direct memory access (DMA) channel having the number of channels which are used by the 

drivers for temporary storage during the processing. Most 32-bit processor support the DMA.  

− Stores: if_port stores the media type of the network adapter currently used. For Ethernet, distinguish 

between BNC, twisted pair (TP), and AUI. There are no unique constants; instead, each driver can use its 

own values. 

 

2.4.  Data on the physical layer  

For the Ethernet cards ethersetup () is setting the field values, which are generally or moreless the 

same identity for all the ethernet-based cards, except for the variations in the flag field, these flag fields need 

to be set to meet the card capabilities. The APIs and the functions used (fddi_setup (), tr_setup ()) to set the 

standard value for the token-ring and fiber distributed data interface (FDDI) adapters and the fields of the 

network adapters are set manually as follows: 

− The layer 2 packet header length is specified by the hard_header_length and for the network adaptor the 

value is 14. Along with this value the network adapter adding the additional fields which are the preamble 

and the checksum for the Ethernet and hence this doesn’t represent the actual length of the packet header 

over the physical layer whereas it represents only at the network adapter. 

− The maximum length of the payload of a layer-2 frame is performed with the help of the maximum 

transfer unit (MTU). 1500 bytes are assigned for the MTU for the ethernet and at the Layer-3 protocols 

must need to consider these MTU values without passing the more octets into the network devices. 

− The maximum length of the output queue of the network device is given by tx_queue_len and the 

ether_setup () is setting this value to 100. It is not to be confused between the tx_queue_len and the 

buffers of the network adapter as there is an additional ring buffer for 16 and 32 packets support for the 

network adapter types in the hardware. These values of the buffer are specified in the request for 

comments (RFC) 1700 which is specifying the hardware type for the address-resolution.  

 

2.5.  Data on the network layer  

− The information point of the network devices in layer-3 are given by ip_ptr, ip6_ptr, atalk_ptr, dn_ptr, 

and ec_ptr. To configure the parameters of the IP instance then the network device and the internet 

protocol and its ip_ptr point to a structure of the type in_device. 

− In the case of the IP, this field takes the constant AF_INET which are assigned with the family address of 

the network device.  

− AF_INET has the length of four bytes for the class of IP addresses and the addresses length of the 

protocol used is specified by pa_alen. 

− The addressing of the network layer is described by pa_addr, pa_braddr, and pa_mask. The address of the 

computer or network device contains at pa_addr. pa_baddr specifies the broadcast address, and pa_mask 

includes the network mask. All three values are set by ifconfig when a network device is activated. 

− pa_dstaddr specifies the address of the other partner in a point-to-point connection (e.g., point-to-point 

protocol (PPP) or serial line internet protocol (SLIP)). 

 

A flag includes different switches. Some of them describe the properties of the network device 

(IFF_ARP, IFF_MULTICAST); others output the current state (IFF_UP). Lists the meaning of these 

switches, which can be set by use of the ifconfig command.  

 

2.6.  Device-driver methods  

It is necessary to abstract out the network device for the hardware. The methods set which is 

available for the network drivers functions need to be mapped with the uniform interface so there is 

accessibility of the higher protocol, and these functionalities are performed with the net_device structure 

implementations. The implementation using the skeleton of the network drivers as an example for the driver 

development. 

− The searching and the initialization of the network devices are performed with Init (). Where the 

responsibility of the Init () is for finding and initialization of a network adapter. To perform the 

initialization a net_devices structure needs to be created and need to fill with the driver-specified data of 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Customization of GPRS, and Wi-Fi device drivers for PXA270 of Linux OS based … (Sanket Dessai) 

89 

the network devices or the network driver and this registration needs to be performed with the 

register_netdevice (). 

− When the network device needs to be unregistered that is (unregister_netdevice ()) for this uninit () is 

used which is extensive driver-specific functions when the network device is removed. The unint () is 

available from the net_device structure from version 2.4 and currently not used by any driver. 

− When the last reference is removed from the network devices (dev->refcnt) a new construct called 

destructor () is used in the net_device structure. This construct is also used to cleanup work which is 

freeing the memory and hence the destructor function is not used by any drivers. 

− The activation of the network device is performed by the open () and this activation processes the 

required system resources assigned. This activation to happened it is necessary to have the device to be 

registered previously, hence the network device can be used with the successful execution of the open () 

and hence ifconfig command can perform dev->open () is used in the dev->open (). 

− To free the network resources, it is necessary to terminate the activities of the network adapter and hence 

a stop () is used and hence the network device is then no longer active, but it remains in the network 

registed devices list which is (net_devs). 

− To check the delivery of the packet over the network device is successful a hard_start_xmit () (in the form 

of a socket buffer). When the packet was delivered to the adapter successfully then hard_start_xmit () is 

returned with 0 or otherwise it returns 1. 

− To get the information and statistics about the activities about the network devices get_stats () is used, 

and this information is returned as net_device_stats structure. To get the additional information for the 

wireless network adapter status get_wireless_stats () is used, and this information is forwarded in a 

structure of the type iw_statistics. The tool iwconfig can be used to display this specific information. 

− set_multicast_list () passed the list with multicast MAC addresses to the network adapter, so that the 

adapter can receive packets with these addresses. This list is called either when the multicast receipt for 

the network device is activated (IFF_MULTICAST flag) or when the list of group MAC addresses to be 

received has changed. 

− The timing problem during the transmission of a packet across the network adapter is given by the 

watchdog_timeo (). The kernel calls the watchdog_timeo () method when there is no acknowledgment if 

the packet is received or not and hence it is time out. dev->tx_timeout, to solve the problem. 

− When it is necessary to pass the adapter-specific ioctl () commands to the network driver. Then do_ioctl 

is used but this is not used by the higher protocol, due to there is no generic functions category in the 

device drivers for the network devices.  

− To change the network adapter configuration at the runtime a setconfig () is used and the method provide 

to change the system parameters includes the interrupts and the memory location of the network adapter. 

 

2.7.  Managing network devices  

The management of the network devices where the knowledge of how the network device is 

represented by the net_device structure in the Linux Kernel. Each net_device structure represents one 

network devices where all the network devices of the Linux kernel need a connection in a linear list in the 

kernel variable called as dev_base which is representing the entry point of the list with the registered network 

devices. This list help to point the device at the list value of the network device as shown in Figure 4.  

 

2.8.  Registering and unregistering network devices 

The dev_base manages the network devices, and the list stores the activated or unactivated but all 

registered network devices. When new devices are added with the help of register_netdevice () then the first 

must create and initialize a net_device structure for the dev_base and the process is performed with two 

different ways: It is necessary to specify that in the kernel configuration the driver of the network device is 

integrated permanently into the kernel and there already available net_device structure and with a clear 

process of the preprocessor definitions it is generated and created different instances of the net_devices 

structure where there is translation and the depending on the kernel configuration and these instance are used 

for the existing network adapters when there is booting as shown in Figure 4. 

 

 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 84-92 

90 

 
 

Figure 4. Network driver management [23] 

 

 

If the driver was translated as a kernel module, then the driver itself must create a net_device 

structure for each existing network adapter. This can be done by the module itself or, for Ethernet drivers, by 

use of the function init_etherdev (). 

 

 

3. VERIFICATION AND TESTING OF CONFIGURATION AND EXIT LOADER MODULE 

The bulk data integration (BDI) is in loader mode when there is no valid firmware loaded or 

connects to it with the setup tool. While in loader mode, the mode light-emitting diode (LED) is flashing. The 

BDI will not respond to network requests while in loader mode. To exit loader mode, the "bdisetup -v -s" can 

be used. Also, power-off the BDI, wait some time (1 min.) and power-on it again to exit loader mode. when 

there is a booting process is configured as shown in Figure 5 and the booting the system for the barcode 

scanner is taking place as shown in Figure 6. 

 

 

 
 

Figure 5. Configure the target using BDI 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Customization of GPRS, and Wi-Fi device drivers for PXA270 of Linux OS based … (Sanket Dessai) 

91 

 
 

Figure 6. The Wi-Fi client and server 

 

 

4. CONCLUSIONS  

Device drivers play an important file to support the devices in the kernel of the Linux OS. When the 

application developer uses the device drivers as black boxes where the hardware devices communicate and 

perform transactions to a defined interface by hiding the details of the working of the device hardware. The 

communication and transaction for the data transfer from the system to physical media and then from the 

physical media to the upper layer of the kernel is performed with the right setting and potting of the Linux 

onto the PXA270 target board. The developed and customised device driver for Wi-Fi and GPRS are 

performing as per the expectation with the required performance and without the overhead for the kernel to 

communicate with the outside world. The Linux kernel had been optimised as per the requirement of the 

Barcode scanner applications and mage an image for the PXA270 board. With this port a different 

application for the barcode scanner can be added. 

 
 

REFERENCES 
[1] V. Eswer and S. S. Naik Dessai, “Processor performance metrics analysis and implementation for MIPS using an open source 

OS,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 10, no. 2, p. 137, Jul. 2021, doi: 

10.11591/ijres.v10.i2.pp137-148. 
[2] V. Eswer and S. S. Naik Dessai, “Embedded software engineering approach to implement BCM 5354 processor performance,” 

International Journal of Software Engineering and Technologies (IJSET), vol. 1, no. 1, p. 41, 2016, doi: 10.11591/ijset.v1i1.4568. 

[3] S. S. Naik Dessai and V. Eswer, “Embedded software testing to determine BCM 5354 processor performance,” International 
Journal of Software Engineering and Technologies (IJSET), vol. 1, no. 3, p. 121, 2016, doi: 10.11591/ijset.v1i3.4577. 

[4] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. Tripp, Software engineering body of knowledge. 2004. 

[5] K. D. Kissell and C. Langgaard, “…/include/asm-mips/mips32_cache.h,” MIPS Technologies. p. 1, 2011, [Online]. Available: 
http://cgit.openembedded.org/openembedded/plain/recipes/linux/linux-wrt-2.4.20/2.4.20_broadcom_3_37_2_1109_US.patch. 

[6] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-end reconfigurable computing system,” IEEE Design and Test of 

Computers, vol. 22, no. 2, pp. 114–125, Feb. 2005, doi: 10.1109/MDT.2005.30. 
[7] “What is GNU?,” GNUs, 2008. https://www.gnu.org/home.en.html. 

[8] Linux Kernel Organization, “The Linux Kernel Archives,” Kernel, 2020. https://www.kernel.org/. 

[9] K. Yaghmour, Building embedded Linux systems, 1st ed. O’Reilly Japan, 2003. 
[10] P. Raghavan, A. Lad, and S. Neelakandan, Embedded Linux System Design and Development. Auerbach Publications, 2005. 

[11] A. A. Khan, “Practical Linux programming: device drivers, embedded systems, and the Internet,” Choice Reviews Online, vol. 40, 

no. 03, pp. 40-1586-40–1586, 2002, doi: 10.5860/choice.40-1586. 
[12] “Busybox,” Busybox. 2020, [Online]. Available: https://busybox.net/. 

[13] S. K. Kweon, M. G. Cho, and K. G. Shin, “Soft real-time communication over Ethernet with adaptive traffic smoothing,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 15, no. 10, pp. 946–959, Oct. 2004, doi: 10.1109/TPDS.2004.59. 
[14] K. C. Lee, S. Lee, and M. H. Lee, “Worst case communication delay of real-time industrial switched Ethernet with multiple 

levels,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1669–1676, Oct. 2006, doi: 10.1109/TIE.2006.881986. 

[15] S. K. Kweon and K. G. Shin, “Statistical real-time communication over Ethernet,” IEEE Transactions on Parallel and Distributed 
Systems, vol. 14, no. 3, pp. 322–335, Mar. 2003, doi: 10.1109/TPDS.2003.1189588. 

[16] S. Wang, S. Malik, and R. A. Bergamaschi, “Modeling and integration of peripheral devices in embedded systems,” in 

Proceedings -Design, Automation and Test in Europe, DATE, 2003, pp. 136–141, doi: 10.1109/DATE.2003.1253599. 
[17] J. M. De Goyeneche and E. A. Fernández De Sousa, “Loadable kernel modules,” IEEE Software, vol. 16, no. 1. pp. 65–71, 1999, 

doi: 10.1109/52.744571. 

[18] K. J. Lin, S. H. Huang, and S. C. Fang, “Cooptimization of interface hardware and software for I/O controllers,” in Proceedings -



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 84-92 

92 

Design, Automation and Test in Europe, DATE, 2006, vol. 1, pp. 1–2, doi: 10.1109/date.2006.244070. 

[19] M. Lewandowski, M. J. Stanovich, T. P. Baker, K. Gopalan, and A.-I. I. A. Wang, “Modeling device driver effects in real-time 
schedulability analysis: Study of a network driver,” in Proceedings of the IEEE Real-Time and Embedded Technology and 

Applications Symposium, RTAS, Apr. 2007, pp. 57–68, doi: 10.1109/RTAS.2007.18. 

[20] Y. T. Hsu, Y. J. Wen, and S. De Wang, “Embedded hardware/software design and cosimulation using user mode Linux and 
SystemC,” in Proceedings of the International Conference on Parallel Processing Workshops, Sep. 2007, pp. 17–17, doi: 

10.1109/ICPPW.2007.39. 

[21] N. Cherukuri, G. B. Kandiraju, N. Gautam, and A. Sivasubramaniam, “Analytical model and performance analysis of a network 
interface card,” International Journal of Modelling and Simulation, vol. 24, no. 3, pp. 179–189, Jan. 2004, doi: 

10.1080/02286203.2004.11442302. 

[22] A. Riadh Rebai and S. Hanafi, “An adaptive multimedia-oriented handoff scheme for IEEE 802.11 WLANs,” International 
Journal of Wireless & Mobile Networks, vol. 3, no. 1, pp. 151–170, 2011, doi: 10.5121/ijwmn.2011.3114. 

[23] Y. Guo and W. Deng, “Design of network device driver in embedded Linux,” in ICCASM 2010 - 2010 International Conference 

on Computer Application and System Modeling, Proceedings, Oct. 2010, vol. 12, pp. 445–448, doi: 
10.1109/ICCASM.2010.5622349. 

[24] K. S. Parmar, S. Dessai, S. G. S. P. Yadav, and A. Chauhan, “Design and Implementation of an Ethernet MAC IP Core for 

Embedded Applications,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 3, no. 3, p. 85, 2014, doi: 
10.11591/ijres.v3.i3.pp85-97. 

[25] S. H.G., S. Dessai, and S. Chaudhari, “Design of secure transmission of multimedia data using SRTP on Linux platform,” 

International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 4, no. 2, p. 71, 2015, doi: 
10.11591/ijres.v4.i2.pp71-81. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Prabhakar Pujeri     received his MSc Physics from Karnataka University 

Dharward and MSEngg from Coventry University, UK, He is working in MNC, and his 

research areas are Embedded Systems, Operating Systems, Linux, and device drivers. He can 

be contacted at email: prabhakar.pujeri@gmail.com 

  

 

Sanket S Naik Dessai     received his MSc Physics from Goa University, MSEngg 

Real-Time Embedded System from Coventry University, MS Microelectronics from Manipal 

University, and Pursuing Ph.D., He had 16+ work experience in Industries and Academics. His 

research interests are Embedded Computer Architecture, System on Chip Design, 

Communication Systems, and their Signal Processing (includes SDR architecture development, 

SDR algorithms, SDR algorithms mapping for systems through SoC and multi-core 

architecture, 5G/4G/LTE systems, and algorithms, wireless and IoT Applications. He can be 

contacted at email: sanketdessai0808@gmail.com. 

 

http://orcid.org/0000-0002-5677-2179
https://scholar.google.com/citations?user=LbDW0BwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57292497600
https://publons.com/researcher/3584454/sanket-naik-dessai/

