
Durham E-Theses

The Coherent Parity Check Framework for Quantum

Error Correction

ROFFE, JOSHUA

How to cite:

ROFFE, JOSHUA (2019) The Coherent Parity Check Framework for Quantum Error Correction,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13055/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13055/
 http://etheses.dur.ac.uk/13055/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The Coherent Parity Check

Framework for Quantum Error

Correction

Joschka Roffe

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

Durham University

April 29, 2019

The Coherent Parity Check

Framework for Quantum Error

Correction

Joschka Roffe

Abstract

Quantum error correction protocols are an essential element in the design of any circuit-

model quantum computer. In this thesis, I introduce the coherent parity check (CPC)

framework for quantum error correction. CPC codes have a fundamental structure in

which quantum parity check measurements are stored coherently and compared over

time. The specific advantage of the CPC code structure is that it provides a way of

creating new stabilizer codes from the starting point of any sequence of parity checks. I

show that this freedom in the choice of parity checks can be used to derive methods for

the construction of distance-three quantum codes based on almost any distance-three

classical code. The CPC framework has further applications in machine search routines

for code discovery, as well as in the design of bespoke codes tailored for the demands of

a given device. Another feature of CPC codes is that they can be represented as factor

graphs of the type commonly seen in classical error correction and machine learning.

I outline a procedure for this mapping, and demonstrate how a quantum code can

be derived by manipulating its factor graph representation. The aim of the factor

graph mapping for CPC codes is to make it easier to adapt well-developed techniques

from classical information theory for use with quantum codes. This will make the

CPC framework a useful tool for the theoretical and practical study of quantum error

correction codes as large-scale quantum computers move closer to becoming a reality.

Contents

Title i

Abstract ii

Contents iii

Acknowledgments vii

Declaration ix

Publications x

Notation xii

1 Introduction 1

1.1 Computing through the ages . 1

1.2 Quantum computing . 5

1.3 Quantum error correction . 7

1.4 The coherent parity check (CPC) framework 10

1.5 Thesis structure . 11

2 Classical Error Correction 13

2.1 Redundant encoding & repetition codes 14

2.2 Parity check codes . 16

2.3 Factor graphs and the generator matrix formalism for classical codes . . 17

2.4 Hamming codes . 19

2.5 High performance classical codes and decoding 21

iii

iv CONTENTS

3 Quantum error correction 23

3.1 Quantum redundancy and the two-qubit code 25

3.2 The quantum Hamming bound . 30

3.3 Stabilizer codes . 31

3.4 Calderbank, Shor and Steane (CSS) codes 34

3.5 The finite geometry representation of stabilizer codes 36

3.6 Gates for stabilizer codes . 37

3.7 Fault tolerant circuit design . 39

4 Coherent Parity Check Codes 41

4.1 The fundamental CPC gadget . 43

4.1.1 Error detection with any parity check 43

4.1.2 Multi-check CPC gadgets . 45

4.2 Construction of a [[4, 2, 2]] CPC detection code 47

4.2.1 Translating classical parity checking sequences to a CPC code . 47

4.2.2 Adding cross-check operators 49

4.3 The canonical form of CPC codes . 52

4.4 Computing the stabilizers of a CPC code 53

4.4.1 Computing the stabilizers of a CPC code 53

4.4.2 Computing the Pauli logical operators of a CPC code 55

4.4.3 Example: Computing the stabilizers and logical Pauli operators

of the [[4, 2, 2]] CPC detection code 55

4.4.4 Construction of stabilizer tables and Pauli logical operators from

the CPC adjacency matrices . 56

4.4.5 Efficient calculation of the CPC code syndromes 57

4.5 Tripartite CPC codes . 59

4.5.1 Construction of a [[9, 3, 3]] tripartite CPC code 60

4.5.2 Tripartite CPC Hamming codes 63

4.6 CPC encoders for CSS codes . 67

4.6.1 The CPC representation of CSS codes 68

4.6.2 Example: A CPC encoder for the Steane [[7, 1, 3]] code 70

4.6.3 A CPC method for constructing CSS codes 72

CONTENTS v

4.6.4 Example: Construction of a [[11, 3, 3]] CSS code from the classical

ring code . 77

4.7 Summary and discussion . 78

5 Implementation of a [[4, 2, 2]] CPC code on the IBM 5Q device 81

5.1 Experimental overview and conditions for success 82

5.2 Compiling a [[4, 2, 2]] CPC circuit onto the IBM 5Q 85

5.3 A note on fault tolerance for the [[4, 2, 2]] circuit 86

5.4 Experimental data reconstruction methods 87

5.5 Experimental results . 88

5.6 Summary of the IBM 5Q experiment 90

6 Native gates for CPC codes 92

6.1 An ion trap native gate . 93

6.2 Compiling ion trap native gates . 94

6.3 Requirements for CPC gates . 98

6.4 Circuit simplification with any maximally entangling Clifford gate . . . 99

7 Automated design of CPC codes 101

7.1 Machine search for CPC code discovery 101

7.2 Case study: Designing a CPC code for a seven-qubit ion trap 102

7.2.1 Overview of the ion trap model 103

7.2.2 Stage 1: CPC code discovery 104

7.2.3 Stage 2: SWAP gate compilation 108

7.2.4 Stage 3: Native gate compilation 111

7.3 Extending the CPC design process . 113

8 CPC codes as classical graphical models 115

8.1 Overview of the mapping procedure . 116

8.2 The operational representation for quantum codes 117

8.3 Translation rules mapping the operational representation to classical

factor graphs . 120

8.4 Example: Designing a [[4,2,2]] CPC code using the factor graph mapping 122

vi CONTENTS

8.5 General rules for constructing tripartite CPC codes using classical factor

graphs . 124

8.6 Example: Designing a [[5, 1, 3]] CPC code using the factor graph mapping126

9 Conclusions and outlook 129

9.1 Summary . 129

9.2 Outlook . 132

9.2.1 CPC methods for fault tolerant syndrome extraction 132

9.2.2 Maximum entropy decoding of quantum codes 133

9.2.3 CPC codes with increased code distance 134

Appendix 136

A The Pauli group . 136

B The Clifford group and stabilizer states 137

C IMBQX4 calibration data . 137

Additional Acknowledgements 138

Bibliography 140

Acknowledgements

This thesis has been three years in the making. And what a three years it has been!

I have thoroughly enjoyed my time studying at Durham amongst so many brilliant

colleagues and friends. Without them, this work would certainly not have been possible.

First and foremost, I would like to thank my supervisor Viv Kendon for securing the

funding for me to study at Durham. You have been an excellent supervisor, providing

invaluable guidance at every stage of my PhD. Thank you for your many ideas and

suggestions, as well as for encouraging me to pursue my interests.

I have also had the pleasure of being co-supervised by Dominic Horsman and Nicholas

Chancellor. Thank you Dom for introducing me to the field of quantum error correction

and proposing the project that eventually became the main topic of this thesis. Many

thanks to Nick for always taking time to explain new concepts to me, as well as for

suggesting various fruitful avenues for research. I wish both of you the best of luck as

you start your new groups in Grenoble and Durham, and look forward to collaborating

in the future.

I have enjoyed productive collaborations during my PhD. Many thanks to Stefan

Zohren for hosting me in Oxford for a week to discuss CPC codes and other research

ideas. Thanks also to Aleks Kissinger for providing an alternative way of representing

CPC codes using the ZX-calculus. Finally, I am grateful to have been able to work

with David Headley on circuit compilation problems.

During my time at Durham I have been part of the Atomic and Molecular research

group (recently re-branded to Quantum Light and Matter). Many thanks to everyone

vii

viii ACKNOWLEDGEMENTS

I have shared an office with, in particular Ben Beswick and Rob Bettles, who have

ensured a pleasant working environment from day one. I have fond memories of doing

the ATMOL graduate course with the other members of my cohort: Will Hamlyn,

Ryan Hanley, Prosenjit Majumder, Ginny Marshall, Mew Ratkata, Dominic Reed and

Oliver Wales. Other highlights of my time in ATMOL have included the daily coffee

breaks which have involved many entertaining conversations about physics, football,

politics and all the other important issues of our times. I must also mention the weekly

Friday Evening Seminar, and thank all those involved in its organisation.

I would like to thank the people of Durham City for providing such a friendly environ-

ment to live in. After my three years here, I agree wholeheartedly with Bill Bryson’s

assertion that Durham is the best little city in the world with its unrivalled setting and

architecture. Also unrivalled is Durham’s community spirit, as exemplified by events

such as the annual Big Meeting. Special thanks must go to the members of Durham

City Vélo Cycling Club, with whom I have spent hundreds of hours exploring Durham

and its beautiful environs. There is no better way to explore a region than on a bike!

My time in Durham would not have been the same without all the friends I have made

outside of the Physics Department. Thanks in particular to my housemate Dominic

Charrier, as well as everyone I have met through Ustinov College. Finally I would like

to thank my mother Christine, my father David and my brother Theo, for providing

support and encouragement throughout every stage of my education.

Joschka Roffe

April 29, 2019

Declaration

I confirm that no part of the material offered has previously been submitted by myself

for a degree in this or any other university. Where material has been generated through

joint work, the contribution of others has been indicated.

Joschka Roffe

Durham, April 29, 2019

The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged.

Figures from papers are reproduced with permission.

ix

Publications

I carried out the work for this thesis under the supervision of Viv Kendon, Dominic

Horsman and Nicholas Chancellor. The material covered in this thesis is based on the

following three publications and preprints:

• [1] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Do-

minic Horsman. Graphical structures for design and verification of quantum error

correction. arXiv:1611.08012, 2016.

• [2] Joschka Roffe, David Headley, Nicholas Chancellor, Dominic Horsman, and

Viv Kendon. Protecting quantum memories using coherent parity check codes.

Quantum Science and Technology, 3(3):035010, 2018.

• [3] Joschka Roffe, Stefan Zohren, Dominic Horsman, and Nicholas Chancellor.

Quantum codes from classical graphical models. arXiv:1804.07653, 2018.

Chapter 4 is based on work carried out in [1] and [2]. The CPC framework was first

introduced in these papers using two different methods: [1] uses techniques from the

ZX-calculus, whereas [2] uses conventional quantum circuit notation. The ZX-calculus

presentation was predominantly developed by Dominic Horsman and Aleks Kissinger.

I outlined an alternative presentation using conventional circuit notation in [2]. As

such, I adopt the quantum-circuit notation in this thesis. Sections 4.5 and 4.6 cover

the tripartite structure for CPC codes and their relation to CSS codes. This work

extends and improves upon the results originally developed by Dominic Horsman and

Aleks Kissinger in [1].

x

PUBLICATIONS xi

The results outlined in chapter 5 were originally published in [2]. I carried out all the

work for this experiment.

Chapter 6 is based on results published in [2]. I carried out the work for this chapter

in collaboration with David Headley.

Chapter 7 is based on work I carried out in [2]. I collaborated with David Headley to

develop the SWAP gate compilation strategies outlined in section 7.2.3.

Chapter 8 is based on work carried out in [3]. I carried out this work jointly with

Nicholas Chancellor and Stefan Zohren.

Section 9.2.2 in chapter 8.6 outlines a method for the implementing a maximum entropy

decoding technique on a CPC code. This is based on work currently in preparation [4].

Notation

Throughout the thesis I attempt to adhere to the following convention of notation:

Pauli matrices

11 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (0.0.1)

For an overview of the Pauli group, see appendix A.

The binary addition operator

The ‘⊕’ operator is used to represent addition modulo 2. eg.

1⊕ 1 = (1 + 1) mod 2 = 0 (0.0.2)

This notation will be used for all the binary arithmetic in this thesis.

Quantum circuit notation

We adopt standard quantum circuit notation as commonly presented in the literature,

for example as seen in [5] or [6]. Any quantum gates that are unique to this work are

defined in the text.

xii

Chapter 1

Introduction

1.1 Computing through the ages

The development of the digital computer is the defining technological advancement of

the past century. Whilst the industrial revolution of the Victorian era mechanised many

aspects of manufacturing, agriculture and transport, the modern computer revolution

has mechanised the storage, manipulation and distribution of information. Computers

now permeate every part of our lives; they assume an indispensable role across all as-

pects of industry, business, science and media. Furthermore, the spread of the Internet

has left us more connected than ever before. And our dependence on computers is set

to rise: the impact of advanced computing methods such as machine learning and arti-

ficial intelligence is ever increasing. This is apparent, for example, in the development

of technologies such as self-driving cars [7].

Primitive computing devices have existed for millennia. The most widely adopted of

these early devices was the abacus, the first reported use of which dates back to the

period 2700-2300BC [8]. Remarkably, the abacus remained the leading calculating

device for millennia. In fact, it was not until the discovery of logarithms, and the

invention of the slide rule in the 1620s [9], that its performance was superseded.

The modern era of computing can trace its roots to the nineteenth century engineer

1

2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Left: Charles Babbage’s plan for the Difference Engine. Right: A modern

replica of the Difference Engine built for the London Science Museum showing the gears

with which the decimal numbers are realised. Image source (for both images): The

Board of Trustees of the Science Museum, London. Image released under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.

Charles Babbage, who proposed a machine to automate the calculation of artillery

tables [10, 11]. This device, known as the Analytical Engine, incorporated all of the

fundamental elements of a modern computer: an input, a memory, a processor and

an output. In contrast to previous calculators, which required a human operator, the

Analytical Engine was designed to run automatically from a set of instructions known

as a program. The plans of the Analytical Engine were studied by the mathematician

Ada Lovelace, who was the first to realise that the device might have applications

beyond artillery table calculation [12]. As an example, Lovelace wrote an algorithm

for the Analytical Engine to calculate Bernoulli numbers [13], and in doing so, became

1.1. COMPUTING THROUGH THE AGES 3

the world’s first computer scientist.a

Unfortunately, Babbage never succeeded in building a full-scale Analytical Engine. In

his first attempt, after securing funding from the British government in 1823, he began

the construction of a prototype, known as the Difference Engine [11]. This device, like

the Analytical Engine, operated using decimal digital logic (numbers 0 to 9) [15]. From

a human perspective, this was a sensible choice, as we are familiar with the decimal

number system from our everyday lives. However, from a technological perspective,

decimal systems can be difficult to implement. In Babbage’s devices, the decimal

numbers were realised as the positions of a mechanical gear [10]. A challenge with this

approach was that any under (or over) rotation of the gear could result in the desired

decimal number being misrepresented, leading to errors which would compromise the

computation. This problem was compounded by the fact that the Difference Engine

required thousands of gears, each of which had to milled to the utmost precision to

prevent the occurrence of errors. This ultimately proved to be an insurmountable

engineering challengeb, and led to the failure of the project. Babbage’s proposed device

was decades ahead of its time, but the technology available to him could not match his

vision.

The first computer algorithm outlined by Lovelace was special purpose, designed specif-

ically to be run on the Analytical Engine hardware. Nearly a century later, in 1935, the

notion of a universal computing device, capable of running any conceivable algorithm,

was proposed by Alan Turing [16]. Such devices, now referred to as Turing machines,

were first studied as abstract mathematical models. However, in the Second World

War, prototype Turing machines were soon built to perform calculations for military

research, most notably for the Enigma code breaking effort and the Manhattan Project

[17]. During this time, the Hungarian physicist John Von Neumann proposed a design

for a Turing Machine that would become the basis of computing architectures to the

aAda Lovelace was the daughter of the Anne Isabella Milbanke and the poet Lord Byron. Ada’s
mother’s family were based in Seaham, a seaside town in County Durham, UK. Given her contributions
to the field of computer science, and her connection to the local area, it has been proposed that
‘Ada Lovelace College’ would be good name for the 17th Durham College, which is currently under
construction. For more details see this change.org campaign [14]

bThis problem was not helped by the fact that Babbage had a notoriously bad working relationship
with his chief engineer Joseph Clements.

https://www.change.org/p/durham-university-name-the-next-durham-colleges-after-notable-durham-women

4 CHAPTER 1. INTRODUCTION

modern day [18]. Such Von Neumann architectures were designed to be arbitrarily

reprogrammable via stored programs. In contrast, earlier devices required physical

hardware intervention – rewiring etc – every time the algorithm was to be changed.

The first example of a computer based on the Von Neumann architecture was the 1948

Manchester Baby, built by Frederic Williams, Tom Kilburn, and Geoff Tootill [19]. The

Manchester Baby employed binary digital logic (numbers 0 or 1). The advantage of the

binary basis for computation is that there are only two states to differentiate between.

Crucially, these binary basis states can easily be realised as the on/off positions of

a switch. Switches are easy systems to engineer: compare, for example, the gears

in Babbage’s Difference Engine, which needed to be able to differentiate between ten

intermediate positions in order to realise decimal numbers. As such, computers based

on binary logic can be much more reliable.

In the Manchester Baby device, the binary switches were realised using vacuum tubes.

These were bulky, power hungry components that would often break down. However,

the invention of the transistor (by John Bardeen, Walter Brattain and William Shockley

[20]), soon provided a much more robust and efficient way of realising binary logic.

The first of these transistor-based computers was built in 1953 at the University of

Manchester by the same research group who built the Manchester Baby [21].

Computer development to the modern day has involved the successive miniaturisation

of the transistor-based computer, first realised in Manchester, and inspired by the initial

blueprints set out by Turing and Von Neumann. In the simplest terms, the ‘power’ of

a computer can be related to the density of transistors in its processing unit. In 1965,

Gordon Moore, a co-founder of the Intel Corporation, wrote a paper predicting that

transistor densities would double approximately every two years [22]. This observation,

now known as Moore’s Law, has since become the de-facto yardstick for monitoring

improvements in computing power.

Over the past fifty years, advances in micro-computer technology have roughly followed

the trend predicted by Moore. Current state-of-the-art (as of October 2018) computer

chips have transistors as small as 7 nm. A 1 nm transistor has been successfully

demonstrated in a laboratory [23]. However, Moore scaling cannot continue indefinitely,

1.2. QUANTUM COMPUTING 5

as eventually this would lead to transistors at the subatomic scale. This problem

is recognised, with the manufacture of micro-computer chips moving increasingly to

parallel architectures to gain a computational advantage. With the effect of Moore’s

Law plateauing, it is unlikely we will see further gains in computing power on the scale

we have experienced over the past half-century. To replicate such advances in the next

century, we will need a new paradigm in computing.

1.2 Quantum computing

Moore scaling has allowed the development of modern computers capable of perform-

ing large simulations and detailed real-time graphics rendering. However, there remain

certain classes of problem that are unlikely to ever be efficiently solvable using current

computing technology. As an example, consider the problem of simulating the dynam-

ics of a multi-body quantum system. The wavefunction for a simple two-level system,

φ, is parametrised by a vector containing two complex numbers, φ = (α1, α2)T , making

it trivial to simulate. However, as the the number of quantum systems, n, in the simula-

tion is increased the size of the state space scales 2n such that φn = (α1, α2, α3, ..., α2n)T .

As a result, efficiently simulating large ensembles of quantum particles on conventional

computing hardware is impractical in real time.

Speaking at a keynote address in 1981 on the topic of ‘Simulating physics with comput-

ers’ [24], Richard Feynman argued that accurately modelling quantum systems would

require machinery from the quantum world: his suggestion was that the exponentially

scaling nature of quantum systems should be seen not as a hindrance, but as an oppor-

tunity to develop a new paradigm in computing based on quantum principles. The new

generation of quantum computers he proposed would replace the bits in a conventional

computer with quantum bits (now universally referred to as qubits), allowing vastly

greater quantities of information to be encoded within the resultant state space of the

vector.

To contextualise the incentives for computing in the quantum realm, it is instructive to

compare classical bits with qubits [5, 6]. We will first consider a classical input state,

6 CHAPTER 1. INTRODUCTION

bin, consisting of a single bit initialised deterministically in one of the two states of the

computational basis

B = {0, 1}, (1.2.1)

where 0 represents the ‘off’ state and 1 the ‘on’ state. A classical computation, C, is

implemented by performing a gate operation

bin
Classical computation: C−−−−−−−−−−−−−−−−−→ bout, (1.2.2)

where the output state, bout, is also from the set B. The key difference for a qubit, |ψ〉,
is that it can be initialised as a quantum superposition of both basis states

|ψ〉 = α |0〉+ β |1〉 , (1.2.3)

where the probability amplitudes, α and β, are complex numbers that satisfy the

relation |α|2 + |β|2 = 1. A quantum computation can then be performed on both basis

states of the qubit in parallel by evolving the wavefunction via a unitary operation, U ,

as shown below

|ψ〉 Quantum computation: U−−−−−−−−−−−−−−−−−−→ U |ψ〉 = α U |0〉+ β U |1〉 . (1.2.4)

For a single qubit, the Hilbert space available for computation is therefore of dimension

dim(H2) = 2, compared to a single classical bit where dim(B) = 1.

As the number of qubits in the register is increased, the size of the Hilbert space grows

dim(Hn) = 2n. At first glance, it may seem that this provides quantum computers with

access to exponentially scaling parallelism. However, there is a catch. Whilst unitary

operations do transform all basis states in parallel, the output of the computation is

also a quantum state. Extracting information from a quantum state requires us to

perform a basis measurement, which will cause the wavefunction to collapse to a single

state of the chosen basis. The challenge in designing quantum algorithms therefore lies

in finding ways to exploit additional quantum phenomena, such as interference and

entanglement, to ensure that the eventual measurement collapses to the desired state

with high probability [6].

1.3. QUANTUM ERROR CORRECTION 7

The first useful quantum algorithm to promise a definitive advantage over the best-

known classical techniques was developed by Peter Shor in 1994. Shor’s algorithm uses

a technique called the quantum Fourier transform to provide an efficient method for

finding the prime factors of large integers [25]. The publication of Shor’s algorithm was

particularly significant in that it posed a threat to the widely used RSA cryptography

protocol which relies upon the assumed intractability of factoring large numbers [26].

As the first practical application for quantum computation, the Shor algorithm is often

credited for initiating the world-wide research effort to build a working quantum device.

1.3 Quantum error correction

As mentioned previously, the bits in a conventional (classical) computer are realised as

the on/off states of a transistor switch. The two states of a transistor are differentiated

by billions of electrons, providing the encoded bits with an inbuilt redundancy that

all-but-eradicates logical errors. As such, any frustrations with modern computers

are almost always due to software errors rather than physical errors (assuming the

hardware is well looked after!).

Unfortunately, the situation is not so reassuring for quantum computers. To date,

qubits have been realised in a range of experimental settings. These include trapped

ions [27, 28, 29], superconducting circuits [30, 31, 32], photonic systems and spins in

semiconductors [33, 34, 35] amongst others (for a review of approaches to experimental

quantum computing see [36]). However, a challenge faced by all of these technologies is

that the qubits are realised as single quantum systems: there is no inbuilt redundancy

as is the case with the transistor switches in classical devices. Furthermore, quantum

systems are extremely difficult to control, with even the slightest environmental dis-

turbance sufficient to introduce decoherence. For circuit-model quantum computers,

qubit errors are therefore not only disastrous for the computation, but also inevitable.

At first, it was thought that qubit errors would pose an insurmountable challenge to the

realisation of a working quantum computer; as with Babbage’s Analytical Engine, the

theoretical idea was beyond the reach of the available hardware at the time. However,

8 CHAPTER 1. INTRODUCTION

unlike Babbage, physicists working on early quantum computing theory had access to

an established field of expertise in classical error correction. First formalised by Claude

Shannon in 1948 [37], classical coding theory allows information to be communicated

and processed using imperfect hardware. Classical coding protocols can be thought

of as a first layer of software for the device, and are designed to detect and correct

errors when they occur. Driven by the demands of high-performance communication

networks, these methods have been extensively optimised [38, 39].

Implementing error correction in a quantum setting is not straightforward. A major

hurdle is the No-Cloning theorem, which prevents quantum data from being arbitrarily

duplicated [40]. However, a breakthrough was reached in 1995 by Peter Shor, who

published a paper proposing a method for quantum error correction [41]. His protocol

involved distributing the information of a single-qubit across an entangled multi-qubit

space. This method allowed for redundant encoding without cloning, and afforded the

system extra degrees of freedom that can be exploited to detect and correct errors.

With this result, the field of quantum computing moved from a theoretical curiosity to

a practical possibility.

In the following years, Shor’s work was expanded and a variety of quantum error cor-

rection codes were proposed [42, 43]. Furthermore, it was soon shown that quantum

codes can be designed in a fault tolerant manner so that errors do not propagate un-

controllably through the circuit: this is an essential requirement for the realisation of

quantum error correction codes on real hardware [44, 45, 46]. In [47, 48], stabilizer

methods were introduced by Daniel Gottesman as a general framework for the con-

struction of quantum error correction codes. Stabilizer codes are described in terms of

non-disturbing operators on the encoded quantum information, and have the advantage

that they can be efficiently classically simulated (subject to certain constraints on the

types of quantum computation being simulated) [49, 50, 51]. These early developments

in quantum error correction eventually led to the proof of the threshold theorem, which

states that a quantum computer can be arbitrarily scaled provided the error rates of

the individual components remain below a certain level [52, 53, 54, 55].

Currently, the most widely pursued error correction protocol for experiment is the

surface code [56, 57]. This falls within a family of stabilizer codes that take advantage

1.3. QUANTUM ERROR CORRECTION 9

of topological methods to encode information [58]. The specific advantage of the surface

code is its high threshold (of approx. 1% [59]), combined with the fact that it only

requires nearest-neighbour interactions between qubits. However, there are drawbacks,

most notably the fact that it has poor encoding density. A minimum of thirteen physical

qubits are required per logical qubit in a surface code [60]. In practice, however, it is

thought this number will actually be of the order of thousands of qubits when a surface

code is implemented for the first time [57]. Recently, efforts have been made to develop

quantum codes with higher encoding densities, inspired in part by classical Low Density

Parity Check (LDPC) codes [61, 62, 63]. However, these newer protocols often come

with complications, such as the requirement for long range interactions between qubits.

Another hurdle to be overcome for fault tolerant quantum computation is finding a way

to realise universal encoded quantum logic. For many codes, it is possible to implement

a subset of encoded quantum gates via transversal application of gates in a qubit-wise

manner between code blocks. However, a no-go theorem exists that prohibits the

implementation of a full universal gate set in this way on a quantum computer [64]. As

such, alternative techniques are required to perform universal encoded logic. Various

methods have been proposed [65, 66, 67, 68, 69], but these typically impose a high cost

in terms of the amount of additional qubits required. For example, the surface code

can realise a universal gate set using a technique called magic state injection. However,

estimates suggest that the preparation of such magic states could consume as much as

90% of physical qubits in a quantum computer [57].

In the quest to build a circuit model quantum computer there are many challenges to be

overcome. At the hardware level, the methods for the realisation and control of qubits

need to be improved. In addition to this, a major theoretical challenge lies in finding

better ways to achieve fault tolerance. These two problems are being approached in

parallel, with advances in either influencing the direction of the other.

10 CHAPTER 1. INTRODUCTION

1.4 The coherent parity check (CPC) framework

The study of many modern schemes for quantum error correction relies upon a detailed

understanding of advanced mathematical themes such as group theory and topology.

As such, the development of methods for quantum error correction has often occurred

in isolation from the wide body of existing expertise in classical coding theory. In

response to this concern, the question we set out to answer when I began my PhD was:

How can we make better contact between classical and quantum coding theory?

Our solution has involved the development of the new formalism for quantum error

correction that we call the coherent parity check (CPC) framework. First introduced

in our papers [1, 2], the CPC framework is built around a fundamental gadget that

allows any sequence of parity checks to be turned into a stabilizer code. We will see that

this freedom in the choice of parity checks affords the CPC framework many advantages

over existing methods for code design, in particular with regard to adapting classical

techniques for quantum codes.

As an example, the CPC framework provides a direct way of re-purposing distance-

three classical codes for use in quantum error correction. This is possible via simple

structural templates that separately interpret the classical codes as the parity checking

sequences for the bit- and phase-checking stages of the CPC code respectively [1, 2].

In contrast to other methods [43], CPC codes impose comparatively few restrictions

on the form of classical codes that can be used.

The fact that the CPC framework allows any sequence of parity checks to be turned into

a stabilizer code essentially takes away the quantum mechanics from the code design

process. In [3], we showed how this observation can be leveraged to develop a mapping

that allows CPC codes to be represented as a factor graph of the type commonly seen in

classical error correction and machine learning. Once this mapping has been performed,

the original quantum code is in a form which allows existing classical techniques to be

readily applied. This has potential applications for the design or decoding of quantum

codes using well-developed classical techniques.

1.5. THESIS STRUCTURE 11

1.5 Thesis structure

In this thesis, I provide a detailed outline of the CPC framework for quantum error

correction, first introduced in [1, 2], and further developed in [3]. The content of each

chapter in this thesis is outlined below.

Chapters 2 and 3 cover the necessary background in classical and quantum coding

theory required to understand the CPC framework. Where possible, I have tried to

introduce concepts in the simplest possible way, for example, by introducing coding

concepts using detection codes rather than full correction codes. Prior knowledge of

linear algebra, elementary quantum mechanics and the circuit model for quantum com-

putation is assumed. For those unfamiliar with this background, ‘An Introduction to

Quantum Physics’ by David Griffiths is a good resource for learning basic quantum

mechanics [70], and David McMahon’s ‘Quantum Computing Explained’ is an accessi-

ble introduction to both linear algebra and the circuit model for quantum computing

[5].

Chapter 4 introduces the CPC framework, starting with an outline of the operation

of the fundamental CPC gadget. Following this, I explain how CPC codes can be

constructed by combining multiple such gadgets via a template called the canonical

structure for CPC codes. Methods for calculating stabilizers and the logical Pauli

operators of a CPC code are then described. The chapter ends with descriptions of

various methods for the construction of distance-three CPC codes based on classical

codes. This includes a CPC method for the construction of the well-known class of

Calderbank, Shor and Steane (CSS) codes.

In chapter 5, I outline the methodology and results of an experiment we ran to test

[[4, 2, 2]] CPC codes on the IBM 5Q device. Our results show that syndromes of such

a code can be used to improve the fidelity of the circuit output, relative to the case

where the syndromes are ignored. This is an interesting result, as it demonstrates the

benefits of a quantum error detection protocol on an existing device with high error

rates.

Chapter 6 outlines how CPC codes can be represented in terms of any realistic max-

12 CHAPTER 1. INTRODUCTION

imally entangling native gate. The theoretical study of quantum error correction cir-

cuits usually involves the use of idealised gates such as CNOT gates. However, the

native gates of a given quantum computing technology will typically be of a different

form. Our result allows CPC code design to be performed directly with the device’s

native gate. This will facilitate the process of translating quantum codes from their

theoretical representation to the hardware compiled.

In chapter 7, I explore how the CPC framework can be used to set up machine search

routines for code discovery. As a proof-of-concept example, I show how exhaustive

search techniques can be used to discover a large set of [[7, 3, 3]] codes. I then explain

how the discovered set can be searched to find the code that best matches the require-

ments of an idealised seven-qubit ion trap. Such a design approach, combined with our

native gates result outlined in chapter 6, demonstrates that the CPC framework is a

useful tool for the construction of bespoke quantum error correction codes tailored to

the needs of a given device.

In chapter 8, I explain how CPC codes have an equivalent representation as classical

factor graphs. This mapping is achieved via an intermediate graphical language called

the operational representation. The role of the operational representation is to take

away any quantum-mechanical behaviour of the code, such as indirect propagation, so

that it can be represented as a classical code. Once mapped to the factor graph, further

modification of the CPC code can proceed using classical intuition and techniques. As

an example, I demonstrate how a [[5, 1, 3]] CPC code can be constructed by modifying

the factor graph representation of a CPC detection code.

In chapter 8.6, I summarise the main results of the thesis. The thesis concludes with

ideas for future work to extend the CPC framework and its applications. This includes

a discussion of the potential links between the CPC framework and flag syndrome

extraction techniques. I also discuss how the CPC factor graph mapping could be used

as a tool to enable a classical decoding technique to be applied to a quantum code.

Chapter 2

Classical Error Correction

Information is stored, communicated and processed using physical systems that are

susceptible to error. Modern processors operate with negligibly small error rates. How-

ever, the same cannot said for storage [71] and communication protocols [72]. Error

mitigation strategies therefore play a vital role in ensuring reliable operation of such

information technologies [73]. The field of information theory deals with the develop-

ment, analysis and benchmarking of error mitigation techniques. In this chapter, we

provide a brief overview of the construction of classical error correction codes which

enable information to be reliably stored and communicated using fault-prone hardware.

The material in this chapter is designed to serve as background for the understanding

of quantum error correction codes and the eventual presentation of the coherent parity

check (CPC) framework, the main topic of this thesis.

To set the scene, consider a simple situation in which we wish to store a bit of in-

formation for a set amount of time t. Possible techniques for achieving this include

writing the bit-value on a piece of paper, or saving it on an electronic storage device

such as a hard drive. However, for any such data storage method, there will be a finite

probability pt that the device suffers a fault that will corrupt the data. For example,

in the case where the bit-value is written on a piece of paper, the ink could smudge

during the storage time causing its value to be misread.

In information theory, scenarios such as the one above are considered in terms of the

13

14 CHAPTER 2. CLASSICAL ERROR CORRECTION

communication of a message (the initial data) over a noisy channela. The channel

describes the probability of the constituent message bits being subject to an error. An

example of an error channel (and the one we will use throughout this chapter) is the

binary symmetric channel, which stipulates that each bit is flipped with probability

pf . The mathematical action of the binary symmetric channel, for a single input bit

bin, is described as follows

bin
binary symmetric channel−−−−−−−−−−−−−−→ bout =

bin, with probability 1− pf ,

bin ⊕ 1, with probability pf
, (2.0.1)

where bout is the output bit [73]. In general, a message Bin will have the form Bin =

b1b2...bn where each bi is subject to the mapping in equation 2.0.1. In the the design

of any error correction protocol, the goal is to find a recovery operation R so that

that Bin = R · Bout with high probability. The hardware solution to this challenge

is to improve the quality of the physical device so that pf becomes negligibly small

and no recovery operation is needed (ie. R = 11). However, in practice, this is not

always possible. Error correction protocols provide a systems approach to the problem

by enabling reliable transmission using faulty hardware. The fundamental principle

underpinning such an approach is that the message is redundantly encoded, so that

the amount of resources used to transmit it over the noisy channel is increased beyond

the theoretical minimum. In the following sections we explain how redundant encoding

allows for errors to be detected and corrected.

2.1 Redundant encoding & repetition codes

Redundant encoding involves distributing the information content of an initial message

across an expanded space of bits. The exact way in which this is achieved is specified

by a set of instructions referred to as an error correction code. One of the simplest

examples is the three-bit repetition code which duplicates each bit in the initial message

aNote that ‘communication’ in this context does not exclusively refer to the movement of informa-
tion from one place to another. In a storage device, for example, the information is physically static.
In this case, the message can be thought of as being communicated over time. Similarly, this is also
the case for computation.

2.1. REDUNDANT ENCODING & REPETITION CODES 15

three times. The action of the encoder for a three-bit repetition code on each bit bi in

the initial message is as follows

bi
encoder−−−−→ bL = bibibi. (2.1.1)

Following the encoding, the resultant three-bit string bL = bibibi is called a logical

codeword. For the three-bit code, the two possible logical codewords are

BL = {0L, 1L} = {000, 111} (2.1.2)

The logical codeword is passed through the noisy channel, after which it can be decoded

using a majority vote by the receiver. For example, if the initial bit value is set to

b = 0 then the resultant codeword is bL = 000. In this case, the receiver will be able to

correctly decode the message if a single-error occurs on any of the bits. For example,

if the received logical codeword is read as bL′ = 010, the receiver can deduce from a

majority vote that the initial bit-value was b = 0. However, if errors occur on two or

more of the bits, the majority vote will not correctly decode the codeword.

When a raw bit is transmitted through a binary symmetric channel, the logical error

rate (ie. the probability of corrupted transmission) is pL = pf . If the message is

encoded with the three-bit code, however, incorrect transmission will only occur if two

or more bits are errored meaning the logical error rate becomes pL ≈ p2
f to leading

order (assuming that the probability pf is small). Therefore, provided the additional

resources (in terms of bit number and time) are available, encoding via the three-bit

code works as a strategy for increasing the reliability of transmission.

In this thesis error correction codes are labelled using the [n, k, d] notation, where n is

the total number of bits (also referred to as the ‘block length’) and k is the number

of encoded (logical) bits. The code distance d is defined as the minimum weight of an

error required to change one codeword into another [74]. The code distance is related

to the maximum number of correctable errors t via the relation

d = 2t+ 1. (2.1.3)

Under this notation, the three-bit repetition code is labelled [n = 3, k = 1, d = 3] as

16 CHAPTER 2. CLASSICAL ERROR CORRECTION

each bit of information is distributed across three bits in total. The code distance is

d = 3, because three bit-flips are required to change 0L = 000 into 1L = 111.

We have now shown how the three-bit repetition code can suppress the logical error

rate for transmission through a binary symmetric channel from pL = pf to pL ≈ p2
f

to leading order. For repetition codes, the logical error rate can be further suppressed

simply by increasing the number of duplications in the initial encoding. The [5, 1, 5]

repetition code, for example, is capable of correcting up to t = 2 errors (calculated

using equation 2.1.3) and has a logical error rate of pL ≈ p3
f to leading order. In

principle, the logical error rate of the protocol can be arbitrarily reduced by increasing

the length of the repetition code. However, this appraoch comes at the expense of the

transmission rate, R, defined as the ratio of logical bits to physical bits

R =
k

n
. (2.1.4)

A general n-bit repetition code has the parameters [n, k = 1, d = n], resulting in

a transmission rate Rrep = 1/n. Decreasing the logical error rate of the code (by

increasing the value of n) therefore results in a reduction in the transmission rate.

Because of this diminishing transmission rate, repetition codes are not commonly used

in practice. Instead, most classical error correction protocols are based on a family of

codes known as parity check codes. Parity check codes can exceed the performance of

repetition codes – in terms of both transmission rate and logical error rate – and are

introduced in the following section.

2.2 Parity check codes

Repetition codes encode a single bit per logical block so that k = 1, resulting in a

vanishing rate Rrep = 1/n as the code length is increased. In contrast, parity check

codes encode two or more logical states per block so that k ≥ 2. Rather than dupli-

cating the information in each bit, as is done for repetition codes, parity check codes

work by measuring correlations between the code’s bits and keeping track of them over

time [73, 74]. It is therefore possible to construct parity-check codes with better trans-

2.3. FACTOR GRAPHS AND THE GENERATOR MATRIX FORMALISM FOR
CLASSICAL CODES 17

mission rate scaling than repetition codes. We now outline the general operational

principles for such parity check codes [73, 74].

The bits in a parity check code are partitioned into two types: data bits and parity

bits. The role of the parity bits is to store the results of parity check measurements

on the data bits. We now outline the simplest possible example of a parity check code.

We start by considering a two-bit data register r = d1d2, where d1 and d2 are the

data bits. In the encode stage of the parity check cycle, an extra bit is introduced to

measure and store the parity check of the data bits, which is calculated as the binary

sum q = d1 ⊕ d2. The resultant three-bit codeword is then given by c = d1d2q, giving

four possible logical states

BL = {00L, 01L, 10L, 11L} = {000, 011, 101, 110}. (2.2.1)

A single error on any of the three bits can be detected by comparing the value of the

parity checks at times q(t0) and q(t1) before and after transmission through the error

channel. A single bit-flip error occurring during transmission will cause the value of

the parity to change so that q(t0) 6= q(t1). Under the [n, k, d] labelling convention, this

parity check cycle is a [3, 2, 2] code. Note that the distance is d = 2 as two bit-flips are

required to change one codeword into another. Using equation 2.1.3, we can see that

the number of errors that can be corrected with a [3, 2, 2] code is t = 0. This means

that the [3, 2, 2] code is a detection code, rather than a full correction code. Parity

check codes that can both detect and localise errors (ie. with distance d ≥ 3) require

multiple overlapping parity checks. We will explore examples of such constructions

later in this chapter.

2.3 Factor graphs and the generator matrix formal-

ism for classical codes

A factor graph is a tool designed to provide a visualisation of the relationship between

the data and parity bits in a given classical code. The factor graph for the [3, 2, 2]

18 CHAPTER 2. CLASSICAL ERROR CORRECTION

detection code, outlined in the previous section, is shown to the left below

+

, A[3,2,2] =

[
1

1

]
, (2.3.1)

where the round nodes represent the data bits and the crossed square nodes the parity

bits [73]. The edges indicate which bits are involved in each check. The adjacency

matrix corresponding to this factor graph is given by A[3,2,2], where the rows represent

the data bits and the columns the parity bits. For any parity check code, we can define

a generator matrix that relates the data register r to the codewords c as follows

~c = GT ·~r, (2.3.2)

where the matrix multiplication is performed modulo 2, and ~c and ~r are the vector

representations of r and c respectively.b The generator matrix can be written in terms

of the code’s adjacency matrix as follows

G[n,k,d] =
[
11k A[n,k,d]

]
. (2.3.3)

Using the above equation, the generator matrix for the [3, 2, 2] code is written as

G[3,2,2] =
[
112 A[3,2,2]

]
=

[
1 0 1

0 1 1

]
. (2.3.4)

The codewords for [3, 2, 2] code can then be calculated using equation 2.3.2 to give

~c = GT
[3,2,2] ·~r =

1 0

0 1

1 1

[d1

d2

]
=

 d1

d2

d1 ⊕ d2

 . (2.3.5)

Another useful matrix in the study of coding theory is the parity check matrix, which

is defined as follows

H[n,k,d] =
[
AT 11n−k

]
. (2.3.6)

bNote on the notation. Here we are using bold letters to refer to strings, eg. r = 000. The vector

representation of this string is then given by ~r =
[
0 0 0

]T
.

2.4. HAMMING CODES 19

The parity check matrix satisfies the property H · ~c = 0 for all the codewords c. The

parity check matrix for the [3, 2, 2] code is H[3,2,2] = [1 1 1]. If the codeword suffers

an error e during transmission, the received message will have the form ~m′ = ~c ⊕ ~e
where ~e is the vector representation of e. The action of the parity check matrix on the

received message vector gives the following

H · (~c⊕ ~e) = H · ~e = ~s, (2.3.7)

where ~s is a vector of the parity check measurements which we refer to as the syndrome.

For a distance d ≥ 3 code, each single-bit error will produce a unique syndrome.

2.4 Hamming codes

The [3, 2, 2] code is a detection code as its syndrome vector conveys insufficient in-

formation to pinpoint errors. Intuitively, this is obvious, as the length of the [3, 2, 2]

syndrome vector is |~s[3,2,2]| = 1 meaning there are only two possible syndrome strings.

It is therefore impossible to uniquely map a syndrome to each of the three possible

single-bit errors that can occur in a [3, 2, 2] encoding. Similar counting arguments can

be made to derive a bound which dictates the maximum theoretically possible rate for

an [n, k, d] code. This bound is called the Hamming bound and is defined as follows

(d−1)/2∑
t=0

(
n

t

)
≤ 2n−k (2.4.1)

where n − k is the length of the syndrome vector [74]. The left-hand-side of the

Hamming bound gives the total number of errors that can occur for the specified code

distance, and the right-hand-side the maximum number distinct syndromes of length

n− k. In a correction code, each error must map to a unique syndrome, meaning the

left-hand-side of the Hamming bound needs to be less than or equal to the right-hand-

side. Any classical error correction code must have n, k and d parameters that satisfy

the Hamming bound.

The Hamming codes [74] are a family of codes which satisfy the Hamming bound for

20 CHAPTER 2. CLASSICAL ERROR CORRECTION

distance d = 3. The parity check matrix of a Hamming code is constructed by writing

a matrix with columns given by all the binary strings of length j ≥ 3 excluding the

zero vector. As an example, the parity check matrix for the Hamming code with j = 3

is given by

Hj=3 =

1 1 0 1 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1

 . (2.4.2)

We can now use equations 2.3.6 and 2.3.3 to write the generator matrix for the code

as follows

Gj=3 =

1 0 0 0 1 0 1

0 1 0 0 1 1 0

0 0 1 0 0 1 1

0 0 0 1 1 1 1

 . (2.4.3)

The syndrome table for single bit errors for this code is given in table 2.1. From this, it

can be seen that each single-bit error produces a unique syndrome, meaning the code

has distance d = 3. Consequently the Hamming code obtained by setting j = 3 is a

[7, 4, 3] code. The factor graph for the [7, 4, 3] code is shown below

+ +

+

. (2.4.4)

Parity check matrices constructed with other values of j will produce larger Ham-

ming codes that satisfy the Hamming bound. In chapter 4, we outline methods for

constructing quantum Hamming codes using the CPC framework.

2.5. HIGH PERFORMANCE CLASSICAL CODES AND DECODING 21

Single-bit error, bit number Syndrome, s

1 101

2 110

3 011

4 111

5 100

6 010

7 001

Table 2.1: The syndrome table for the [7, 4, 3] Hamming code. Each single-bit error

maps to a unique syndrome.

2.5 High performance classical codes and decoding

We have now introduced two classes of classical error correction code: repetition codes

and Hamming codes. Repetition codes add redundancy by simple duplication of the

initial data. The logical error rate of a repetition code can be arbitrarily reduced by

increasing the number of duplications, but this comes at the expense of transmission

rate. Hamming codes, based on the parity check family of codes, can achieve transmis-

sion rates that saturate the Hamming bound, but have fixed distance d = 3 meaning

the logical error rate does not necessarily decrease with increased block size. It was

initially believed that there would always be a trade-off between logical error rate and

transmission rate for communication over a noisy channel, so that achieving near-zero

logical error rate pL → 0 would also require a near-zero transmission rate R → 0.

However, in a pioneering paper written in 1948, Claude Shannon showed that this is

not always the case [37]. His remarkable result, known as the Shannon noisy-channel

coding theorem, proves that for any channel, there exist codes with non-zero rate that

have a vanishingly small logical error probability. The theorem also defines a bound

that stipulates the maximum possible rate for lossless transmission along a given noisy

channel. This bound is commonly referred to as a the channel capacity or the Shannon

22 CHAPTER 2. CLASSICAL ERROR CORRECTION

limit [38].

Whilst the Shannon noisy-channel coding theorem proves the existence of good codes,

it does not guarantee that these codes are practical to implement. A major imple-

mentation challenge for large codes is finding efficient strategies for decoding; this is

necessary so that appropriate recovery operations can be deduced in real-time from the

syndromes. For the Hamming [7, 4, 3] code, which has seven code bits, it is possible

to exhaustively list all the error syndromes in a lookup table, as shown in table 2.1.

However, for codes that perform at close to the Shannon limit, block lengths of 1000 or

more bits are common, for which the lookup table approach is impractical. For codes

of this size, decoding is treated as a maximum posterior inference problem. The basic

setup for this can be summarised with a Bayesian relation of the form

P (m|s) =
P (s|m)P (m)

P (s)
, (2.5.1)

where P (m|s) is the probability of the decoded message being m given a syndrome s,

P (m) is the initial message probability and P (s) is a normalisation constant related

to the probability of measuring a certain syndrome. The P (s|m) term is called the

likelihood and can be computed using existing information from the error channel. The

decoding task typically involves finding the value of m which maximises the likelihood.

Doing this exactly is computationally hard for larger codes, but efficient approximate

inference algorithms are known, such as belief propagation [75]. State-of-the-art mod-

ern error correction protocols, such as low density parity check codes [38, 76] and turbo

codes [39, 77], have been shown to perform at close to the Shannon limit, by employing

probabilistic inference methods for their decoding.

Chapter 3

Quantum error correction

In this chapter we introduce the basic concepts behind the construction of quantum

error correction codes. In classical information and computing, information is realised

as bits that take on values 0 and 1. For quantum computers, the corresponding unit

of information is the qubit which has the general state

|ψ〉 = α |0〉+ β |1〉 , (3.0.1)

where α and β are complex numbers that satisfy the condition |α|2 + |β|2 = 1. Qubits

can encode information in a coherent superposition of their basis states, meaning quan-

tum computers have access to a computational space that scales 2n where n is the total

number of qubits [5, 6]. By exploiting superposition, in combination with other quan-

tum effects such as entanglement, it is possible to construct quantum algorithms that

can in principle outperform their classical counterparts. Existing examples of such

algorithms include methods for factoring [25] and search [78]. However, if these algo-

rithms are ever to be realised on current or near-future quantum hardware, it will be

necessary for the qubits to be error corrected [79, 80, 81, 82, 83].

There are a number of complications that prevent techniques from classical coding

theory being ported directly to quantum computers. The first of these is the No-

Cloning theory for quantum states, which dictates that it is not possible to construct

23

24 CHAPTER 3. QUANTUM ERROR CORRECTION

a unitary operator Uclone which performs the following operation

Uclone(|ψ〉 ⊗ |s〉)→ |ψ〉 ⊗ |ψ〉 , (3.0.2)

where |ψ〉 is the state to be cloned and |s〉 is a blank state [6, 40, 79]. In contrast,

classical codes work under the assumption that data can be arbitrarily duplicated. For

quantum coding, it is therefore necessary to find alternative ways of adding redundancy

to the system [41].

A further complication that arises when translating error correction codes to the quan-

tum regime is the increased complexity of quantum error channels. In a classical

bit-based computer, errors can occur can occur via a variety of physical processes.

However, at the logical level, these processes can be understood in terms of a single

error-type, the bit-flip, which takes 0 → 1 and vice-versa [79]. An example of such a

channel, outlined in chapter 2, is the binary symmetric channel.

In contrast to classical bits, qubits are continuously parametrised between their basis

states, |0〉 and |1〉, and are therefore susceptible to a continuum of errors. At first

glance, it would therefore seem that quantum error correction protocols should closely

resemble techniques from classical analogue computation, for which the theory of error

correction is not well developed [17]. Surprisingly, however, it turns out that this

continuum of quantum errors can be discretised so that the ability to correct for a

discrete set of errors is sufficient to correct for any error [42]. To illustrate this, consider

a single-qubit error process E, which acts coherently as follows

|ψ〉 coherent error−−−−−−−−→ E |ψ〉 . (3.0.3)

Single-qubit error processes of this type are represented by a unitary two-dimensional

matrix, which can be expanded in the Pauli basis {11, X, Y, Z}. Equation 3.0.3 can

therefore be rewritten as

E |ψ〉 = αI11 |ψ〉+ αXX |ψ〉+ αZZ |ψ〉+ αY Y |ψ〉 , (3.0.4)

where αI,X,Z,Y are the expansion coefficients [6]. The Y -operator is equivalent (up to

phase) to the simultaneous occurrence of an X- and Z-error. Coherent noise processes

3.1. QUANTUM REDUNDANCY AND THE TWO-QUBIT CODE 25

can therefore be discretised to linear combinations of bit-flips (also referred to as X-

errors) and phase-flips (also referred to as Z-errors). The extraction of syndromes in

a quantum error correction protocol involves making a projective measurement that

collapses the quantum state to one of the terms in equation 3.0.4. Consequently, a

quantum code with the ability to correct for single X- and Z-errors can resolve the

entire continuum of coherent errors possible for a single qubit [42, 79]. Furthermore,

this result generalises to arbitrary quantum channels, including those that describe

incoherent processes. For the latter, the same result can be proved by a following a

similar line of reasoning in the operator sum representation for quantum noise processes

[6].

The third complication that arises when constructing quantum codes is the problem

of wavefunction collapse. For classical codes, it is possible to perform arbitrary parity

checks without risk of comprising the encoded data. For quantum codes, however, any

parity checks must be carefully chosen so not to decohere the encoded information. In

the following sections, we describe how a family of codes known as stabilizer codes can

overcome these hurdles [47].

3.1 Quantum redundancy and the two-qubit code

As outlined in the previous section, quantum error correction is complicated by the

No-Cloning theorem and the existence of a uniquely quantum error-type, the phase-

flip. So, faced with these challenges, how is redundancy added to a quantum system to

allow errors to be corrected in real time? Classical repetition codes work by increasing

the resources used to encode the data beyond the theoretical minimum. Analogously,

in quantum codes redundancy is added by expanding the Hilbert space in which the

qubits are encoded [41, 79]. To see how this is achieved in practice, we now describe

the two-qubit code, a prototypical quantum code designed to detect a single-bit flip

error. The encode stage of the two-qubit code, acting on the general state |ψ〉, has the

following action

|ψ〉 = α |0〉+ β |1〉 two-qubit encoder−−−−−−−−−−→ |ψ〉L = α |00〉+ β |11〉 = α |0〉L + β |1〉L , (3.1.1)

26 CHAPTER 3. QUANTUM ERROR CORRECTION

where after encoding the logical basis states are |0〉L = |00〉 and |1〉L = |11〉. Note that

this does not correspond to cloning the state as

|ψ〉L = α |00〉+ β |11〉 6= |ψ〉 ⊗ |ψ〉 . (3.1.2)

The effect of the encoding operation is to distribute the quantum information in the

initial state |ψ〉 across the entangled two-party logical state |ψ〉L. This introduces

redundancy to the encoding that can be exploited for error detection. To understand

exactly how this works, it is instructive to consider the computational Hilbert spaces

before and after encoding. Prior to encoding, the single qubit is parametrised within

a two-dimensional Hilbert space |ψ〉 ∈ H2 = span{|0〉 , |1〉}. After encoding the logical

qubit occupies a four-dimensional Hilbert space

|ψ〉 ∈ H4 = span{|00〉 , |01〉 , |10〉 , |11〉}. (3.1.3)

More specifically the logical qubit spans a two-dimensional subspace of this expanded

Hilbert space

|ψ〉L ∈ C = span{|00〉 , |11〉} ⊂ H4, (3.1.4)

where C is called the codespace. Now, imagine that the logical qubit is subject a bit-flip

error on the first qubit resulting in the state

X1 |ψ〉L = α |10〉+ β |01〉 , (3.1.5)

where X1 is a bit-flip error acting on the first qubit. The resultant state is rotated into

a new subspace

X1 |ψ〉L ∈ F ⊂ H4, (3.1.6)

where we call F the error subspace. Notice that an X2-error will also rotate the logical

state into the F subspace. If the logical state |ψ〉L is uncorrupted, it occupies the

codespace C, whereas if it has been subject to a single-qubit bit-flip, it occupies the

error space F . As the C and F subspaces are mutually orthogonal, it is possible to

distinguish which subspace the logical qubit occupies via a projective measurement

[79]. In the context of quantum coding, measurements of this type are called stabilizer

measurements, and can be thought of as quantum parity checks designed to leave the

3.1. QUANTUM REDUNDANCY AND THE TWO-QUBIT CODE 27

|ψ〉

|0〉
|ψ〉L E E |ψ〉L

|0〉A H

Z1

Z2

H

E |ψ〉L

Encoder

Syndrome extraction

Figure 3.1: Circuit diagram for the two qubit code. Encode stage: the information

contained in |ψ〉 is entangled with a blank redundancy qubit |0〉 to create a logical state

|ψ〉L. Error stage: during the error window (shown by the circuit element E), the two

code qubits are potentially subject to bit-flip errors. Syndrome extraction stage: the

Z1Z2 operator is measured on the code qubits and the result is copied to ancilla qubit

A. The subsequent measurement of the ancilla gives the code syndrome.

encoded quantum information intact [46].

For the purposes of differentiating between the codespace C and the error space F , a

stabilizer measurement of the form Z1Z2 is sufficient. The Z1Z2 parity check operator

has the following effect on the logical state of the two-qubit code

Z1Z2 |ψ〉L = Z1Z2(α |00〉+ β |11〉) = (+1) |ψ〉L . (3.1.7)

The measurement is said to ‘stabilize’ the logical qubit |ψ〉L as it leaves it unchanged

by projecting it onto the (+1) eigenspace. Conversely, the Z1Z2 operator projects

the errored states, X1 |ψ〉L and X2 |ψ〉L, onto the (−1) eigenspace. Notice that for

either outcome, the information encoded in the α and β coefficients of the logical state

remains undisturbed [46, 79].

Figure 3.1 shows the circuit implementation of the two-qubit code. In the encode stage,

a CNOT gate is used to entangle the |ψ〉 state with a blank redundancy qubit to create

the logical state |ψ〉L. Following this, we assume the logical qubit is subject to a bit-

flip error channel, the action of which is represented by the circuit element E in the

quantum circuit diagram. Following the error stage, an ancilla qubit |0〉A is introduced

28 CHAPTER 3. QUANTUM ERROR CORRECTION

Error, E Syndrome, s

I1I2 0

X1I2 1

I1X2 1

X1X2 0

Table 3.1: The syndrome table for the two-qubit code.

to perform the measurement of the Z1Z2 stabilizer. The syndrome extraction stage of

the circuit transforms the quantum state as follows

E |ψ〉L |0〉A
syndrome extraction−−−−−−−−−−−→ (11 + Z1Z2)E |ψ〉L |0〉A + (11− Z1Z2)E |ψ〉L |1〉A , (3.1.8)

where E is an error from the set {11, X1, X2, X1X2}. From the above we see that if the

logical state is in the codespace (I.e., if E = {11, X1X2})) then the ancilla is measured

deterministically as ‘0’. Likewise, if the logical state is in the error subspace (I.e., if

E = {X1, X2}) then the ancilla is measured deterministically as ‘1’. The stabilizer

construction depicted in figure 3.1 therefore gives a syndrome that indicates whether

or not the logical state has been subject to an error. The syndromes for all bit-flip

error types in the two-qubit code are shown in table 3.1.

The effectiveness of a quantum code can be assessed via a fidelity analysis [6, 79, 82].

The fidelity F gives the overlap between an initial state |ψ〉 and an evolved state

|ψ(tf)〉, and is calculated as follows

F (tf) = | 〈ψ(tf)|ψ〉 |2. (3.1.9)

The first step in the fidelity analysis of a quantum code is to calculate the raw fidelity

of a single-qubit prior to encoding. The raw fidelity provides a benchmark that the

quantum code must ‘beat’ in order for the protocol to be considered worthwhile. For

the purposes of our analysis of the two-qubit code, we assume that the code qubits are

independently subject to an error process described by the quantum bit-flip channel.

In a single timestep tf , the quantum bit-flip channel transforms the density matrix of

3.1. QUANTUM REDUNDANCY AND THE TWO-QUBIT CODE 29

a single qubit state ρ = |ψ〉 〈ψ| as follows

ρ(tf) =
bit-flip channel−−−−−−−−→ (1− p)ρ+ pXρX, (3.1.10)

where p is the probability of a bit-flip error [6]. The fidelity of an unencoded single

qubit can then be computed to give

F (tf) = | 〈ψ(tf)|ψ〉 |2 = 〈ψ|ρ(tf)|ψ〉 = 〈ψ|[(1− p)ρ+ pXρX]|ψ〉

= 〈ψ|[(1− p) |ψ〉 〈ψ|+ pX |ψ〉 〈ψ|X]|ψ〉 = (1− p) + p(〈ψ|X|ψ〉)2.
(3.1.11)

The raw fidelity is defined as the lower bound of this fidelity so that F (tf)raw =

min F (tf). By inspection, it is clear that F (tf) is minimised when the X |ψ〉 term is

orthogonal to |ψ〉. This gives the raw fidelity below

F (tf)raw = 1− p. (3.1.12)

Our aim is now to show that F (tf)L > F (tF)raw, where F (tf)L is the mininum fidelity

of the output of the two-qubit code. The quantum bit-flip channel transforms the

density matrix ρL = |ψ〉L 〈ψ|L of the logical state of the two-qubit code as follows

pL(tf)
bit-flip channel−−−−−−−−→ (1− p)2ρL + p(1− p)X1ρLX1 + p(1− p)X2ρLX2 + p2X1X2ρLX1X2.

(3.1.13)

From table 3.1, we see that the two-qubit code triggers a syndrome s = 1 for all single-

qubit errors (I.e., X1 or X2). This syndrome information can be used to post-select

the output of the code and improve the fidelity. Post-selection involves excluding the

terms in equation 3.1.13 that correspond to the single-qubit errors. The post-selected

density matrix ρL(tf)s=0 then has the form

ρL(tf)s=0 =
(1− p)2ρL + p2X1X2ρLX1X2

(1− p)2 + p2
, (3.1.14)

where the denominator ensures normalisation. The lower bound of the fidelitya of the

aThe lower bound occurs when the p2X1X2ρLX1X2 term in equation 3.1.14 is equal to zero. This
is the case when X1X2 |ψ〉L is orthogonal to |ψ〉L.

30 CHAPTER 3. QUANTUM ERROR CORRECTION

output of the two-qubit code F (tf)L can now be computed to give

F (tf)L = 〈ψL|ρL(tf)s=0|ψL〉 =
(1− p)2

(1− p)2 + p2
≈ 1− p2, (3.1.15)

where the approximation assumes that p is small. From this, it can be seen that the

two-qubit code satisfies the requirement that F (tf)L > F (tf)raw. In a single applica-

tion of the two-qubit code, if no error is detected, the leading order in the error is

suppressed from p to p2. The fidelity analysis has therefore demonstrated that quan-

tum redundancy can be harnessed to create useful error detection protocols. In the

following sections, we explore the construct of stabilizer codes that can both detect

and correct errors.

3.2 The quantum Hamming bound

The two-qubit code works by de-localising the information in a single qubit across two

qubits. The resultant logical state is encoded in a two-dimensional subspace of the

expanded Hilbert space. If a single-qubit error then occurs, the logical state is rotated

to an orthogonal subspace, an event that can be detected via a projective measurement

that does not collapse the encoded quantum information. However, as the two-qubit

code is a detection code, its syndromes do not provide sufficient information to both

detect and localise errors. In order to create an error correction code that does this, a

more complicated partitioning of the Hilbert space is necessary. More specifically, we

require that every error rotates the logical state to a unique space. Mathematically,

this requirement is expressed as follows

Ei |ψ〉L ∈ Fi ∀ Ei ∈ E = {E1, E2, ..., EN}, (3.2.1)

where E is the set of errors Ei and Fi is a unique error space. For a quantum error cor-

rection code encoding k qubits, we require a 2k-dimensional subspace for the codespace

C in addition to a 2k-dimensional subspace for each error space Fi. These requirements

lead to a bound on the resources required to realise a quantum error correction code

3.3. STABILIZER CODES 31

[6, 84]. This bound is called the quantum Hamming bound and is defined as follows

(d−1)/2∑
j=0

(
n

j

)
|E|j ≤ 2n−k, (3.2.2)

where E lists the error-types that the qubits are suspectible to, n is the total number

of physical qubits in the code, k is the number of encoded qubits and d is the distance

of the quantum code.b The term to the left of the above equation gives the total

number of errors that need to be corrected for a distance d code (I.e., the number of

distinct syndromes that are required). The quantum Hamming bound is similar to

the Hamming bound for classical codes, defined in equation 2.4.1 in section 2.4, but

includes the extra term |E| to account for the fact that quantum codes are susceptible

to more than one error type. In this thesis, we use the [[n, k, d]] labelling convention

for quantum codes.c Any non-degenerate quantum error correction code must have

n, k and d parameters that satisfy the quantum Hamming bound. As an example,

consider the case in which we wish to construct an [[n, 1, 3]] quantum code. What is

the minimum number of physical qubits required? If we assume that our error channel

is susceptible to X-, Z- and Y -errors, then E = {X,Z, Y } and |E| = 3. Plugging this

into equation 3.2.2, we can deduce that the smallest possible [[n, 1, 3]] code is a [[5, 1, 3]]

code.

3.3 Stabilizer codes

In the two-qubit code shown in figure 3.1, a projective measurement of the Z1Z2 sta-

bilizer is performed on the logical state. The resultant measurement outcome is called

a syndrome, and tells us whether or not an error has occurred. To construct a quan-

tum error correction code, multiple overlapping stabilizer checks are required. We now

describe the general construction for such [[n, k, d]] stabilizer codes [46].

bThe distance for a quantum code is defined in the same way as the distance for a classical code:
the minimum weight of an error operator required to change one codeword to another.

cNote the use of double brackets. This allows quantum codes to be be differentiated from classical
codes which are labelled [n, k, d].

32 CHAPTER 3. QUANTUM ERROR CORRECTION

|ψ〉D

|0〉R
Encoder |ψ〉L E

|0〉A1

...

|0〉A2

|0〉An−k

H

H

H

P1 P2
... Pn−k

H

H

H

...

Stabilizer measurements, SError

Figure 3.2: Circuit illustrating the structure of an [[n, k, d]] stabilizer code. A quan-

tum data register |ψ〉D = |ψ1ψ2...ψk〉 is entangled with redundancy qubits |0〉R =

|0102...0n−k〉 via an encoding operation to create a logical qubit |ψ〉L. After encoding,

a sequence of n − k stabilizer checks Pi are performed on the register to determine

whether an error has occurred.

The left-hand side of the quantum Hamming bound (equation 3.2.2) gives the number

of errors that need to be uniquely detected in an [[n, k, d]] quantum code. Taking the

base-2 logarithm of the right-hand side of equation 3.2.2 gives n−k, which is the length

of the syndrome vector required for there to be a unique syndrome for each of these

errors. As each bit in the syndrome vector is the result of a stabilizer measurement,

n− k stabilizer measurements are required in total.

The circuit in figure 3.2 shows the basic structure of an [[n, k, d]] stabilizer code. A

register of k data qubits, |ψ〉D, is entangled with n − k blank redundancy qubits,

|0〉R, via an encoding operation to create a logical qubit |ψ〉L. At this stage, the data

previously stored solely in |ψ〉D is distributed across the combined Hilbert space of data

and redundancy qubits. Errors can then be detected by performing n − k stabilizer

measurements Pi as shown to the right of figure 3.2.

In the circuit in figure 3.2, each of the stabilizers are measured using the same syndrome

extraction method that was used for the two qubit code in figure 3.1. For each stabilizer

3.3. STABILIZER CODES 33

Pi, the syndrome extraction circuit maps the logical state as follows

E |ψ〉L |0〉A
syndrome extraction−−−−−−−−−−−→ (11 + Pi)E |ψ〉L |0〉A + (11− Pi)E |ψ〉L |1〉A . (3.3.1)

If the stabilizer Pi commutes with an error E the measurement returns ‘0’. If the

stabilizer Pi anti-commutes with an error E the measurement returns ‘1’. The task of

creating a stabilizer code therefore involves finding stabilizers that anti-commute with

one or more of the errors to be detected.

In order to ensure that the stabilizers of the code can be measured simultaneously (or

in a way that is independent of their ordering), it is necessary that they commute with

one another [79]. The general requirements for the stabilizers S of a quantum code can

be summarised mathematically as follows

S = {Pi |ψ〉L = |ψ〉L , [Pi, Pj] = 0,∀(i, j)}. (3.3.2)

In addition to stabilizers, each code will have 2k Pauli-logical operators that allow for

switching between the encoded basis states. For each logical qubit i, there is a logical

X̄i Pauli operator and logical Z̄i. The logical Pauli operators, X̄i and Z̄i, commute

with all the stabilizers in S, but anti-commute with one another.

The challenges of constructing stabilizer quantum codes are twofold. First, an appropri-

ate encoding operation must be built to create the logical qubit. Second, a compatible

set of stabilizer parity checks needs to be discovered so that errors can be checked

without compromising the encoded quantum data. As a result of these challenges, it is

not easy to re-purpose classical parity checking sequences for use in a stabilizer codes.

In the next section, we describe the Calderbank, Shor and Steane (CSS) construction

which provides methods by which good stablizer codes can be derived from classical

codes which satisfy certain properties [42, 43]. The CPC framework, the main topic

of this thesis, provides an alternative construction that allows stabilizer codes to be

derived from the starting point of any classical code.

34 CHAPTER 3. QUANTUM ERROR CORRECTION

3.4 Calderbank, Shor and Steane (CSS) codes

Calderbank, Shor and Steane (CSS) codes are a family of stabilizer codes that can be

derived by combining pairs of classical codes [42, 43]. Their general construction can

be summarised as follows:

1. Choose two classical codes C1 and C2 that satisfy the condition that C2 ⊂ C1.

This condition means that the codewords of C2 are also codewords of C1.

2. If C1 is an [n, k1, d1] code and C2 is a [n, k2, d2] code, an [[n, k1 − k2,min(d1, d2)]]

CSS code can be constructed. This CSS code will have quantum codewords given

by

|x〉L = |x⊕ C2〉L =
1√
|C2|

∑
y∈C2

|x⊕ y〉 , (3.4.1)

where x ∈ C1 is a codeword of C1.

3. CSS codes have the property that each of their stabilizers consists of only Z-Pauli

operators or only X-Pauli operators. I.e., there are no mixed stabilizers of the

form PX = ZiXj in a CSS code.

4. The stabilizers of a CSS code can be deduced from the C1 and C2 as follows.

The rows of the parity check matrix H(C1) give the Z-stabilizers. The rows of

the generator matrix of G(C2) give the X-stabilizers.

5. A useful class of CSS codes are those in which C2 is defined as C2 = C⊥1 ⊂ C1,

where C⊥1 is the dual of C1. The dual of a code C is the code C⊥ in which the

role of the generator and parity checks matrices are reversed. A code C1 which

satisfies the requirement that C⊥1 ⊂ C1 is called a weakly self-dual code.

We now demonstrate the construction of a CSS code by means of an example. We

start by choosing C1 to be a [4, 3, 2] detection code with the following generator and

3.4. CALDERBANK, SHOR AND STEANE (CSS) CODES 35

parity check matrices

G(C1) =

1 0 0 1

0 1 0 1

0 0 1 1

 , H(C1) = [1 1 1 1]. (3.4.2)

The binary codewords of C1 are given by

C1 = {0000, 1001, 0101, 0011, 1100, 1010, 0110, 1111}. (3.4.3)

We now define C2 = C⊥1 , which gives a [4, 1, 3] code with the following generator and

parity check matrices

G(C2) = H(C1) = [1 1 1 1], H(C2) = G(C1) =

1 0 0 1

0 1 0 1

0 0 1 1

 . (3.4.4)

The codewords of C2 are then given by

C2 = {0000, 1111}. (3.4.5)

From the above, it can be seen that the requirement that C2 ⊂ C1 is satisfied. We can

therefore use equation 3.4.1 to construct the codewords of a CSS code from C1 and C2

CSS(C1, C2) =

|00〉L = 1√

2
(|0000〉+ |1111〉),

|01〉L = 1√
2
(|0110〉+ |1001〉),

|10〉L = 1√
2
(|1010〉+ |0101〉),

|11〉L = 1√
2
(|1100〉+ |0011〉)

 . (3.4.6)

The above codewords are the logical basis states of a [[4, 2, 2]] detection code. The

[[4, 2, 2]] detection code is the smallest code capable of detecting a full quantum error

set E = {X, Y, Z}. The stabilizers of the [[4, 2, 2]] CSS code can be read off from H(C1)

and G(C2) respectively, and are given by

S[[4,2,2]] = {Z1Z2Z3Z4, X1X2X3X4}. (3.4.7)

36 CHAPTER 3. QUANTUM ERROR CORRECTION

3.5 The finite geometry representation of stabilizer

codes

The error operators, logical operators and stabilizers of quantum codes are elements

of the n-qubit Pauli group GN (for an outline of the Pauli group see appendix A).

We now explain the finite geometry representation for elements of GN [6, 46, 80, 81],

an alternative representation that can simplify the study of quantum codes and their

properties. A Pauli group operator g ∈ GN , acting on N qubits, is mapped to a binary

row-vector of length 2N in the finite geometry representation as follows

g
finite geometry mapping−−−−−−−−−−−−−→ GXZ(g) = (b1 b2 ... bN | bN+1 bN+2 ... b2N) (3.5.1)

where bi are binary variables. If g contains an Xi-operator acting on qubit i, this is

represented as a ‘1’ at position i in GXZ(g). Likewise, if g contains a Zj-operator

acting on qubit j, this is represented as a ‘1’ at position j + N in GXZ(g). Finally a

Yi operator at position m maps to a ‘1’ at position m and m + N in GXZ(g). As an

example, consider an 4-qubit operator of the form g4=X1112Z3Y4. In the finite geometry

representation g4 maps to

GXZ(g4) = (1 0 0 1 | 0 0 1 1). (3.5.2)

The finite geometry representation can be used to construct a quantum parity check

matrix, which plays a role similar to the parity check matrices of a classical code. The

quantum parity check matrix is constructed by stacking the finite geometry represen-

tations of the stabilizers of a code. For example, the quantum parity check matrix for

the stabilizers of the [[4, 2, 2]] code (which are defined in equation 4.4.6), is given by

GXZ(S[[4,2,2]]) =

()
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 . (3.5.3)

3.6. GATES FOR STABILIZER CODES 37

For CSS codes, the quantum parity check matrix has the form

GXZ(SCSS(C1,C2)) =

()
G(C1) 0

0 H(C2) , (3.5.4)

where G(C1) and H(C2) are the generator and parity check matrices of C1 and C2

respectively. From this, the separation between the X-containing stabilizers and Z-

containing stabilizers can clearly be seen. The quantum parity check matrix for CSS

codes also demonstrates how the finite geometry representation can help to make con-

tact between classical and quantum codes.

Once a quantum parity check matrix GXZ(S) has been constructed for a code with

stabilizers S, the syndromes ~SE for each error E be computed as follows

~SE = GXZ(S) · (GZX(E))T , (3.5.5)

where GZX(E) is the flipped finite geometry representation of E. Note that the posi-

tions of the X and Z elements in GZX(E) have been flipped.

3.6 Gates for stabilizer codes

The syndrome extraction process for a stabilizer code involves making Pauli measure-

ments on the logical state to detect X- and Z-errors as shown in figure 3.2. We now

introduce the circuit notation we will use for the depiction of quantum codes in this

thesis. Bit-flip check measurements on the logical state are represented by CNOT gates

via the following mapping

|ψ〉

|0〉 H

Z

H

=

|ψ〉

|0〉
. (3.6.1)

38 CHAPTER 3. QUANTUM ERROR CORRECTION

(a) (b) (c)

Figure 3.3: Propagation rules for single-qubit X- and Z-errors through CNOT and

conjugate-propagator gates.

Phase-flip check measurements are represented as follows

|ψ〉

|0〉 H

X

H

=

|ψ〉

|0〉
, (3.6.2)

where the symmetric gate with black-square controls is called a conjugate-propagator

gate. Note that the conjugate-propagator gate is a new gate we have defined for use

with the coherent parity check framework. In addition to making circuits more com-

pact, representing parity check operations in terms of CNOT and conjugate-propagator

gates allows for easy visualisation of the propagation of errors through the circuit. For

example, CNOT gates propagate Z-errors as follows

|ψ〉

|0〉 Z

=

|ψ〉

|0〉

Z

Z

. (3.6.3)

The above propagation rule is calculated by evolving the error via the following matrix

relation CNOT · Z2 · CNOT = Z1Z2. The propagation rules for X-errors can be simi-

larly calculated. The complete set of propagation rules for both CNOT and conjugate

propagator gates is shown in figure 3.3.

3.7. FAULT TOLERANT CIRCUIT DESIGN 39

3.7 Fault tolerant circuit design

In the discussion of stabilizer codes so far, we have assumed that errors only occur in

certain locations in the circuit. For example, in the circuit diagram for the two-qubit

code (figure 3.1), errors are restricted to the region marked by the multi-qubit gate E.

In this circuit, it is assumed that all of the machinery associated with encoding and

syndrome extraction is error-free. However, on many quantum technology platforms,

two-qubit gates are a dominant source of error [85, 86]: it is therefore unrealistic to

assume that syndrome extraction will occur perfectly.

Figure 3.4: The extraction circuit for the Z1Z2Z3Z4 stabilizer in the [[4, 2, 2]] code.

Errors that occur on the ancilla qubit A can propagate to the code qubits. As an

example, the propagation resulting from a Z-error that occurs after the first CNOT gate

on the ancilla qubit is shown by the blue arrows.

To contextualise the problem, consider the extraction circuit for the Z1Z2Z3Z4 stabilizer

of the [[4, 2, 2]] code, shown in figure 3.4. From the figure, we see that if a Z-error

occurs after the first CNOT gate on the ancilla qubit A, a Z2Z3Z4-error is propagated

to the register. The [[4, 2, 2]] code has distance d = 2, meaning the Z2Z3Z4 error

goes undetected. Quantum codes must therefore be carefully designed to stop errors

cascading through the circuit in this way. A quantum code that can account for errors

(up to a specified distance) at any location in its circuit is said to be fault tolerant.

40 CHAPTER 3. QUANTUM ERROR CORRECTION

Various techniques for achieving fault tolerance are known [44, 45, 87, 88], but these

typically increase code overheads in both qubit-number and time. Consequently, fault

tolerance is an important consideration when assessing the viability of a quantum code.

Chapter 4

Coherent Parity Check Codes

The coherent parity check (CPC) framework for quantum error correction is designed

to provide an alternative approach to the design and understanding of stabilizer codes.

The signature feature of the framework is the ability to construct a stabilizer code from

the starting point of any sequence of parity checks. This is possible due to a fail-safe

CPC code structure that guarantees that the quantum mechanical requirements of the

code, such as stabilizer-commutativity, are automatically satisfied. As a result of this

freedom in the choice of parity checks, the CPC framework facilitates the re-purposing

of good classical codes for use in quantum error correction. Furthermore, under the

CPC framework, the problem of discovering new quantum codes can be set up in a

way that is amenable to machine search.

In this chapter, I outline the CPC framework and provide examples of how it can

be used to construct distance-three codes. The CPC framework was first introduced

in Chancellor et al. [1], using tools from the ZX-calculus [89]. In [2], I provided an

alternative introduction using conventional quantum circuit notation. I will also use

the circuit notation presentation in this thesis.

All CPC codes are built around a fundamental gadget with a symmetric encode-error-

decode structure that amounts to an extended measurement of the identity operator.

I prove that the CPC gadget is inherently non-disturbing and can be implemented

using any parity checking sequence. Following this, I show how multiple CPC gadgets

41

42 CHAPTER 4. COHERENT PARITY CHECK CODES

|ψ〉D

|0〉p H

P

H

Wait stage

E

H

P †

H

Encoder, Uenc Decoder, Udec

Figure 4.1: The fundamental CPC gadget illustrating the symmetric encode-error-

decode structure. Encode stage: a parity check P , controlled by the parity qubit, is

applied to the multi-qubit register |ψ〉D = |ψ1ψ2...ψk〉 and the result is copied to the

parity qubit p. The parity qubit is kept coherent throughout the wait stage, during

which an error E can occur on the register. Decode stage: the register is disentangled

from the parity qubit via the application of the unitary inverse of the first parity check

P †. The final syndrome measurement of qubit p tells us whether the results of the two

parity checks differ. For appropriately chosen parity checks, this information can be

used to detect errors.

can be combined to create quantum codes. After demonstrating the construction of

a [[4, 2, 2]] CPC detection code, I establish a canonical CPC code structure for the

design of general [[n, k, d]] stabilizer codes. I then prove that, under this canonical

CPC structure, the encoder always produces a valid stabilizer code.

This chapter ends by outlining CPC methods for the derivation of distance-3 stabilizer

codes. I provide an explicit construction for turning any [n, k, 3] classical Hamming

code into a [[2n− k, k, 3]] CPC code. This result extends a method originally outlined

in [1]. Finally, I describe how CPC methods can used as an alternative way of deriving

distance-three CSS codes from the starting point of any distance-three classical code.

4.1. THE FUNDAMENTAL CPC GADGET 43

4.1 The fundamental CPC gadget

The fundamental CPC gadget, shown in figure 4.1, is the building block upon which all

CPC codes are based [1]. The basic premise behind the CPC gadget is that the parity

of the quantum register is never explicitly measured. Instead, parity information is

stored coherently as quantum data and compared over time. This is made possible by

the gadget’s symmetric encode-error-decode structure.

4.1.1 Error detection with any parity check

The CPC gadget takes a multi-qubit register |ψ〉D and a parity qubit p, prepared in

the state |0〉p, as its input. The action of the encode stage of the gadget, labelled Uenc

in figure 4.1, is to apply the parity operator P to the register and record the outcome

in parity qubit p. Rather than measuring the syndrome immediately, the parity qubit

is kept coherent during a wait stage in which the register is potentially subject to an

error E. Note that we are not yet considering errors that occur on the parity qubit. In

section 4.2, we outline how multiple CPC gadgets can be combined to allow for error

detection on the combined system of register and parity qubits.

Following the wait stage, the parity qubit is disentangled from the register via a decod-

ing operation, labelled Udec in figure 4.1, which is the unitary inverse of the encoder.

The encoder applies the parity operator P to the register and the decoder applies its

inverse P †. The final syndrome measurement of parity qubit p tells us whether the

results of these two parity checks differ. For an appropriately chosen parity check, this

syndrome information can indicate whether an error occurred during the wait stage.

To prove its error detection capabilities, it is convenient to rearrange the circuit for the

CPC gadget into the form shown in figure 4.2. This rewrite is achieved by moving the

error operator E through the parity check operator P . Both the error gate and the

parity check gate are Pauli group operations. A property of the Pauli group is that its

elements either commute or anti-commute with one another. Consequently, the effect

of pushing the error operator to the front of the circuit is to introduce a global phase

44 CHAPTER 4. COHERENT PARITY CHECK CODES

|ψ〉D

|0〉p H

E Φ(E,P) P P †

H

11

Figure 4.2: To prove the non-disturbing nature of the fundamental CPC gadget, it is

useful to rearrange the circuit by moving the error operator E through the first parity

check P . Following this rewrite, the controlled parity check operators are adjacent and

cancel. In this form, the CPC gadget can be viewed as a measurement of the Φ(E,P) =

±11D operator on the data register. The value of the final syndrome measurement

depends only upon whether E commutes with P .

Φ(E,P) on the register which is controlled by the parity qubit. This global phase is

dependent upon both the parity check and the error operator, and is defined as follows,

Φ(E, p) =

(+1)11D, if [E,P] = 0

(−1)11D, if [E,P] 6= 0,
(4.1.1)

where 11D is the identity operator on the data register and the commutator is given

by [E,P] = E • P − P • E. Note that, after the rewrite, the controlled parity-check

operators are adjacent to each other and cancel. The full mathematical action of the

CPC circuit UCPC, can now be expressed as follows,

UCPC |ψ〉D |0〉p = (11 + Φ(E,P))E |ψ〉D |0〉p + (11− Φ(E,P))E |ψ〉D |1〉p . (4.1.2)

Using the definition of the global phase operator Φ(E,P) given in equation (4.1.1), the

output of the CPC gadget simplifies to

UCPC |ψ〉D |0〉p =

E |ψ〉D |0〉p , if [E,P] = 0

E |ψ〉D |1〉p , if [E,P] 6= 0.
(4.1.3)

From the above we can see that eventual measurement of parity qubit p depends only

4.2. CONSTRUCTION OF A [[4, 2, 2]] CPC DETECTION CODE 45

upon whether P commutes with E. If no error occurs during the wait stage, then

E = 11D and the syndrome is measured deterministically as ‘0’. Likewise, if an error

does occur, but it commutes with the parity operator, [E,P] = 0, then the syndrome

is also ‘0’. Finally, if the error anti-commutes with the parity check, [E,P] 6= 0, then

the syndrome is measured as ‘1’. A quantum error detection protocol can therefore be

constructed from the CPC gadget by selecting a parity check that anti-commutes with

the error to be identified.

The CPC gadget can be thought of as an extended measurement of the ±11D operator

on the data register, where the sign depends upon the commutation relation between

P and E. As the ±11D operator is trivially non-disturbing for all quantum states, the

parity qubit p will always be completely disentangled from the register at the end of

the cycle. Consequently, the CPC gadget provides a construction whereby any parity

check operator can be applied to the register in a failsafe manner. Therefore, the only

restriction on the form of P is is that it is a Pauli group operator P ∈ Gk.

4.1.2 Multi-check CPC gadgets

Figure 4.3 shows how multiple parity check operators can be merged into a single

CPC cycle. As is the case with the fundamental CPC gadget, the encode-error-decode

structure of this multi-check CPC cycle ensures that its overall action amounts to an

extended measurement of the ±11D operator on the data register. The CPC construc-

tion therefore makes it possible to implement arbitrary sequences of parity checks on

a quantum data register. As a result, new CPC codes can be discovered by randomly

generating new parity sequences or by inheriting them from existing classical codes.

In the following sections, we outline general methods for constructing CPC codes that

allow for the detection of a full quantum error set.

46 CHAPTER 4. COHERENT PARITY CHECK CODES

|ψ〉D

|0〉p1

...

|0〉pn−k

H

P1

H

H

... Pn−k

H

Wait stage

E

H

P †n−k

H

...

H

P †1

H

...

Encoder, Uenc Decoder, Udec

Figure 4.3: A CPC gadget which applies multiple parity checks P = {P1, ..., Pk} to the

register in a single cycle. A multi-check CPC code of this form retains the encode-error-

decode structure, ensuring that any sequence of parity checks P can be used without

risk of decohering the register.

|ψd1ψd2〉

|0〉p1

|0〉p2

PX PZ

E

P†Z P†X

Figure 4.4: A preliminary CPC code formed by partitioning the encoder/decoder into

two parity checking stages. The stage labelled PX detects X-errors on the register and

the stage labelled PZ detects Z-errors on the register.

4.2. CONSTRUCTION OF A [[4, 2, 2]] CPC DETECTION CODE 47

4.2 Construction of a [[4, 2, 2]] CPC detection code

The [[4, 2, 2]] detection code is the simplest quantum protocol to offer protection against

a full depolarizing noise channel with single X-, Y - and Z-errors. In section 3.4, we

demonstrated how the [[4, 2, 2]] code can be derived via the CSS construction from the

starting point of a classical [4, 3, 2] detection code. Here, we show how an equivalent

[[4, 2, 2]] code can be constructed in the CPC picture by combining two classical [3, 2, 2]

codes.

4.2.1 Translating classical parity checking sequences to a CPC

code

Figure 4.4 shows the preliminary encode-error-decode CPC setup for a code involving

two data qubits |ψd1,d2〉 and two parity qubits p1 and p2. The encoder and decoder

have been partitioned into two stages, corresponding to the bit- and phase-checking

parts of the code respectively. We now show how the specific form of the parity check

sequences, PX and PZ , can be formed from the adjacency matrix of a [3, 2, 2] code.

The classical [3, 2, 2] code was introduced in section 2.2. The code performs a single

parity check on two data qubits, and has a generator matrix G[3,2,2] and parity matrix

H[3,2,2] given by

G[3,2,2] =

[
1 0 1

0 1 1

]
, H[3,2,2] =

[
1 1 1

]
. (4.2.1)

A [3, 2, 2] code of this form cannot be used to create a quantum code with with the

CSS construction as it does not satisfy the condition of weak self dualitya. However, as

described in the previous section, there are no such restrictions for CPC codes as the

encode-error-decode structure ensures any parity checking sequence can be implemented

aThe dual of the [3, 2, 2] code is a [3, 1, 3] code with generator G[3,1,3] =
[
1 1 1

]
and H[3,1,3] =[

1 0 1
0 1 1

]
. The codewords of this code are given by C[3,1,3] = {000, 111}. The codewords of the [3, 2, 2]

code are given by C = {000, 011, 101, 110}. From this we can see that the C⊥[3,2,2] = C[3,1,3] 6⊂ C[3,2,2].
The [3, 2, 2] code is therefore not weakly self dual.

48 CHAPTER 4. COHERENT PARITY CHECK CODES

Figure 4.5: The preliminary [[4, 2, 1]] CPC detection code formed by setting the bit and

phase checking stages of the encoder/decoder to PX = {Zd1Zd2} and PZ = {Xd1Xd2}.
The square gates in this circuit correspond to conjugate-propagator gates that are

defined in section 3.6. The arrows show how a Zp2-error on qubit p2 is propagated

through the decoder. The conjugate-propagator gates in the phase-check stage of the

decoder propagate the Zp2-error as a multi-qubit Xd1Xd2-error to the register. The Zp2-

error does not trigger a syndrome in the Mp2 measurement at the end of the circuit,

as this measurement is performed in the computational basis. Consequently, the Zp2-

error goes undetected, meaning the preliminary code does not correspond to a fully

functional detection code. It therefore has distance d = 1.

on the register. For the [3, 2, 2] code, the parity checking sequence is described by the

adjacency matrix A, obtained from the generator and parity matrices via the relations

G = [11n−k, A] and H =
[
AT , 11k

]
. The adjacency matrix for the [3, 2, 2] code is therefore

given by

A[3,2,1] =

[
1

1

]
,

+

, (4.2.2)

where the factor graph illustrates the connectivity between parity and data bits de-

scribed by the adjacency matrix. From the above, we see that the parity bit stores the

parity of the two data bits. For the purposes of constructing a CPC detection code,

we interpret the [3, 2, 2] code’s adjacency matrix as a description of the parity checking

4.2. CONSTRUCTION OF A [[4, 2, 2]] CPC DETECTION CODE 49

Figure 4.6: The [[4, 2, 2]] CPC code obtained by adding an additional cross-check stage

PC to the encoder and decoder. The arrows show how the previously considered Zp2-

error is now detected by the cross-check operator in PC . The Zp2-error is copied as a

Xp1-error to parity qubit p1 by the conjugate-propagator gate in PC . This Xp1-error

then triggers a ‘1’ syndrome in the Mp1 measurement.

sequences PX and PZ so that

PX = {Zd1Zd2}, PZ = {Xd1Xd2}. (4.2.3)

Figure 4.5 shows a CPC code cycle implemented with the parity checking sequences

given by PX and PZ . It can be seen that this preliminary circuit corresponds to two

implementations of a [3, 2, 2] classical code on the same register, the first to detect

bit-flips and the second to detect phase-flips.

4.2.2 Adding cross-check operators

The operation of the preliminary CPC code depicted in figure 4.5 can be analysed by

considering the error propagation rules outlined in section 3.6. In order to highlight the

shortcomings of this circuit, we consider the specific case of a Zp2-error on parity qubit

p2. The arrows depict the propagation of this error through the decoder, and show

that conjugate propagator gates in the phase-check stage of the decoder propagate the

Zp2-error to the register as a multi-qubit Xd1Xd2-error. The Zp2-error also propagates

50 CHAPTER 4. COHERENT PARITY CHECK CODES

Error Syndrome

I 0p10p2

XA, XB, Xp1 , Zp2 1p10p2

ZA, ZB, Zp1 , Xp2 0p11p2

YA, YB, Yp1 , Yp2 1p11p2

Table 4.1: The syndrome table for the [[4, 2, 2]] quantum error detection code. If no

errors occur, the code returns a ‘00’ syndrome. If a single X, Y or Z error occurs on

any of the four qubits, a non-zero syndrome is returned.

to the measurement operator Mp2 at the end of the circuit. However, as all syndrome

measurements in a CPC circuit are performed in the computational basis, the Zp2-

error does not trigger a ‘1’ syndrome in the Mp2 measurement. As a result, we are

left with a situation in which a multi-qubit error is propagated to the register in an

undetected way. The preliminary CPC circuit in figure 4.5 is therefore a [[4, 2, 1]] code

with distance d = 1. We now show how the addition of a ‘cross-check’ operator between

the parity qubits can close this undetected error propagation pathway to promote the

the circuit to the desired distance of d = 2.

Figure 4.6 shows the previously considered [[4, 2, 1]] circuit augmented by an additional

conjugate-propagator gate between parity qubits p1 and p2. The role of this cross-check

stage, labelled PC in figure 4.6, is to provide a detection pathway for phase-errors

that occur on the parity bits. The arrows in figure 4.6 illustrate how the previously

considered Zp2-error is detected in the new version of the circuit. The cross-check

operator copies the Zp2-error to a Xp1-error on the parity qubit p2. This Xp1 then

triggers a ‘1’ syndrome in the Mp1 measurement. As the cross-check operator is added

to the encoder as well as the decoder, the new circuit retains the encode-error-decode

CPC code structure. The operation of the code can be verified by computing the

syndromes, which are listed in table 4.1. It can be seen that the code can detect all

single qubit errors from the set {X, Y, Z}, and therefore has distance d = 2. The circuit

depicted in figure 4.6 therefore corresponds to a fully functional [[4, 2, 2]] quantum error

detection code.

4.2. CONSTRUCTION OF A [[4, 2, 2]] CPC DETECTION CODE 51

We have now outlined the basic operation of the [[4, 2, 2]] code, the simplest CPC

code capable of detecting errors from a full quantum {X, Y, Z} error set. The CPC

construction for this code begins by combining two classical [3, 2, 2] codes to detect

bit- and phase-errors on the register respectively. The resultant preliminary circuit,

however, has a reduced code distance due to undetectable phase-errors on the parity

bits. This shortcoming is addressed through the addition of cross-checks which promote

the code to distance d = 2. The three-stages of the CPC encoder – bit-checks, phase-

checks and cross-checks – can be compactly described in terms of CPC adjacency

matrices. For example, the [[4, 2, 2]] CPC code has the following adjacency matrices

mb =

[p1] [p2]()
[d1] 1 0

[d2] 1 0
, mp =

[p1] [p2]()
[d1] 0 1

[d2] 0 1
, mc =

[p1] [p2]()
[p1] 0 1

[p2] 1 0
, (4.2.4)

where mb represents the bit-checks, mp the phase-checks and mc the cross-checks. For

the bit-flip and phase-flip adjacency matrices, mb and mp, the rows refer to the data

qubits and the columns the parity qubits. Looking at the bit-flip matrix, we can see

that both register qubits connect to parity qubit p1 via CNOT gates in accordance with

the circuit in figure 4.6. Likewise, matrix mP tells us that both register qubits are

connected to parity qubit p2 via conjugate-propagator gates. Finally, from matrix mc,

we see that there is a single cross-check between parity qubits p1 and p2. For this

[[4, 2, 2]] CPC code, we can make contact between its adjacency matrix representation

in equation 4.2.4 and the initial adjacency matrix of the [3, 2, 2] classical code, given

by equation 4.2.2. This can be seen by expressing the mb and mp adjacency matrices

as follows

mb = (A[3,2,2] | 0) =

[p1] [p2]()
[d1] 1 0

[d2] 1 0
, mp = (0 | A[3,2,2]) =

[p1] [p2]()
[d1] 0 1

[d2] 0 1
. (4.2.5)

In the above form, it is easy to see how the initial adjacency matrix of the [3, 2, 2] code

is used to form the encoder of the [[4, 2, 2]] CPC code.

52 CHAPTER 4. COHERENT PARITY CHECK CODES

4.3 The canonical form of CPC codes

The [[4,2,2]] quantum error detection code illustrates the basic principles behind the

operation of a CPC code. The encoder of the [[4, 2, 2]] code involves successive stages

of cross-checks, bit-checks and phase-checks. We now generalise this three-part CPC

structure to provide a canonical form for the construction of arbitrary [[n, k, d]] CPC

codes.

The canonical form of an [[n,k,d]] CPC code is shown in figure 4.7. Such codes have k

data qubits, |ψ〉D = |ψd1ψd2 ...ψdk〉, and m = n− k parity qubits, |0〉P = |0p10p2 ...0pm〉.
As with the [[4, 2, 2]] detection scheme, the encode stage of a general CPC code involves

successive rounds of cross-checks, bit-checks and then phase-checks. The cross-checks

are realised as conjugate-propagator gates between the parity qubits (represented by

the green gate in figure 4.7). The bit-checks are realised as CNOT gates where the

register qubits act as the control and the parity qubits the target (represented by the

blue gate in figure 4.7). Finally, the phase-checks are realised as conjugate-propagator

gates between the data qubits and parity qubits (represented by the red gates in figure

4.7). The sequence of gates within each stage of the encoder can be compactly described

in terms of adjacency matrices of the form

mb =

[p1] [p2] [...] [pm]

[D1] b11 b12 ... b1

[D2] b21 b22 ... b2m

[...]

[Dk] bk1 bk2 ... bkm

, mp =

[p1] [p2] [...] [pm]

[D1] h11 h12 ... h1m

[D2] h21 h22 ... h2m

[...]

[Dk] hk1 hk2 ... hkm

,

mc =

[p1] [p2] [...] [pm−1] [pm]

[p1] 0 c12 ... c1(m−1) c1m

[p2] c12 0 ... c2(m−1) c2m

[...]

[p(m−1)] c1(m−1) c2(m−1) ... 0 c(m−1)m

[pm] c1m c2m ... c(m−1)m 0

,

(4.3.1)

4.4. COMPUTING THE STABILIZERS OF A CPC CODE 53

|ψ〉D

|0〉P

E

Encoder Decoder

Figure 4.7: The canonical form of CPC codes, showing the symmetric encode-error-

decode structure. In an [[n, k, d]] CPC code the qubits are split into two distinct types:

k data qubits, |ψ〉D = |ψd1ψd2 ...ψdk〉, and n − k parity qubits, |0〉P = |0p10p2 ...0pn−k
〉.

The encoder involves successive rounds of cross-checks (green), bit-checks (blue) and

phase-checks (red). The decoder is simply the unitary inverse of the encoder.

where bxy, hxy, cxy are binary values. The cross-check matrix mc is always symmetric

about the diagonal.

4.4 Computing the stabilizers & Pauli logical oper-

ators of a CPC code

The CPC framework provides a fail-safe code structure that enables a stabilizer code

to be derived from the starting point of any sequence of parity checks. In this section,

we explain how the code stabilizers and Pauli logical operators can be computed for a

CPC code expressed in the canonical form described in section 4.3.

4.4.1 Computing the stabilizers of a CPC code

For an [[n, k, d]] CPC code, the code qubits are separated into k data qubits |ψd1 ...ψdk〉
and n− k parity bits |0p1 ...0pn−k

〉. As the parity bits are always initialised determinis-

tically in the |0pi〉 state, they correspond to a constrained 2n−k subspace of the input.

Conversely, the register corresponds to the 2k dimensional subspace in which the data

54 CHAPTER 4. COHERENT PARITY CHECK CODES

is initially contained. The encoder is split into three parts corresponding to the cross-

checking, bit-checking and phase-checking stages respectively. The encoder UCPC can

therefore be described as follows

UCPC = UP · UB · UC , (4.4.1)

where UC , UB and UP are the unitary operators corresponding to the three stages of

the encoder. Each stage of the encoder is composed of either conjugate-propagator

gates (for UC and UP) or CNOT gates (for UB), the exact sequence of which is specified

by the adjacency matrices mb, mp and mc. As a result, the encoder will always be a

Clifford operation which transforms stabilizer states to stabilizer states (for an outline

of the Clifford group see appendix B). The stabilizers of a CPC code can therefore be

computed simply by conjugating the stabilizers of the constrained qubits of the input.

For a CPC code adhering to the canonical structure, the constrained qubits are the

parity bits which are prepared in the |0pi0p2 , ..., 0pn−k〉 state, and are stabilized by

Sinput = {Si, S2, ..., Sn−k} = {Zp1 , Zp2 , ..., Zpn−k
} (4.4.2)

It is immediately clear that the initial set of constrained stabilizers Sinput are mutually

commuting, as each act on separate qubits. The stabilizers of a CPC code SCPC =

{Si, S2, ..., Sn−k} = {Zp1 , Zp2 , ..., Zpn−k
} are computed as follows

Si = UCPC · Zpi · U
†
CPC (4.4.3)

As required, the resultant set of stabilizers SCPC will be mutually commuting. This

follows from the fact that the stabilizers of the input Sinput are mutually commuting,

and that commutation relations are preserved when the stabilizers are evolved by a

unitary operatorb.

bTheorem: Unitary operators preserve commutation relations between stabilizers.
Proof: Consider two commuting stabilizers s1 and s2 such that [s1, s2] = 0. If these stabilizers are
evolved by a unitary operator U , the resultant states are given by Us1U

† and Us2U
†. The new

commutation relation between the evolved stabilizers can then be computed as [Us1U
†, Us2U

†] =
Us1U

†Us2U
† − Us2U

†Us1U
† = U [s1s2 − s2s1]U† = U [s1, s2]U† = 0. Unitary evolution therefore

preserves the commutation relations between stabilizers.

4.4. COMPUTING THE STABILIZERS OF A CPC CODE 55

4.4.2 Computing the Pauli logical operators of a CPC code

The Pauli logical operators for a CPC code can be computed via a similar method as

the stabilizers. Prior to encoding, each data bit in the register has two Pauli logical

operators of form

Linitial = {Xd1 , Zd1 , ..., Xdk , Zdk} (4.4.4)

Note that the initial Pauli logical operator pairs Xdi and Zdi anti-commute with one

another by definition. As they are acting on different qubits, the initial set of Pauli

logical operators Linitial commutes with Sinitial. The encoded logical operators X̄di and

Z̄di can be calculated by evolving the initial Pauli logical operators as follows

Z̄di = UCPC · Zdi · U
†
CPC, X̄di = UCPC ·Xdi · U

†
CPC. (4.4.5)

The resultant logical operators of the CPC code LCPC = {X̄di , Z̄di , ..., X̄dk , Z̄dk} then

commute with the encoded stabilizers SCPC. This again follows from the fact that

unitary operators preserve commutation relations betwen stabilizer operators. Similar

reasoning can be applied to demonstrate that the relation [X̄di , Z̄di] = 1 holds for the

encoded logical operators.

4.4.3 Example: Computing the stabilizers and logical Pauli

operators of the [[4, 2, 2]] CPC detection code

The [[4, 2, 2]] CPC detection code was introduced in section 4.2, and the corresponding

circuit is illustrated in figure 4.6. We now show how the stabilizers and logical operators

of the this code can be computed using equations 4.4.3 and 4.4.5.

The [[4, 2, 2]] code has two data qubits and two parity qubits. The initial

stabilizers of the code, prior to encoding, are therefore given by Sinitial =

{I1I2Z3I4, I1I2I3Z4}. Likewise, the initial logical operators are given by Linitial =

{X1I2I3I4, I1X2I3I4, Z1I2I3I4, I1Z2I3I4}. The corresponding encoded versions of these

sets can then be calculated using equations 4.4.3 and 4.4.5. This can be achieved by

hand, or using a stabilizer simulator such as [49, 50]. The resultant encoded stabilizers

56 CHAPTER 4. COHERENT PARITY CHECK CODES

and logical Pauli operators are then given by

S[[4,2,2]] = {Z1Z2Z3X4, X1X2X3Z4} (4.4.6)

L[[4,2,2]] = {X1I2X3I4, I1X2X3I4, Z1I2I3X4, I1Z2I3X4} (4.4.7)

Up to a Hadamard gate on the qubit p2, the stablizers of the CPC [[4, 2, 2]] code are

equivalent to the stabilizers of the [[4, 2, 2]] code derived using CSS methods in section

3.4. By inspection of the logical operators, it can also be verified that this code has

distance d = 2.

4.4.4 Construction of stabilizer tables and Pauli logical oper-

ators from the CPC adjacency matrices

The finite geometry notation for quantum stabilizer codes was introduced in section

3.5. We now show how, using the finite geometry formulation, the stabilizer tables

and Pauli logical operators of a CPC code can be computed directly from its adjacency

matrices. For a CPC code with adjacency matrices mb, mp and mc, the quantum parity

check matrix is given by

GXZ(SCPC) =
[d1, ..., dk] [p1, ..., pn−k] [d1, ..., dk] [p1, ..., pn−k]()
mT
p mT

b ·mp ⊕mc mT
b 11n−k

, (4.4.8)

where each row corresponds to a finite geometry representation of a stabilizer from the

set SCPC. Similarly the Pauli logical operators can be written as follows

GXZ(LCPC) =

[d1, ..., dk] [p1, ..., pn−k] [d1, ..., dk] [p1, ..., pn−k]()
LX

{
11k mb 0 0

LZ
{

0 mp 11k 0
, (4.4.9)

where the first line corresponds to the Pauli-X logical operators and the second the

Pauli-Z logical operators.

4.4. COMPUTING THE STABILIZERS OF A CPC CODE 57

As an example, we again consider the case of the [[4, 2, 2]] code with the adjacency

matrices defined in equation 4.2.5. Substituting equation 4.2.5 into equation 4.4.8

gives the following quantum parity check matrix

GXZ(S[[4,2,2]]) =

[d1] [d2] [p1] [p2] [d1] [d2] [p1] [p2]()
0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1
. (4.4.10)

It can easily be verified that two rows of the above matrix describe the same stabilizers

as defined in equation 4.4.6. Similarly, the Pauli logical operators of the [[4, 2, 2]] code

can be found by substituting equation 4.2.5 into equation 4.4.9 to give

GXZ(L[[4,2,2]]) =

[d1] [d2] [p1] [p2] [d1] [d2] [p1] [p2]

1 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

. (4.4.11)

where the first two rows corresponds to the Pauli-X logical operators LX and the final

two rows the Pauli-Z logical operators LZ . Again, it can be seen that the above matrix

is the finite geometry representation of the Pauli logical operators defined in 4.4.7.

4.4.5 Efficient calculation of the CPC code syndromes

The finite geometry representation of the CPC code stabilizers, defined in equation

4.4.3, can be used to efficiently calculate the code syndromes. In section 3.5, it was

shown that code syndromes can be calculated via the relation

~SCPC(E) = GZX(E) · (GXZ(SFG))T , (4.4.12)

where GXZ(SCPC) is the finite geometry representation of the stabilizers and GZX(E)

is the finite geometry representation of the error vector E. Note that for GZX(E) the

58 CHAPTER 4. COHERENT PARITY CHECK CODES

positions of the X and Z components of the array have been switched. For a CPC

code the error vector term can be written as follows

GZX(E) =
[d1, ..., dk] [p1, ..., pn−k] [d1, ..., dk] [p1, ..., pn−k]()
Edz Epz Edx Epz , (4.4.13)

where the four terms correspond to the different components on the error vector acting

on the data and parity qubits. As an example, consider the case of a two-qubit error of

form E = Xd1Id2Zp1Ip2 . In this case Edx = (1 0) and Epz = (1 0), so that GXZ(E) =

(0 0 1 0 | 1 0 0 0). Substituting equation 4.4.13 into equation 4.4.12 gives the

following general expression for the syndrome of a CPC code

~SCPC(E) = GZX(E) · (GXZ(SCPC))T

= (Edz Epz | Edx Epx)(mT
p mT

b ·mp ⊕mc | mT
b 11n−k)

T

=
(
Edz ·mp + Epz ·mT

p ·mb ⊕mc + Edx ·mb + Epx
)

mod 2.

(4.4.14)

The above expression allows syndrome tables to be quickly calculated, bypassing the

need to carry out a full-matrix or stabilizer circuit simulation. For example, the single-

error syndrome table for set depolarizing Pauli noise channel {X, Y, Z} can be easily

constructed from the adjacency matrices as follows

[p1, ..., pn−k]

[Edx] mb

[Edz] mp

[Edy] mb ⊕mp

[Epx] 11n−k

[Epz] mT
p ·mb ⊕mc

[Epy] mT
p ·mb ⊕mc ⊕ 11n−k

. (4.4.15)

4.5. TRIPARTITE CPC CODES 59

|ψ〉D

|0〉PX

|0〉PZ

E

Encoder Decoder

Figure 4.8: The tripartite construction for CPC codes. The parity check qubits are split

into two blocks PX and PZ . The X-errors on the register are detected by implementing

sequence of bit checks (depicted by the blue gate) between the register and block PX .

Likewise, Z-errors are detected by implementing phase-checks (depicted by the red

gate) that are copied to PZ . Cross-checks (depicted by the green gate) are also applied

to ensure that errors on the parity qubits themselves can be detected. This figure was

originally published in [2].

4.5 Tripartite CPC codes

In this section we outline methods for the construction of distance-three CPC codes.

The codes we introduce are based on a tripartite structure in which the code qubits are

separated into blocks of data qubits, bit-parity qubits and phase-parity qubits. The

structure of tripartite CPC codes is illustrated in figure 4.8, where it can be seen that

the bit-check stage interacts only with the parity qubit block PX and the phase-check

stage only with the parity qubit block PZ . In accordance with the canonical structure

outlined in section 4.3, tripartite CPC codes also include a cross-check stage to ensure

that phase-errors on the parity bits can be detected. The specific advantage of adopting

a tripartite structure is that it provides a setting in which pairs of classical codes can

easily be combined to form a quantum CPC code. The [[4, 2, 2]] CPC code outlined

in section 4.2 is an example of a tripartite distance-two code constructed in this way.

We now show how this approach can be generalised to distance-three codes capable

of detecting and localising single-qubit errors. Note that the tripartite construction

60 CHAPTER 4. COHERENT PARITY CHECK CODES

presented here differs slightly from the version first outlined in [1]. The changes are

designed to make the tripartite structure more flexible in the types of classical code it

can accept.

4.5.1 Construction of a [[9, 3, 3]] tripartite CPC code

In this section we show how a [[9, 3, 3]] tripartite CPC code can be constructed by

combining two copies of a classical ring code. The ring code we consider is the [6, 3, 3]

code with the following generator and parity check matrices

G[6,3,3] =

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

 , H[6,3,3] =

1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

 . (4.5.1)

Using the relation G = [11n−k, A], the adjacency matrix and corresponding factor graph

for the [6, 3, 3] ring code can be obtained as

A[6,3,3] =

1 0 1

1 1 0

0 1 1

 , +

+

+

. (4.5.2)

To create a tripartite CPC code from A[3,2,2], we chose mb and mp CPC adjacency

matrices of the form

mb =
(
A[3,2,2] | 0

)
=

1 0 1 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

 , (4.5.3)

mp =
(
0 | A[3,2,2]

)
=

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 0 1 1

 , (4.5.4)

4.5. TRIPARTITE CPC CODES 61

|ψd1ψd2ψd3〉

|0〉p1
|0〉p2
|0〉p3
|0〉p4
|0〉p5
|0〉p6

E

...

...

...

...

...

...

...

...

...

Figure 4.9: The encoder for the [[9, 3, 3]] tripartite CPC code. The adjacency matrices

for this encoder are given by equations 4.5.3, 4.5.4 and 4.5.5.

where the CNOT gates specified by mb interact with the first three parity qubits and the

conjugate-propagator gates specified by mp interact with the final three parity qubits.

The final step in constructing a CPC code is to choose a cross-check matrix that fixes

the code distance to d = 3. For this particular example, we select a cross-check matrix

of the form

mc =

0 1 1 0 1 0

1 0 1 0 0 1

1 1 0 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1

0 1 0 1 1 0

, (4.5.5)

to give the encoder shown in figure 4.9. The syndromes for this code can be calcu-

lated using equation 4.4.12 (or any other quantum circuit simulation technique) and

are shown in table 4.2. By inspection, it can easily be verified that there are unique

syndromes for single qubit X-, Z- and Y -errors on all nine of the code qubits. Conse-

quently, the tripartite code with the encoder depicted in figure 4.9 is a [[9, 3, 3]] CPC

code.

62 CHAPTER 4. COHERENT PARITY CHECK CODES

X-error syndromes

mb

Z-error syndromes

mp

Y -error syndromes

mb ⊕mp

data

qubits

d1 101000 000101 101101

d2 110000 000110 110110

d3 011000 000011 011011

X-error syndromes

116

Z-error syndromes

mT
p ·mb ⊕mc

Y -error syndromes

116 ⊕mT
p ·mb ⊕mc

parity

qubits

p1 100000 011010 111010

p2 010000 101001 111001

p3 001000 110100 111100

p4 000100 010011 010111

p5 000010 001101 001111

p6 000001 100110 100111

Table 4.2: The syndrome table for the [[9, 3, 3]] tripartite CPC code. Each syndrome

consists of a string of six bits. The first three bits, coloured red, represent measurement

outcomes from the parity qubits in block PX . The final three bits, coloured blue,

represent measurement outcomes from the parity qubits in block PZ .

4.5. TRIPARTITE CPC CODES 63

4.5.2 Tripartite CPC Hamming codes

In this section we provide a general method for translating any classical [N,K, 3] Ham-

ming code into a [[2N −K,K, 3]] quantum CPC code. This method makes use of the

the tripartite structure depicted in figure 4.8, and provides a standard form for the

adjacency matrix mc. Our construction is encapsulated by the following theorem:

Theorem 1. Let Lk be a classical [N,K, 3] Hamming code with adjacency matrix ALK
.

For any such Lk it is always possible to construct a tripartite [[n = 2N−K, k = K, d =

3]] quantum CPC code defined by bit-check matrix mb = (ALK
| 0), phase-check matrix

mp = (0 | ALK
) and cross-check matrix

mc =

[PX] [PZ]()
[PX] 1m/2 ⊕ 11m/2 wm/2

[PZ] (wm/2)T 1m/2 ⊕ 11m/2

, (4.5.6)

where m = n− k and 1m/2 is a square matrix of ones of dimension m/2. The permu-

tation matrix wm/2 is constructed by shifting each row in the identity matrix 11m/2 by

one column to the right.

Proof. To prove the above theorem, we consider the syndromes for single X-, Z- and

Y - errors on the data qubits and the parity qubits. Our aim is to show that distinct

syndromes are produced for each single-qubit error so that the code distance is d = 3.

In the following we write each syndrome measurement in the form

~Sqi = (sXi
| sZi

) , (4.5.7)

where the index i corresponds to the qubit label and q the error-type. The sXi
com-

ponent describes the portion of the syndrome measured in bit parity check block PX ,

and sZi
the component measured in phase parity check block PZ . This partition of the

parity check qubits is described in figure 4.8 which shows the tripartite CPC struc-

ture. In this proof we will also consider syndrome matrices Sq constructed by stacking

individual syndromes ~Sqi .

64 CHAPTER 4. COHERENT PARITY CHECK CODES

Data qubits: X- and Z-errors. Bit and phase errors on the the data qubits of the tri-

partite CPC Hamming codes are propagated to the parity qubits by the gates described

by the check matrices mb = (ALK
| 0) and mp = (0 | ALK

). The adjacency matrix ALK

is derived from a classical Hamming code and as such will provide a unique syndrome

for errors on the data bits. The general construction for classical Hamming codes is

outlined in section 2.4. The syndrome for a X-error on data qubit i corresponds to

row i of the matrix mb, and will therefore have the form ~Sdxi = (ALK
| 0)i. Likewise

Z-errors on the data qubits will produce syndromes of the form ~Sdzi = (0 | ALK
)i. As

they are detected in different blocks of the parity qubits, there is no overlap between

the syndromes for X- and Z- errors on the data qubits. The final property to ascertain

about the error syndromes is their weight. By construction, the rows of the Hamming

code adjacency matrix have weight W (ALK
) ≥ 2. The X- and Z- errors on the data

qubits in the CPC code will therefore also have weight greater than or equal to two.

These syndrome properties are summarised in table 4.3.

Data qubits: Y -errors. Y -errors can be thought of as the simultaneous occurrence of an

X-error and a Z-error on the same qubit. As a result, the syndrome for a Y -error on the

data qubits of a tripartite CPC Hamming code will have the form ~Sdyi = (ALK
| ALK

)i.

They are therefore distinguishable from the previously considered X- and Z-errors

because they are detected in both the PX and PZ parity qubit blocks. The weight of

these Y -errors syndromes will be greater than or equal to 4.

Parity qubits: X errors. Single X-errors on the parity qubits produce a syndrome of

weight one of the form ~Spxi = 11mi
. It is immediately clear that these syndromes will be

distinct from one another, as well as from the syndromes for the previously considered

errors.

Parity qubits: Z errors. Z-errors on the parity qubits of a tripartite CPC Hamming

code are detected by other parity bits via the relation mT
p ·mb⊕mc. Substituting in the

expressions for mb, mp and mc specified in theorem 1, we get the following syndrome

4.5. TRIPARTITE CPC CODES 65

X-error syndromes

mb

Z-error syndromes

mp

Y -error syndromes

mb ⊕mp

data

qubits

~Sdi = (sXi
|sZi

) (ALk
| 0)i (0 | ALk

)i (ALk
| ALk

)i

W (sXi
) ≥ 2 0 ≥ 2

W (sZi
) 0 ≥ 2 ≥ 2

X-error syndromes

11m

Z-error syndromes

mT
p ·mb ⊕mc

Y -error syndromes

11m ⊕mT
p ·mb ⊕mc

parity

qubits

~Spi = (sXi
|sZi

) ~Spxi = (11m)i ~Spzi
~Spyi = ~Spxi ⊕ ~Spzi

W (sXi
)

{
1, if i ≤ m/2

0, if i > m/2

{
m/2− 1, if i ≤ m/2

2, if i > m/2

{
m/2, if i ≤ m/2

2, if i > m/2

W (sZi
)

{
0, if i ≤ m/2

1, if i > m/2

{
1, if i ≤ m/2

m/2− 1, if i > m/2

{
1, if i ≤ m/2

m/2, if i > m/2

Table 4.3: Table showing the structure and weights of the error signatures resulting

from different error types in a [[n, k, d]] tripartite CPC Hamming code. Each syndrome
~Si = (sXi

|sZi
) consists of a string of bits of length m = n − k. The first part sXi

corresponds to the measurement outcomes from parity qubit block PX . The second

part sZi
corresponds to the measurement outcomes from parity qubit block PZ . The

syndrome vectors ~Spzi and ~Spyi are rows of the syndrome matrices defined in equations

4.5.10 and 4.5.12 respectively.

matrix for Z-errors on the parity qubits

Spz = mT
p ·mb ⊕mc

=

[PX] [PZ]()
[PX] 1m/2 ⊕ 11m/2 wm/2

[PZ] (ALK
)T · ALK

⊕ (wm/2)T 1m/2 ⊕ 11m/2

. (4.5.8)

For an [N,K, 3] Hamming code with adjacency matrix ALK
, the following relation holds

(ALK
)T ·ALK

= 11N−K . This follows from the fact that the Hamming code parity check

matrix HL is orthogonal such that H · HT = 0 [90]. By noting that the parity check

66 CHAPTER 4. COHERENT PARITY CHECK CODES

matrix has the form H = [AT |11], the Hamming code code orthogonality condition can

be expressed as follows

HLK
=
[
(ALK

)T | 11N−K

] [ALK

11N−K

]
= (ALK

)T · ALK
⊕ 11N−K = 0. (4.5.9)

The above expression can then be rearranged to give the desired equality (ALK
)T ·ALK

=

11N−K . Substituting this into equation 4.5.8 gives the final form of the syndrome matrix

for Z-which occur on the parity qubits of a tripartite CPC Hamming code

Spz =

[PX] [PZ]()
[PX] 1m/2 ⊕ 11m/2 wm/2

[PZ] 11m/2 ⊕ (wm/2)T 1m/2 ⊕ 11m/2
, (4.5.10)

where we make use of the fact m/2 = N −K. The term 1m/2⊕ 11m/2 has unique rows,

and from this it follows the matrix S has unique rows representing distinct syndromes

for Z-errors on the parity bits. We now need to verify that the form of these syndromes

is distinct compared to the previously considered errors. This can again be achieved

by examining the syndrome weights and their distributions across the two parity check

blocks PX and PZ . Calculating the weights of the rows in each block of the syndrome

matrix in equation 4.5.10 gives

W (Spz) =

[PX] [PZ]()
[PX] m/2− 1 1

[PZ] 2 m/2− 1
. (4.5.11)

The structure of these syndromes is different to those previously seen. Therefore the

code produces unique syndromes for all single-qubit X- and Z- errors on the code

qubits.

Parity bits: Y -errors. The final error type to consider for the tripartite CPC Hamming

code construction are Y -errors on the parity qubits. The syndrome matrix for this error

4.6. CPC ENCODERS FOR CSS CODES 67

matrix is constructed as follows

Spy = Spx ⊕ Spz =

[PX] [PZ]()
[PX] 1m/2 wm/2

[PZ] 11m/2 ⊕ (wm/2)T 1m/2
. (4.5.12)

Both the 11m/2 ⊕ (wm/2)T and wm/2 components of this matrix have unique rows,

meaning the above matrix admits distinct syndromes for all single-qubit Y -errors on

the parity bits. The weights of the syndromes in Spy are described by matrix

W (Spy) =

[PX] [PZ]()
[PX] m/2 1

[PZ] 2 m/2
. (4.5.13)

The above matrix shows that the Y -errors have a syndrome structure that is distinct

from the other error types. We have now shown that the construction for tripartite

CPC Hamming codes described in theorem 1 produces unique syndromes for X-, Z-

and Y -errors on all of the code qubits. The structures of these syndromes for each error

type are summarised in table 4.3. Therefore, the tripartite CPC code constructed by

combining two copies of a Hamming code Lk with a cross-check matrix of the form given

in equation 4.5.6 will always give a code of distance 3. This concludes the proof.

4.6 CPC encoders for CSS codes

In this section we explore the correspondence between CSS codes and the CPC frame-

work. We begin by proving that all CSS codes can be expressed as a tripartite CPC

codes, and give an explicit example for the seven-qubit Steane code. Following this,

we outline a CPC method that allows (almost) any pair of [N,K, 3] classical codes to

be turned into a [[n = 2N −K + 2, k = K, d = 3]] CSS code.

68 CHAPTER 4. COHERENT PARITY CHECK CODES

4.6.1 The CPC representation of CSS codes

We now show how CSS codes can be described as CPC codes. Our result is encapsulated

by the following theorem.

Theorem 2. Let CCSS be an [[n, k, d]] CSS code with a quantum parity check matrix of

the form

GCSS =
()

HX 0

0 HZ

, (4.6.1)

where HX and HZ are the parity check matrices of two classical codes with rank RX

and RZ respectively. For any such CCSS it is possible to construct a CPC encoder with

adjacency matrices of the form

mb = (α | 0) , mp = (0 | β) , mc =

(
0 γ

γT 0

)
, (4.6.2)

where α is a (k×RX) binary matrix, β is a (k×RZ) binary matrix and γ is a (RX×RZ)

binary matrix.

Proof. For a CPC code, the quantum parity check matrix is given by

GXZ(SCPC) =
()
mT
p mT

b ·mp ⊕mc mT
b 11n−k

, (4.6.3)

where mb, mp and mc are the CPC adjacency matrices. For the purposes of proving

theorem 2, we need to show that equation 4.6.1 can be rewritten into the form of

equation 4.6.3. This will allow us to derive relations for the CPC adjacency matrices

for the CSS code.

We begin by noting that, as both HX and HZ are classical parity check matrices,

4.6. CPC ENCODERS FOR CSS CODES 69

equation 4.6.1 can be rewritten as follows

GCSS =
()

ATX 11n−k 0 0

0 0 ATZ 11n−k
, (4.6.4)

where AX and AZ are the adjacency matrices of the two classical codes HX and HZ .

Once in this form, Gaussian elimination can be performed to further rewrite GCSS into

the form

GCSS =

k RX RZ k RX RZ()︷︸︸︷
J

︷︸︸︷
11RX

︷︸︸︷
K

︷︸︸︷
0

︷︸︸︷
0

︷︸︸︷
0

0 0 0 L M 11RZ

, (4.6.5)

where the numbers above the braces indicate the width of each block of the matrix,

and RZ and RX are the matrix ranks of HX and HZ respectively. The next step in the

proof is to swap the two column blocks of width RX to obtain the parity check matrix

G′CSS =

k RX RZ k RX RZ()︷︸︸︷
J

︷︸︸︷
0

︷︸︸︷
K

︷︸︸︷
0

︷︸︸︷
11RX

︷︸︸︷
0

0 M 0 L 0 11RZ

. (4.6.6)

Note that the previous step corresponds to performing Hadamard gates on the affected

qubits, meaning the modified parity check matrix G′CSS is locally equivalent to the

original. We now take advantage of the fact that a quantum parity check matrix

G = (GX | GZ) is self-orthogonal so that

GX ·GT
Z +GZ ·GT

X = 0, (4.6.7)

70 CHAPTER 4. COHERENT PARITY CHECK CODES

to find an expression for M in terms of J , K and L

GX
CSS ·

(
GZ

CSS

)T
+GZ

CSS ·
(
GX

CSS

)T
=

(
J 0 K

0 M 0

) 0 LT

11RX
0

0 11RZ

+

(
0 11RX

0

L 0 11RZ

)JT 0

0 MT

KT 0

=

(
0 J · LT +K +MT

L · JT +KT +M 0

)
=

(
0 0

0 0

)
.

(4.6.8)

From the above, we see that M = L · JT + KT . By substituting this into equation

4.6.9, we can write G′CSS as

G′CSS =

k RX RZ k RX RZ()︷︸︸︷
J

︷︸︸︷
0

︷︸︸︷
K

︷︸︸︷
0

︷︸︸︷
11RX

︷︸︸︷
0

0 L · JT +KT 0 L 0 11RZ

. (4.6.9)

We are now in a position to make contact between G′CSS and the target form of the

CPC parity check matrix given by equation 4.6.3. We do this by setting

mb =
(
JT | 0

)
, mp =

(
0 | LT

)
, mc =

(
0 K

KT 0

)
. (4.6.10)

It can be seen that the above adjacency matrices have the form specified in equation

4.6.2 when the following substitutions are made: α = JT , β = LT and γ = K. A CPC

encoder can therefore be constructed for any CSS code. This concludes the proof.

4.6.2 Example: A CPC encoder for the Steane [[7, 1, 3]] code

As an example of theorem 2, we now show how a CPC encoder can be constructed

for the famous seven-qubit Steane CSS code [42]. The Steane [[7, 1, 3]] code has the

4.6. CPC ENCODERS FOR CSS CODES 71

|ψ〉D
|0〉p1
|0〉p2
|0〉p3
|0〉p4
|0〉p5
|0〉p6

E

...

...

...

...

...

...

Figure 4.10: The CPC encoder for the [[7, 1, 3]] Steane code.

following parity check matrix

GSteane =
()

H[7,4,3] 0

0 H[7,4,3]

, (4.6.11)

where H[7,4,3] is the parity check matrix for classical [7, 4, 3] Hamming code defined in

section 2.4. Following the procedure outlined in the proof of theorem 2, the above

quantum parity check matrix can be rewritten into the form

G′Steane =

1 0 0 0 0 1 1 0 1 0 0 0 0 0

1 0 0 0 1 0 1 0 0 1 0 0 0 0

0 0 0 0 1 1 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0 0 0 0 1 0

0 1 1 1 0 0 0 0 0 0 0 0 0 1

. (4.6.12)

72 CHAPTER 4. COHERENT PARITY CHECK CODES

Reading off the above, we obtain the following CPC adjacency matrices

mb =
(

1 1 0 0 0 0
)
, mp =

(
0 0 0 1 1 0

)
,

mc =

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 1 1 0 0 0

1 0 1 0 0 0

1 1 1 0 0 0

.

(4.6.13)

The CPC encoder for the Steane code, with the above adjacency matrices, is shown in

figure 4.10.

4.6.3 A CPC method for constructing CSS codes

In this section we introduce a CPC method for the construction of CSS codes from

almost any pair of classical [N,K, 3] codes. Our method adopts the CPC structure

depicted in figure 4.11. This is similar to the tripartite structure introduced in section

4.5, but includes two additional parity qubits P ′X and P ′Z . These qubits, which we refer

to as ‘second-tier’ parity qubits, interact only with other parity qubits. We will see

that the second-tier parity qubits play an important role in ensuring that codes with

the structure given by figure 4.11 are CSS.

The method begins with an [N,K, 3] classical code which we label L. Our procedure

allows (almost) any such classical code to be repurposed in the construction of a CPC

encoder that describes a CSS code with parameters [[n = 2N −K + 2, k = K, d = 3]].

The first step is to define mb and mp adjacency matrices with the following form

mb =
[PX] [P ′X] [PZ] [P ′Z]()
AL 0c 0 0c

, mp =
[PX] [P ′X] [PZ] [P ′Z]()
0 0c AL 0c

(4.6.14)

where AL is the adjacency matrix for the code L and 0c is a column of zeros. The

column labels correspond to the different blocks of parity qubits, as arranged in the

4.6. CPC ENCODERS FOR CSS CODES 73

|ψ〉D

|0〉PX

|0〉P ′X

|0〉PZ

|0〉P ′Z

E

Encoder Decoder

Figure 4.11: The tripartite CPC structure for CSS codes. As with tripartite codes,

the parity qubits are split into bit- and phase-checking blocks PX and PZ . Each block

includes a second-tier qubit, labelled P ′X and P ′Z , which does not interact directly

with the data register and serves as a global check on the parity qubits in the other

block. This means that P ′X checks all the parity qubits in PZ (including P ′Z), whilst

P ′Z checks all the parity qubits in PX . The general forms for the cross-checks (green

gates), bit-checks (blue gates) and phase-checks (red gates) in this circuit are defined

by the adjacency matrices in equations 4.6.14 and 4.6.15.

structure depicted in figure 4.11. Note that the above form ensures that the data qubits

do not interact directly with the second-tier parity qubits P ′X and P ′Z . Next, we define

a cross-check matrix mc with the following form

mc =

[PX] [P ′X] [PZ] [P ′Z]

[PX] 0 0c Q 1c

[P ′X] 0r 0 1r 1

[PZ] QT 1c 0 0c

[P ′Z] 1r 1 0r 0

, (4.6.15)

where Q is an invertible square matrix that does not contain a row of all ones, 1c is

74 CHAPTER 4. COHERENT PARITY CHECK CODES

a column of ones, 1r is a row of ones and 0r is a row of zeros. For most classical

codes L, it is possible to find an appropriate invertible matrix Q such that the CPC

code obtained from the adjacency matrices defined in equations 4.6.14 and 4.6.15 is a

distance-three CSS code.

In order to demonstrate the validity of the above method for the construction of CSS

codes, we first need to show that the CPC codes that result from the adjacency matrices

of the form described in equations 4.6.14 and 4.6.15 produce unique syndromes for all

single-qubit errors. Following this, we will show that the quantum parity check matrices

for these codes are CSS.

Table 4.4 summarises the structure of the syndromes for CPC codes of the type de-

scribed by equations 4.6.14 and 4.6.15. From the table, it can be seen that errors on

the data qubits will always be distinguishable from one another as L is a valid classical

code in its own right. Furthermore, errors that occur on the data qubits do not interact

with the second-tier parity qubits P ′X and P ′Z . This means they can always be distin-

guished from Z-errors on the parity qubits which trigger the second-tier measurements.

The syndrome matrix for Z-errors on the parity qubits is given by

Spz =

[PX] [P ′X] [PZ] [P ′Z]

[PX] 0 0c Q 1c

[P ′X] 0r 0 1r 1

[PZ] ATL · AL ⊕QT 1c 0 0c

[P ′Z] 1r 1 0r 0

, (4.6.16)

An appropriate matrix Q therefore needs to be found in order to ensure that there

are unique syndromes for single-qubit Z-errors on the parity qubits. To show that

this is (almost) always possible, we first note that the term ATL · AL corresponds to

a square matrix. We then make use of a theorem from linear algebra that states

that any square matrix M can be expressed as a sum M = T1 + T2 where T1 and T2

are invertible matrices [91]. If the value of Q is chosen as an invertible matrix, we

can write the following expression ATL · AL ⊕ QT = F where F is another invertible

matrix. Invertible matrices have unique rows. Therefore, choosing Q as an appropriate

invertible matrix will result in a unique set of syndromes in Spz in most cases. The

4.6. CPC ENCODERS FOR CSS CODES 75

X-error syndromes

mb

Z-error syndromes

mp

Y -error syndromes

mb ⊕mp

data

qubits

~Sdi = (sXi
sX′i |sZi

s′Zi
) (AL 0c | 0 0)i (0 0c | AL 0)i (AL 0c | AL 0)i

W (sXi
) ≥ 2 0 ≥ 2

W (sZi
) 0 ≥ 2 ≥ 2

W (s′Xi
) 0 0 0

W (s′Zi
) 0 0 0

X-error syndromes

11m

Z-error syndromes

mT
p ·mb ⊕mc

Y -error syndromes

11m ⊕mT
p ·mb ⊕mc

parity

qubits

~Spi = (sXi
sX′i |sZi

s′Zi
) ~Spxi = (11m)i ~Spzi

~Spyi = ~Spzi ⊕ ~Spxi

W (sXi
)

{
1, if i ≤ m/2

0, if i > m/2

{
0, if i ≤ m/2

> 1, if i > m/2

{
1, if i ≤ m/2

> 1, if i > m/2

W (sZi
)

{
0, if i ≤ m/2

1, if i > m/2

{
> 1, if i ≤ m/2

0, if i > m/2

{
> 1, if i ≤ m/2

1, if i > m/2

W (s′Xi
) 1 1 1

W (s′Zi
) 1 1 1

Table 4.4: Table showing the structure and weights of the error signatures resulting

form different error types in the [[n, k, d]] CPC codes described by theorem ??. Each

syndrome ~Si = (sXi
sX′i |sZi

s′Zi
) consists of a string of bits of length m = n − k.

The parts of the syndrome correspond to the the different blocks of parity qubits as

partitioned in figure 4.11. The syndrome vector ~Spxi is a row of the syndrome matrix

defined in equation 4.6.16.

76 CHAPTER 4. COHERENT PARITY CHECK CODES

caveat is due to fact that Q must not have a row of all ‘1’s, as this would cause a

clash with the syndrome for Z-errors that occur on the second-tier parity qubits. The

consequence of this is that may not be possible to construct a CSS code for certain

classical codes L.

We have now shown that is (almost) always possible to construct a distance-three CPC

code with the structure outlined in figure 4.11 from the starting point of a classical

code L. We now show that such codes are CSS. To this end, we first use equation 4.6.3

to write the quantum parity check matrix for the CPC code

GCPC =

[D] [PX] [P ′X] [PZ] [P ′Z] [D] [PX] [P ′X] [PZ] [P ′Z]

ATL 0 0c Q 1c 0 11 0c 0 0c

0r 0r 0 1r 1 0r 0r 1 0r 0

0 ATL · AL ⊕QT 1c 0 0c ATL 0 0c 11 0c

0r 1r 1 0r 0 0 0r 0 0r 1

.

(4.6.17)

By applying Hadamard gates to the qubits in blocks PX and P ′X the above transforms

to

G′CPC =

[D] [PX] [P ′X] [PZ] [P ′Z] [D] [PX] [P ′X] [PZ] [P ′Z]

ATL 11 0c Q 1c 0 0 0c 0 0c

0r 0r 1 1r 1 0r 0r 0 0r 0

0 0 0c 0 0c ATL ATL · AL ⊕QT 1c 11 0c

0r 0r 0 0r 0 0 1r 1 0r 1

.

(4.6.18)

The above quantum parity check matrix has no overlapping X and Z stabilizers and

is therefore CSS.

4.6. CPC ENCODERS FOR CSS CODES 77

4.6.4 Example: Construction of a [[11, 3, 3]] CSS code from the

classical ring code

In section 4.5.1 we showed how a [[9, 3, 3]] CPC code can be constructed by combining

two copies of the classical ring code into a tripartite structure. However, this code is

not CSS due to the fact that cross-checks are performed between qubits in the same

parity checking block. We now show how an [[11, 3, 3]] CSS code can be constructed

from the ring code using the result proved in theorem ??.

The adjacency matrix for the [6, 3, 3] ring code is given by

A[6,3,3] =

1 0 1

1 1 0

0 1 1

 . (4.6.19)

Substituting this into equations 4.6.14 we get the following CPC adjacency matrices

mb and mp

mb =
[PX] [P ′X] [PZ] [P ′Z]()
A[6,3,3] 0c 0 0c

=

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0
, (4.6.20)

mp =
[PX] [P ′X] [PZ] [P ′Z]()
0 0c A[6,3,3] 0c

=

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0
(4.6.21)

The general form for the cross-check mc(Q) is given by equation 4.6.15. For this

particular example, we set the invertible matrix Q as

Q =

0 1 0

0 0 1

1 0 0

 . (4.6.22)

It can easily be verified, using equation 4.4.12 or otherwise, that the [[11, 3, 3]] CPC

78 CHAPTER 4. COHERENT PARITY CHECK CODES

code defined by mb, mp and mc produces unique syndromes for single-qubit errors. By

inserting equations 4.6.22 and 4.6.19 into equation 4.6.18, we obtain the following CSS

quantum parity check matrix for the [[11, 3, 3]] code

G′CPC =

[D] [PX] [P ′X] [PZ] [P ′Z] [D] [PX] [P ′X] [PZ] [P ′Z]

1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1

.

(4.6.23)

where the labels show the different blocks of qubits.

4.7 Summary and discussion

To summarise, the CPC framework is built around a fundamental gadget in which the

parity information of a quantum register is stored coherently and compared over time.

Under the CPC code structure, the parity information of the quantum register is never

explicitly measured out. A consequence of this is that there are no restrictions on the

form of the parity checks, a freedom that can exploited to facilitate the mapping of

classical codes to quantum codes.

CPC codes have a symmetric structure involving an encode stage, an error stage and

a decode stage. The encoder is the unitary inverse of the decoder, meaning that the

overall action of the CPC circuit is an identity operation if no errors occur. The decode

(and encode stage) of the CPC circuit involve three rounds of parity checks: bit-checks,

phase-checks and cross-checks. The bit- and phase-checks detect X- and Z-errors on

the register respectively. The cross-checks are performed between the parity qubits

themselves, and are designed to detect errors that are indirectly propagated through

4.7. SUMMARY AND DISCUSSION 79

the circuit. The three rounds of parity checks can be compactly represented in terms

of three adjacency matrices.

The encoded stabilizers of a CPC code can be calculated by pushing the initial stabi-

lizers through the encode stage of the circuit. Pauli X- and Z- logical operators can be

calculated via a similar technique. An interesting thing to note is that any combination

of adjacency matrices will result in a stabilizer code when fed into the template pro-

vided by the CPC structure. The only task that then remains to verify the ‘usefulness’

of the code is to measure its code distance. We make use of this feature of the CPC

framework in chapter 7, where we show how new CPC codes can be discovered via

automated methods.

Tripartite CPC codes separate the parity qubits into two blocks to measure bit- and

phase-flip parity measurements separately. In this chapter, we have proved a general

method for turning any pair of [n, k, 3] Hamming codes into a [[2n− k, k, 3]] tripartite

CPC code.

CSS codes can always be represented as CPC codes. Furthermore, we have outlined

a CPC method for turning almost any pair of classical [n, k, 3] codes into a [[2n −
k + 2, k, 3]] CSS code. As an example, we showed how an [[11, 3, 3]] CSS code can be

constructed by combining two copies of the classical [6, 3, 3] ring code. In contrast,

using the traditional method for CSS codes, the same code is derived by combining an

[11, 7, 3] code with an [11, 4, 3] subcode. The advantage of the CPC framework for CSS

code construction is that any code can be used as the starting point, rather than having

to find a pair of codes that satisfy the requirements imposed by the conventional CSS

approach.

In this chapter we have not considered encoded computation for CPC codes beyond the

Pauli X and Z logical operators. In [1], steps were made to find ways of representing

encoded CNOT operations in a CPC circuit. As all CPC codes are stabilizer codes,

existing techniques for achieving universal quantum computation [69] will be applicable.

The CPC constructions for tripartite codes and CSS codes are not optimal in the sense

that they do not saturate the quantum Hamming bound. In chapter 7, we explore

how automated search methods can be used to discover denser code on the quantum

80 CHAPTER 4. COHERENT PARITY CHECK CODES

Hamming bound.

So far, we have limited our study of CPC codes to codes with distance d = 3. However,

as the number of available qubits increases, it will become essential to find codes with

larger distances to ensure reliable operation. As the number of possible error locations

grows exponentially with code distance, it is not easy to find general constructions for

codes with high distance. Possible avenues for resolving these problems are discussed

in chapter 8.6.

Chapter 5

Implementation of a [[4, 2, 2]] CPC

code on the IBM 5Q device

In this chapter, I outline an experiment in which I prepared and ran a [[4, 2, 2]] CPC

detection code on the IBM 5Q superconducting qubit device. The results of this

experiment were originally published in [2].

The IBM 5Q is a small-scale quantum computer, built and maintained by IBM Quan-

tum [92]. The device has five programmable superconducting transmon qubits, and is

accessible to the public via the Internet. Whilst the individual gate-error rates on the

IBM 5Q are too high to suppress the error rate for a quantum memory, our results

show that the syndrome information from a full encode-decode cycle of the [[4, 2, 2]]

CPC code can be used to improve the output state fidelity by post-selection.

In general, it should be noted that the encode-error-decode structure of a CPC code

is not intended as a description of how the corresponding stabilizer code should be

implemented in practice. CPC codes, as presented in the canonical form described in

section 4.3, are not fault tolerant. Therefore, the CPC setup should be treated as a

tool for code discovery rather than code implementation. In this section, however, we

consider the exception that proves the rule. For the case of a [[4, 2, 2]] CPC code –

the simplest possible CPC code for a quantum error model – the encode-error-decode

structure can be leveraged as a useful code implementation strategy. We show that

81

82
CHAPTER 5. IMPLEMENTATION OF A [[4, 2, 2]] CPC CODE ON THE IBM 5Q

DEVICE

Figure 5.1: The connectivity map of the IBMQX4 version of the IBM 5Q quantum com-

puter illustrating the ‘bowtie’ layout. The arrows indicate the allowed CNOT operations

and their preferred directions. This figure originally published in [2].

for the limited case of a [[4, 2, 2]] code, prepared with certain input states, a CPC

circuit can be compiled that is hardened to errors. We then show that the syndrome

information this circuit produces can be used to improve the fidelity of the output

state.

5.1 Experimental overview and conditions for suc-

cess

Ultimately, the condition for success for a quantum code is to test whether the encoded

protocol has a lower logical error rate than the equivalent circuit before encoding [93].

In the case of a CPC quantum memory, the circuit that is encoded is simply an extended

identity operation. The usefulness of the [[4, 2, 2]] code could therefore be assessed by

comparing the fidelity of the encoded output to the equivalent output of an unprotected

two-qubit data register. However, the gate error rates on the IBM 5Q hardware are

so high that such a comparison is unlikely to produce a positive result. This problem

is compounded by the fact that the IBM hardware limits the experiment to a single

encode-decode cycle, meaning certain regions of the [[4, 2, 2]] circuit – before the encoder

and after the decoder – are left unprotected. Consequently, the aim of the experiment

presented here is restricted to demonstrating that, whilst not suppressing the logical

error rate, the [[4, 2, 2]] CPC code does detect errors. We now describe the method by

5.1. EXPERIMENTAL OVERVIEW AND CONDITIONS FOR SUCCESS 83

=
H

H

H

H

(a)

=
H H

(b)

=
H

H

H

H

(c)

Figure 5.2: (a) The direction of a CNOT operation on the IBMQX4 can be reversed

via the addition of Hadamard gates to the inputs and outputs. (b) The conjugate

propagator gate expressed in terms of a CNOT gate. (c) Realisation of a SWAP gate

using three CNOT operations. This figure was originally published in [2].

which this is achieved.

Our experiment on the IBM 5Q encodes a single input state |ψAB〉 = |+A0B〉 using

a [[4, 2, 2]] CPC quantum memory of the type described in section 4.2. The |+A0B〉
state is an easy-to-prepare quantum state that is susceptible to both bit- and phase-flip

errors, and therefore provides a suitable test of the [[4, 2, 2]] CPC code as a quantum

memory.

The compiled [[4, 2, 2]] CPC code is run multiple times with the input state |ψAB〉 =

|+A0B〉 on the IBM 5Q hardware. At the end of each CPC code cycle, the parity qubits

are measured to provide a syndrome designed to indicate if an error has occurred. An

approximation to the output state of the register is reconstructed from the experimen-

tal data using quantum state tomography. The quality of this output is quantified

by calculating its fidelity relative to the input state |+A0B〉. In this experiment we

compare the output fidelity of the [[4, 2, 2]] protocol before and after post-selection. In

the former, the syndrome information is ignored, whereas in the latter it is used to

determine which experimental runs are discarded during post-selection. The condition

for success is that the post-selection should improve the output fidelity. If this is the

case, it will demonstrate that the [[4, 2, 2]] CPC code is detecting errors and produces

useful syndrome information.

84
CHAPTER 5. IMPLEMENTATION OF A [[4, 2, 2]] CPC CODE ON THE IBM 5Q

DEVICE

A : |+〉Q3

B : |0〉Q0

p1 : |0〉Q2

p2 : |0〉Q1

E

(a) The [[4,2,2]] CPC code with a |ψAB〉 = |+A0B〉 input mapped onto the IMBQX4 chip. The red
conjugate propagator gates are not possible according to the connectivity map for the IBMQX4 shown
in figure 5.1.

A : |+〉Q3

B : |0〉Q0

p1 : |0〉Q2

p2 : |0〉Q1

E

(b) A modified version of the [[4,2,2]] circuit in which the order of gates in the encoder and decoder has
be rearranged. In this new form, the circuit can be simplified by noting that the action of the gates
marked in green is the identity.

A : |+〉Q3

B : |0〉Q0

p1 : |0〉Q2

p2 : |0〉Q1

E

(c) A SWAP gate can be added to the [[4,2,2]] circuit to exchange the p1 and p2 parity qubits. This allows
the ‘illegal’ operation marked in red in the decoder to be performed via a nearest-neighbour interaction.

A : |+〉Q3

B : |0〉Q0

p1 : |0〉Q2

p2 : |0〉Q1

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E E

E

(d) When running the [[4,2,2]] code on a real device, it can no longer be assumed that errors occur only in
the wait-stage between the encoder and decoder. For the [[4,2,2]] circuit in question, a single-qubit fault
E after any gate will not propagate a multi-qubit error to the register without triggering a syndrome.

Figure 5.3: Steps for compiling the [[4,2,2]] CPC quantum memory onto the IBMQX4

chip. This figure was originally published in [2].

5.2. COMPILING A [[4, 2, 2]] CPC CIRCUIT ONTO THE IBM 5Q 85

5.2 Compiling a [[4, 2, 2]] CPC circuit onto the IBM

5Q

Our experiment is run on the IBMQX4 version of the IBM 5Q, the technical details

for which can be found in [94]. Figure 5.1 depicts the ‘bow tie’ layout of the chip. The

arrows represent the allowed CNOT operations between qubits. The direction of the

arrow indicates the preferred CNOT direction, but the operation can be reversed via

the circuit transformation shown in figure 5.2a.

The [[4, 2, 2]] code, as outlined in section 4.2, has two data qubits {A,B} and two parity

qubits {p1, p2}. In this experiment, the code qubits are mapped onto the physical qubits

of the IBMQX4 device as follows: {A→ Q3, B → Q0, p1 → Q2, p2 → Q1}. The input

state becomes |ψAB〉 = |+〉Q3
⊗ |0〉Q0

, and the resultant circuit is shown in figure 5.3a.

The two conjugate propagator gates marked in red are not possible on the IBMQX4,

as there is no connectivity between qubits Q3 and Q1 (see figure 5.1). The [[4, 2, 2]]

CPC circuit must therefore be modified to accommodate this hardware constraint.

The first step in compiling the [[4, 2, 2]] circuit for the IBMQX4 is to rearrange the

gates into the order shown in figure 5.3b. This is a departure from the canonical

form of CPC codes outlined in section 4.3. However, it can easily be checked that the

modified circuit remains a functional [[4, 2, 2]] CPC code capable of detecting single X-

and Z-errors on any of the qubits during the wait-stage.

In the rearranged form of the circuit in figure 5.3b, and when the input state is |ψAB〉 =

|+〉Q3
⊗ |0〉Q0

, it can be seen that the action of the gates highlighted in green is the

identity. The green gates can therefore be omitted from the circuit without affecting

the function of the quantum memory. Following this simplification, the only operation

that remains prohibited by the IMBQX4’s connectivity constraints is the red conjugate

propagator gate between Q1 and Q3 in the decoder. One way of resolving this problem

is to perform a SWAP operation between Q2 and Q1, as shown in figure 5.3c. The

SWAP gate exchanges the positions of the p1 and p2 parity check qubits, enabling the

red conjugate propagator gate to be performed via a nearest-neighbour interaction. A

SWAP gate is achieved via the application of three CNOT gates (see figure 5.2c), and

86
CHAPTER 5. IMPLEMENTATION OF A [[4, 2, 2]] CPC CODE ON THE IBM 5Q

DEVICE

is therefore an expensive operation that should be used sparingly. In section 7.2.3 in

chapter 7, we explore how the CPC code design process can be used to minimise the

SWAP gate count when compiling larger codes onto quantum hardware.

5.3 A note on fault tolerance for the [[4, 2, 2]] circuit

So far, we have considered a simplified model of CPC code operation in which it is

assumed errors only occur during the wait-stage between the encoder and the decoder.

However, we have observed that the error rates for CNOT operations and readout on

the IBMQX4 are of the order 10−2 (daily calibration data can be obtained from the

IBM Q website [92]). This realistically means that any quantum code must be designed

to detect errors that occur at any point in the circuit. To this end, figure 5.3d shows

the IMBQX4-compiled [[4, 2, 2]] circuit under a more general error model.

Fault tolerant circuit construction ordinarily necessitates the introduction of additional

qubits [44, 45]. However, in this particular instance of the [[4, 2, 2]] CPC code with a

known |+〉Q3
⊗ |0〉Q0

input, it can be verified that a single fault at any of the locations

marked on figure 5.3d will not propagate a multi-qubit error to the register without

triggering a syndrome. The circuit can therefore be considered to have been hardened

against single-qubit errors in the encode and decode stages of the circuit. It should

be noted, however, that this does not extend the circuit to full fault tolerance when

implemented on the IBMQX4 chip. State preparation and measurement (SPAM) errors

are not accounted for, nor is the [[4, 2, 2]] code capable of detecting correlated two-qubit

errors that might occur after a CNOT gate. Another issue is that the circuit allows

certain single-qubit errors to propagate to the register in an undetectable way. It is

not currently possible to measure, then reset a qubit on the IBMQX4 via the public

API. As a result, our implementation is restricted to a single encode-decode cycle,

meaning the undetected single-qubit errors will reduce the output fidelity. However,

as outlined in [1], CPC codes can be expressed in terms of stabilizer codes. Adopting

this approach allows CPC codes to be implemented using existing syndrome extraction

techniques, and enables errors to be decoded over multiple cycles. Assuming access

to hardware that allows qubit reset, CPC codes implemented in this way would be

5.4. EXPERIMENTAL DATA RECONSTRUCTION METHODS 87

tolerant of the single-qubit errors that propagate to the register.

5.4 Experimental data reconstruction methods

The IBM Quantum Information Software Kit (QISKIT) [95] was used to prepare the

[[4, 2, 2]] experiment for quantum state tomography on the output qubits Q0 and Q3.

QISKIT quantum tomography tools were used to create a set of nine circuits from

the original [[4, 2, 2]] circuit (depicted in figure 5.3c), each of which was designed to

measure the output qubits Q0 and Q3 in a different measurement basis from the list

{XX, XY, XZ, Y X, Y Y, Y Z, ZX, ZY, ZZ}. These quantum tomography circuits

were then run multiple times to create a distribution of results that could be used

reconstruct an approximation to the density matrix of the output state. The QISKIT

method used for state reconstruction from the experimental data was the fast maximum

likelihood method for quantum tomography, a description of which can be found in [96].

The quantum tomography circuits for the [[4, 2, 2]] memory were run in batches of

8192 shots. After each batch, the QISKIT maximum likelihood method was used to

reconstruct the density matrix ρdd of the directly decoded output before post-selection.

The syndrome qubits were then inspected to determine which of the shots in the batch

should be discarded during post-selection. State reconstruction was then performed

again on the reduced set to obtain a post-selected density matrix ρps. The quality

of the directly decoded and post-selected output state for each batch was quantified

by calculating the fidelity, F (ρ) =
(
Tr
[√

ρ1/2σρ1/2
])2

, where σ is the target density

matrix. For the chosen input state |ψAB〉 = |+〉Q3
⊗ |0〉Q0

, the target density matrix is

given by

σ =

1
2

0 1
2

0

0 0 0 0
1
2

0 1
2

0

0 0 0 0

 . (5.4.1)

The purity of the density matrices, defined by P (ρ) = Tr [ρ2], was also calculated to

provide a coherence measure for the output states.

88
CHAPTER 5. IMPLEMENTATION OF A [[4, 2, 2]] CPC CODE ON THE IBM 5Q

DEVICE

Basis states

|00
〉

|01
〉

|10
〉

|11
〉

Basis
sta

tes|00〉
|01〉
|10〉
|11〉

R
e

(ρ̄
)

0.0

0.5
Before post-selection, ρ̄dd

After post-selection, ρ̄ps

Figure 5.4: Plot of the real components of the density matrices ρ̄dd and ρ̄ps corre-

sponding to the experimental output state. The height from the origin of the purple

part of each bar shows the strength of the corresponding density matrix element be-

fore post-selection. The height from the origin of the red part of each bar shows the

strength of the corresponding density matrix element after post-selection. This figure

was originally published in [2].

5.5 Experimental results

The [[4, 2, 2]] CPC quantum memory circuit, depicted in figure 5.3c, was run on the

IBMQX4 device between the 25th and 27th November 2017. A summary of the ex-

perimental results for state purity, fidelity and yield can be found in table 5.1. Error

bars were calculated as one standard deviation of a single run value consisting of 8192

experimental executions of the quantum tomography circuit set. The standard error of

the mean over all 154 runs was too small to be visible on our plots. Calibration data

5.5. EXPERIMENTAL RESULTS 89

Purity, P (ρ) Fidelity, F (ρ) Yield

Before post-selection, ρ̄dd 0.52± 0.02 0.62± 0.03 100%

After post-selection, ρ̄ps 0.74± 0.03 0.75± 0.04 (54± 2)%

no. runs: 154 batches of 8192 shots

Table 5.1: Quality metrics for the reconstructed density matrices before and after post-

selection. The fidelity is calculated relative the target density matrix σ which is defined

in equation (5.4.1). The yield is the proportion of shots per batch that are retained

during the post-selection process. The errors are calculated as one standard deviation

of a single run value consisting of 8192 experimental shots.

for the device on each of the three days of the experiment can be found in appendix C.

A total of 154 batches of 8192 shots were run over the course of the experiment. Figure

5.4 shows a plot of the real components of the elements of ρ̄dd and ρ̄ps averaged across

the 154 batches. It is immediately clear that the post-selected density matrix ρ̄ps better

preserves the four target elements, which we identify as the non-zero elements in the

target state σ given by equation (5.4.1). The bar-chart in figure 5.5 shows these target

elements in isolation, from which it is apparent that post-selection has the biggest

impact in preserving the strength of the off-diagonal coherences. This can also be seen

when comparing the purity values, shown in table 5.1, for ρ̄dd and ρ̄ps. The directly-

decoded density matrix ρ̄dd has a purity of P (ρ̄dd) = 0.52± 0.02, implying it represents

a near-fully mixed classical ensemble with a purity of 0.5. In contrast, the post-selected

density matrix ρ̄ps has a purity of P (ρ̄ps) = 0.74 ± 0.03, suggesting it has undergone

only partial decoherence.

The fidelities of ρ̄dd and ρ̄ps relative to the target state are F (ρ̄dd) = 0.62 ± 0.03 and

F (ρ̄ps) = 0.75 ± 0.04 respectively. The fidelity of the post-selected state is therefore

greater than the directly-decoded state with a confidence level of three standard devi-

ations. From this we can conclude that the [[4, 2, 2]] quantum memory produces useful

syndrome information for protecting a |ψAB〉 = |+A0B〉 state. A consideration, how-

ever, is that the average yield (the proportion of results retained after post-selection)

was (54± 2)% averaged over the 154 batches.

90
CHAPTER 5. IMPLEMENTATION OF A [[4, 2, 2]] CPC CODE ON THE IBM 5Q

DEVICE

|00〉〈00| |00〉〈01| |10〉〈00| |10〉〈10|
Target elements for σ = |+ 0〉〈+0|

0.0

0.1

0.2

0.3

0.4

0.5
R

e[
ρ̄
]

Before post-selection, ρ̄dd

After post-selection, ρ̄ps

Figure 5.5: Plot of the target elements for ρdd and ρps. The target elements are the

non-zero elements in the density matrix σ given in equation (5.4.1). The errors are cal-

culated as one standard deviation of a single run value consisting of 8192 experimental

shots. The height from the origin of the purple part of each bar shows the strength

of the corresponding density matrix element before post-selection. The height from

the origin of the red part of each bar shows the strength of the corresponding density

matrix element after post-selection. This figure was originally published in [2].

5.6 Summary of the IBM 5Q experiment

Our experiment on the IBM 5Q device showed that the syndrome information pro-

duced by a [[4, 2, 2]] CPC quantum memory can be used to improve the fidelity and

purity of the code output. This is an interesting result, as it demonstrates the benefits

of a quantum error detection protocol on an existing device with high error rates. Our

method involved running a single round of the CPC protocol. The logical state was

5.6. SUMMARY OF THE IBM 5Q EXPERIMENT 91

then decoded, and analysed using quantum state tomography. The advantage of this

approach was that syndrome information could be gathered without having to intro-

duce additional ancilla qubits. However, once the error rates of quantum devices such

as the IBM 5Q improve, it will become beneficial to implement multiple rounds of error

detection. Our experiment should therefore be viewed as a proof-of-concept test for

the hardware in its current state, rather than a complete solution for future devices.

In addition to our work, several other experiments have been performed on IBM Quan-

tum devices to test versions of the [[4, 2, 2]] detection code. In [97], it was shown that

certain encoded gates can transform logical states with a higher fidelity than the equiva-

lent circuit on raw qubits. Similarly, in [98], randomised benchmarking techniques were

used to analyse the operation of encoded gates in the [[4, 2, 2]] codespace. Again, the

results showed an improvement in performance compared to the equivalent gates before

encoding. The advantage of using randomised benchmarking is that it provides a way

of measuring gate fidelity that is independent of state preparation and measurement

(SPAM) errors [98].

Chapter 6

Native gates for CPC codes

In our discussion of the CPC framework so far, quantum codes have been expressed

in terms of CNOT and conjugate-propagator gates. The use of such ‘ideal’ gates allows

for intuitive visualisation of the propagation of errors through the decoder, and sim-

plifies the calculation of syndrome tables via the techniques described in section 4.4.5.

However, in practice, the native two-qubit entangling interaction of a given experiment

will be of a different form. As a result, when compiling a QEC code, additional op-

erations are required to allow CNOT and conjugate-propagator gates to be synthesised

from the native interaction. If the native interaction is maximally entangling, this will

involve the addition of single-qubit corrections. Consequently, it can be useful to ap-

proach the problem of code design from the starting point of the native-gate set. This

simplifies the process of translating the code from its theoretical representation to its

hardware-compiled form.

In this chapter, based on work first published in [2], I explore how the symmetric

encode-error-decode structure of the CPC framework allows the operation of stabilizer

codes to be easily studied using a native gates representation rather than CNOT and

conjugate-propagator gates. I first show how the [[4, 2, 2]] CPC code, introduced in

section 4.2, can be efficiently compiled in terms of an ion trap native gate. Following

this, I demonstrate that this result generalises any realistic maximally entangling native

gate. The examples in this chapter outline native gate compilation strategies for the

92

6.1. AN ION TRAP NATIVE GATE 93

non fault tolerant CPC representation of quantum codes. However, the simplification

procedures I outline could equally be applied to codes implemented fault tolerantly.

6.1 An ion trap native gate

Ion traps are considered one the leading platforms for quantum computation. Ion-based

qubits have long coherence times and high-fidelity two-qubit gates [27, 86]. Further-

more, they can be read out with near 100% efficiency [99]. It has also been proposed

that multiple ion-trap cells could be networked via auxillary qubit systems to create

larger hybrid quantum computers [100]. In such a hybrid networked architecture, good

QEC codes will be vital to ensure the quantum data in each ion trap is protected.

In this chapter we consider the construction of CPC codes using an ion trap native

gate. Specifically, we consider an ion trap with a two-qubit entangling native gate that

gives rise to a unitary matrix of the form

U = exp
(
−i
π

2
[Z ⊗ Z] t

)
= eiπt/2

1 0 0 0

0 e−iπt 0 0

0 0 e−iπt 0

0 0 0 1

 . (6.1.1)

where t is a tuning parameter. Such interactions can be realised via geometric phase

gate procedures [101, 102, 103]. In this paper, we consider the symmetrised phase (SP)

gate, which is one of the simplest possible maximally entangling gates that arises from

the above ion trap unitary matrix [104]. The SP native gate is realised by setting the

tuning parameter in equation (6.1.1) to tSP = 1/2. Up to a global phase, the gate can

then be described as a matrix, F , of the form

F q1
q2

=

1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

 , (6.1.2)

94 CHAPTER 6. NATIVE GATES FOR CPC CODES

where q1 and q2 are the input qubits to the gate. In the following section, we explicitly

show how a [[4, 2, 2]] detection code can be efficiently compiled with the SP native gate

of equation (6.1.2). Building on this example, we then demonstrate how efficient com-

pilation is in principle possible for any experimentally realistic maximally entangling

native gate.

6.2 Compiling the [[4, 2, 2]] CPC detection with an

ion trap native gate

Here we show that the [[4, 2, 2]] CPC detection code, introduced in section 4.2, can be

efficiently compiled with an ion trap native gate. For the purposes of this example, we

adopt an ion trap with a SP native gate as introduced in equation (6.1.2) in section

6.1. The SP native gate can be transformed into a CNOT via the application of local

unitary operations to its inputs and outputs. A possible mapping, in matrix equation

form, is given by

CNOTq1q2 = (Iq1 ⊗Hq2) • (Pq1 ⊗ Pq2) • F q1
q2

• (Iq1 ⊗Hq2) , (6.2.1)

where F q1
q2

is the matrix representation of the SP gate defined in equation (6.1.1), and

P is a phase gate defined as P = diag (1,−i). Realising a CNOT gate on ion trap

hardware, via the above mapping, requires the application of the native gate combined

with four single-qubit gates, as shown in figure 6.1a. Likewise, figure 6.1b shows how

the conjugate-propagator gate can be constructed from the native gate via the addition

of six single-qubit operations. We will see that, when the native gates are compiled

into a CPC circuit, constructive simplifications become possible to reduce the total

number of single-qubit gates required.

Figure 6.2 illustrates the steps involved in the compilation and simplification of the

[[4, 2, 2]] CPC code with the SP native gate. The original circuit, expressed in terms

of CNOT and conjugate-propagator gates, is shown in figure 6.2a. The first step of

compilation involves substituting the CNOT and conjugate-propagator gates with the

SP native interaction, via the circuit rewrites rules defined in figure 6.1. The resultant

6.2. COMPILING ION TRAP NATIVE GATES 95

=
H

P

P H

(a)

=
H

H

P

P

H

H

(b)

P
=

P

(c)

Figure 6.1: (a) A CNOT gate expressed in terms of the SP native gate, which is rep-

resented by the connected blue pentagons. The matrix form of the SP native gate is

given in equation (6.1.2). (b) A conjugate-propagator gate expressed in terms of the

SP native gate. (c) Both the phase gate P and the SP native gate are represented as

diagonal matrices in the computational basis. As a result, the P gate can be moved

freely through the SP native gate. This figure was originally published in [2].

circuit is shown in figure 6.2b.

Now that the circuit is written in terms of the native gate, circuit simplifications can

be applied to reduce the single-qubit gate count. In figure 6.2b, pairs of H gates that

cancel to the identity are labelled in red. In the encoder, the H gates labelled in

blue are paired with their counterparts from the decoder. We can now exploit the

symmetry of the CPC code to further reduce the gate-count. The effect of the blue H

gates around the wait-stage is to transform X errors into Z errors and vice-versa, as

described by the following matrix transformations

H • (E = X) •H = H •X •H = Z,

H • (E = Z) •H = H • Z •H = X, (6.2.2)

where E represents the error that occurs in the wait stage. The [[4, 2, 2]] code can

detect both X and Z errors, as shown in syndrome table 4.1 in section 4.2. As a result,

the blue H gates do not change the errors into a form that cannot be detected. The

blue H gates can therefore be discarded without affecting the operation of the [[4, 2, 2]]

code.

Figure 6.2c shows the compiled [[4, 2, 2]] code following the removal of the unnecessary

H gates. Notice that both the P gate and the SP gate are described by diagonal

matrices in the computational basis. As a result, we have the freedom to move P gates

96 CHAPTER 6. NATIVE GATES FOR CPC CODES

|ψAB〉

|0〉p1
|0〉p2

E

(a) The original [[4,2,2]] CPC error detection code expressed in terms of CNOT and conjugate propagator
gates.

|ψAB〉

|0〉p1
|0〉p2

H

H

P

P H

H H

P

P H H

P

P H

H

H

P

P H

H

H

H

P

P H

H
E

H

H

P

P

H

H

· · ·
· · ·
· · ·
· · · H

H

(b) The compiled circuit prior to simplification. Note that parts of the decoder have been hidden to
save space. The pairs of Hadamards, labelled red, cancel to the identity. The blue H gates can also be
discarded without affecting the operation of the code.

|ψAB〉

|0〉p1
|0〉p2

H

H

P

P

P

P

P

P

H P

P

H P

P

E
P

P

H

P

P

H

P

P

P

P P

P

H

H

(c) The circuit following removal of the H gates. The pairs of red P gates combine to form Z gates.

|ψAB〉

|0〉p1
|0〉p2

H

H

P

P

H

H

Z

Z

P

P

P

P

E

P

P

P

P

Z

Z

H

H

P

P

H

H

(d) The Z gates and blue P gates can be moved freely through the SP gates to the centre of the
circuit. Due to their symmetry about the error window, the P and Z gates can be omitted from
the code. The green P gates do not affect circuit operation and are also discarded.

|ψAB〉

|0〉p1
|0〉p2

H H

H H

H H

H H
E

(e) The compiled [[4,2,2]] CPC detection code following circuit simplification. Only four single-qubit
gates remain in the encoder.

Figure 6.2: Compiling the [[4, 2, 2]] detection code with the SP native gate. This figure

was originally published in [2].

6.2. COMPILING ION TRAP NATIVE GATES 97

through the SP native gate as shown in figure 6.1c. Two P gates combine to form a Z

gate as follows P •P = Z. In the circuit in figure 6.2c, pairs of P gates are highlighted

in red. As Z gates are diagonal in the computational basis, they can also be moved

through the SP gates.

In the circuit in figure 6.2d, the Z gates and blue P gates have been pushed to the

centre of the circuit. In the event that no error occurs, these P gates combine to form

a Z-error via the relation Z = P •P . However, the locations of these errors are known,

and they can therefore be accounted for in post-processing. If an error does occur,

the effect of symmetric P gates about the wait stage, E, is to transform X-errors into

Y -errors and vice versa, as described by the following matrix transformation rules

P • (E = X) • P = P •X • P = (−i)Y,

P • (E = Y) • P = P • Y • P = (−i)X, (6.2.3)

where the (−i) global phase does not affect the syndrome measurement. These trans-

formations are unproblematic as [[4, 2, 2]] code can detect both X and Y errors (see

syndrome table 4.1). As the effect of the blue P gates can be described in terms of

single-qubit Clifford operations on the output, they can be removed from the circuit

and accounted for in post-processing. There are also P gates highlighted in green,

located on the register qubits at the beginning and end of each error cycle. These

gates occur before the first round of CPC checks, and can therefore be removed from

the circuit without affecting the final syndrome readout. Finally, the Z gates located

symmetrically about the wait-stage introduce a global phase to the errors. This global

phase does not affect the propagation of errors through the circuit, meaning the Z

gates can be removed. It should be noted that the above simplifications will result in a

modified syndrome table. However, the no-error case will remain unique meaning the

function of the code is maintained.

The final simplified form of [[4, 2, 2]] CPC code compiled with the SP native gate is

shown in figure 6.2e. The single-qubit gate count in the encoder has been lowered from

26 gates in the original compiled circuit (figure 6.2b), to 4 gates in final circuit (figure

6.2e).

98 CHAPTER 6. NATIVE GATES FOR CPC CODES

6.3 Requirements for CPC gates

We have now shown that the [[4, 2, 2]] code can be efficiently compiled with the SP

native gate. Most of the single-qubit corrections can be eliminated, either by direct

cancellation between adjacent Hadamards, or by moving P gates through the circuit.

We now show that efficient CPC code translation, from the idealised CNOT version to

the hardware-compiled version, is possible for a range of native gate types. We begin

by outlining the general requirements for two-qubit gates in a CPC circuit.

In a CPC code, the role of two-qubit interaction gates is to distribute error information

from the register to the parity qubits. For example, CNOT gates propagate bit-errors

from their control to target via the rule in equation (3.6.3). More generally, we require

that the two-qubit CPC gate, Ωq1
q2

, has the ability to change the weight of an error

operator, Ei
q1
⊗ 11q2 , such that

Ωq1
q2
•
(
Ei
q1
⊗ 11q2

)
•
(
Ωq1
q2

)†
=
(
Ej
q1
⊗ Ek

q2

)
, (6.3.1)

where q1 and q2 are the control and target qubits respectively, and Ei,j,k are non-

identity elements of the single-qubit Pauli group. As both Ei
q1
⊗ 11q2 and Ej

q1
⊗ Ek

q2

are Pauli group operators, we see that Ωq1
q2

must be a Clifford gate (for an overview of

the Clifford group see appendix B). CPC quantum memories can be described entirely

in terms of Clifford gates, as their operations are restricted to manipulating stabilizer

states.

Another way of thinking about the CPC interaction gates is in terms of entanglement.

In equation (6.3.1), it can be seen that the general CPC gate de-localises error infor-

mation from the control to the target, suggesting the operation has the potential to

entangle states. Furthermore, we know that elements of the two-qubit stabilizer states

are either maximally entangled or separable. Any Clifford entangling gate that maps

between these states, and therefore any CPC interaction, is a maximally entangling

operation.

We have now established that CPC gates must be maximally entangling Clifford op-

erations. However, many experiments will have native gates that do not satisfy these

6.4. CIRCUIT SIMPLIFICATION WITH ANY MAXIMALLY ENTANGLING
CLIFFORD GATE 99

=
A

C

K
ern

el

B

D

(a)

=
P †

P †

(b)

Figure 6.3: Left: A general maximally entangling Clifford native gate (red triangles)

can be expressed in terms of a kernel supplemented by local corrections on its inputs and

outputs. The kernel will always be of the form CZ or CZ-SWAP . The local corrections,

{A,B,C,D}, are single-qubit Clifford gates and can expressed as products of H and

P gates. Right: The SP native gate expressed in terms of its CZ kernel. This figure

was originally published in [2].

requirements. For example, several qubit technologies have a native interaction of the

form
√

SWAP [105], which is only partially entangling. In these circumstances, multiple

applications of the native gate, in addition to local operations, are required to synthe-

sise the desired maximally entangling behaviour. It is often the case that quantum

computing experiments will have different error rates for single-qubit and two-qubit

gates [28]. Circuit compilation strategies should therefore aim to minimise the gate-

type with the highest error rate. In the case of ion traps, for example, the two-qubit

gates have lower fidelities than single-qubit gates [27, 86].

6.4 Circuit simplification with any maximally en-

tangling Clifford gate

We will now outline general CPC circuit simplification procedures for maximally en-

tangling Clifford gates. It can be shown that all Clifford entangling gates are local

Clifford equivalent to either the CZ or the CZ-SWAP interaction [106, 107]. With this

knowledge, we can write all maximally entangling Clifford gates in terms of a central

kernel, containing either a CZ or CZ-SWAP interaction, supplemented by local Clifford

gates (see figure 6.3a).

The single-qubit Clifford group is generated by P and H gates. Any native gate can

100 CHAPTER 6. NATIVE GATES FOR CPC CODES

therefore be constructed from its by kernel via the addition of local gates generated from

combinations of P and H. The P gates can be trivially pushed through the CZ kernel.

Likewise, it is possible to push P gates through the CZ -SWAP kernels, although the

effect of the SWAP gate must be taken into account.

In section 7.2.4 we demonstrated the compilation of a CPC code using the SP native

gate, which is local Clifford equivalent to a CZ gate. The exact transformation from

CZ kernel to SP gate is shown in figure 6.3b. As the local operations in this case consist

of P † gates, we have the freedom move P gates through the SP native gate. Hadamard

gates H, however, restrict movement, but in many cases will cancel when the native

gate is compiled into a CPC circuit.

The general procedure for compiling a CPC code with a given native gate can now be

written as follows. First, eliminate any unnecessaryH gates by identifying cancellations

between adjacent CPC gates. Second, determine the behaviour when P gates are

pushed through the native gate. As all maximally entangling Clifford gates have either

a CZ or CZ-SWAP kernel, it is often possible to trivially move P gates through each

block of the encoder. Once these simplifications rules have been established, they can

be applied systematically to substantially reduce the CPC circuit gate count.

Chapter 7

Automated design of CPC codes

In chapter 4 I described how the CPC framework provides new approaches to the

design of stabilizer codes. The symmetric encode-error-decode structure of CPC codes

ensures that a commuting set of stabilizers is always obtained, regardless of the form

of the parity checks upon which the code is based. The only task that then remains

to verify whether the resultant CPC circuit ‘works’ is to measure the code distance

for a given error model. Therefore, the CPC framework essentially reduces quantum

code design to a classical decoding problem. In this chapter, I take advantage of this

feature of the CPC framework to show how good quantum codes can be discovered via

simple machine search techniques. As a case study, I describe a design process for the

discovery of CPC code optimised for the hardware and layout demands of a seven-qubit

ion trap. The methods and results outlined in this chapter were first published in [2].

7.1 Machine search for CPC code discovery

A CPC code which encodes k logical qubits in n physical qubits can be compactly

described in terms of three adjacency matrices. These matrices – mb, mp and mc –

were defined in section 4.3 and describe the parity checking sequences in the bit, phase

and cross-checking stages of the encoder respectively. Owing to the fail-safe CPC code

structure, every combination of these three adjacency matrices will correspond to an

101

102 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

[[n, k, d =?]] stabilizer code where d is the code distance. As a result, new CPC codes

can be discovered simply by generating new permutations of the adjacency matrices

and selecting the combinations that have the desired code distance. The CPC approach

to code design allows machine search routines to be set up over a space of stabilizer

codes. This search can be performed using exhaustive, random or more sophisticated

strategies to select the adjacency matrices.

The maximum possible encoding density of a non-degenerate quantum error correc-

tion code is constrained by the quantum Hamming bound, defined in equation 3.2.2 in

chapter 3. In section 4.5, a method was outlined for converting pairs of classical Ham-

ming codes to a quantum CPC code. This approach relied on a tripartite structure,

in which the code qubits were separated into data, bit-checking and phase-checking

blocks. Whilst the tripartite CPC structure is useful for proving general code prop-

erties, it does not always allow for the discovery of codes that saturate the Quantum

Hamming bound. In this section, we show how exhaustive search methods can be used

to discover CPC codes with optimal rates.

7.2 Case study: Designing a CPC code for a seven-

qubit ion trap

The first generation of quantum computers will be limited in size to no more than a

couple of hundred qubits [92, 108]. In this section I outline a design process for con-

structing hardware-optimised quantum codes with the CPC framework. To illustrate

this design process, we outline its application for a idealised seven-qubit linear ion trap.

For simplicity, we limit this example to the discovery of a non-fault tolerant CPC code

for a basic quantum error model. Whilst this first example is proof-of-concept, the

techniques we introduce will also be applicable to the discovery of codes designed for

full fault tolerant implementation.

Our CPC design process is split into three stages. 1) CPC code discovery: numerical

search techniques are used to find CPC codes that maximise the quantum encoding

density for a seven qubit register. 2) SWAP gate compilation: the best CPC codes

7.2. CASE STUDY: DESIGNING A CPC CODE FOR A SEVEN-QUBIT ION
TRAP 103

from the discovered set are identified by analysing which ones have the lowest two-

qubit count when implemented on a linear nearest-neighbour architecture. 3) Native

gate compilation: further optimisations are made by identifying CPC circuits with

efficient translations from the CNOT version of the code to the native gate version,

using the circuit simplification strategies outlined in chapter 6.

7.2.1 Overview of the ion trap model

In our first demonstration of the CPC design process, we consider an idealised linear

ion-trap with seven application qubits. This scheme has been chosen because several

existing ion trap experiments have a similar size and layout [27, 29, 109, 110]. We

assume that this ion trap has a native two qubit entangling gate of the symmetrised

phase gate variety introduced in section 6.1 and defined by equation 6.1.2.

In the design of a CPC code for this seven-qubit ion trap, we assume that during the

wait stage the ion trap qubits are subject to a biased depolarizing noise channel of the

form

E [ρ] = (1− px − pz − pxpz)ρ+ pxXρX + pxpzY ρY + pzZρZ, (7.2.1)

where ρ is the single-qubit density matrix, and px and pz are the probabilities of X-

and Z-errors respectively. This error model assumes the ion trap has independent

error mechanisms for X- and Z-errors, but Y -errors occur only as a result of successive

single-qubit errors of the form XZ and ZX a. Similar error models have recently been

considered in [111, 112]. For the purposes of our ion trap model, we assume that the

error probabilities px and pz are low enough that the probability of Y -errors becomes

negligibly small. The effective error model can then be written as

E [ρ] ≈ (1− px − pz)ρ+ pxXρX + pzZρZ. (7.2.2)

Under the above error model for the idle ion trap qubits, the CPC quantum memory

aNote that the ion trap we consider is an idealised proof-of-concept model, and does not correspond
to a specific ion trap experiment.

104 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

only needs to correct X- and Z-errors. We choose this noise model for our proof-of-

concept outline of the CPC design process, as it corresponds to the simplest possible

non-classical error model. Our aim is to discover non-degenerate quantum codes which

produce a unique syndrome for single X- and Z-errors on any of the seven qubits in

the trap.

When optimising codes for a specific device, it is important to consider the connec-

tivity between qubits. For our ion trap model, we assume that arbitrary single-qubit

operations can be performed on any of the ions in the register. On ion trap hardware,

it is in principle possible to implement interactions between spatially separated qubits,

for example, by exploiting the collective vibrational modes of the ions as a quantum

bus [101]. In practice, however, the fidelity of two-qubit interactions decreases with

separation [113]. For this reason, in our idealised model ion trap, two-qubit gates are

limited to nearest-neighbour interactions. Under nearest-neighbour constraints, inter-

actions between spatially separated qubits are achieved by performing SWAP operations

to move quantum information around the trap. These SWAP operations can be realised

either by physically shuttling qubits between zones of the trap [114], or by synthesising

SWAP gates from CNOT interactions [113]. In stage 2 of the CPC design process, we

show how CPC codes can be compiled with SWAP gates to allow for implementation

with only nearest neighbour interactions.

7.2.2 Stage 1: CPC code discovery

The first stage in the CPC design process involves setting up and implementing a

routine to discover codes appropriate for the target hardware. For the seven-qubit ion

trap subject to the error model defined in equation 7.2.2, the quantum Hamming bound

(equation 3.2.2) tells us that the maximum number of data qubits that can be encoded

in seven physical qubits is kmax = 3 at distance d = 3. The optimal seven-qubit CPC

code will therefore be of the form [[n = 7, k = 3, d = 3]]. Note that as they are distance

d = 3, the [[7, 3, 3]] codes will be able to correct one error per CPC cycle.

An advantage of the CPC framework lies in the fact that new instances of such optimal

codes can be discovered numerically, either using brute-force or more sophisticated

7.2. CASE STUDY: DESIGNING A CPC CODE FOR A SEVEN-QUBIT ION
TRAP 105

14 16 18 20 22

CPC Gate Count

0

20000

40000

60000

C
o
d

es
D

is
co

v
er

ed

Figure 7.1: A histogram showing all of the [[7, 3, 3]] CPC codes discovered in stage

1 of the CPC design process, binned by encoder length. The CPC gate count is the

combined total of CNOT and conjugate propagator gates in the encoder. The median

length, marked in red, is 18. In comparison, the shortest [[7, 3, 3]] circuits have a CPC

gate count of 14. This figure was originally published in [2].

optimisation techniques. We now demonstrate these strategies in practice, by showing

how optimal [[7, 3, 3]] CPC codes can be discovered via exhaustive search.

A [[7, 3, 3]] CPC code has k = 3 data qubits and n−k = 4 parity qubits. The adjacency

matrices therefore have the form

mb =

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

 , mp =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

 ,

mc =

0 c12 c13 c14

c12 0 c23 c24

c13 c23 0 c34

c14 c24 c34 0

 ,

(7.2.3)

where bxy, hxy, cxy are binary values. New CPC circuits can be made by generating

106 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

Encoder gate length (number of CPC gates)

Minimum Median Depth reduction

14 (864 discovered) 18 22%

Size of [[7, 3, d =?]] search space: 1.07× 109 circuits

Number of [[7, 3, 3]] codes discovered: 306, 480 (0.03% of search space)

Number of symmetry-inequivalent [[7, 3, 3]] codes: 2190

Table 7.1: Summary of the exhaustive search for [[7, 3, 3]] CPC codes. The number

of CPC gates is defined as the combined total of CNOT + conjugate propagator gates

in the encoder. The depth reduction is calculated as the percentage decrease in the

encoder length of the smallest circuit relative to the median.

different instances of these matrices. The syndrome matrix for single-qubit X- and

Z-errors is then given by

[p1, ..., p4]

[Edx] mb

[Edz] mp

[Epx] 114

[Epz] mT
p ·mb ⊕mc

. (7.2.4)

The code search task involves finding combinations of the matrices mb, mp and mc

that result in a syndrome matrix with unique rows. These combinations describe the

encoders of [[7, 3, 3]] CPC codes.

The number of possible combinations of the adjacency matrices for CPC circuits of

type [[7, 3, d =?]] is 230. By an exhaustive search, we have discovered that 306, 480

of these permutations (0.03% of the search space) are working [[7, 3, 3]] codes. These

codes have distance d = 3, and produce unique syndromes for all single-qubit X- and

Z-errors across the seven qubits. Of the discovered set, there are 2190 symmetry-

inequivalent codes that cannot be transformed from one to another by rearranging

the qubit order. However, some permutations of the same code are more amenable to

circuit optimisation than others. We will therefore continue to consider the entire set

7.2. CASE STUDY: DESIGNING A CPC CODE FOR A SEVEN-QUBIT ION
TRAP 107

(a)

|ψ〉B

|ψ〉C
|0〉p1

=

(b)

Figure 7.2: (a) A schematic of the seven-qubit linear ion trap. Three of the qubits have

been labelled as data qubits and four as parity qubits as required by the [[7, 3, 3]] code.

It is assumed that entangling gates can only be performed between nearest-neighbour

qubits. (b) A CNOT gate between spatially separated qubits can be implemented using

only nearest-neighbour interactions through the addition of SWAP gates. This figure

was originally published in [2].

of 306, 480 codes in the CPC design process.

Now that a set of [[7, 3, 3]] circuits has been found, the next stages in the CPC design

process involves analysis to determine which one of the 306, 480 codes is best suited

for implementation on the ion trap device. Figure 7.1 shows a histogram of the dis-

covered [[7, 3, 3]] codes, binned by the combined number of CNOT gates and conjugate

propagator gates in their encoder. This quantity will be referred to as the CPC gate

count.

In ion trap hardware, inter-qubit operations are typically the most expensive gate-type

in terms of their potential to introduce errors [27, 86]. As a result, the CPC circuits

with the lowest CPC gate count are most desirable. In the set of [[7, 3, 3]] codes, the

shortest circuit encoders have 14 CPC gates. This is a 22% reduction in circuit depth

compared to the median gate count of 18. The number of [[7, 3, 3]] circuits with the

minimum encoder depth of 14 is 864 of which 245 are symmetry inequivalent. Further

work is therefore necessary to narrow down the code set, and find the optimum quantum

memory for the ion trap device.

The encoder length statistics for the [[7, 3, 3]] CPC codes are summarised in table 7.1.

Note that in this simple first analysis, we have not accounted for any of the constraints

108 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

30 40 50 60 70

Two-qubit gate count (CPC gates + SWAP gates)

0

5000

10000

15000

C
o
d

es
D

is
co

v
er

ed

Figure 7.3: The distribution of [[7, 3, 3]] CPC codes binned by two-qubit gate count

after compilation onto a nearest-neighbour architecture. The total gate count is defined

as the number of CPC gates + SWAP gates in the encode stage of the circuit. This

figure was originally published in [2].

imposed by the ion-trap’s nearest-neighbour requirement for two-qubit operations. In

the next section, we outline how the [[7, 3, 3]] codes can be compiled in such a setting

through the introduction of additional SWAP gates.

The results in this section demonstrate that the CPC framework provides constructive

tools for discovery of optimal [[7, 3, 3]] codes that saturate the quantum Hamming

bound. Furthermore, the search was performed using a simple brute-force technique

that requires only a basic knowledge of the CPC code structure to implement. The

Python script used to perform the code search is approximately 200 lines long, and

required approximately 4 days to run on a CPU clocked at 3.2GHz with 8Gb of RAM.

7.2.3 Stage 2: SWAP gate compilation

The second stage of the CPC design process involves selecting codes to meet the de-

mands of the chosen quantum hardware and its qubit layout. Figure 7.2a shows the

idealised model ion trap under consideration, labelled with 3 data qubits and 4 parity

qubits as required by the [[7, 3, 3]] code. Under the restriction of nearest-neighbour

7.2. CASE STUDY: DESIGNING A CPC CODE FOR A SEVEN-QUBIT ION
TRAP 109

Encoder gate length (number of two-qubit gates)

Minimum Median Depth reduction

27 (1 discovered) 51 47%

Optimum code:

Encoder length=27 gates; no. CPC gates=14; no. SWAP gates=13

Table 7.2: Summary of the gate-count statistics for the set of [[7, 3, 3]] codes following

the SWAP gate compilation. The two-qubit gate count is defined as the number of CPC

gates + SWAP gates. The depth reduction is the percentage decrease in gate-count of

the smallest circuit relative to the median.

connectivity, interactions between spatially separated qubits can still be realised by

performing SWAP operations. For example, interacting qubit B with p1 would first

require a SWAP gate between qubits B and C, or qubits C and p1. In general, circuits

with fewer long range interactions will require fewer SWAP gates, and will therefore

have a reduced two-qubit gate count.

There are a number of strategies for calculating the sequences of SWAP operations

required to compile a CPC circuit on a nearest-neighbour architecture. Here we adopt

a simple approach in which qubits are always swapped in the upwards direction in the

diagram. As an example of this, in figure 7.2b, qubit p1 is swapped upwards, instead of

qubit B being swapped downwards. More advanced SWAP compilation strategies, that

combine upwards and downwards moves, can yield circuits with lower SWAP counts.

However, such analysis is computationally expensive, and can impose a bottleneck in

the CPC design process. By restricting our approach to upwards SWAP moves only, an

exhaustive search of the [[7, 3, 3]] CPC codes remains possible, and is sufficient for this

case study.

Figure 7.3 shows the histogram of the SWAP compiled [[7, 3, 3]] codes distributed by

the total two-qubit gate count (CPC gates + SWAP gates). The optimum [[7, 3, 3]]

CPC code with the shortest encoder is shown in figure 7.4b. The encoder for this

circuit includes 14 CPC gates, and requires an additional 13 SWAP operations to be

implemented on a linear, nearest-neighbour architecture. The depth of the encoder,

110 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

|ψABC〉

|0〉p1
|0〉p2
|0〉p3
|0〉p4

E

(a)

|ψABC〉

|0〉p1
|0〉p2
|0〉p3
|0〉p4

E

(b)

Figure 7.4: Circuit diagrams demonstrating SWAP gate compilation for a nearest-

neighbour architecture. (a) The [[7, 3, 3]] code with the smallest two-qubit gate count

prior to the addition of SWAP gates. (b) The encoder for the same circuit, with

SWAP gates included. This figure was originally published in [2].

7.2. CASE STUDY: DESIGNING A CPC CODE FOR A SEVEN-QUBIT ION
TRAP 111

Local gate count (number of single-qubit gates)

Mininum Median

Before simplification 72 (1 discovered) 92

After simplification 7 (1 discovered) 10

% change 90% 89%

Table 7.3: Summary of the local gate-count for the [[7, 3, 3]] code following compilation

with the SP native gate.

in terms of the number of two qubit gates, is therefore 27. For comparison, the un-

compilied version of this [[7, 3, 3]] code is shown in figure 7.4a.

The results of two-qubit gate count analysis for the [[7, 3, 3]] codes, following compila-

tion onto the nearest-neighbour hardware, are summarised in table 7.2. The optimum

circuit has an encoder length of 27, compared to the median of 51, a 47% reduction

in circuit gate count. Only one CPC code was discovered with the minimum encoder

length. The CPC circuit optimisation, with regards to qubit layout, can therefore be

considered complete.

7.2.4 Stage 3: Native gate compilation

The ion trap under consideration has a native gate that resembles the symmetrised

phase (SP) gate introduced in section 6.1. The final stage of the CPC design process

involves systematically applying the SP simplification procedures described in section

6.2 to each of the 306, 480 discovered CPC codes. The compilation efficiency of a

given code can be quantified by counting the number of local gates that remain in the

simplified circuit. The optimal code for the ion trap device is then identified as the

circuit with the shortest total encoder length, defined by

LCPC = |CPC|+ |SWAP|+ |LOCAL|, (7.2.5)

112 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

|ψABC〉

|0〉p1
|0〉p2
|0〉p3
|0〉p4

H H

H H

H H

H H

H H

H H

H H

E

Figure 7.5: The native gate compiled form of the [[7, 3, 3]] CPC code with the lowest

total gate count. Note that the SWAP operations have been omitted to save space. This

figure was originally published in [2].

where |CPC| is the CPC gate count, |SWAP| is the SWAP gate count and |LOCAL| is the

local gate count.

Table 7.3 summarises the simplification statistics for the local gate counts when the

[[7, 3, 3]] CPC codes are compiled with the SP native gate. Without applying any

simplifications, the median local gate count is 92. After applying the simplification

routine, the median is 10, an 89% reduction in gate count.

The compiled [[7, 3, 3]] CPC circuit with the lowest local gate count after simplification

is shown in figure 7.5. This circuit is compiled from the CPC code with the lowest

two-qubit gate count, as discovered in the last section and depicted in figure 7.4. We

can therefore identify the compiled [[7, 3, 3]] code in figure 7.5 as the optimum code for

our device with a total gate count of LCPC = 34. For comparison, the median total

gate count across all 306, 480 CPC codes was LCPC = 61. The total reduction in circuit

depth for the optimised circuit relative to the median is therefore 44%. Note that it

will not always be the case that the circuit with the lowest two-qubit gate count will

also be the circuit that compiles most efficiently. For this reason, the entire discovered

set of [[7, 3, 3]] CPC codes were considered in stage 3 of the design process, rather than

restricting the analysis to the single code identified in stage 2.

7.3. EXTENDING THE CPC DESIGN PROCESS 113

7.3 Extending the CPC design process

In this chapter we have outlined a design process for the automated discovery and

optimisation of CPC codes by applying it to a seven qubit ion trap device. In the

first stage of the design process, exhaustive code-search methods were used to find

[[7, 3, 3]] CPC codes that saturate the quantum Hamming bound for seven qubits.

These circuits were then modified through the addition of SWAP gates to allow them

to be implemented on a nearest-neighbour architecture. Finally, the circuits were

compiled with a SP native gate. At the end of the design process, the optimum

hardware-ready code with the lowest gate count of LCPC = 34 was identified.

The design process outlined for ion traps will be adaptable to other qubit technologies.

In chapter 6 we demonstrated that the symmetric encode-error-decode structure of CPC

codes allows for efficient compilation with any realistic maximally entangling Clifford

gate. This result means that simplification routines, similar to those seen with the ion

trap SP gate, will be possible for a broad range of native gates from different quantum

hardware.

The final circuit in the outline of the CPC design process, drawn in figure 7.5, shows

the best CPC code in terms of total gate count. Here it was assumed, however, that

each gate type – CPC, SWAP and local – are equal in terms of the overhead they impose

on the code implementation. In practice, however, some types of operations will be

more expensive than others. For example, in an ion trap setting, it is typically the case

that two-qubit interactions have a lower fidelity than single-qubit operations [27, 86].

When implementing the CPC design process, such considerations should be taken into

account for choosing the optimum code for the given device. For example, each CPC

code could be assigned a weighted total gate count, RCPC, given by

RCPC = γ1|CPC|+ γ2|SWAP |+ γ3|LOCAL|, (7.3.1)

where |CPC|, |SWAP| and |LOCAL| are the counts for CPC gates, SWAP gates and local

gates respectively. The count for each gate-type is weighted by a penalty strength γ

which is based on the gate count.

114 CHAPTER 7. AUTOMATED DESIGN OF CPC CODES

In the code discovery stage of the CPC design process for the ion trap device, the aim

was to find working [[7, 3, 3]] codes that saturate the quantum Hamming bound for

seven qubits. This involved calculating the code distance for all possible permutations

of [[7, 3, d =?]] CPC codes, a total of 230 circuits. It was possible to exhaustively

analyse all the circuits in less than a week on a desktop computer. In total, the search

yielded 306, 480 working [[7, 3, 3]] codes (0.03% of the search space).

For a CPC code with 4 data qubits, the quantum Hamming bound tells us that the

optimal CPC code is of type [[9, 4, 3]]. However, there are 250 permutations of this

circuits of the form [[9, 4, d =?]], which is an impractical search space for exhaustive

methods. In the original CPC paper, it was shown that [[9, 4, 3]] codes can be discovered

simply by randomised search [1]. In future work, more sophisticated techniques, such

as simulated annealing or parallel tempering, could be employed to more efficiently

search for CPC codes.

When searching for large CPC codes, the number of circuits in the search space could

be reduced by considering hardware constraints in advance. For example, for a nearest-

neighbour device, each circuit permutation could be assigned a score on the basis of

how many long-range interactions it contains. The code distance would then only be

measured for the circuits with fewer long range interactions. Another optimisation

parameter that could be considered is the weight of the code’s stabilizers, a parameter

that is useful to minimise when constructing fault tolerant circuits. Exhaustive and

random search strategies for quantum code discovery have also been studied in [115,

116]. The particular strength of the CPC framework is that the symmetric encode-

error-decode structure ensures the search is constrained to a space of non-disturbing

codes. Investigating whether optimised CPC search strategies provide a higher density

of good codes compared to other code search techniques would be an interesting area

for future research.

Chapter 8

CPC codes as classical graphical

models

In previous chapters I have shown that the CPC framework provides useful features

for the design of quantum error correction codes. One of the key properties of CPC

codes is that their structure guarantees that the quantum mechanical requirements of

the code, such as stabilizer commutativity, are automatically satisfied. As a result,

the CPC framework in effect reduces the process of quantum code design to a classical

design problem. In this chapter, I expand upon this feature of the framework by

introducing a mapping to allow CPC codes to be expressed in terms of factor graphs

of the type commonly seen in classical information theory and machine learning. As

an example, I demonstrate how this mapping can be used to derive a [[5, 1, 3]] CPC

code using classical code design tools. This can be done without reference to the

underlying quantum mechanics. The ultimate aim of the factor graph representation is

to make it easier to adapt well-developed techniques from classical information theory

for quantum error correction. The work in this chapter is based upon work carried out

in [3].

115

116 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

8.1 Overview of the mapping procedure

The factor graph representation for classical codes was introduced in section 2.3 in

chapter 2. An advantage of this representation is that it gives access to a host of

probabilistic graphical methods for decoding. For example, decoding strategies based

on belief propagation for LDPC codes can achieve performance at close to the Shannon

limit [38, 76].

While classical codes can be trivially expressed as factor graphs, the corresponding

translation for quantum codes is somewhat more involved. The first complication

stems from the fact that classical codes only need to account for one type of error,

bit-flip errors, meaning there is only one edge type in a classical factor graph. This is

problematic as qubits are susceptible to both bit- and phase-type errors. The second

challenge in mapping CPC codes to factor graphs is that factor graph edges are unidi-

rectional in that they only allow for the propagation of information from the data bits

to parity bits. In contrast, quantum parity check operations are performed via unitary

operations that act on the combined system of data plus parity qubits. A consequence

of this unitarity is that the operations are bi-directional, meaning both qubits involved

in the operation can change their state. The parity qubits themselves can therefore

propagate errors to the register, leading to indirect propagation pathways which cannot

be directly represented in a classical factor graph.

Our solution to the above problems involves first translating the CPC circuit to an

intermediary graphical language which we call the operational representation. The

operational representation serves as a quantum analogue of the classical factor graph,

and includes multiple edge types to account for the different types of error propagation

in a quantum code. In addition to this, we provide ways of annotating the operational

representation to provide a visualisation of any indirect error propagation pathways.

Once in the operational representation, the code can then be mapped directly to a

factor graph via a set of graphical rules which we outline in the following sections.

This factor graph corresponds to the classical code representation of the original CPC

code. Classical methods can then be used to design or decode the circuit.

8.2. THE OPERATIONAL REPRESENTATION FOR QUANTUM CODES 117

8.2 The operational representation for quantum

codes

We now introduce an intermediary graphical representation we call the operational

representation of CPC codes. This notation is designed to enable easy visualisation of

the propagation of different error-types between qubits, and will serve as a stepping

stone to our eventual presentation of CPC codes as classical factor graphs.

Graphs of the operational representation have two types of nodes:

1. triangles () representing data qubits and

2. stars () representing parity qubits.

The nodes are connected via edges that denote the parity check operations that are

performed between qubits in a CPC code. In a CPC circuit there are three types of

parity check operation (bit-checks, phase-checks and cross-checks), each of which needs

its own edge-type in the operational representation. Bit-check operations, realised by

CNOT gates, are represented by a red edge between a data node and a parity node.

The mapping for such a bit-check edge, from circuit notation, is shown below

|ψ〉d

|0〉p
E −→ . (8.2.1)

Note that the red bit-check edge is undirected, as errors can propagate in both di-

rections. Likewise, phase-check operations are represented by a undirected black edge

between a data node and parity node. The mapping for a phase-check edge from CPC

circuit notation to the operational representation is given by

|ψ〉d

|0〉p
E −→ . (8.2.2)

118 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

Rule Before Rule After Rule

Virtual Edge
Cancellation

Virtual
Loop
Cancellation

Virtual Edge
Reversal

Virtual Edge
Addition

Table 8.1: Rules for simplifying annotated graphs in the operational representation.

Finally, cross-check edges are represented by an undirected black edge between two

parity check nodes. For the cross-check edge, the mapping from the CPC circuit

notation is written as follows

|0〉p1

|0〉p2
E −→ . (8.2.3)

From equations 8.2.1-8.2.3 it can be seen that the nodes and edges of the operational

representation give a graphical depiction of the parity checking sequences in the en-

coder/decoder of the corresponding CPC circuit. Each edge-type in the operational

representation is mapped from an encode-error-decode CPC cycle in the circuit nota-

tion. We call this the operational representation, as the graph edges correspond to the

physical operations performed between the qubits.

The canonical form for CPC codes, outlined in section 4.3, stipulates that the encoder is

split into three blocks corresponding to the cross-check, bit-check and phase-checking

stages respectively. Under this structure, phase-errors on the parity qubits can be

detected via indirect propagation pathways. In the operational representation, these

8.2. THE OPERATIONAL REPRESENTATION FOR QUANTUM CODES 119

indirect propagation pathways are represented by directed ‘virtual edges’. As an ex-

ample, consider the case shown below, where a data qubit is connected to one parity

qubit via a bit-check edge and another via phase-check edge.

|ψ〉d

|0〉p1

|0〉p2

E −→ . (8.2.4)

A Z-error in the wait-stage on qubit p2 will propagate to the register via the conjugate

propagator gate, before being propagated to qubit p2 by the CNOT gate. The Z-error

on qubit p2 is therefore detected by parity measurement p1 via an indirect pathway.

This is illustrated by the pink virtual edge between the two parity qubits. In general,

the adjacency matrix mv for virtual propagation in a CPC circuit can be calculated as

follows

mv = mT
p ·mb, (8.2.5)

where mb and mp are the adjacency matrices for the bit- and phase-checking stages of

the CPC code respectively. For example, in the circuit shown in equation 8.2.4, mv is

given by

mb =
(

1 0
)
, mp =

(
0 1

)
, mv =

(
0 0

1 0

)
. (8.2.6)

The virtual edge therefore goes from qubit p2 to qubit p1 as shown in the operational

representation in equation 8.2.4. If the CPC circuit contains cross-check operations,

the adjacency matrix for the parity qubits in the operational representation is given

by mv ⊕mc. If the adjacency matrix indicates there is propagation in both directions

between two parity qubits, a cross-check edge is drawn between them. Conversely, if the

propagation only occurs in one direction, a virtual edge is drawn. Simplifications can

be applied directly to the operational representation itself. Table 8.1 lists the complete

set of graphical simplifications for situations in which virtual edges and cross-check

edges are combined.

120 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

8.3 Translation rules mapping the operational rep-

resentation to classical factor graphs

The graphical language of the operational representation, outlined in the previous

section, allows quantum codes to be illustrated in terms of the physical operations

connecting qubits. The operational representation can also be annotated to include

virtual edges that highlight indirect propagation pathways for errors. We now show

how the annotated operational representation can be mapped to an equivalent classical

factor graph notation.

The data and parity nodes in the operational representation correspond to qubits that

store both bit and phase error information. In a classical factor graph, a qubit can

therefore be represented as two bits, one for each type of error as shown by the mapping

below

−→ . (8.3.1)

As a convention, we choose to draw these bits side-by-side, with the node representing

bit information on the left (coloured yellow) and the node representing phase infor-

mation on the right (coloured blue). A parity qubit is also mapped to two bits in the

classical factor graph notation via the following rule

−→ + . (8.3.2)

The bit information component of a qubit is used as a parity measurement, and is

therefore drawn as a classical parity check node. The phase information of parity

check qubit, however, cannot be directly measured (as all measurements in a CPC

circuit are performed in the computational basis). As such, the phase-information

component of the parity check qubit is mapped to an unmeasured classical data bit

(shown in blue on the right).

We can now describe how the different edge types in the operational representation are

drawn in a classical factor graph. Bit-check edges connect data qubits to parity qubits.

Their action is to propagate bit information from the data qubit to the parity qubit

8.3. TRANSLATION RULES MAPPING THE OPERATIONAL
REPRESENTATION TO CLASSICAL FACTOR GRAPHS 121

and phase information in the opposite direction. The mapping of a bit-check edge to

classical factor graph notation is shown here:

−→
+

. (8.3.3)

An edge is drawn between the bit information component of the data qubit and the

bit information component of the parity qubit. Notice, however, that there is no edge

drawn between the phase-components of two qubits to indicate the propagation of

phase-flip errors from the parity qubit to the data qubit. This is omitted, as there

is no concept of indirect error propagation in a classical factor graph; the edges in

a classical factor graph are only permitted between bit and factor nodes, and not

between nodes of the same type. Instead, indirect propagation of errors is accounted

for in classical factor graphs by placing edges in the place of the virtual edges in an

annotated operational factor graph. An explicit example of this is shown later in this

section.

The classical factor graph representation of a phase-check edge reads:

−→
+

. (8.3.4)

The phase component of the data qubit is connected to the bit-component of the parity

qubit via an edge. This shows that the phase-check edge propagates phase-errors on

data qubits to bit-errors on the parity qubits. Recall that phase-edges are symmetric,

and that error propagation also occurs in the reverse direction. The back-propagation

of errors in this way is not shown in the classical factor graph. The reason for this is

again that edges are only permitted between bit and factor nodes in a classical factor

graph.

122 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

The classical factor graph representation of a cross-check edge reads:

−→
+

+

. (8.3.5)

The phase-component of each qubit is connected to the bit-component of the other.

This reflects the expected error propagation behaviour for cross-check edges.

The next component to be mapped to classical factor graphs are the virtual edges that

depict the indirect propagation of errors through the code. Virtual edges show how

a phase-error on one parity qubit can be detected as a bit-flip error on another. The

classical factor graph mapping of a virtual edge is given by

−→
+

+

. (8.3.6)

A virtual edge is directed meaning error information only propagates in one direction.

The final translation rule is for the virtual self loop edge. In the classical factor graph

notation this edge is represented as follows:

−→ + . (8.3.7)

8.4 Example: Designing a [[4,2,2]] CPC code using

the factor graph mapping

We have now outlined how to translate graphs of the operational representation to

classical factor graphs. In this section, we describe how such mappings can be useful

in the construction of a [[4, 2, 2]] CPC detection code.

In section 4.2 we showed how a preliminary [[4, 2, 1]] CPC code can be constructed

8.4. EXAMPLE: DESIGNING A [[4,2,2]] CPC CODE USING THE FACTOR
GRAPH MAPPING 123

by combining bit-flip and phase-flip [3, 2, 2] codes. One of the principal challenges in

designing CPC codes is finding an appropriate set of cross-checks to achieve the desired

code distance. For the case of a detection code, we require that d = 2. Whilst for small

codes, such as the [[4, 2, 2]] code, it is possible to find the cross-check operations by

inspection, for larger codes this can become a difficult problem. We now show how

the factor graph mapping allows classical code design techniques to be employed in the

discovery of the cross-checks.

The [[4, 2, 1]] CPC code, formed by combining two copies of a classical [3, 2, 2] code,

maps to the operational representation as follows

|ψ〉d1

|ψ〉d2

|0〉p1

|0〉p2

E −→ . (8.4.1)

In the above, two virtual edges have been added between the parity qubits in accordance

with the rule defined in equation 8.2.4. However, as these edges act in the same

direction, they cancel each other out (see the simplification rule in table 8.1). Once the

preliminary [[4, 2, 1]] CPC code has been mapped to the operational representation, it

can be further mapped to a factor graph following the rules outlined in section 8.3, as

shown below.

−→

+

+

. (8.4.2)

By inspection of the factor graph above, it is immediately clear that there are two bits

that go unchecked, meaning the code has distance d = 1. This problem can be resolved

by adding pairs of edges to the classical code until it has distance d = 2. An example

124 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

of how this can be achieved is shown to the left of the equation below

+

+

−→ . (8.4.3)

Once the classical code has the desired properties, it can be mapped back to the

operational representation as shown to the right of the equation above. For this specific

example, the two edges that were added to the classical factor graph map to a cross-

check between the two parity qubits in the operational representation. The circuit this

operational representation corresponds to is given by

−→

|ψ〉d1
|ψ〉d2
|0〉p1
|0〉p2

E . (8.4.4)

The above circuit is a [[4, 2, 2]] CPC code identical in form to the CPC code derived in

section 4.2.

8.5 General rules for constructing tripartite CPC

codes using classical factor graphs

In the previous section we outlined how the factor graph mapping can be used to

diagnose and resolve the problems with the preliminary [[4, 2, 1]] code to obtain a circuit

with distance d = 2. Whilst this was a simple example, the factor graph formalism

provides a highly general tool for the design of quantum error correction codes. We now

outline a specific code design strategy for tripartite CPC codes that can be employed

using classical factor graphs, without having to refer back to the operational form after

8.5. GENERAL RULES FOR CONSTRUCTING TRIPARTITE CPC CODES
USING CLASSICAL FACTOR GRAPHS 125

the initial mapping. Our approach enables quantum codes to be constructed using

classical techniques and does not require detailed knowledge of quantum mechanics.

The steps of this code design procedure can be summarised as follows:

1. Construct a preliminary code in the annotated operational representation by

combining two classical codes using the tripartite structure described in section

4.5. Convert the resultant graph to a classical factor graph using the mappings

described in section 8.3.

2. Calculate the distance of the preliminary code in its factor graph form.

3. Determine the form of the cross-checks that need to be added to fix the code

distance to the desired length.

4. Map back to the operational representation to get the corresponding CPC circuit.

Following the initial mapping from the operational representation, the optimisation

steps of the code design process (steps 2 and 3) are carried out entirely within the

classical factor graph framework. This is advantageous as it provides a simple setting

for code optimisation; only one error-type needs to be considered, and existing classical

code design techniques can be employed. The reason that this method can be followed

without reference to the operational form is that the addition of cross-checks does not

lead to any indirect propagation of errors. In a classical factor graph, cross checks are

added between parity qubits according to the following rule,

+

+

−→

+

+

. (8.5.1)

where a pair of edges link the phase component of one qubit to the bit component of

the other. A situation which may be encountered when using this rule, occurs when

a cross-check is applied between qubits that are already connected by one or more

edges. For this case, we need to define a simplification rule for a double edge. Since

126 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

two successive bit-flip operations will cancel each other out, the following rule applies

+
−→

+
. (8.5.2)

As an example, consider the case, depicted below, in which a cross-check is added

between a pair of qubits that are already connected by a virtual edge,

+

+

−→

+

+

−→

+

+

. (8.5.3)

The double edge that is formed cancels to give the factor graph on the right. From

this, we can deduce the rule that when a cross-check is added between a pair of qubits

already connected by a virtual edge, the direction of the virtual edge is reversed.

8.6 Example: Designing a [[5, 1, 3]] CPC code using

the factor graph mapping

As an example of the CPC factor graph design process, we now walk-through the

construction of [[5, 1, 3]] tripartite code. We start by combining two copies of a classical

[3, 1, 3] code into a tripartite CPC structure to create a [[5, 1, 2]] preliminary code.

The circuit for this code, along with the corresponding mapping to the operational

representation, is shown below

|ψ〉d1
|0〉p1
|0〉p2
|0〉p3
|0〉p4

E −→ , (8.6.1)

8.6. EXAMPLE: DESIGNING A [[5, 1, 3]] CPC CODE USING THE FACTOR
GRAPH MAPPING 127

Note that the two parity qubits to the top of the diagram correspond to the bit-check

block of the tripartite code, whilst the bottom two parity qubits are the phase-check

block. The next step in the design process is to annotate the operational representation

to depict any indirect propagation pathways. Once in this form, we can map to the

factor graph representation as follows

−→

+

+

+

+
.

(8.6.2)

In the factor graph representation, we see that each bit is connected to at least one

parity node so that the code has distance d = 2. However, our target distance is d = 3,

meaning the code needs to be modified so that an error on any of its bits produces a

unique syndrome. Our mapping translates each qubit in the operational representation

to two data bits in the factor graph. Single-bit errors in the classical code therefore

refer to either a X- or a Z-error in the CPC code. However, in quantum codes, it is

usually also necessary to consider Y -errors. In the classical factor graph, such Y -errors

can modelled as classical ‘burst’ errors affecting both the phase and bit components of

a given qubit. Therefore, in order to verify that the classical code has d = 3, we need

to check syndromes for all of the possible ‘burst’ errors in addition to the single-qubit

errors.

The next stage of code design involves modifying the classical code by adding cross-

checks via the rule described in equation 8.5.1. For this particular example, we first

apply cross-checks between the parity qubits in each block. These cross-checks are

128 CHAPTER 8. CPC CODES AS CLASSICAL GRAPHICAL MODELS

marked in blue in the factor graph below

+

+

+

+

−→

+

+

+

+

.

(8.6.3)

The second set of cross-checks are added between the two blocks, and are highlighted

in green in the factor graph to the left of the above equation. Once the these cross-

checks have been added, it can be confirmed that all single-bit and (weight-two) burst

errors on the factor graph produce a unique syndrome. The code therefore has distance

d = 3. The factor graph to the right of the above equation is the simplified form ob-

tained by applying the rule defined in equation 8.5.3. Mapping back to the operational

representation, we get the graph and CPC circuit shown below

−→

|ψ〉d1
|0〉p1
|0〉p2
|0〉p3
|0〉p4

E .

(8.6.4)

The above circuit is a [[5, 1, 3]] code capable of uniquely identifying single-qubit X-,

Y - and Z-errors on any of the five qubits. Codes of this type are often referred to

as perfect codes as they are the smallest possible distance three codes allowed by the

quantum Hamming bound [117].

Chapter 9

Conclusions and outlook

In this thesis, I have introduced the Coherent Parity Check (CPC) framework as an

alternative perspective on the design and analysis of stabilizer codes. Central to the

CPC framework is a symmetric encode-error-decode structure that allows any sequence

of parity checks to be turned into a stabilizer code. We have seen that this freedom

in the choice of parity checks affords the CPC construction various advantages over

existing approaches to code design. In this section, I summarise our main results and

propose avenues for future work.

9.1 Summary

As a first use-case, we explored the application of CPC techniques for the mapping of

classical codes to quantum codes. The CPC code structure allows any pair of classical

codes to be interpreted as the bit- and phase-checking stages of a quantum code.

The resultant circuit is guaranteed to be a stabilizer code, but will have a reduced

code distance (relative to the original classical code) owing to indirect propagation of

errors through the circuit. We showed that this problem can be resolved through the

addition of cross-check operations between the parity qubits themselves. Following

this, we introduced the tripartite structure for CPC codes, which provides a structural

template to facilitate the mapping of classical codes to quantum codes. In particular, we

129

130 CHAPTER 9. CONCLUSIONS AND OUTLOOK

outlined a method that enables any [n, k, 3] classical Hamming code to be re-purposed

as an [[2n− k, k, 3]] tripartite CPC code.

We showed that an existing family of quantum codes, the CSS codes, can be represented

as CPC codes. Furthermore, we introduced a CPC method that enables almost any

pair of classical [n, k, 3] codes to be turned into a [[2n − k + 2, k, 3]] CSS code. In

contrast, the traditional method for the construction of CSS codes requires a pair of

initial codes, C1 and C2, that satisfy the condition C2 ⊂ C1. As an example, we showed

how an [[11, 3, 3]] CSS code can be constructed from the starting point of two copies

of the classical [6, 1, 3] ring code. For comparison, the same code can be constructed

via the conventional CSS method, but requires combining an [11, 7, 3] code with an

[11, 4, 3] code. The CPC method is therefore more constructive in that the resultant

quantum code closely resembles the operation of the classical code from which it was

derived.

The CPC framework allows stabilizer code search problems to be formulated in a way

that is particularly amenable to machine search. This is due to the CPC code structure

that enables any sequence of parity checks to be turned into a stabilizer code; new codes

can therefore be discovered simply by generating sequences of parity checks. The only

task that then remains in order to assess the usefulness of the code is to measure the

code distance. As a proof-of-concept example, we used exhaustive search to discover

CPC codes for an idealised seven-qubit ion trap. A large set of circuits was discovered,

from which we were able to select the one that best suited the needs of the device.

Quantum codes are usually represented in terms of idealised gates such as CNOT and

conjugate-propagator gates. However, qubit technologies will often have native gates

that are of a different form. We demonstrated that a strength of CPC codes is that they

can be understood and analysed in terms of any realistic maximally entangling Clifford

gate. This allows quantum codes to be designed directly with a device’s native gate,

bypassing the need for onerous – and often resource intensive – translation between the

theoretical version of a quantum circuit and the hardware compiled version. This result,

combined with the ability to discover new CPC codes via machine search, means the

CPC framework is a powerful tool for the design of bespoke quantum error correction

protocols tailored to the needs of a given device.

9.1. SUMMARY 131

Small-scale quantum computers are currently in development. However, the qubit er-

ror rates of these devices are typically too low to realise large-scale error correction

codes. Quantum detection codes offer the simplest protocols for implementation on

early hardware. The smallest quantum detection protocol is the [[4, 2, 2]] code, for

which there is a convenient representation in the CPC framework. We demonstrated

that such a [[4, 2, 2]] CPC code can be specially compiled to be run on the IBM 5Q

device. The code was specially modified so that it would be tolerant to some errors

in the encode/decode stages of the CPC code. The output of the code was analysed

using quantum state tomography. Our results showed that the code’s syndrome mea-

surements could be used to improve the fidelity of the circuit output, relative to the

case in which the syndrome measurements were ignored.

The CPC framework provides a fail-safe template that guarantees a stabilizer code from

the starting point of any sequence of parity checks. As such, we can think of the CPC

framework as a tool that reduces the problem of discovering new codes to a classical

design problem. Taking advantage of this feature, we demonstrated that CPC codes can

be mapped to factor graphs of the type commonly seen in classical information theory

and machine learning. Our mapping first involves translating the CPC circuits to a

special-purpose intermediary graphical language called the operational representation.

The role of this operational representation is to abstract away the quantum mechanical

aspects of CPC codes, such as indirect propagation. Following this, the CPC code is

in a form that can be directly mapped to classical code with a corresponding factor

graph representation. Classical methods and intuition can then be used to complete the

design of the code, without any reference to the underlying quantum mechanics. As an

example, we showed how the factor graph representation can be used to find appropriate

cross-check operations in the design of a [[5, 1, 3]] CPC code. More generally, the

expectation is that the factor graph mapping for CPC codes will make it easier to

adapt techniques from classical information processing to the design of quantum error

correction codes.

In summary, the CPC framework gives a new way to approach the design and anal-

ysis of quantum codes. CPC methods have been demonstrated for systematic code

construction, as well as code discovery via automated search routines. Furthermore,

the CPC factor graph mapping admits a representation of quantum codes that can

132 CHAPTER 9. CONCLUSIONS AND OUTLOOK

|ψ〉L

|0〉A

|0〉F

H

Pi

H

Figure 9.1: The flag method for syndrome extraction. A stabilizer operator Pi is

applied to the register |ψ〉L, and the result copied to an ancilla qubit A. Phase-flip

errors on the ancilla are detected via two conjugate propagator gates that connect to a

flag qubit F . The flag-check scheme is similar to the symmetric CPC gadgets we have

covered in this thesis.

be understood without detailed understanding of quantum mechanics. This will pro-

vide access to large and established fields of expertise from classical information theory,

which will prove particularly useful as quantum computers move closer to being realised

in full.

9.2 Outlook

9.2.1 CPC methods for fault tolerant syndrome extraction

As discussed in section 3.7, when measuring the stabilizers of a code, fault tolerant

syndrome extraction methods are required to ensure that errors do not spread to the

code qubits in an uncontrolled way. However, such fault tolerant techniques can add

considerable overhead in terms of the number of ancilla qubits required. For example,

the Shor method for syndrome extraction [44], requires λ ancillas to measure a stabilizer

Pi, where λ is defined as the weight of the stabilizer λ = W (Pi). Recently, the so-called

flag method for syndrome extraction was proposed by Chao and Reichardt [88, 118],

and further developed by Chamberland and Beverland [119]. The flag scheme is a novel

technique that allows a code stabilizer to be measured with only two ancilla qubits,

regardless of the stabilizer’s weight. The general construction for the flag syndrome

extraction method is shown in figure 9.1. From this figure, the stabilizer is measured

9.2. OUTLOOK 133

and copied to ancilla qubit A, which is read out to give the syndrome. An additional

flag qubit F is also included, so that any Z-errors on the ancilla qubit A can be

detected. This flag-check is performed via two conjugate-propagator gates either side

of the syndrome extraction stage of the circuit. It is clear from figure 9.1 that the

flag-check is similar in form to the fundamental CPC gadget. As such, it would be

interesting to investigate whether the CPC methods described in this thesis could be

useful in the design of flag syndrome extraction circuits.

Recently, in [120], an alternative method for flag syndrome extraction was proposed

in which all code stabilizers are measured in parallel. The idea is that flag-checks can

be performed between the ancilla qubits themselves, instead of having to introduce

a dedicated flag qubit for each stabilizer. In [120], examples of how this might be

achieved were included for the [[4, 2, 2]] detection code and the Steane [[7, 1, 3]] code.

These circuits were compiled manually, and no general construction was provided for

larger codes. It is possible that our CPC auto-design methods could be used in the

construction of such flag checking routines.

9.2.2 Maximum entropy decoding of quantum codes

As outlined in chapter 8, CPC codes can be mapped to factor graphs of the type

commonly seen in classical error correction and machine learning. The resultant factor

graph is a classical representation of the initial CPC code. The aim of the factor

graph mapping is to provide an easy way of adapting classical techniques for quantum

error correction. A potential use-case is to explore whether classical decoding methods

can be applied to quantum codes. In a paper currently in preparation [121], we are

investigating how a maximum entropy decoding technique for classical codes can be

applied to quantum codes via a factor graph mapping.

It has been shown that classical error correction codes can be represented as Ising

spin models [122]. This allows the error correction code to be described by an Ising

Hamiltonian of the form HEC(S). The ground-state of HEC(S) then corresponds to

the lowest weight error consistent with the syndrome S. Finding the ground-state of

HEC(S) is therefore equivalent to performing a maximum-likelihood decode of the error

134 CHAPTER 9. CONCLUSIONS AND OUTLOOK

correction code (for an explanation of maximum-likelihood decoding see section 2.5).

An alternative decoding strategy is the maximum entropy decoding method. In max-

imum entropy decoding, a Boltzmann distribution is first constructed from the Ising

Hamiltonian. It has been shown that the temperature of this probability distribution

can be precisely related to the error rate of the code bits [123]. The motivation for

adopting a maximum entropy inference technique, is the idea that this prior informa-

tion about error rates can be used to improve decoding performance relative to the

maximum likelihood method. As a result, maximum entropy decoding is sometimes

described as a method for decoding at finite temperature (and therefore also finite error

rate) [124].

The error rates on a quantum computer can be measured using techniques such as

randomised benchmarking [125]. Consequently, it is interesting to investigate whether a

maximum entropy decoding strategy could improve the performance of a quantum code.

The factor graph mapping for CPC codes, outlined in chapter 8, allows quantum codes

to be represented as a classical factor graphs. We have shown that a maximum entropy

inference strategy – after some modification – can be applied to these factor graphs to

provide a way of decoding a quantum code. In [121], we will present benchmarks to

compare the two decoding techniques for small quantum codes.

In [90], it was demonstrated that maximum entropy decoding strategy could be run

on a programmable quantum annealing device. The results showed an improvement

in decoding performance over a maximum-likelihood method. Ultimately our aim is

to perform a similar experiment for decoding quantum codes. This would likely be

the first instance of a quantum computing device being used to decode a quantum

computer.

9.2.3 CPC codes with increased code distance

In this thesis, we have only considered CPC codes of distance d = 3. However, efficient

codes with larger block sizes will require higher distances. This adds an extra layer of

complexity to CPC design, as calculating the code distance is exponentially expensive

9.2. OUTLOOK 135

in d. One potential solution to this problem is to find an alternative metric for assessing

the quality of a code. For example, in classical error correction, effective logical error

rates are calculated for large codes using Monte Carlo methods [126]. Such techniques

are sufficient to give a real-world indication of a code’s performance.

Another challenge to be overcome with the design of CPC codes is the problem of

finding cross-check operators. For the distance-three codes considered in this thesis, it

was possible to find appropriate checks via direct inspection. However, as the distance

of a code is increased, such an approach becomes more difficult as the number of error

permutations to be considered scales exponentially. Recently, quantum low density

parity check (LDPC) codes have become an active area of research [61]. These quantum

LDPC codes are designed so that the number of encoded qubits k, and the code distance

d, scales linearly with block size n. Various constructions have been proposed that come

close to satisfying these requirements [62, 63, 127, 128], and it would be interesting to

investigate the use of CPC methods in their further development.

Appendix

A The Pauli group

The Pauli group on a single-qubit, G1, is defined as the set of Pauli operators

G1 = {±11,±i11,±X,±iX,±Y,±iY,±Z,±iZ}, (A1)

where the ±1 and ±i terms are included to ensure G1 is closed under multiplication

and thus forms a legitimate group [6]. In matrix form, the four Pauli operators are

given by

11 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (A2)

The general Pauli group, G, consists of the set of all operators that are formed from

tensor products of the matrices in G1. For example, the operator

11⊗X ⊗ 11⊗ Y ∈ G (A3)

is an element of the four-qubit Pauli group. Note that for simplicity, in the context

of quantum computing, the above operator would usually be expressed as X2Y4. The

identity operators are omitted, and the remaining elements are subscripted with the

label of the qubit they act on.

The elements of the Pauli group have eigenvalues {±1,±i}. Another useful property of

136

B. THE CLIFFORD GROUP AND STABILIZER STATES 137

the Pauli group is that its elements either commute or anti-commute with one another.

B The Clifford group and stabilizer states

The Clifford group C is defined as the set of operators that normalise the Pauli group

such that

UC • Pi • U
†
C = Pj, UC ∈ C, {Pi, Pj} ∈ G ∀ {i, j}, (B1)

where UC ∈ C is a Clifford operator and Pk are elements of the Pauli group. Clif-

ford gates, C, are generated by the set of three gates 〈CNOT , H, P 〉, such that

C = 〈CNOT , H, P 〉 [46]. Likewise, single-qubit Clifford gates, C1, are generated by

the set 〈H,P 〉, such that C1 = 〈H,P 〉.

The stabilizer states are all the quantum states that can be reached from a blank

register, |0〉⊗N , via the application of Clifford gates and computational basis measure-

ments. Quantum circuits consisting only of Clifford gates acting on stabilizer states can

be efficiently classically simulated. The proof of this is given by the Gottesman-Knill

theorem [48]. Although the Clifford group is not a universal quantum gate set, it is

sufficient for simulating many QEC circuits and all the quantum memories described

in this paper.

C IMBQX4 calibration data

The experiment on the IBMQX4 outlined in chapter 5 was run over three days on 25th

November 2017, 26th November and 27th November 2017. The calibration data for each

of these days can be found below:

{Date: 11-25-2017,

Single-qubit error rates (10^-3):

{Q0: 0.94, Q1: 0.60, Q2: 1.12, Q3: 1.37, Q4: 1.80},

Readout error rates (10^-2):

138 CHAPTER 9. CONCLUSIONS AND OUTLOOK

{Q0: 4.10, Q1: 5.70, Q2: 4.00, Q3: 3.30, Q4: 5.10},

Two-qubit error rates (10^-2):

{CX1_0: 1.88, CX2_0: 2.09, CX3_2: 1.97, CX2_1: 4.28, CX3_4: 2.15, CX2_4: 3.89}}

{Date: 11-26-2017,

Single-qubit error rates (10^-3):

{Q0: 0.86, Q1: 0.69, Q2: 1.12, Q3: 1.89, Q4: 2.06},

Readout error rates (10^-2):

{Q0: 4.10, Q1: 4.10, Q2: 4.30, Q3: 5.30, Q4: 7.10},

Two-qubit error rates (10^-2):

{CX1_0: 2.31, CX2_0: 2.22, CX3_2: 2.18, CX2_1: 4.80, CX3_4: 2.43, CX2_4: 3.93}}

{Date: 11-27-2017,

Single-qubit error rates (10^-3):

{Q0: 0.77, Q1: 0.43, Q2: 1.20, Q3: 1.72, Q4: 1.89},

Readout error rates (10^-2):

{Q0: 3.70, Q1: 4.90, Q2: 4.20, Q3: 5.30, Q4: 5.80},

Two-qubit error rates (10^-2):

{CX1_0: 2.01, CX2_0: 1.93, CX3_2: 2.75, CX2_1: 4.47, CX3_4: 2.28, CX2_4: 4.13}}

Additional Acknowledgements

I was supported by a Durham Doctoral Studentship (Faculty of Science) during my

PhD studies. We acknowledge use of the IBM Quantum Experience for this work. The

views expressed are those of the authors and do not reflect the official policy or position

of IBM or the IBM Quantum Experience team. The quantum circuits in this paper

were drawn using the QPIC package by Thomas Draper and Samuel Kutin [129].

139

Bibliography

[1] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic

Horsman. Graphical structures for design and verification of quantum error cor-

rection. arXiv:1611.08012, 2016.

[2] Joschka Roffe, David Headley, Nicholas Chancellor, Dominic Horsman, and Viv

Kendon. Protecting quantum memories using coherent parity check codes. Quan-

tum Science and Technology, 3(3):035010, 2018.

[3] Joschka Roffe, Stefan Zohren, Dominic Horsman, and Nicholas Chancellor. Quan-

tum codes from classical graphical models. arXiv:1804.07653, 2018.

[4] Joschka Roffe, Stefan Zohren, Dominic Horsman, and Nicholas Chancellor. De-

coding quantum error correction with ising model hardware. arXiv:1903.10254,

2019.

[5] David McMahon. Quantum Computing Explained. Wiley-IEEE Computer Soci-

ety Pr, 2007.

[6] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Informa-

tion: 10th Anniversary Edition. Cambridge University Press, Cambridge, United

Kingdom, 2010.

[7] Mike Daily, Swarup Medasani, Reinhold Behringer, and Mohan Trivedi. Self-

driving cars. Computer, 50(12):18–23, 2017.

[8] Georges Ifrah. The Universal History of Computing: From the Abacus to the

Quantum Computer. Wiley, 2000.

140

BIBLIOGRAPHY 141

[9] Cliff Stoll. When slide rules ruled. Scientific American, 294(5):80–87, 2006.

[10] Chris Woodford. A brief history of computers.

www.explainthatstuff.com/historyofcomputers.html, Accessed: 18/10/2018.

[11] Doron Swade and Charles Babbage. Difference Engine: Charles Babbage and the

Quest to Build the First Computer. Viking Penguin, 2001.

[12] Benjamin Woolley. The Bride of Science: Romance, Reason and Byron’s Daugh-

ter. Macmillan Pub Ltd, 2000.

[13] L. F. Menabrea and Ada Lovelace (English translator). Sketch of the Analyt-

ical Engine invented by Charles Babbage (with additional annotations by Ada

Lovelace). Scientific Memoirs, 3, 666-731, 1843. Originally publised in French

in the Bibliotheque Universelle de Geneve, 1842.

[14] Change.org. Change.org campaign: Name the next Durham college after notable

Durham women. www.change.org/p/durham-university-name-the-next-durham-

colleges-after-notable-durham-women.

[15] The Computer History Museum. The Babbage engines.

www.computerhistory.org/babbage/engines/, Accessed: 18/10/2018.

[16] Alonzo Church and A. M. Turing. On computable numbers, with an application

to the entscheidungsproblem. The Journal of Symbolic Logic, 2(1):42, 1937.

[17] Igor L. Markov. Limits on fundamental limits to computation. Nature,

512(7513):147–154, 2014.

[18] M.D. Godfrey and D.F. Hendry. The computer as Von Neumann planned it.

IEEE Annals of the History of Computing, 15(1):11–21, 1993.

[19] C.P. Burton. Replicating the manchester baby: Motives, methods, and messages

from the past. IEEE Annals of the History of Computing, 27(3):44–60, 2005.

[20] John Bardeen. Semiconductor research leading to the point contact transistor.

Nobel Lecture. NobelPrize.org, 1956.

142 BIBLIOGRAPHY

[21] David Anderson. Tom kilburn: A tale of five computers. Commun. ACM,

57(5):35–38, 2014.

[22] Gordon E. Moore. Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE

Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.

[23] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn,

G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey. MoS2

transistors with 1-nanometer gate lengths. Science, 354(6308):99–102, 2016.

[24] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6):467–488, 1982.

[25] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–

1509, 1997.

[26] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978.

[27] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High-

fidelity quantum logic gates using trapped-ion hyperfine qubits. Physical Review

Letters, 117(6), 2016.

[28] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Car-

oline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe.

Experimental comparison of two quantum computing architectures. Proceedings

of the National Academy of Sciences, 114(13):3305, 2017.

[29] M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhman-

skiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal,

T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler,

P. Schindler, T. Monz, and R. Blatt. Cryogenic setup for trapped ion quantum

computing. Review of Scientific Instruments, 87(11):113103, 2016.

BIBLIOGRAPHY 143

[30] Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,

B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y.

Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner,

T. C. White, Michael R. Geller, A. N. Cleland, and John M. Martinis. Qubit

architecture with high coherence and fast tunable coupling. Phys. Rev. Lett.,

113:220502, 2014.

[31] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.

White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,

A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner,

A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum

circuits at the surface code threshold for fault tolerance. Nature, 508(7497):500–

503, 2014.

[32] Jerry M. Chow, Jay M. Gambetta, Easwar Magesan, David W. Abraham, An-

drew W. Cross, B R Johnson, Nicholas A. Masluk, Colm A. Ryan, John A.

Smolin, Srikanth J. Srinivasan, and M Steffen. Implementing a strand of a scal-

able fault-tolerant quantum computing fabric. Nature Communications, 5(1),

2014.

[33] Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Morton,

David N. Jamieson, Andrew S. Dzurak, and Andrea Morello. A single-atom

electron spin qubit in silicon. Nature, 489(7417):541–545, 2012.

[34] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T.

Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and

A. S. Dzurak. A two-qubit logic gate in silicon. Nature, 526(7573):410–414, 2015.

[35] Yu Wang, Chin-Yi Chen, Gerhard Klimeck, Michelle Y. Simmons, and Rajib

Rahman. Characterizing si:p quantum dot qubits with spin resonance techniques.

Scientific Reports, 6(1), 2016.

[36] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.

O’Brien. Quantum computers. Nature, 464(7285):45–53, 2010.

[37] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27(3):379–423, 1948.

144 BIBLIOGRAPHY

[38] D. J. C. MacKay and R. M. Neal. Near shannon limit performance of low density

parity check codes. Electronics Letters, 32(18):1645, 1996.

[39] C. Berrou, A. Glavieux, and P Thitimajshima. Near shannon limit error-

correcting coding and decoding: Turbo-codes. In Proc. 1993 IEEE International

Conf. on Communications, Geneva, Switzerland, page 1064, 1993.

[40] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,

299(5886):802–803, 1982.

[41] P. W. Shor. Scheme for reducing decoherence in quantum computer memory.

Phys. Rev. A, 52:R2493, 1995.

[42] A. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793–

797, 1996.

[43] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes

exist. Phys. Rev. A, 54:1098–1106, 1996.

[44] Peter Shor. Fault-tolerant quantum computation. IEEE Comput. Soc. Press,

Proceedings of 37th Conference on Foundations of Computer Science.

[45] A. M. Steane. Active stabilization, quantum computation, and quantum state

synthesis. Physical Review Letters, 78(11):2252, 1997.

[46] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical

Review A, 57(1):127, 1998.

[47] Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv:quant-

ph/9705052, 1997.

[48] Daniel Gottesman. The Heisenberg representation of quantum computers. In

Group theoretical methods in physics. Proceedings, 22nd International Collo-

quium, Group22, ICGTMP’98, Hobart, Australia, July 13-17, 1998, pages 32–43,

1998.

[49] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.

Physical Review A, 70(5), 2004.

BIBLIOGRAPHY 145

[50] Simon Anders and Hans Briegel. Fast simulation of stabilizer circuits using a

graph-state representation. Physical Review A, 73(2), 2006.

[51] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and

Mark Howard. Simulation of quantum circuits by low-rank stabilizer decompo-

sitions. arXiv:1808.00128, 2018.

[52] John Preskill. Reliable quantum computers. Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 454(1969):385–410,

1998.

[53] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian

Mathematical Surveys, 52(6):1191–1249, 1997.

[54] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant

error. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory

of Computing, STOC ’97, pages 176–188, New York, NY, USA, 1997. ACM.

[55] E. Knill. Resilient quantum computation. Science, 279(5349):342–345, 1998.

[56] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological

quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

[57] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Physical

Review A, 86(3), 2012.

[58] A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,

303, 2003.

[59] David S. Wang, Austin G. Fowler, and Lloyd C. L. Hollenberg. Surface code

quantum computing with error rates over 1%. Physical Review A, 83(2), 2011.

[60] C. Horsman, A. Fowler, S. Devitt, and R. Van Meter. Surface code quantum

computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.

[61] Daniel Gottesman. Fault-tolerant quantum computation with constant overhead.

Quantum Info. Comput., 14(15-16):1338–1372, 2014.

146 BIBLIOGRAPHY

[62] Nikolas P. Breuckmann and Barbara M. Terhal. Constructions and noise thresh-

old of hyperbolic surface codes. IEEE Transactions on Information Theory,

62(6):3731, 2016.

[63] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zemor. Quantum expander

codes. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Sci-

ence. IEEE, 2015.

[64] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum

gate sets. Physical Review Letters, 102(11), 2009.

[65] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal

clifford gates and noisy ancillas. Physical Review A, 71(2), 2005.

[66] H. Bombin and M. A. Martin-Delgado. Statistical mechanical models and topo-

logical color codes. Physical Review A, 77(4), 2008.

[67] Theodore J. Yoder. Universal fault-tolerant quantum computation with bacon-

shor codes. arXiv:1705.01686, 2017.

[68] Michael Vasmer and Dan E. Browne. Universal quantum computing with 3d

surface codes. arXiv:1801.04255, 2018.

[69] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards

fault-tolerant universal quantum computation. Nature, 549(7671):172–179, 2017.

[70] David J. Griffiths. Introduction to Quantum Mechanics. Cambridge University

Press, 2016.

[71] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM Errors

in the Wild: A Large-Scale Field Study. 2009.

[72] M. Jeruchim. Techniques for estimating the bit error rate in the simulation of

digital communication systems. IEEE Journal on Selected Areas in Communi-

cations, 2(1):153–170, 1984.

[73] David MacKay. Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, Cambridge, United Kingdom, 2003.

BIBLIOGRAPHY 147

[74] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech-

nical Journal, 29(2):147–160, 1950.

[75] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and

Techniques. The MIT Press, 2009.

[76] D. J. C MacKay. Good error correcting codes based on very sparse matrices.

IEEE Trans. on Info. Theory, 45(2):399, 1999.

[77] C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding:

Turbo-codes. IEEE Trans. on Communications, 44:1261, 1996.

[78] Lov K. Grover. A fast quantum mechanical algorithm for database search. In

STOC, 1996.

[79] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction

for beginners. Reports on Progress in Physics, 76(7):076001, 2013.

[80] Quantum Information Processing and Quantum Error Correction: An Engineer-

ing Approach. Elsevier, 2012.

[81] Frank Gaitan. Quantum Error Correction and Fault Tolerant Quantum Comput-

ing. CRC Press, 2008.

[82] Daniel Lidar and Todd Brun. Quantum Error Correction. Cambridge University

Press, 2013.

[83] Steane A.M. A tutorial on quantum error correction. Proceedings of the Interna-

tional School of Physics, 162(Quantum Computers, Algorithms and Chaos):1–32,

2006.

[84] Daniel Gottesman. Class of quantum error-correcting codes saturating the quan-

tum Hamming bound. Physical Review A, 54(3):1862, 1996.

[85] A.D. Córcoles, Easwar Magesan, Srikanth J. Srinivasan, Andrew W. Cross,

M. Steffen, Jay M. Gambetta, and Jerry M. Chow. Demonstration of a quantum

error detection code using a square lattice of four superconducting qubits. Nature

Communications, 6:6979, 2015.

148 BIBLIOGRAPHY

[86] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M.

Linke, D. N. Stacey, and D. M. Lucas. High-fidelity preparation, gates, memory,

and readout of a trapped-ion quantum bit. Physical Review Letters, 113(22),

2014.

[87] David P. DiVincenzo and Panos Aliferis. Effective fault-tolerant quantum com-

putation with slow measurements. Physical Review Letters, 98(2), 2007.

[88] Rui Chao and Ben W. Reichardt. Quantum error correction with only two extra

qubits. Physical Review Letters, 121(5), 2018.

[89] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course

in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press,

2017.

[90] Nicholas Chancellor, Szilard Szoke, Walter Vinci, Gabriel Aeppli, and Paul A.

Warburton. Maximum-entropy inference with a programmable annealer. Scien-

tific Reports, 6(1), 2016.

[91] N. J. Lord. Matrices as sums of invertible matrices. Mathematics Magazine,

60(1):33–35, 1987.

[92] IBM Quantum Experience 2017. https://quantumexperience.ng.bluemix.net/qx/community,

Accessed: 17/12/2017.

[93] Daniel Gottesman. Quantum fault tolerance in small experiments.

arXiv:1610.03507, 2016.

[94] IBM. IBMQX4 technical specifications.

https://github.com/Qiskit/qiskit-backend-information/tree/master/backends/tenerife/V1,

Accessed: 24/10/2018.

[95] IBM. Quantum Information Softare Kit. www.qiskit.org, Accessed: 17/12/2017.

[96] John A. Smolin, Jay M. Gambetta, and Graeme Smith. Efficient method for com-

puting the maximum-likelihood quantum state from measurements with additive

Gaussian noise. Physical Review Letters, 108(7), 2012.

BIBLIOGRAPHY 149

[97] Christophe Vuillot. Is error detection helpful on IBM 5Q chips? Quantum

Information & Computation, 18(11&12):0949–0964, 2018.

[98] Robin Harper and Steven Flammia. Fault tolerance in the IBM q experience.

arXiv:1806.02359, 2018.

[99] M Acton, K.-A. Brickman, P. C. Haljan, P. J. Lee, L. Deslauriers, and C. Monroe.

Near-perfect simultaneous measurement of a qubit register. Quantum Informa-

tion and Computation, 6:465, 2006.

[100] Naomi Nickerson, Ying Li, and Simon Benjamin. Topological quantum comput-

ing with a very noisy network and local error rates approaching one percent.

Nature Communications, 4:1756, 2013.

[101] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical

Review Letters, 74(20):4091, 1995.

[102] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M.

Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland. Experimen-

tal demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.

Nature, 422(6930):412, 2003.

[103] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal

motion. Physical Review Letters, 82(9):1971, 1999.

[104] Christopher Ballance. High-fidelity quantum logic in Ca+. Oxford University,

PhD thesis, 2014.

[105] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum

dots. Physical Review A, 57(1):120, 1998.

[106] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus

local clifford equivalence of stabilizer states. Phys. Rev. A, 71:062323, Jun 2005.

[107] Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The LU-LC

conjecture is false. Quantum Info. Comput., 10(1):97–108, January 2010.

150 BIBLIOGRAPHY

[108] Naomi H Nickerson, Joseph F Fitzsimons, and Simon C Benjamin. Freely scalable

quantum technologies using cells of 5-to-50 qubits with very lossy and noisy

photonic links. Physical Review X, 4(4):041041, 2014.

[109] J. Randall, S. Weidt, E. D. Standing, K. Lake, S. C. Webster, D. F. Murgia,

T. Navickas, K. Roth, and W. K. Hensinger. Efficient preparation and detection

of microwave dressed-state qubits and qutrits with trapped ions. Physical Review

A, 91(1), 2015.

[110] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe.

Demonstration of a small programmable quantum computer with atomic qubits.

Nature, 536(7614):63, 2016.

[111] Alan Robertson, Christopher Granade, Stephen D. Bartlett, and Steven T. Flam-

mia. Tailored codes for small quantum memories. Physical Review Applied, 8(6),

2017.

[112] David K. Tuckett, Stephen D. Bartlett, and Steven T. Flammia. Ultrahigh error

threshold for surface codes with biased noise. Physical Review Letters, 120(5),

2018.

[113] T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, and

D. J. Wineland. Multi-element logic gates for trapped-ion qubits. Nature,

528(7582):380, 2015.

[114] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan,

and J. Kim. Large-scale modular quantum-computer architecture with atomic

memory and photonic interconnects. Physical Review A, 89(2), 2014.

[115] Markus Grassl. Searching for linear codes with large minimum distance, vol-

ume 19 of Algorithms and Computation in Mathematics. Springer, Heidelberg,

2006.

[116] Winton Brown and Omar Fawzi. Short random circuits define good quantum

error correcting codes. In 2013 IEEE International Symposium on Information

Theory. IEEE, 2013.

BIBLIOGRAPHY 151

[117] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K.

Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev.

A, 54:3824–3851, 1996.

[118] Rui Chao and Ben W. Reichardt. Fault-tolerant quantum computation with few

qubits. npj Quantum Information, 4(1), 2018.

[119] Christopher Chamberland and Michael E. Beverland. Flag fault-tolerant error

correction with arbitrary distance codes. Quantum, 2:53, 2018.

[120] Ben W. Reichardt. Fault-tolerant quantum error correction for Steane’s seven-

qubit color code with few or no extra qubits. arXiv:1804.06995, 2018.

[121] Nicholas Chancellor, Joschka Roffe, Dominic Horsman, and Stefan Zohren. De-

coding quantum error correction with specialized hardware. In preparation.

[122] Nicolas Sourlas. Spin-glass models as error-correcting codes. Nature, 339:693,

1989.

[123] Hidetoshi Nishimori. Statistical Physics of Spin Glasses and Information Pro-

cessing. Oxford University Press, 2001.

[124] Pál Ruján. Finite temperature error-correcting codes. Physical Review Letters,

70(19):2968–2971, 1993.

[125] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and robust ran-

domized benchmarking of quantum processes. Physical Review Letters, 106(18),

2011.

[126] Matthew C. Davey and David J.C. MacKay. Monte carlo simulations of infinite

low density parity check codes over gf(q). 1998.

[127] Sergey Bravyi and Matthew B. Hastings. Homological product codes. In Pro-

ceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing,

STOC ’14, pages 273–282, New York, NY, USA, 2014. ACM.

[128] Jean-Pierre Tillich and Gilles Zemor. Quantum LDPC codes with positive rate

and minimum distance proportional to the square root of the blocklength. IEEE

Transactions on Information Theory, 60(2):1193, 2014.

152 BIBLIOGRAPHY

[129] Thomas Draper and Samuel Kutin. QPIC: Quantum circuit diagrams in latex.

https://github.com/qpic/qpic, Accessed: 17/12/2017.

	Title
	Abstract
	Contents
	Acknowledgments
	Declaration
	Publications
	Notation
	Introduction
	Computing through the ages
	Quantum computing
	Quantum error correction
	The coherent parity check (CPC) framework
	Thesis structure

	Classical Error Correction
	Redundant encoding & repetition codes
	Parity check codes
	Factor graphs and the generator matrix formalism for classical codes
	Hamming codes
	High performance classical codes and decoding

	Quantum error correction
	Quantum redundancy and the two-qubit code
	The quantum Hamming bound
	Stabilizer codes
	Calderbank, Shor and Steane (CSS) codes
	The finite geometry representation of stabilizer codes
	Gates for stabilizer codes
	Fault tolerant circuit design

	Coherent Parity Check Codes
	The fundamental CPC gadget
	Error detection with any parity check
	Multi-check CPC gadgets

	Construction of a [[4,2,2]] CPC detection code
	Translating classical parity checking sequences to a CPC code
	Adding cross-check operators

	The canonical form of CPC codes
	Computing the stabilizers of a CPC code
	Computing the stabilizers of a CPC code
	Computing the Pauli logical operators of a CPC code
	Example: Computing the stabilizers and logical Pauli operators of the [[4,2,2]] CPC detection code
	Construction of stabilizer tables and Pauli logical operators from the CPC adjacency matrices
	Efficient calculation of the CPC code syndromes

	Tripartite CPC codes
	Construction of a [[9,3,3]] tripartite CPC code
	Tripartite CPC Hamming codes

	CPC encoders for CSS codes
	The CPC representation of CSS codes
	Example: A CPC encoder for the Steane [[7,1,3]] code
	A CPC method for constructing CSS codes
	Example: Construction of a [[11,3,3]] CSS code from the classical ring code

	Summary and discussion

	Implementation of a [[4,2,2]] CPC code on the IBM 5Q device
	Experimental overview and conditions for success
	Compiling a [[4,2,2]] CPC circuit onto the IBM 5Q
	A note on fault tolerance for the [[4,2,2]] circuit
	Experimental data reconstruction methods
	Experimental results
	Summary of the IBM 5Q experiment

	Native gates for CPC codes
	An ion trap native gate
	Compiling ion trap native gates
	Requirements for CPC gates
	Circuit simplification with any maximally entangling Clifford gate

	Automated design of CPC codes
	Machine search for CPC code discovery
	Case study: Designing a CPC code for a seven-qubit ion trap
	Overview of the ion trap model
	Stage 1: CPC code discovery
	Stage 2: SWAP gate compilation
	Stage 3: Native gate compilation

	Extending the CPC design process

	CPC codes as classical graphical models
	Overview of the mapping procedure
	The operational representation for quantum codes
	Translation rules mapping the operational representation to classical factor graphs
	Example: Designing a [[4,2,2]] CPC code using the factor graph mapping
	General rules for constructing tripartite CPC codes using classical factor graphs
	Example: Designing a [[5,1,3]] CPC code using the factor graph mapping

	Conclusions and outlook
	Summary
	Outlook
	CPC methods for fault tolerant syndrome extraction
	Maximum entropy decoding of quantum codes
	CPC codes with increased code distance
	Appendix
	The Pauli group
	The Clifford group and stabilizer states
	IMBQX4 calibration data
	Additional Acknowledgements
	Bibliography

