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Figure 1: Imagine that you want to redesign your living space and replace existing furniture with new ones. Most of us 
are not so creative, and conceiving how a place would look is challenging. AR technology allows for inserting virtual objects 
in real environments, and can thus, assist in better understanding how new furniture would fit in our place. 
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However, this won’t work in already furnished environments. These existing objects will disrupt the AR experience, and in 
most cases will have the opposite of the intended effect, leaving the users confused. We propose a system consisting of 
various AI services for enabling next-generation AR indoor (re-)planning and design experiences. Our system strives for 
user-friendliness and bypasses error-prone and cumbersome user scanning processes. Instead, users only require a single 
360° camera capture that produces a spherical panorama of their indoor space. Then, our AI-based system automatically 
generates a high-level understanding of the scene, both semantically and structurally, enabling automatic selection of 
objects to be removed or replaced. This is driven by employing DR technology that incorporates the inferred scene 
structural prior to generate plausible hallucinations, eventually offering a compelling and effective AR experience. Top 
row shows the overall concept and higher level component connections, while the bottom row shows an actual example 
from the Structured3D dataset, where a bed is replaced within a room. It is worth noticing that apart from the virtual bed 
placement, all other steps are automatic, that the diminished room with the original bed removed respects the room’s 
layout, and also that a significantly large object was replaced 

In this work, we present an AI-based Augmented Reality (AR) system for indoor planning and refurbishing applications. AR 

can be an important medium for such applications, as it facilitates more effective concept conveyance, and additionally acts 

as an efficient and immediate designer-to-client communication channel. However, since AR only overlays, and cannot 

replace or remove, our system relies on Diminished Reality (DR) to support deployment to real-world already furnished indoor 

scenes. Further, and contrary to the traditional mobile AR application approach, our system offers on demand Virtual Reality 

(VR) viewing, relying on spherical (360°) panoramas, capitalizing on their user-friendliness for indoor scene capturing. Given 

that our system is an integration of different AI services, we analyze its performance differentials concerning the components 

comprising it. This analysis is both quantitative and qualitative, with the latter realized through user surveys, and provides a 

complete systemic assessment of an attempt for a user-facing, automatic AR/DR system. 

CCS CONCEPTS • Human-centered computing ~ Human-Computer Interaction (HCI) ~ Interaction 

paradigms ~ Mixed / augmented reality  

Additional Keywords and Phrases: Augmented Reality, indoor AR, Diminished Reality, Artificial intelligence, User 

Study, 360o panoramas, Image Inpainting, Computer Vision 

1 INTRODUCTION 

Interior design can be a challenging and stressing process, requiring bidirectional communication between 

users and experts. Experts usually express their ideas in traditional 2D drawings produced by Computer Aided 

Design (CAD) software, making it difficult for the end-users to comprehend them. AR is an emerging technology 

that allows users to superimpose Computer-Generated (CG) elements over the real world. In the particular case 

of interior design, AR can be used for placing virtual 3D objects within the real environment bridging the 

communication gap between experts (designers) and non-experts (clients). In this way, AR serves as a medium 

between digitized concepts and the real scene, facilitating effective and efficient communication and feedback 

between its users, improving the iterative design process. Indicatively, an AR system for rearranging a furniture 

layout was proposed in [15], while in [12] a system employing a dynamic user interface for placing 3D virtual 

furniture models was developed. However, both aforementioned systems required multiple QR markers to allow 

users to physically position the virtual furniture.  

Even though AR enables the interaction with virtual objects inside real environments, its nature is pure of 

additive nature, with a practical problem befalling when working in occupied and filled indoor scenes as is the 

case for AR home design applications [20]. Concepts like redecoration cannot be delivered solely through AR 

technology, as users would only be capable of superimposing CG elements on top of existing real-world objects, 
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hindering understanding due to a conflicting mental response. To overcome this, AR needs to be supported by 

DR which can diminish existing objects prior to overlaying new virtual ones, and provide users with an enhanced 

view to assess furniture fit into their spaces. DR is an intriguing technology that can enable novel concepts. One 

example is intercar see-through vision, which aims at preventing accidents [14] and diminishes (i.e. ”removes”) 

the front car. In this particular case, DR is driven by multi-view observations and view synthesis. There are 

cases though, where no view behind the removed object is available, and then DR needs to hallucinate content, 

typically referred to as infilling or inpainting [10]. Pioneering work in the DR domain was presented by [5], where 

a patch-based image inpainting method was developed. Follow up work [8] moved beyond image based 

diminishing and transitioned towards respecting scene geometry by exploiting SLAM-based localisation. More 

recently, an inpainting method for non-planar scenes was developed [16] that considered both color and depth 

information. Still, in both cases, manual selection of the region to be removed in the image domain was required. 

To allow for easier selection of the object to be diminished in indoor scenes for interior design, [17] used a 

manually positioned and scaled volume to enclose the object of interest. In addition, the floor plane was 

identified by inserting a marker into the scene. Real-time 6 degrees-of-freedom DR without manual object 

selection is challenging [13], and requires a 3D reconstruction of the scene without the object of interest but 

with the diminishing area annotated, limiting its flexibility. When considering AR interior home refurnishing, 

where quickly prototyping ideas is very important, minimizing interactions is very important, as users will also 

need to position the new elements into the scene as well [7].  

Still, all of the aforementioned studies work in a narrow field of view inputs, limiting the amount of information 

of each scene and thus degrading their performance on big objects (e.g.furniture), while at the same time they 

do not strictly respect the structure of the environment. To overcome this, moving cameras are employed relying 

on SLAM [16] or wider field of view captures [7], but they limit user friendliness and are more error-prone. In 

this work, we present a system that addresses the challenges of cumbersome user diminished area selection 

and user scanning, delivering DR-enhanced, AR for indoor scene planning and design. To achieve that, our 

system is AI-based, operating on a single monocular image capture, exploiting recent advances in data-driven 

inpainting methods [6]. In addition, albeit image-based, it takes the scene’s structure into account, an important 

cue for the targeted application domain. Our main contributions are summarised below: 

 • A novel AI-based DR-enhanced AR system with various data-driven components connected in parallel 

and cascade structure using only monocular 360° images as input.  

• A holistic system evaluation including a systemic point of view analysis to identify the weakest link in the 

system, and a user-study focused on the importance and relevance of DR in indoor planning applications. 
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Figure 2: Overview of the proposed automatic DR-enhanced 360o AR system. The system can be dissected into two high-
level sub-systems, the DR one the left and the AR one the right, operating in cascade. The former is responsible for the 
automatic diminishing of the scene and the latter for user-driven augmentation. For a given scene, captured by a 360o 
camera, the input panorama x is fed to the system. The scene’s junctions L(x) and objects’ masks S(x) are first estimated 
in parallel by the corresponding data-driven components, with L and S being the layout and segmentation AI models 
respectively. Then, for each separate object mask segmented in the scene, the data-driven inpainting component is 
invoked I(x,L(x),S(x)), with I being the respective AI model. Diminishing is achieved by inpainting the object’s mask in a 
structure-aware manner using the dense layout map that facilitates the preservation of the wall-ceiling/floor boundaries. 
The result y is a diminished scene for that particular object. Subsequently, the result is up-sampled by invoking R(y), where 
R is a super-resolution model, and the higher resolution panorama is ready to be augmented by the virtual 3D object that 
the user positions into the scene, producing the DR-enhanced AR 360o image z. 

2 SYSTEM OVERVIEW 

Figure 2 shows a high-level overview of our system comprising two main sub-systems, and the nominal data 

flow among the various components. Each component is an AI model, trained on the Structured3D dataset [23].  

As presented in Figure 2 the two sub-systems operate in cascade, while the DR sub-system also includes 

a parallel component connection. The DR sub-system first processes the input panoramic image by estimating 

the scene’s layout and segmenting the distinct objects inside the scene. Then, for each segmented object in 

the scene, the inpainting component is invoked to diminish the object and prepare the input for the AR 

superimposition. Since data-driven models typically operate in lower resolutions than required for panorama 

viewing, the AR sub-system first invokes a super-resolution component to rescale the diminished area back to 

360° viewing resolution. AR is user-driven by positioning elements into the scene that interact with the masked 

regions depending on their projection to select the appropriate diminished panorama. Still, users may simply 

require to remove an object from the scene which is straightforwardly supported. In the following subsections, 

the different AI building blocks comprising our automatic DR-enhanced AR system are presented. 
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2.1  Object Segmentation Component 

In order to diminish an object from a residential indoor scene, the object’s pixel-aligned area within the image 

must be available. For this purpose, we employ a semantic segmentation network to infer objects mask for a 

set of a priori selected classes, commonly present in residential scenes. We use the DeepLabv3 architecture 

[3] with a ResNet50 [4] backbone, which has shown reliable and robust results in segmentation tasks, offering 

a great compromise between accuracy and speed. The network was supervised using cross-entropy and trained 

for 133 epochs using the Adam optimization algorithm [9], with default parameters, a learning rate of 0.0002, 

and a scheduler halving it every 20 epochs. 

2.2 Layout Estimation Component 

Another prerequisite of the inpainting component is the scene’s dense layout segmentation (i.e. the per-pixel 

classification into the ceiling, wall, or floor classes). This is required to preserve the scene’s structure during 

diminishing which is a very important cue for the downstream applications (i.e. planning or designing). We use 

the HorizonNet model [19] to estimate the locations of the scene’s junctions. 

2.3  Inpainting Component 

The core of our AI-based DR sub-system is the inpainting AI model which is responsible for object diminishing. 

Apart from the input panorama, it additionally requires an object mask and the scene’s layout segmentation 

map, as depicted in Figure 2. The latter provides the structure of the scene as corner positions, which are 

subsequently reconstructed as the dense layout, while the former is a requisite for specifying the object to be 

diminished. We adopt a structure-aware 360° inpainting model [2] that uses SEAN residual blocks [24] to aid in 

hallucinate plausible content with semantic coherency in the diminished region. SEAN blocks leverage the 

structural information provided by the input semantic maps (the layout segmentation in our case), and uses it 

as structural guidance. 

 

2.4 Super-resolution Component 

For alleviating the aforementioned issue concerning the low-resolution of the panoramas to be processed, we 

resort to a lightweight super-resolution model [22], to upscale the diminished result up to (×4) times. That way, 

we offer results appropriate for panorama viewers, without degrading their visual quality. 

2.5 Implementation & Orchestration 

Our models are trained with PyTorch [11] and delivered as services using TorchServe [1]. Our components 

share a common communication interface that is built around callback URLs, with all inputs and outputs 

delivered as endpoints to either retrieve (GET) or submit (POST) data. This interface makes our system highly 

modular since the communication interface is decoupled from the back-end functionality of each component.  

The system orchestration is realised as a web server, where each upload triggers a chain of events as 

follows. At first, the object segmentation and layout estimation models are invoked to estimate the object masks 

and the room layout. Since we rely on semantic segmentation, we perform connected component analysis to 

resolve potentially different instances and split each segmentation map into multiple per-class and object masks. 

To improve robustness, we use the convex hull for each mask in an attempt to decouple the diminished region 
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shape from the result (the inpainting model is trained similarly). Likewise, the junction estimates are post-

processed to generate a dense layout map by first connecting the top and bottom boundaries, and then 

identifying the corresponding structural labels across each column. Finally, for all object masks, the inpainting 

service is called, with its result fed into the super-resolution service and then composited on the original 

panorama. The outputs are then ready to be queried by the AR component that positions the 3D object, whose 

renders interact with the masks on the image domain to retrieve the appropriate result. 

3 EXPERIMENTAL SETUP METHODOLOGY 

The evaluation undertaken for the presented AI-based DR-enhanced AR system follows two routes. On the one 

hand, we seek to assess the DR sub-system’s behaviour (Section 3.1), while on the other hand, we aim at 

validating the complete system’s efficacy and goals (Section 3.2). For the former, we opt for an objective 

evaluation using photo-consistency metrics using complete-diminished pairs, while for the latter we employ 

subjective scoring using pre-authored scenes.  

Given that our system’s components have been trained on the Structured3D dataset [23], we use 

samples from the corresponding test set for both the objective and subjective experiments. Structured3D 

provides photo-realistic panoramic images of residential rooms, room layout annotation, object segmentation 

masks, as well as an empty room configuration of each scene that has all foreground (i.e. furniture) removed. 

The latter data address the most challenging part of objectively evaluating DR systems, which is the lack of 

paired data where the objects of interest are removed. To simulate indoor (re-)planning/design settings, we 

focus our evaluation on the {chair, bed, sofa, table, cabinet} class set. 

 

 

Figure 3: Component ablation experiments setup visualized with a vertical macro view of the DR sub-system of Figure 2. 
(a) refers to the experiments where both room layout and object masks are estimated by the system’s corresponding 
data-driven components, (b) the layout path is ablated, by replacing the estimations with the annotated ground truth 
while preserving the segmentation mask estimates, (c) the dual configuration to (b), with the segmentation path ablated 
and the layout estimations preserved, and (d) where both components are replaced by the annotated ground truth layout 
and object masks. 
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3.1 Component Ablation 

The DR sub-system comprises three different AI components. When considering it as a sum of its parts, we 

only need to evaluate the result of the diminished output against an empty scene. Yet two layout and 

segmentation components that operate in parallel, and cascade their outputs to the inpainting component, can 

also propagate their errors. Those errors for each separate AI component can be accumulated, affecting the 

overall performance of the system. Given that each part of this sub-system is an AI model performing a distinct 

task, its performance can be evaluated in isolation from the complete sub-system. Reasonably, as performance 

improves, it is expected that the final result will also be improved. Nonetheless, from a system analysis 

perspective, it is important to identify the weakest link, the component whose system performance relies mostly 

upon, and thus affects the most outcomes of the system. As a result, we ablate the system’s components using 

differential analysis, where the component is bypassed and instead, a perfect prediction is used (the annotated 

metadata). Consequently, Figure 3 presents the component ablation setup for the DR sub-system, with the 

layout estimation and segmentation components ablated in isolation and jointly. The latter experiment allows 

us to assess the performance of the inpainting component both absolutely, using the metrics, as well as 

relatively, with respect to the other ablated components’ performance degradation. We use the Mean Absolute 

Error (MAE), the Peak Signal-to-Noise Ratio (PSNR), the Structured Similarity Index Metric (SSIM), and the 

Perceptual Image Patch Similarity (LPIPS) [21] metrics on the results and compare over the objects’ masked 

regions. LPIPS measures the perceptual similarity between two images based on a VGG pre-trained network 

[18]. It has been shown that it accounts for several parts of human perception, in contrast with PSNR. Due to 

the nature of DR to hallucinate realistic content, we consider it as our primary evaluation metric. For the pixel-

wise metrics (PSNR & MAE) the union of the ground truth and predicted masks was used to more strictly 

penalize erroneous segmentations under these photo-consistency metrics. Still, for the local (window-based 

SSIM) and global (CNN-based LPIPS) metrics, the entire images were used. 

 

Figure 4: Example survey scene types. The first column depicts the original panorama, the second column the panorama 
with the object removed (i.e. pure DR), the third column, the one with the virtual furniture added in the diminished scene 
(i.e. DR-enhanced AR), and the final column, the one with the virtual object added without previously removing the existing 
object (i.e. pure AR). 
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3.2 User Study 

While objective analysis can help in identifying critical components and assessing the system’s overall 

performance, the end result cannot be quantitatively assessed. This is either because ground truth is not 

necessarily available, or due to the subjectivity of the results. Still, end-user appreciation is the ultimate goal 

and as a result, we additionally performed a user survey for the entire system’s outputs. We used remote 

questionnaires that were distributed to 38 users split into two sub-groups, one having no knowledge regarding 

its inner workings (i.e. Group A), and the other knowledgeable regarding AI (i.e. Group B). The questionnaires 

required the participants to rate the appearance of a masked area in each one of 5 different scenes. An 

interactive panorama viewer was used, with the initial viewpoint bearing looking at the object to be removed. 

For each scene, users first were allowed to freely navigate the entire scene in 3 degrees of freedom, then an 

annotated panorama with the object to be removed or replaced was presented to them. This process ensures 

that users will not get lost within the 360° field-of-view, and will understand the task at hand. Afterward, users 

were asked to score the appearance of the previously marked area, once presented with the object removed 

(i.e. pure DR), and then once with a virtual object replacing the previous one (i.e. DR-enhanced AR). After all, 

scenes were evaluated, users were asked to rate the scenes again, this time without DR, scoring the result of 

the pure virtual object superimposition on the existing real object (i.e. pure AR). This last step was isolated from 

the previous ones to remove any bias when scoring 

DR results. Scoring was based on a 5-point Liker scale, resulting in aggregated mean opinion scores (MOS). 

Figure 4 depicts samples used in the survey. 

4 RESULTS DISCUSSION 

Before presenting the results of our experiments, it is worth noticing the potential sources of errors. Since the 

inpainting component is dependent on the results of the layout and segmentation models, it is expected that 

any errors in these components will be accumulated in the final diminished result. Under-segmenting an object 

may result in erroneous diminishing of scenes, since artifacts of the old object will be present around the 

inpainted region. Similarly, over-segmenting may potentially remove important relevant objects like chairs next 

to a table, resulting in uncanny visuals. Another potential source of error is the layout junction localization. The 

inpainting model heavily depends on the layout of the input, as described in Section2.3. Given that the 

boundaries reconstructed from the junctions are used to generate the dense layout segmentation map used to 

drive the SEAN decoding blocks, such errors will propagate into both style code generation, as well as the 

diminished area boundary separating the different structural areas. As a consequence, even slight errors in the 

junctions' coordinates will translate to large miss-classified regions, manifesting in severe diminishing distortions. 
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Table 1: Quantitative results assessing the DR sub-system output by ablating its components. Arrows denote direction of 
better performance 

 

 

4.1 Objective Evaluation 

Table 1 shows the quantitative results for the experiments described in Section 3.1. The first row which 

showcases the best performance is the case (d) of Figure 3, where both models are replaced with perfect 

estimates. This is in contrast to the last row, corresponding to case (a) of Figure 3, which relies on all models’ 

predictions. Interestingly, cases (b) and (c) are the most interesting ones as they present us with the weakest 

link of the DR sub-system, which is the layout estimation model, given that when replaced with the annotated 

layouts, performance consistently increases. As the segmentation model produces reasonable results, the 

sparser junction localization errors propagate deeper into the diminished result, which is reasonable as the 

structural segmentation is responsible for both style code extraction and boundary preservation. 

 

 

Figure 5: Results of the user survey. The first row depicts the total average rating for all the three cases, i.e. pure DR 
(empty), DR-enhanced AR (DR), pure AR (AR), across all scenes (first column) as well as for each scene separately in the 
following columns. Similarly, the second row depicts the same average rating split per each sub-group participating in the 
study (A & B, not familiar with AI and those knowledgeable about it respectively). 

 

Experiment PSNR ⬆ SSIM ⬆ 𝑀𝐴𝐸 ⬇ LPIPS ⬇ 

y𝑳𝑺̅̅̅̅  

 

29.61 0.9393 0.0131 0.1127 

y𝐿𝑺 

 

29.13  0.9353 0.0134 0.1149 

y𝑳𝑠 27.37    0.9126 0.0166 0.1259 

y𝑳𝑺 27.86   0.9189 0.0158 0.1225 



10 

4.2 Subjective Evaluation 

Figure 5 presents the results of the user survey. The left columns aggregate MOS scores across all scenes, 

while the remaining columns present the results for each scene in sequence. The top row presents the results 

for all subjects, while the bottom row splits them into two different groups, those not familiar with AI (i.e. Group 

A) and those experienced with it (i.e. Group B). From these results, it is evident that purely diminished scenes 

were rated lower than diminished scenes with augmentations overlaid. This is expected as superimposing 

content on the DR result may potentially hide defects. Further, the final scenes without DR where the virtual 

object was simply overlaid on the actual ones, without removing them, scored lower than the scenes where the 

real objects had been diminished/removed. Nevertheless, the statistical confidence is lower and this is partly 

expected as not all scenes may require DR. Indeed there are cases when the objects are of similar size and 

shape that render DR as not that important. The availability of the functionality, however, is very important for 

the remaining cases and may even outweigh the need to deliver high-quality DR results. 

Regarding the two user groups, those familiar with AI presented with larger discrepancies between the 

different scene types, albeit the ranking across both groups remained the same. 

5 CONCLUSION 

In this work, we present a system that can drive user-facing applications for interior design. The focus of our 

system is on usability as it relies on 360° image acquisition of scenes, compared to scanning processes that 

tax users and are more error-prone. Further, we lift the requirement for manually marking the diminished 

region and seek to preserve the room structure during diminishing which is highly relevant for the targeted 

application domain. Our system is purely AI-based, a fact that introduces the need for assessing error 

propagation between its different components. To that end, we present a system ablation analysis, 

accompanied by a user survey that showcases the need for DR in indoor AR planning. Nonetheless, our work 

operates directly on the image domain (i.e. 2D), and besides the benefits, this introduces, it inevitably only 

offers perspective views and neglects occlusion effects. Another limitation is that the current system has been 

only verified with synthetic data. The Structure3D dataset offers annotations for all sub-tasks apart from the 

super-resolution one, a trait that real-world datasets will not easily provide. Apart from that, the application to 

in-the-wild real-world data is expected to reduce performance, which will require revisiting our analysis. Future 

work will focus on overcoming these challenges by integrated geometric inference (e.g. depth) to support 

more advanced features like occlusions and lighting, and transitioning to real-world domain training data and 

validation. 
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