
Writing clean scientific software
Nick Murphy

Center for Astrophysics | Harvard & Smithsonian

With thanks to: the PlasmaPy, SunPy, and Astropy communities; the Python in Heliophysics
Community; Sumana Harihareswara; Leonard Richardson; Erik Everson; Dominik

Stańczak-Marikin; Sterling Smith; Janeway Granche; and many others.

https://creativecommons.org/licenses/by/4.0/

Where I’m coming from...

● These suggestions do not come from:
○ Years of experience writing clean code

● Rather, these suggestions come from:
○ Years of experience writing messy code
○ And then living with the consequences… 🙀

Common pain points with scientific software

● Lack of user-friendliness
● Difficult installation
● Inadequate documentation
● Unreadable code
● Cryptic error messages
● Missing tests
● Often not openly available

Why do these pain points exist?

● Programming not covered in science courses

● Scientists tend to be self-taught programmers

● Worth often measured by number of publications

● Code is often written in a rush

● Time pressure prevents us from taking time to learn

● Software not valued as a research product

Publication-driven development (PDD)

● Measure worth of researchers by number of publications
● Write code in a rush to get articles published
● Deprioritize user-friendliness
● Prioritize journal articles over documentation & tests
● Devalue software as a research product
● Fund research projects, not infrastructure & maintenance
● Avoid training and hiring research software engineers
● Build up technical debt over time

PDD gives us legacy code!

https://us-rse.org/about/what-is-an-rse/
https://en.wikipedia.org/wiki/Technical_debt

Consequences of these pain points

● Beginning research is hard

● Collaboration is difficult

● Duplication, triplication, & quadruplication of functionality

● Research is less reproducible

● Research can be frustrating

https://en.wikipedia.org/wiki/Reproducibility

How do we address these pain points?

● Make our software open source

● Use a high-level language (e.g., Python or Julia)

● Prioritize documentation

● Create automated tests

● Refactor code periodically

● Develop code as a community

● Write readable, reusable, & maintainable code

https://opensource.org/osd
https://www.python.org/
https://julialang.org/
https://en.wikipedia.org/wiki/Test_automation
https://en.wikipedia.org/wiki/Code_refactoring

My definition of clean code

● Readable
● Easy to change
● Communicates intent
● Well-tested
● Well-documented
● Succinct
● Navigable
● Lets us understand the big picture and little details
● Makes research fun!

“Code is communication!”

https://steven-j-hicks-speaking.netlify.app/code-is-communication/#1

Which is more readable?

>>> omega_ce=1.76e7*B

>>> electron_gyrofrequency = e * B / m_e

How do we choose good variable names?

● Reveal intention and meaning

● Choose clarity over brevity
○ Longer names are better than unclear abbreviations

● Avoid ambiguity
○ Is electron_gyrofrequency an angular frequency?
○ Is volume in cm3 or in barn-megaparsecs?

● Be consistent
○ Use one word for each concept

● Use searchable and pronounceable names
Clean Code, Ch. 2

https://en.wikipedia.org/wiki/List_of_humorous_units_of_measurement#Barn-megaparsec
https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Measure the length of a variable name not
by the number of characters, but by the time

needed to understand its meaning!

Change numbers to named constants

● In this expression:

velocity = -9.81 * time

○ Where does -9.81 come from?
○ Are we sure it’s correct?
○ What if we go to a different planet?

● Use named constants to clarify intent:

velocity = gravitational_acceleration * time

Clean Code, Ch. 17

https://en.wikipedia.org/wiki/Gravitational_acceleration
https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Use quantities with units instead of numbers

● In this expression:

velocity = -9.81 * time

○ What units does -9.81 have?

● Use a units package to prevent $327.6M mistakes:

 from astropy import units
 acceleration = -9.81 * units.meter / units.second ** 2
 time = 15 * units.second
 velocity = acceleration * time

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Gravitational_acceleration

Decompose large programs into functions

● Huge chunks of code are hard to:
○ Read
○ Test
○ Keep track of in our mind

● Breaking code into functions helps us:
○ Reuse code
○ Improve readability
○ Improve testability
○ Isolate bugs

Don’t repeat yourself (DRY)

● Copying and pasting code is fraught with peril
○ Bugs would need to be fixed for every copy

● Create functions instead of copying code
○ Simplifies fixing bugs
○ Reduces code duplication

● To change one thing in the code, we should only
need to change it in one place

The Pragmatic Programmer

https://pragprog.com/titles/tpp20/the-pragmatic-programmer-20th-anniversary-edition/

How do we write clean functions?

● Functions should:
○ Be short
○ Do one thing
○ Have no side effects

Clean Code, Ch. 3

https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Document each function

● State what the function does

● Describe parameters provided to the function

● Describe the value returned by the function

● Include usage examples

● Include additional notes & references as necessary

Adapted from numpydoc style guide

https://numpydoc.readthedocs.io/en/latest/format.html

Complex control flow makes code hard to read

def is_electron(charge, mass):
 if isclose(charge, -1.67e-19):
 if isclose(mass, 9.11e-31):
 return True
 else:
 return False

● Nested if/else statements and for loops make code:
○ Harder to understand
○ Harder to modify
○ More bug-prone

Use guard clauses instead of nested conditionals

def is_electron(charge, mass):

 if not isclose(charge, -1.67e-19):
 return False

 if not isclose(mass, 9.11e-31):
 return False

 return True

● Take care of edge cases first to simplify subsequent code

https://en.wikipedia.org/wiki/Edge_case

High-level vs. low-level code

● High-level code
○ Describes the big picture
○ Abstracts away implementation details

● Low-level code
○ Describes implementation details
○ Contains concrete instructions for a computer

https://en.wikipedia.org/wiki/Abstraction_(computer_science)

High-level vs. low-level cooking instructions

● High-level: describe goal of recipe
○ Bake a cake

● Low-level: a line in a recipe
○ Add 1 barn-Mpc of baking powder to flour

https://www.noracooks.com/vegan-chocolate-cake/
https://en.wikipedia.org/wiki/List_of_humorous_units_of_measurement#Barn-megaparsec

Avoid mixing low-level & high-level code

● Mixing low-level & high-level code makes it harder to:
○ Understand what the program is doing
○ Change the implementation

● Separate high-level, big picture code from
low-level implementation details

Clean Code, Ch. 3

https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Write code as a top-down narrative*

To perform a numerical simulation, we:
1. Read in the inputs
2. Set initial conditions
3. Perform the time advances
4. Output the results

*This is called the Stepdown Rule in Clean Code by R. Martin.

https://www.oreilly.com/library/view/clean-code/9780136083238/

Write code as a top-down narrative

To perform a numerical simulation, we:
1. To read in the inputs, we:

1.1. Open the input file
1.2. Read in each individual parameter
1.3. Close the input file

2. Set initial conditions
3. Perform the time advances
4. Output the results

Write code as a top-down narrative

To perform a numerical simulation, we:
1. To read in the inputs, we:

1.1. Open the input file
1.2. To read in each individual parameter, we:

1.2.1. Read in a line of text
1.2.2. Parse the text
1.2.3. Store the variable

1.3. Close the input file
2. Set initial conditions
3. Perform the time advances
4. Output the results

def calibrate_observation(raw_image):
 # Subtract bias
 (~20 lines of code)
 # Remove dark current
 (~20 lines of code)
 # Flag cosmic rays
 (~20 lines of code)

● This function does more than one thing!
● What if we want to do only one of these steps?
● How do we test each individual step?

The extract function refactoring pattern

Convert each section of code into its own function:

def subtract_bias(image): ...

def remove_dark_current(image): ...

def flag_cosmic_rays(image): ...

def calibrate_observation(raw_image):
 image_level1 = subtract_bias(raw_image)

 image_level2 = remove_dark_current(image_level1)
 image_level3 = flag_cosmic_rays(image_level2)
 return image_level3

The extract function refactoring pattern

“Program to an interface, not an implementation”

● Suppose our program uses atomic data

● We’re using the Chianti database, but want to use AtomDB

● If our high-level code repeatedly calls Chianti, then…
○ Switching to AtomDB will be a pain!

● If our high-level code calls functions that call Chianti…
○ We need only make these interface functions call

AtomDB instead
○ The high-level code can remain unchanged!

 Quote from Design Patterns, Ch. 1

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.chiantidatabase.org/
http://www.atomdb.org/
https://www.chiantidatabase.org/
http://www.atomdb.org/
https://www.chiantidatabase.org/
http://www.atomdb.org/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

These interface functions represent a boundary

● Put a boundary between stable
& unstable code

● The clean, stable code depends
directly on the boundary, not the
messy unstable code

● The boundary should be stable

Strive for high cohesion & low coupling

● Cohesion is the degree to which the contents
of a module belong together

● Coupling is the degree to which the contents of
a module depend on other modules

● Code elements that change together at the
same time for the same reasons belong together

● Separate code elements that do not change
with each other

Clean Architecture, Ch. 13

https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://www.oreilly.com/library/view/clean-architecture-a/9780134494272/

Comments are not inherently good!

● As code evolves, comments often:
○ Become out-of-date
○ Contain misleading information
○ Get displaced from the corresponding code

● “A comment is a lie waiting to happen” 🙀

Clean Code, Ch. 4

https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Not so helpful comments

● Commented out code
○ Quickly becomes irrelevant
○ Keep track of old code using version control instead

● Definitions of variables
○ Encode definitions in variable names

● Redundant comments
i = i + 1 # increment i

● Description of the implementation (usually)
○ Becomes obsolete if implementation changes
○ Communicate the implementation in the code

Clean Code, Ch. 4

https://en.wikipedia.org/wiki/Version_control
https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Helpful commenting practices

● Refactor code instead of explaining how it works

● Explain the intent and interface

● Amplify important points

● Explain why an approach was not used

● Provide context and references

● Explain concepts unfamiliar to readers

● Update comments when updating code
Wilson et al. (2014) & Clean Code, Ch. 4

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745#s8
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745#s8
https://doi.org/10.1371/journal.pbio.1001745
https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Helpful commenting practices

● Write comments for the broadest probable audience

● Write what you wish you knew an hour ago

● Use an issue tracker instead of long-term “to do”
comments

● Avoid referring to something by a mutable characteristic
○ Variable names that are likely to change
○ Position of an item in a numbered list that could be re-ordered

Clean Code, Ch. 4

https://www.oreilly.com/library/view/clean-code-a/9780136083238/

Well-written tests make code more flexible

● Without tests:
○ Changes might introduce hidden bugs
○ Less likely to change code for fear of breaking

something

● With clean tests:
○ We know if a change broke something
○ We can track down bugs more quickly

● “Legacy code is code without tests.” 🙀
From Working Effectively With Legacy Code

https://www.oreilly.com/library/view/working-effectively-with/0131177052/

Why do we write tests?

● To catch and fix bugs
○ Preferably as soon as we introduce them

● To provide confidence that our code gives correct results
● To define what “correct” behavior is
● To show future developers how code should be used
● To keep track of bugs to be fixed later
● In preparation for planned features
● So we can change the code with confidence that we are

not introducing hidden bugs elsewhere in the program

Unit tests

● A unit test:
○ Verifies a single unit of behavior,
○ Does it quickly, and
○ Does it in isolation from other tests.

● Well-written unit tests
○ Increase code reliability
○ Simplify finding & fixing bugs
○ Make code easier to change

Definition from Unit Testing Principles, Practices, and Patterns

https://www.manning.com/books/unit-testing

A minimal software test

def test_addition():
 """Test adding two integers."""
 assert 1 + 1 == 2, "Incorrect value for 1 + 1"

● Descriptive name

● Descriptive docstring (if unclear from name)

● An assertion that a condition is met

● Descriptive error message if condition is not met

Common unit test pattern: arrange, act, assert

Testing best practices

● Write readable and maintainable tests
○ Low quality tests cause future frustrations

● Write tests while writing the code being tested
○ A test delayed is usually a test not written

● Automate tests
○ Make sure tests can be run with ≤ 1 command

● Run tests often!!!!
○ Change 1 thing & run tests ⇒ easier to isolate location of bugs
○ Change 37 things & run tests ⇒ hard to find location of bugs

Testing best practices

● Keep tests small
○ Avoid multiple assertions per test (unless closely related)
○ Avoid conditionals & complex test logic

● Keep tests fast
○ If necessary, add an option to skip slow tests

● Keep tests independent of each other
○ Interdependent tests are harder to change

● Make tests deterministic
○ Hard to tell when a test that fails intermittently is fixed
○ Specify the random seed

https://martinfowler.com/articles/nonDeterminism.html

Testing best practices

● Avoid testing implementation details
○ Tests of implementation details make code harder to refactor

● Turn every bug into a new test
○ Helps us fix a bug and prevent it from happening again
○ Bugs happen in clusters — consider adding related tests

● Use a code coverage tool
○ Tells us which lines are covered by a test and which are not
○ Helps us write targeted tests and find unused code

● Consider refactoring code that is difficult to test
○ Write short functions that do one thing with no side effects

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745#s6
https://en.wikipedia.org/wiki/Code_coverage

Test-driven development

● More common practice:
○ Write a function
○ Write tests for that function
○ Fix bugs in the function

● Test-driven development
○ Write a failing test
○ Write code to make the test pass
○ Clean up code after tests are passing

● Advantages of writing tests first
○ Makes us think about what each function will do
○ Saves us time
○ Reduces frustration

https://en.wikipedia.org/wiki/Test-driven_development

How do we know what tests to write?

● Test some typical cases
● Test special cases

○ If a function acts weird near 0, test at 0
● Test at and near the boundaries

○ If a function requires a value ≥ 1, test at 1 and 1.001
● Test that code fails correctly

○ If a function requires a value ≥ 1, test at 0.999

Test known solutions and properties

● Test against exact solutions
○ Waves, etc.

● Test equilibrium configurations
● Test against conservation properties

○ Conservation of mass, momentum, & energy

● Test convergence properties
○ Example: test that a 4th order accurate numerical

algorithm actually is 4th order

● Test limiting cases

https://en.wikipedia.org/wiki/Rate_of_convergence

Error messages are vital documentation

● The best error messages help users pinpoint a
problem and understand how to fix it

● Cryptic error messages can cause hours of frustration

How do we write clean error messages?

● Error messages should:
○ State the problem
○ Describe why it happened
○ Help us fix the problem

● Error messages should be:
○ Helpful!
○ Friendly and supportive
○ Concise, but complete
○ Understandable to new users & contributors

● Provide enough information to solve the problem with
minimal extraneous information

Avoid premature optimization of code

● Readability is usually more important than speed
○ Computers are fast and getting faster
○ Our time is more valuable than computing time

● A fold improvement is irrelevant for code that takes a
millisecond to run and is only run occasionally

● We should optimize code:
○ Only when necessary
○ After the code is working correctly
○ After identifying the bottlenecks

● But plan ahead when writing numerically intensive code

When should we write clean code?

● Some clean coding habits save time quickly
○ Writing short functions that do one thing
○ Writing tests that can be run automatically

● We don’t need particularly clean code when we’re
interactively exploring a data set

● Investing extra time is worthwhile if:
○ You’ll re-use the code
○ The code will be shared with others

● Avoid perfectionism

The nascent field of research software engineering

● Research software engineers (RSEs) include
○ Researchers who spend most of their time programming
○ Software engineers developing scientific software
○ Everyone in between

● Challenges
○ Unclear career paths for RSEs
○ Insufficient training for scientists to become RSEs

https://us-rse.org/about/what-is-an-rse/

Final thoughts

● Learn version control (e.g., git and GitHub or GitLab)

● Learn an IDE like Visual Studio or PyCharm

● Refactor code periodically

● Set aside time to learn

● Remember the importance of community
○ A software project is not just code — it’s people too
○ Psychological safety is vital

Psychological safety references: The Fearless Organization by A. Edmondson; and Beyond Buzzwords and Bystanders: A Framework for
Systematically Developing a Diverse, Mission Ready, and Innovative Coast Guard Work- force by K. Young-McLear et al.

https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Psychological_safety
https://www.wiley.com/en-us/The+Fearless+Organization%3A+Creating+Psychological+Safety+in+the+Workplace+for+Learning%2C+Innovation%2C+and+Growth-p-9781119477242
https://strategy.asee.org/36070
https://strategy.asee.org/36070

Summary

● Code is communication!
● Break up complicated code into manageable chunks

○ Write short functions that do one thing
○ Separate big picture code from implementation details

● Refactor code instead of explaining how it works
○ Communicate the implementation in the code itself

● Writing clean code is an iterative process
● Well-written tests make code more flexible
● Run tests often!

https://steven-j-hicks-speaking.netlify.app/code-is-communication

