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ABSTRACT
Multi-Access Edge Computing (MEC) is attracting a lot of interest
because it complements cloud-based approaches. Indeed, MEC is
opening up in the direction of reducing both interaction delays and
data sharing, called Cyber-Physical Systems (CPSs). In the near fu-
ture, edge technologies will be a fundamental tool to better support
time-dependent and data-intensive applications. In this context,
this work explores existing and emerging platforms for MEC and
human-centric applications, and proposes a suitable architecture
that can be used in the context of autonomous vehicle systems.The
proposed architecture will support scalable communication among
sensing devices and edge/cloud computing platforms, as well as
orchestrate services for computing, storage, and learning with the
use of an Information-centric paradigm such as Apache Kafka

CCS CONCEPTS
• Networks → Layering; • Human-centered computing → Mo-
bile devices; • Computer systems organization → Architectures.
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1 INTRODUCTION
The pervasive analysis of people’s psychological state and health
is currently proving to be one of the most profitable opportunities
in the technological market for wearable sensor systems and au-
tonomous driving. As pervasiveness is becoming a requirement, the
interaction of wearable devices with the surrounding environment
is of utmost importance in order to characterize the influence that
the environment has on the human body and on the human percep-
tion. A complex physical environment whose features are targeted
by a monitoring system is a smart environment, as defined in [13]. It
is evident that modeling all the interactions within a large, complex
smart environment may require both a significant amount of com-
putation and the management of a comparably complex sensing and
computing platform. Cloud platforms are nowadays seen as a can-
didate solution to solve any kind of computing problem, due to the
low time to market, and the broad range of service providers within
the cloud ecosystem. However, cloud computing has demonstrated
to have some significant drawbacks when it comes to smart envi-
ronments: (i) the communication between end-users and the cloud
materializes as a latency in the application; (ii) remote processing
discloses personal information on unspecified shared spaces, owned
by cloud providers; Edge computing has started affirming as an
alternative solution to classical cloud computing in order to over-
come these drawbacks, bringing at least part of the computation
as close as possible to the end-user, thus reducing communication
delays and helping preserve the privacy of data. In addition, edge
computing allows for distributing the power drain proportionally
to the complexity and the requirements of the monitoring system
of joint CPSs. There is an obvious convergence with the concept
of CPSs, that are engineered systems built from, and depend upon,
the seamless integration of computation and physical component
with and without human intervention. In this paper, we will focus
on a specific use case [1, 3] involving a smart-vehicle environment,
where the principal investigation target is not the autopilot system,
but the human perception of the driving style of the autopilot.

Figure 1 shows the core CPS, which will be our reference, and
is made up of data producers, i.e.: (i) one or more passengers’ het-
erogeneous wearable devices, such as heart rate monitors, galvanic
skin response sensors, face-tracking cameras; (ii) the vehicle, whose
data streams include logs exposed from the car CAN bus1 as well

1Details on the CAN bus can be read at: can.bosch.com
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Figure 1: Use case under analysis: autonomous vehicles and
human passengers’ Quality of Experience (QoE).

Figure 2: Edge and Cloud interaction.

as readable input from embedded sensors like lidars, dash cameras,
obstacle detection units. Yet (iii) a data storage, to preserve, locally,
the privacy of data. Finally, (iv) a local computing platform (in blue)
is deputed at collecting and storing data as well as to training local
models of the emotional state of the passengers.

In these settings privacy control is implemented by design, as
no raw personal data coming from wearable sensors or from the
CAN bus can be disclosed outside the vehicle.

Starting from the use case model proposed in this paper and
shown in Figure 1, the rest of this paper is organized as follows:
Section 2 presents the challenges in the design of the architecture of
the proposed use case, by taking into account the QoE and the pri-
vacy requirements. Section 3 focuses on the distributed computing
architecture, whose our use case is made up of, that are: federated
learning, distributed inter-process communication using Pub/sub
mode of communication and an overview of MEC architectures
based on European Telecommunications Standards Institute (ETSI)
definitions. The conclusions can be read in Section 4.

2 PERSONALIZED QUALITY OF EXPERIENCE
CHALLENGES FROM A PRIVACY
VIEWPOINT

Data collection is the basis of the analysis processes that aim to
obtain a complete and accurate picture of a phenomenon. In this
work, we address the data collection of both an autonomous ve-
hicle and its human passengers in order to improve the driver (or
passenger) experience. The collected data, once analysed, can be

used to obtain information to achieve the desired goal by using
the collected insights. Improving the QoE for human passengers
in autonomous vehicles is the very objective to be achieved in our
scenario, taking into account the limitations posed by the current
regulatory systems about privacy. We fully agree with [11]’s per-
spective that intelligent and emotion-aware systems are the next
step to provide smart services in a vehicle and improve user inter-
action. Two conflicting factors are at play here: the need to monitor
and potentially improve the QoE of people in the vehicle by using
collected sensitive data such as their emotions or physiological
parameters, and the need to enforce privacy when sharing data
with a remote cloud-based system, as in Figure 1. This is one of the
biggest challenges we face in this activity. Privacy-by-design is one
of the most important approaches today, which can be considered
as a philosophy of system design [6].

The emotional and physiological state of a human passenger
is monitored in our environment with the help of cameras and
wearables that collect a whole range of data that are merged into
a model. The model of perceived QoE will strongly and directly
depend on the number of observable parameters, on the possibility
to collect real-time data with high spatial resolution, thus also on
the quality of the installed sensors, and on the performance and
efficiency of the algorithms used for data analysis. For this model
to be as precise as possible, some tradeoffs need to be accepted
concerning the privacy preservation (e.g. data analysis separation
and anonymizing by aggregation may not always be practical).

Edge computing may ease privacy protection because data are
stored closer to the user and not in a remote storage facility. Thus,
it is more likely that users have more control over sensitive data;
Furthermore, edge cloud is considered to be a key enabler of low-
latency applications [11], as in our automotive scenario.

3 DISTRIBUTED COMPUTING
INFRASTRUCTURE

This section provides a review of the existing technologies that can
be integrated to define a service infrastructure meeting the criteria
discussed in Section 2. In fact, the ambition of this paper is not to
provide a full-fledged state-of-the-art analysis but to highlight a set
of key contributions, along with the challenges they face, to give a
reasonable scientific support to our perspective.

3.1 Federated Learning
Federated Learning (FL) is a promising distributed learning tech-
nique that deals with large-scale learning problems and satisfies the
privacy issues presented in Section 2. This means that the learning
issues depend on the collaboration between the endpoints and the
edge nodes, as well as the collaboration between the edge nodes
and the central cloud. Since the learning problems involve a large
amount of users’ sensitive data, two main problems need to be
addressed, namely (i) optimizing the computational overhead be-
tween simpler devices, edge nodes, and the central cloud, and (ii)
processing the data while limiting the issues and risks related to
users’ privacy. In the FL context, locally collected data on end-user
devices are used to perform lightweight feature extraction opera-
tions. These features can be used to define local training models
that can be updated at the edge nodes. Finally, the aggregated global
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model is sent back to the end-user devices that execute the learn-
ing algorithms locally. Therefore, only the processed information 
or the models can be transmitted to both the edge nodes and the 
central cloud, while the data containing the users’ sensitive infor-
mation remains in the device. Moreover, FL can also overcome other 
problems typical of distributed learning [5], such as:

• the training data set at the single end-device captures limited
information, so it is not necessarily representative of the
whole population distribution of the end devices (as the
amount and distribution over time of local training data is
different for each end-device) while federated models can
gather universal information and provide more accurate
answers;

• the computational capacity of the federated resources is
significantly greater than the resources at the single end
device. For a learning system feeding on data by many end-
devices, the scalability of FL increases with the number of
end-devices;

In [15], the authors propose an interesting analysis of how the
limited computational and communication resources on endpoints
can be efficiently used together with edge resources to achieve
the optimal global learning performance in a scenario like the one
shown in Figure 1. The author proposes a formulation of the op-
timization problem and a convergence analysis to determine the
frequency of global aggregation such that the available resources
are used as efficiently as possible. The problem of efficiency in
terms of network-resource overhead and system scalability is also
addressed in [10], where the authors investigate the introduction
of quantization techniques in FL to improve the efficiency of data
exchange between federated nodes and anAImodel aggregation ser-
vice (AIaaS) on the Edge. In [18], the author propose an application
of FL to the vehicular scenario called Vehicular Edge Computing
(VEC), where the end devices connected with the in-proximity edge-
nodes are Intelligent Connected Vehicles (ICV). The broad scenario
shown in Figure 1 is common to this and other cases. The ICVs
are endowed with computational and storage resources, so that
a preprocessing of the raw data can be performed at the vehicle,
preserving sensitive information about the passengers or other ve-
hicles. The authors in [5, 9] also propose an infrastructure where
the edge resources can be assumed located partly at the end devices
and partly at the edge-node. In [18], the authors propose a selective
model aggregation approach to reduce the influence of the infor-
mation asymmetry, differently from the approach proposed in [15]
where the local models are merged by averaging them. The infor-
mation asymmetry is due to the difference among the local training
data models, the availability of subset of end device to provide train
data. In [18] the authors state the model selection procedure as a
two-dimensional contract theory problem. In this contract theory
scenario all the contract items are broadcast to vehicles periodically.
The contract items are signed if they are accepted by the vehicles.
Each item includes the amount of information available, the amount
of computation resources and the reward. After confirming the con-
tract items the vehicles download the global learning model from
the central server and performs local model training by using local
information and computation resources, according to the accepted
contract items.

3.2 MEC Architectures Based on ETSI
Definitions

The effective and efficient exploitation of resources at the edge is a
key enabler to satisfy QoE requirements stated in Section 2, relying
on resources located nearby the end-user.

MEC technology is the emerging solution to address the chal-
lenges stated in Section 2 for the sensing systems of the vehicular
scenario, such as that taken into account in this work. MEC allows
to design infrastructures where the data acquisition-preprocessing
of data and training of local models can be performed at the end de-
vice and at the edge, respectively. Then, the cloud can perform the
optimal aggregation of these models. Performing at the edge some
of the computing operations, MEC allows to reduce significantly
both the computational load for the core network and the latency of
the services for the end user, optimizing so the user experience. The
authors in [8, 9] provide an overview about existing MEC-based
infrastructure, analysing communication and computational issues.
The core of MEC infrastructure is based on a virtualized platform
that leverages recent advancements in Information-Centric Net-
works (ICN), and Software-Defined Networks (SDNs). ICN provides
an end-to-end service recognition paradigm for MEC, shifting from
a end device-centric to an information-centric one for implementing
context-aware computing. SDN allows MEC infrastructure admin-
istrators to manage services via function abstraction, achieving
scalable and dynamic computing.

In [12, 19], the authors propose a resource allocation method for
mobile multi-end user scenario, where computation tasks can be
split simultaneously in local computing and offloading. The authors
provide an interesting analysis about the performance obtained
by the proposed method where parameters such as latency, com-
putation time and limited hardware resources are not negligible
parameters. In [7, 14, 17], the authors propose examples of MEC-
based infrastructures for the vehicular scenario. Different solutions
are explored for the scheduling of the service operation started by
the vehicles, using both approaches offloading, or by the cooper-
ation of vehicles. The infrastructure can rely on edge servers on
vehicles and at Road Side Units (RSU). In the first case, the proposed
infrastructure allocates the resources to address the operations lo-
cally at the edge-nodes in case of light computing operations, in
case of complex operations these are offloaded to the central cloud
or among a cluster of vehicles.

3.3 Distributed inter-process communication
LinkedIn has developed a novel messaging system for log process-
ing called Kafka2, which is licenced as open source. While tradi-
tional messaging systems such as IBM Websphere MQ3 offered
highly reliable message delivery (as each message had to be con-
firmed), such a strict reliability constraint is often overkill. The
cost of data loss is considered negligible with Kafka, as Kafka has
fault tolerance and resilience capabilities by exploiting multiple
instances of the broker.

In Apache Kafka, data is stored in the form of topics. A producer
can publish messages on a topic. The published messages are stored
on a server called broker. While consumer subscribed to these topics

2Kafka: https://kafka.apache.org/
3IBM Websphere MQ: https://www.ibm.com/support/knowledgecenter/
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can consume the messages from these topics over the broker. Most 
of the messaging systems support a push policy for messages that 
the broker has to deliver messages from producers to consumers. 
Kafka, instead, applies a pull policy in message forwarding: each 
consumer can try to retrieve data at the maximum rate that it can 
handle, but is never flooded by messages, thus reducing the over-
head over the broker. Another design choice that makes Kafka very 
scalable and suitable for distributed system is that it can exploit 
on multiple broker instances. To simplify the coordination of the 
instances, Kafka employs Zookeeper in order to (i) detect the addi-
tion and the removal of both brokers and consumers, (ii) maintain 
the relationship among brokers and consumers, (iii) trigger a re-
balancing of the workloads when either brokers or consumers are 
added or removed. Several data collection processing solution on 
the edge employ Kafka. In [16], a Wireless Sensor Network (WSN) 
for monitoring 𝐶𝑂2 makes use of Kafka and the Impala database let 
a huge amount of data flow from the sensor nodes to the database. 
The authors in [4] have developed an efficient and low-latency dis-
tributed messaging system for Connected Vehicle (CV) applications 
that provides a data-oriented view of the entire CV ecosystem.

In [2], the authors propose a new two-tier federated learning 
communication architecture, namely Kafkafed, for vehicular appli-
cations. They use the Apache Kafka publish/subscribe platform for 
aggregating models. This architecture has two advantages: First, 
it decouples the data producers (client) and the data consumers 
(server) and provides scalability. This decoupling also provides an 
additional layer of privacy, as the server knows nothing about the 
clients. In addition, the clients, or in our case the vehicles, do not 
need to be connected to the server, as is the case with classic client-
server communication, where the client remains constantly con-
nected to the server to exchange information, which is not possible 
with mobile nodes, as they may be out of range of the server while 
driving. The second major advantage of Kafkafed is the reduction 
in communication cost in the FL scenario, as the server sends the 
aggregated model to some brokers (at the edge) that serve a large 
number of vehicles near the respective edge, so that the vehicles 
do not need to connect to the cloud, as the connection between 
the cloud and the edge nodes causes a large latency. For model 
aggregation, we will rely on the Kafkafed technique with a large 
number of broker instances to increase scalability in automotive 
scenarios.

4 CONCLUSIONS
Existing solutions and approaches in the literature typical for VEC 
to collect physiological data to provide emotion-awareness of the 
drivers in autonomous vehicles have been investigated in order to 
evaluate them with respect to the specific context that is being anal-
ysed. MEC can offer tremendous benefits in such a context due to 
its capabilities, starting from the possibility to increase the privacy 
of human passengers and to provide tight and real-time computing 
power to achieve the desired QoE. The FL approach is used to ag-
gregate the models trained on different nodes using a pub/sub mode 
communication architecture. The authors are currently working 
on the design and development of such an edge-based software 
platform to support the use case and believe that it will open up 
innovative scenarios in the automotive sector.
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