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Abstract

In this book, some notions are introduced about “Neutrosophic Cycle”. Some
frameworks are devised as “Different Types” of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs.

New setting is introduced to study different types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutro-
sophic density, neutrosophic path-coloring, neutrosophic duality, neutrosophic
join, neutrosophic perfect, neutrosophic total, neutrosophic stable, in cycle-
neutrosophic graphs assigned to cycle-neutrosophic graphs. Minimum number
and maximum number of different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neut-
rosophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, is a number which is represent-
ative based on those vertices or edges. Minimum or maximum neutrosophic
number or polynomial of different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, are called neutrosophic
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number or polynomial. Forming sets from different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic
duality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutro-
sophic stable to figure out different types of number of vertices in the sets from
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
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neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable sets in the terms of minimum (maximum) number of
vertices to get minimum (maximum) number to assign in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs, is key type of approach to have
these notions namely different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs. Two numbers and one set are assigned
to a neutrosophic graph, are obtained but now both settings lead to approach
is on demand which is to compute and to find representatives of sets. As con-
cluding results, there are some statements, remarks, examples and clarifications
about cycle-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of neutrosophic notion number,” and “ Setting of notion
neutrosophic-number,” for introduced results and used classes. Some problems
are proposed to pursue this study. Basic familiarities with graph theory and
neutrosophic graph theory are proposed for this article.

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).

In this study, there’s an idea which could be considered as a motivation.

Question 0.0.1. Is it possible to use mized versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable
number and polynomial” and “cycle-neutrosophic graphs” to define some notions
which are applied to cycle-neutrosophic graphs?

It’s motivation to find notions to use in cycle-neutrosophic graphs. Real-
world applications about time table and scheduling are another thoughts which
lead to be considered as motivation. In both settings, corresponded numbers or
polynomials conclude the discussion. Also, there are some avenues to extend
these notions.

The framework of this study is as follows. In the beginning, I introduce basic



definitions to clarify about preliminaries. In section “Preliminaries”, new notions
of different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable number and polynomial’ in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs, are highlighted, are introduced and
are clarified as individuals. As concluding results, there are some statements,
remarks, examples and clarifications about cycle-neutrosophic graphs. The
clarifications are also presented in both sections ‘Setting of neutrosophic notion
number,” and ¢ Setting of notion neutrosophic-number,” for introduced results
and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for path notions, namely cycle-neutrosophic graphs
concerning time table and scheduling when the suspicions are about choosing
some subjects and the mentioned models are considered as individual. In
section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

Some frameworks are devised as “Different Types” of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutrosophic
path-coloring, neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable, in cycle-neutrosophic graphs assigned to cycle-neutrosophic
graphs.
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CHAPTER 1

Neutrosophic Notions

1.1 Abstract

New setting is introduced to study different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neutro-
sophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic dens-
ity, neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs. Minimum number and max-
imum number of different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, is a number which is repres-
entative based on those vertices or edges. Minimum or maximum neutrosophic
number or polynomial of different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, are called neutrosophic
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number or polynomial. Forming sets from different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic
duality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutro-
sophic stable to figure out different types of number of vertices in the sets from
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable sets in the terms of minimum (maximum) number of
vertices to get minimum (maximum) number to assign in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs, is key type of approach to have
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these notions namely different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs. Two numbers and one set are assigned to
a neutrosophic graph, are obtained but now both settings lead to approach is on
demand which is to compute and to find representatives of sets. As concluding
results, there are some statements, remarks, examples and clarifications about
cycle-neutrosophic graphs. The clarifications are also presented in both sections
“Setting of neutrosophic notion number,” and “ Setting of notion neutrosophic-
number,” for introduced results and used classes. Some problems are proposed
to pursue this study. Basic familiarities with graph theory and neutrosophic
graph theory are proposed for this article.

Keywords: different types of neutrosophic zero-forcing, neutrosophic in-

dependence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable

AMS Subject Classification: 05C17, 05C22, 05E45

1.2 Background

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).

In this section, I use two sections to illustrate a perspective about the background
of this study.

1.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 1.3.1. Is it possible to use mized versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable

2
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number and polynomial” and “cycle-neutrosophic graphs” to define some notions
which are applied to cycle-neutrosophic graphs?

It’s motivation to find notions to use in cycle-neutrosophic graphs. Real-

world applications about time table and scheduling are another thoughts which
lead to be considered as motivation. In both settings, corresponded numbers or
polynomials conclude the discussion. Also, there are some avenues to extend
these notions.
The framework of this study is as follows. In the beginning, I introduce basic
definitions to clarify about preliminaries. In section “Preliminaries”, new notions
of different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable number and polynomial” in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs, are highlighted, are introduced and
are clarified as individuals. As concluding results, there are some statements,
remarks, examples and clarifications about cycle-neutrosophic graphs. The
clarifications are also presented in both sections ‘Setting of neutrosophic notion
number,” and ¢ Setting of notion neutrosophic-number,” for introduced results
and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for complete notions, namely cycle-neutrosophic
graphs concerning time table and scheduling when the suspicions are about
choosing some subjects and the mentioned models are considered as individual.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

1.4 Preliminaries

In this section, basic material which is used in this article, is presented. Also,
new ideas and their clarifications are elicited.

Basic idea is about the model which is used. First definition introduces basic
model.

Definition 1.4.1. (Graph).

G = (V, E) is called a graph if V is a set of objects and F is a subset of V x V
(E is a set of 2-subsets of V') where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 1.4.2. (Neutrosophic Graph And Its Special Case).

NTG = (V,E,oc = (01,02,03),1t = (1, o, pu3)) is called a neutrosophic
graph if it’s graph, o; : V — [0, 1], and pu; : E — [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every v;v; € E,

w(vv;) < o(vi) Ao(vy).
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: o is called neutrosophic vertex set.

1 is called neutrosophic edge set.

: [V is called order of NTG and it’s denoted by O(NTG).

DY eV E?Zl 0;(v) is called neutrosophic order of NTG and it’s denoted

by O,(NTG).

¢ |E| is called size of NTG and it’s denoted by S(NTG).

) Y ecE Z§=1 wi(e) is called neutrosophic size of NTG and it’s denoted

by S, (NTG).

Some classes of well-known neutrosophic graphs are defined. These classes

of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 1.4.3. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(iv) :

(vi) :
(vit) :

(viii) :

: a sequence of consecutive vertices P : xo, 71, ,Tonr1a) is called path

where ;2,41 € E, i =0,1,--- ,O(NTG) — 1;

/) : strength of path P : 2o, x4, ,2ovta) 8 N\izg,... ovra)—1 M@iTiv1);

: connectedness amid vertices xy and x; is

(o, ) = \/ /\ (TiTig1);

P:xo,x1, 2y 1=0,-- ,t—1

a sequence of consecutive vertices P : xo, 1, ,TonTa), To is called
cycle where z;x;,41 € E, i = 0,1,--- ,O(NTG) — 1, zonreyTo € E
and there are two edges zy and wv such that p(xy) = p(uww) =
Nizo1, 1 #(Vivit1);

: it’s t-partite where V is partitioned to ¢ parts, V', V52, .-+ V™ and

the edge zy implies € V> and y € Vjsj where i # j. If it’s complete,
then it’s denoted by Ky, 4,,... .o, Where o; is o on V;* instead V' which
mean z ¢ V; induces o;(z) = 0. Also, |V]S = s;;

t-partite is complete bipartite if ¢ = 2, and it’s denoted by K, ,;
complete bipartite is star if |V7| = 1, and it’s denoted by 57 ¢,;

a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by Wi ,,;

: it’s complete where Yuv € V, p(uv) = o(u) A o(v);
: it’s strong where Yuv € E, p(uv) = o(u) A o(v).

To make them concrete, I bring preliminaries of this article in two upcoming

definitions in other ways.

4
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Definition 1.4.4. (Neutrosophic Graph And Its Special Case).

NTG = (V,E,0 = (01,02,03), 14 = (u1, t2, p3)) is called a neutrosophic
graph if it’s graph, o; : V' — [0,1], and u; : E — [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every v;v; € F,

p(vivs) < o(vi) Ao(v;).

|V| is called order of NTG and it’s denoted by O(NTG). X,evo(v) is called
neutrosophic order of NTG and it’s denoted by O,,(NTG).

Definition 1.4.5. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then it’s
complete and denoted by CMT, it Va,y € Vay € E and p(zy) = o(x) Ao(y);

a sequence of consecutive vertices P : 2,71, ,To(nT@) is called path and
it’s denoted by PTH where z;2;41 € E, i = 0,1,--- ,n — 1; a sequence of
consecutive vertices P : xo, 71, ", To(NTG), To is called cycle and denoted by
CYC where rjz;41 € B, 1 =0,1,--- ,n -1, xonTe)To € E and there are

two edges zy and wv such that p(zy) = p(uv) = A_g ;... ,q #(Vivit1); it's
t-partite where V' is partitioned to ¢ parts, V;**, V52, .- |V}’ and the edge xy
implies x € V¥ and y € Vjsj where i # j. If it’s complete, then it’s denoted
by CMT, 5. .0, where o; is 0 on V;* instead V' which mean x ¢ V; induces
o;(x) = 0. Also, \V]S = s;; t-partite is complete bipartite if t = 2, and it’s
denoted by CMT,, »,; complete bipartite is star if |[V3| = 1, and it’s denoted
by STR; ,,; a vertex in V' is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1 4, .

Remark 1.4.6. Using notations which is mixed with literatures, are reviewed.

1.4.6.1. NTG = (Vv,E7O' = (0'170'2,03),M = (Ml,ug,ug)), O(NTG), and
O,(NTG);

1.4.6.2. CMT,, PTH,CYC,STRy 4,,CMT4y, 5y,CMTy, oy... o

o and
WHL, ,,.

1.5 Setting of neutrosophic notion humber

In this section, I provide some results in the setting of neutrosophic notion
number.

Definition 1.5.1. (Zero Forcing Number).
Let NTG : (V,E, o, 1) be a neutrosophic graph. Then

(1) Zero forcing number Z(NTG) for a neutrosophic graph NTG :
(V, E, o, 1) is minimum cardinality of a set S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(1) Zero forcing neutrosophic-number Z,(NTG) for a neutrosophic
graph NTG : (V, E, o, 1) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V/(G)\ S are colored white) such that
V(G) is turned black after finitely many applications of “the color-change

5
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rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex.

The set of vertices forms zero forcing number and its zero forcing
neutrosophic-number.

Proposition 1.5.2. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph. Then

Z(NTG) = 2.

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Two vertices which are neighbors, are only
members of S is a set of black vertices. Thus the color-change rule implies
all vertices are black vertices. Hence V(G) is turned black after finitely many
applications of “the color-change rule”. So

Z(NTG) = 2.
m

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.3. There are two sections for clarifications.

(a) In Figure (1.1]), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) if S = {ng,n4} is a set of black vertices, then ny is only white
neighbor of ns and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ns is only white neighbor of n4. Thus the color-change
rule implies njy is black vertex and after that ng is only white neighbor
of ns. Thus the color-change rule implies ng is black vertex. Thus
ny,no,ns and ng are black vertices. Hence V(G) is turned black
after finitely many applications of “the color-change rule”;

(1) if S = {ng,nq4,ns} is a set of black vertices, then ny is only white
neighbor of n3 and ng is only white neighbor of ns. Thus the color-
change rule implies ns is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ng is only white neighbor of ns. Thus the color-change
rule implies ng is black vertex. Thus ny,n9 and ng are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;

(7i1) if S = {na} is a set of black vertices, then n; and nj3 are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”;



1.5. Setting of neutrosophic notion number

(iv)

(v)

(vi)

if S = {n1} is a set of black vertices, then no and ng are only white
neighbor of nq. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(@) isn’t turned black after finitely many
applications of “the color-change rule”;

2 is zero forcing number and its corresponded sets are
{ni,n2}{n1,ns},

{n1,na}t{ni, ns}{n1, ne},{n2, ns},
{n2,n4},{n27n5}7{”27n6}a{n3an4}7

{n3an5}’{n37n6}7

{n4,ns},{n4,ne}, and

{ns,n6};

1.3 is zero forcing neutrosophic-number and its corresponded set is
{n1,ns}.

(b) In Figure (1.2)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

(iv)

(vi)

if S = {ns,n4} is a set of black vertices, then no is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies ns is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, n5 is only white neighbor of ns. Thus the color-change
rule implies n5 is black vertex. Thus ni,no and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {n3,n4,ns5} is a set of black vertices, then ny is only white
neighbor of nz. Thus the color-change rule implies ny is black vertex
and after that ny is only white neighbor of ny. Thus the color-change
rule implies ny is black vertex. Thus n; and no are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S ={nsy} is a set of black vertices, then n; and ng are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”;

if S ={n1} is a set of black vertices, then ns and ng are only white
neighbor of 1. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”;

2 is zero forcing number and its corresponded sets are
{n1,n2},{n1,n3}7

{n15n4}’{n17n5}7

{TLQ,TLg},{TLQ,TLz;},

{n2,ns},{n3,na},

{ns,ns}, and {ng,ns};

2.7 is zero forcing neutrosophic-number and its corresponded set is
{nl, TL5}.
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

f:[).l.[).l.[).?]
n5(0.1,0.1,0.2)

Figure 1.1: A Neutrosophic Graph in the Viewpoint of its Zero Forcing Number. \ 47NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 1.2: A Neutrosophic Graph in the Viewpoint of its Zero Forcing Number. \ 47NTG6

The main definition is presented in next section. The notions of failed
zero-forcing number and failed zero-forcing neutrosophic-number facilitate the
ground to introduce new results. These notions will be applied on some classes
of neutrosophic graphs in upcoming sections and they separate the results in
two different sections based on introduced types. New setting is introduced to
study failed zero-forcing number and failed zero-forcing neutrosophic-number.
Leaf-like is a key term to have these notions. Forcing a vertex to change its
color is a type of approach to force that vertex to be zero-like. Forcing a vertex
which is only neighbor for zero-like vertex to be zero-like vertex but now reverse
approach is on demand which is finding biggest set which doesn’t force.

Definition 1.5.4. (Failed Zero-Forcing Number).
Let NTG : (V,E, 0, u) be a neutrosophic graph. Then

(i) Failed zero-forcing number Z'(NTG) for a neutrosophic graph NT'G :
(V,E, 0, 1) is maximum cardinality of a set S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) isn’t turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.
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(77) Failed zero-forcing neutrosophic-number Z/(NTG) for a neutro-
sophic graph NT'G : (V, E, 0, 1) is maximum neutrosophic cardinality of
a set S of black vertices (whereas vertices in V(G) \ S are colored white)
such that V(G) isn’t turned black after finitely many applications of “the
color-change rule”: a white vertex is converted to a black vertex if it is
the only white neighbor of a black vertex.

The set of vertices forms failed zero-forcing number and its failed zero-forcing
neutrosophic-number.

Proposition 1.5.5. Let NTG : (V, E, o0, 1) be a cycle-neutrosophic graph. Then

_ O(NTG)
= |=5
Proof. Suppose NTG : (V, E, 0, 1) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Vertices with distance two, are only members of
S is a maximal set of black vertices which doesn’t force. Thus the color-change
rule doesn’t imply all vertices are black vertices. Hence V' (G) isn’t turned black
after finitely many applications of “the color-change rule”. So

_ L0<N2TG) L

Z/(NTG)

Z/(NTG)
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.6. There are two sections for clarifications.

(a) In Figure (2.3]), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) if S = {ng,n4} is a set of black vertices, then no is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ns is only white neighbor of n4. Thus the color-change
rule implies n5 is black vertex and after that ng is only white neighbor
of ns. Thus the color-change rule implies ng is black vertex. Thus
ny,na,ny and ng are black vertices. Hence V(G) is turned black
after finitely many applications of “the color-change rule”;

(79) it S = {ng,n4,ns} is a set of black vertices, then ny is only white
neighbor of ng and ng is only white neighbor of ns. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ng is only white neighbor of n5. Thus the color-change
rule implies ng is black vertex. Thus ni,ns and ng are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;



1.

Neutrosophic Notions

(iid)

(vi)

if S = {na,nq4,ne} is a set of black vertices, then n; and ns are
only white neighbors of ny. Thus the color-change rule doesn’t imply
n1 and ng are black vertices. In other view, ns and ng are only
white neighbors of n4. Thus the color-change rule doesn’t imply ns5
and ng are black vertices. In last view, ns and ny4 are only white
neighbors of ng. Thus the color-change rule doesn’t imply ns and ny4
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”. Thus S = {ng, n4,ng} could
form failed zero-forcing number;

if S ={n1} is a set of black vertices, then no and ng are only white
neighbor of n;. Thus the color-change rule doesn’t imply no and ng
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”;

3 is failed zero-forcing number and its corresponded sets are
{nQa Ty, nﬁ} and {nly ns, n5}a

4.9 is failed zero-forcing neutrosophic-number and its corresponded
set is {nq, ng, ng}.

(b) In Figure (2.4, an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

10

(4)

(iii)

(iv)

it S = {ns,na} is a set of black vertices, then ng is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ny is only white neighbor of n4. Thus the color-change
rule implies n5 is black vertex. Thus n1,n9 and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ng,nq4,ns} is a set of black vertices, then ny is only white
neighbor of ng. Thus the color-change rule implies no is black vertex
and after that ny is only white neighbor of no. Thus the color-change
rule implies ny is black vertex. Thus n; and no are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ng,nq4,ne} is a set of black vertices, then n; and ns are
only white neighbors of no. Thus the color-change rule doesn’t imply
n1 and ng are black vertices. In other view, ns and nsg are only
white neighbors of n4. Thus the color-change rule doesn’t imply ns5
and ng are black vertices. In last view, ns and ny4 are only white
neighbors of ng. Thus the color-change rule doesn’t imply ns and ny
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”. Thus S = {ng, n4,ng} could
form failed zero-forcing number;

it S ={n1} is a set of black vertices, then ny and ng are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”;
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

f:[).l.[).l.[).?]
n5(0.1,0.1,0.2)

Figure 1.3: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing

Number and its Failed Zero-Forcing Neutrosophic-Number. 48NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 1.4: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing

Number and its Failed Zero-Forcing Neutrosophic-Number. \ 48NTG6

(v) 2 is failed zero-forcing number and its corresponded sets are {ns,n4},
{n3a n5}a
{nQa TL5}, {n47 nl}»
and {ni,ns};

(vi) 3.7 is failed zero-forcing neutrosophic-number and its corresponded
set is {n1, ns}.

The main definition is presented in next section. The notions of 1-zero-
forcing number and 1-zero-forcing neutrosophic-number facilitate the ground
to introduce new results. These notions will be applied on some classes of
neutrosophic graphs in upcoming sections and they separate the results in two
different sections based on introduced types. New setting is introduced to study
1-zero-forcing number and 1-zero-forcing neutrosophic-number. Leaf-like is a
key term to have these notions. Forcing a vertex to change its color is a type of
approach to force that vertex to be zero-like. Forcing a vertex which is only
neighbor for zero-like vertex to be zero-like vertex and now approach is on
demand which is finding smallest set which forces.

11



1. Neutrosophic Notions

Definition 1.5.7. (1-Zero-Forcing Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(7) 1-zero-forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, o, ) is minimum cardinality of a set S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex. The last condition is as follows. For one time, black can change
any vertex from white to black.

(74) 1-zero-forcing neutrosophic-number Z,(NTG) for a neutrosophic
graph NTG : (V, E, o, u) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V(G)\ S are colored white) such that
V(G) is turned black after finitely many applications of “the color-change
rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex. The last condition is as follows. For one time,
black can change any vertex from white to black.

Proposition 1.5.8. Let NTG : (V,E, o, 1) be a cycle-neutrosophic graph. Then
Z(NTG) = 1.

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Two vertices which are neighbors, are only
members of S is a set of black vertices through color-change rule. Thus the
color-change rule implies all vertices are black vertices but extra condition
implies every given vertex is member of S is a set of black vertices. Hence V(G)
is turned black after finitely many applications of “the color-change rule” and
extra condition. So
Z(NTG) = 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.9. There are two sections for clarifications.

(a) In Figure (2.5)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) if S = {ng,n4} is a set of black vertices, then ng is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ns is only white neighbor of n4. Thus the color-change
rule implies ny is black vertex and after that ng is only white neighbor
of ns. Thus the color-change rule implies ng is black vertex. Thus

12
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(i)

(iid)

(v)
(vi)

ni,na,ny and ng are black vertices. Hence V(G) is turned black
after finitely many applications of “the color-change rule”;

if S = {n3,n4,n5} is a set of black vertices, then ny is only white
neighbor of n3 and ng is only white neighbor of ns. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ng is only white neighbor of n5. Thus the color-change
rule implies ng is black vertex. Thus ny,no and ng are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;

if S ={no} is a set of black vertices, then n; and ns are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(@) is turned black after finitely many applications
of “the color-change rule” and extra condition;

if S = {n1} is a set of black vertices, then no and ng are only white
neighbor of nq. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(G) is turned black after finitely many applications
of “the color-change rule” and extra condition;

1 is 1-zero-forcing number and its corresponded sets are
{n1} {na}, {ns}, {na}, {ns}. and {n¢};

0.4 is 1-zero-forcing neutrosophic-number and its corresponded set is

{ns}.

(b) In Figure (2.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

if S = {ns,n4} is a set of black vertices, then no is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies ns is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, n5 is only white neighbor of ns. Thus the color-change
rule implies n5 is black vertex. Thus ni,no and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ns,n4,ns5} is a set of black vertices, then ny is only white
neighbor of ng. Thus the color-change rule implies no is black vertex
and after that ny is only white neighbor of ns. Thus the color-change
rule implies n is black vertex. Thus n; and ny are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;

if S ={no} is a set of black vertices, then n; and ns are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(@) is turned black after finitely many applications
of “the color-change rule” and extra condition;

13



1. Neutrosophic Notions

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 1.5: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number.

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n9(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

fU.ﬁ.U.4.U.4]
n4(0.8,0.6,0.6)

Figure 1.6: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number.

(iv) if S = {n1} is a set of black vertices, then ny and ng are only white
neighbor of 7. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies ny and ng are black
vertices. Hence V(G) is turned black after finitely many applications
of “the color-change rule” and extra condition;

(v) 1 is l-zero-forcing number and its corresponded sets are
{1}, {n2}, {ns}, {na}, {ns}. and {ne};

(vi) 1.3 is l-zero-forcing neutrosophic-number and its corresponded set is

{ns}.

Definition 1.5.10. (Independent Number).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(1) independent number Z(NTG) for a neutrosophic graph NTG
(V,E, 0, 1) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously;

(7) independent neutrosophic-number Z,(NT'G) for a neutrosophic
graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of a set S
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1.5. Setting of neutrosophic notion number

of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously.

Proposition 1.5.11. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

O(NTG) |
— |
Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex

Z(NTG) = |

isn’t a neighbor for every given vertex. Assume |S| > L%mj Then there are
x and y in S such that they’re endpoints of an edge, simultaneously. In other side,
for having an edge, there’s a need to have two vertices. So by using the members
of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {ni}‘s‘>LO(1\72TG)J

isn’t corresponded to independent number Z(NTG). In other side, for having
an edge, there’s a need to have two vertices. So by using the members of
S = {ni}‘s‘ﬂomm;)y it’s impossible to have endpoints of an edge. There’s no
- 2
edge to have exclusive endpoints from S = {ni}‘ §j=| QTG |- It implies that
- 2

S = {ni}lslito(NTG)J is corresponded to independent number. Thus
- 2

I(NTG) = Lw .
m

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.12. There are two sections for clarifications.

(a) In Figure , an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) It S = {na,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S but It doesn’t imply that S = {nq,n4} is corresponded to
either independent number Z(NTG) or independent neutrosophic-
number Z,,(NTG). Since S = {ni}ls#LO(z\;Tc)J;

(#3) if S = {n2,n4,ne} is a set of vertices, then there’s no vertex in
S but ng,nyg and ng. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of S, it’s
impossible to have endpoints of an edge. There’s no edge to have
exclusive endpoints from S hence it implies that S = {ns, ng, ng} is
corresponded to independent number Z(NTG) but not independent
neutrosophic-number Z, (NTG). Since S = {ni}ls‘:LO(A;TG)J;

15
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(iid)

(v)
(vi)

if S ={nq,nz,nq,n5} is a set of vertices, then there’s no vertex in
S but nq,n3,n4 and ny. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
members either ng, ny or ng, ns of S, it’s possible to have endpoints
of an edge either nzny or nyns. There are two edges to have exclusive
endpoints from S and It doesn’t imply that S = {nj,ns,n4,ns} is
corresponded to either independent number Z(NT'G) or independent
neutrosophic-number Z,(NTG). Since S = {ni}‘s‘>LO(1\72TG)J;

if S = {ny,n3,ns} is a set of vertices, then there’s no vertex in S but
ni,ns and ns. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S hence it implies that S = {ni,ns,n5} is corresponded to
independent number Z(NTG) and independent neutrosophic-number
Z,(NTGQ). Since S = {ni}‘s‘:LO(NQTG)J;

3 is independent number and its corresponded sets are {ns,n4, ng}
and {ny,ns,ns};

3.2 is independent neutrosophic-number and its corresponded set is
{na2,nq4,ne}.

(b) In Figure (2.8), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iid)

If S = {ng,n4} is a set of vertices, then there’s no vertex in S
but ny and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S and it implies that S = {ns,n4} is corresponded
to independent number Z(NT'G) but not independent neutrosophic-
number Z,,(NTG). Since S = {ni}‘s‘:LO(NZTG)J;

if S = {ns,n5} is a set of vertices, then there’s no vertex in S
but n3 and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S but It implies that S = {ng, ns} is corresponded to
independent number Z(NT'G) and independent neutrosophic-number
Z,(NTGQ). Since S = {ni}‘s‘:LO(I\;TG)J;

if S ={n1,ns,ng,n5} is a set of vertices, then there’s no vertex in
S but nq,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either ns,ny or ng,ns or ns,ny of S, it’s possible
to have endpoints of an edge either nzny or ngns or nsn,. There
are three edges to have exclusive endpoints from S and It doesn’t
imply that S = {n1,n3, ng,ns} is corresponded to either independent
number Z(NTG) or independent neutrosophic-number Z,,(NTG).
Since S = {ni}|5|>LO(NTG)J;
2

if S = {n1,ns,ns} is a set of vertices, then there’s no vertex in S but
ni,n3 and ns. In other side, for having an edge, there’s a need to



1.5. Setting of neutrosophic notion number

n3(0.1,0.9,0.9) (0.1,0.5,0.8) ,(0.8,0.5,0.8

(0.1,0.2, 0.9) , \
/ ng(0.2,0.7, 0.6)
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n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
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n5(0.1,0.1,0.2)

Figure 1.7: A Neutrosophic Graph in the Viewpoint of its Independent Number. \ 50NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

[’[].8.[].[,}. [].[,}] ([}.2.[}.:—1. [}.—ll

n1(0.5,0.5,0.4) (0.5,0.4, 0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 1.8: A Neutrosophic Graph in the Viewpoint of its Independent Number. \ 50NTG6

have two vertices. So by using the members of .S, it’s possible to have
endpoints of an edge nins. There’s one edge nins to have exclusive
endpoints n; and nj from S hence it implies that S = {n1,n3, ns}
isn’t corresponded to independent number Z(NT'G) and independent
neutrosophic-number 7, (NT'G). Since S = {ni}|5\>LO(N2TG)J;

(v) 2 is independent number and its corresponded sets are {ni,ns},
{n1,na}, {n2,na}, {n2,ns}, and {nz, ns};
(vi) 2.8 is independent neutrosophic-number and its corresponded set is

{77,2,77,5}.

The natural way proposes us to use the restriction “minimum?” instead of
“maximum.”

Definition 1.5.13. (Failed independent Number).
Let NTG : (V, E,o,u) be a neutrosophic graph. Then

(i) failed independent number Z(NTG) for a neutrosophic graph NTG :
(V, E, 0, 1) is minimum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;
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(74) failed independent neutrosophic-number Z,(NTG) for a neutro-
sophic graph NTG : (V, E, 0, 1) is minimum neutrosophic cardinality of a
set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Thus we replace the term “minimum” by the term *maximum.” Hence,

Definition 1.5.14. (Failed independent Number).
Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(1) failed independent number Z(NTG) for a neutrosophic graph NTG :
(V, E, o, 1) is maximum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

(74) failed independent neutrosophic-number Z,(NTG) for a neutro-
sophic graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Proposition 1.5.15. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

I(NTG) = 2.

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
endpoints. These endpoints are corresponded to failed independent number
IZ(NTG). So

I(NTG) = 2.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.16. There are two sections for clarifications.

(a) In Figure (2.9)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) I S = {ng,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);
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(i)

(vi)

it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ny,ns3} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);

if S ={n1,ns,n4,ns5} is a set of vertices, then there’s no vertex in S
but n1,ns, n4 and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ng, ny or ng,ns of S, it’s possible to have endpoints of an edge
either ngny4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}s)#2 thus it implies that S = {ni,n3,n4,ns5} is
corresponded to neither failed independent number Z(NTG) nor
failed independent neutrosophic-number Z,,(NT'G);

if S = {ng,ns} is a set of vertices, then there’s no vertex in S but nq
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {n;}|s|22 thus it implies that S = {n2,n3} is corresponded to
both failed independent number Z(NTG) and failed independent
neutrosophic-number Z,,(NTG);

2 is failed independent number and its corresponded set is {ni,na},
{m,n?,}, {nl,n4}, {n1,n5}, {nl,nﬁ}, {712,713}, {ng,m}, {Tlg,?’l5},
{n23 nﬁ}a {nSa n4}v {nSa n5}v {nSa nﬁ}a {n4a n5}7 {n4a nﬁ}v {n5’ nﬁ}v
and {ng,n1};

4 is failed independent neutrosophic-number and its corresponded
set is {ng, ns}.

(b) In Figure (2.10), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(ii)

If S = {nq2,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);

it S = {ny,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ny,ns3} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);

if S ={ni1,ns3,n4,ns5} is a set of vertices, then there’s no vertex in S
but n1,ng, n4 and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
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11(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 1.9: A Neutrosophic Graph in the Viewpoint of its Failed Independent

Number.

(v)

(vi)

either ng, n4 or ng,ns of S, it’s possible to have endpoints of an edge
either ngn4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}s)#2 thus it implies that S = {ni,n3,n4,n5} is
corresponded to neither failed independent number Z(NTG) nor
failed independent neutrosophic-number Z,,(NT'G);

if S = {ng,n4} is a set of vertices, then there’s no vertex in S but ng
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S| it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|22 thus it implies that S = {n3,n4} is corresponded to
both failed independent number Z(NT'G) and failed independent
neutrosophic-number Z,,(NTG);

2 is failed independent number and its corresponded set is {ni,ns},
{nlvn3}7{nlvn4}>{n17n5}7{n27n3}7{n27n4}7{n27n5},{n37n4h
{713, 715}7 {n47 TL5}, and {n5» nl};

4.3 is failed independent neutrosophic-number and its corresponded
set is {ng, nq}.

Definition 1.5.17. (1-independent Number).
Let NTG : (V,E, 0, u) be a neutrosophic graph. Then

(i) 1-independent number Z(NTG) for a neutrosophic graph NTG :
(V, E, o0, 1) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously For one
time, one vertex is allowed to be endpoint;

(#4) 1-independent neutrosophic-number Z,,(NTG) for a neutrosophic
graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously. For one time, one vertex is allowed to be endpoint.

Definition 1.5.18. (Failed 1-independent Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 1.10: A Neutrosophic Graph in the Viewpoint of its Failed Independent
Number.

(i) failed 1-independent number Z(NTG) for a neutrosophic graph
NTG : (V,E, o, p) is maximum cardinality of a set S of vertices such that
every two vertices of S are endpoints for an edge, simultaneously. For one
time, one vertex is allowed not to be endpoint;

(77) failed 1-independent neutrosophic-number Z,,(NTG) for a neutro-
sophic graph NTG : (V, E, 0, ) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for
an edge, simultaneously. For one time, one vertex is allowed not to be
endpoint.

Proposition 1.5.19. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

Z(NTG) = LWJ +1

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. Assume |S| > L%mj Then there are
x and y in S such that they’re endpoints of an edge, simultaneously. In other side,
for having an edge, there’s a need to have two vertices. So by using the members
of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {ni}|SI>LO(NTG)J isn’t
2
corresponded to l-independent number Z(NTG). In other side, for having
an edge, there’s a need to have two vertices. So by using the members of
S = {ni}‘s‘ﬂomTc)J, it’s impossible to have endpoints of an edge. There’s no
- 2
edge to have exclusive endpoints from S = {ni}‘ §|=| QTG |- But extra condition
- 2
implies that S = {ni}‘sliLO(NTG)J+1 is corresponded to 1-independent number.
- 2
Thus
O(NTG)

I(NTG) = | =

I+ 1
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
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Neutrosophic Notions

definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.20. There are two sections for clarifications.

(a) In Figure (2.11), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

22

(4)

(i)

If S = {ng,n4} is a set of vertices, then there’s no vertex in
S but ne and n4. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge
to have exclusive endpoints from S but It doesn’t imply that
S = {ng,n4} is corresponded to either l-independent number
Z(NTG) or l-independent neutrosophic-number Z,,(NT'G). Since

S = {nitisp 0re 4

if S = {na,n4,n6} is a set of vertices, then there’s no vertex in
S but ns,ny and ng. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {na,ng,ng} is corresponded to neither 1-independent number
Z(NTG) nor 1-independent neutrosophic-number Z,,(NT'G). Since
S = {nz'}‘s‘=LO(NZTG)J+1;

if S ={ny,nz, ng,n5} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either ng,ngy or ng,ns of S, it’s possible to have
endpoints of an edge either ngng or nyns. There are two edges
to have exclusive endpoints from S. But extra condition implies
that S = {n1,ns, ng,ns5} is corresponded to 1-independent number
Z(NTG) but not l-independent neutrosophic-number Z,(NTG).

Since S = {ni}|S|>LO(N2TG)J+1;

if S = {n1,n3,n5} is a set of vertices, then there’s no vertex in
S but ni,n3 and ns. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ny,n3,ns} is corresponded to neither 1-independent number
Z(NTG) nor 1-independent neutrosophic-number Z,,(NT'G). Since

§ = {ni}jg- ewra) ;

4 is l-independent number and its corresponded sets are
{712, Ty, Ne, 77,1}, {nQ? N4, Ne, n3}’ {nQa N4, Ne, 77,5}, {nlv ng,ns, nQ}’
{n1,n3,n5,n4}, and {n1,n3,n5,n6};

5.1 is 1-independent neutrosophic-number and its corresponded set
is {ng,n4,n6,n3}.
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(b) In Figure (2.12), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) It S = {na2,n4} is a set of vertices, then there’s no vertex in
S but ng and ny. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of S, it’s
impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {na,n4} is corresponded to neither 1l-independent number
Z(NTG) nor l-independent neutrosophic-number Z,,(NT'G). Since

= {nikig | eega )

(19) it S = {ng,ns} is a set of vertices, then there’s no vertex in
S but nsg and ns. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of S, it’s
impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ng,ns} is corresponded to neither 1l-independent number
Z(NTG) nor l-independent neutrosophic-number Z,,(NT'G). Since

S = {nitisi ovrer 4

(25i) if S ={n1,n3,n4,n5} is a set of vertices, then there’s no vertex in S
but n1,ns, ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ng,ny or ng,ns or ns,ny of S, it’s possible to have endpoints
of an edge either n3ny or nyns or nsny. There are three edges to
have exclusive endpoints from S. But extra condition implies that
S = {n1,n3,n4,n5} isn’t corresponded to 1-independent number
Z(NTG) and 1-independent neutrosophic-number Z,,(NT'G). Since

5= {nidgs oure 4

() if S = {n4,n2,ns} is a set of vertices, then there’s no vertex in S
but ng4,ny and ns. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s possible
to have endpoints of an edge nyns. There’s one edge nyns to have
exclusive endpoints ny and ns from S. But extra condition implies
that S = {n4,n2,ns} is corresponded to both 1-independent number
Z(NTG) and 1-independent neutrosophic-number Z,,(NT'G). Since

S ={n; O(NTG) |3
{}512 ovren
(v) 3is l-independent number and its corresponded sets are {ny,n3, na},
{nly ns, n4}a {n17 ns, n5}a {n17 nyg, nQ}a {nla nyg, n3}a {nla nyg, n5}7
{n27 Ny, nl}’ {n27 Ny, n3}’ {n27 Ny, n5}7 {77“2’ ns, nl}? {nQa ns, n3}7
{nQa ns, n4}7 {Tlg, ns, Tlg}, {77’33 ns, 714}, and {nSa ns, n1}7
(vi) 5.1 is 1-independent neutrosophic-number and its corresponded set
is {n2,ns,n3}.
The natural way proposes us to use the restriction “maximum” instead of
“minimum.”

Definition 1.5.21. (Clique Number).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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n3(0.1,0.9,0.9) (0.1,0.5,0.8) ,(0.8,0.5,0.8

(0.1,0.2, 0.9) , \
/ n6(0.2,0.7, 0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
(0.1,0.1,0.2)

n5(0.1,0.1,0.2)

Figure 1.11: A Neutrosophic Graph in the Viewpoint of its 1-Independent
Number.

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n9(0.2,0.7,0.6)

(0-8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 1.12: A Neutrosophic Graph in the Viewpoint of its 1-Independent
Number.

(i) clique number C(NTG) for a neutrosophic graph NTG : (V, E, o, u) is
maximum cardinality of a set S of vertices such that every two vertices of
S are endpoints for an edge, simultaneously;

(i) clique neutrosophic-number C,(NTG) for a neutrosophic graph
NTG : (V,E, o, ) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously.

Proposition 1.5.22. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.

Then
C(NTG) = 2.

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
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endpoints. These endpoints are corresponded to clique number C(NT'G). So

C(NTG) = 2.
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.23. There are two sections for clarifications.

(a) In Figure (2.13)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)

(iid)

If S = {ng2,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s)=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either clique number C(NTG) or clique neutrosophic-
number C,(NTG);

if S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s)=2 but it doesn’t imply that S = {ni,ns} is
corresponded to either clique number C(NTG) or clique neutrosophic-
number C,(NTG);

if S ={ny,ng,ng,ns} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either ns,ny or ng,ns of S, it’s possible to have
endpoints of an edge either ngng or nyns. There are two edges
to have exclusive endpoints from S. S = {n;} g2 thus it implies
that S = {ny,ng,n4,ns} is corresponded to neither clique number
C(NTGQ@) nor clique neutrosophic-number C,,(NTG);

it S = {n9,n3} is a set of vertices, then there’s no vertex in S but ngy
and ns. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|22 thus it implies that S = {nz,ns} is corresponded
to both clique number C(NTG) and clique neutrosophic-number
Co(NTG);

2 is clique number and its corresponded set is {ni,na}, {n1,ns},
{nlv n4}’ {nlv n5}’ {nlv nﬁ}’ {n25 n3}7 {n2’ n4}7 {n2’ n5}7 {n2a nﬁ}v
{ns,na}, {ns,ns}, {ns,ne}t, {na,ns}, {na,ne}, {ns,ne}, and
{ng, m };
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(vi) 4 is clique neutrosophic-number and its corresponded set is {ng, ns}.

(b) In Figure (2.14]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) I S = {ng,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;};5=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either clique number C(NTQG) or clique neutrosophic-
number C, (NTG);

(7) it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ny,n3} is
corresponded to either clique number C(NTQG) or clique neutrosophic-
number C, (NTG);

(79i) if S = {n1,n3,n4,n5} is a set of vertices, then there’s no vertex in
S but n1,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either nz,ng4 or ng,ns of S, it’s possible to have
endpoints of an edge either ngng or nyns. There are two edges
to have exclusive endpoints from S. S = {n;}g/x2 thus it implies
that S = {ni,n3,nqg,ns} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number C,,(NTG);

(iv) if S = {ng,n4} is a set of vertices, then there’s no vertex in S but ng
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|#2 thus it implies that S = {ns3,n4} is corresponded
to both clique number C(NTG) and clique neutrosophic-number
Co(NTG);

(v) 2 is clique number and its corresponded set is {ny,n2}, {n1,n3},
{nlan4}7 {nlan5}7 {n27n3}7 {n27n4}7 {n27n5}7 {n37n4}7 {n37n5}7
{na,ns}, and {ns,n1 };

(vi) 4.31is clique neutrosophic-number and its corresponded set is {ng, n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”

Definition 1.5.24. (Failed Clique Number).
Let NTG : (V, E, o, ) be a neutrosophic graph. Then

(i) failed clique number C*(NTG) for a neutrosophic graph NTG :
(V,E, o, 1) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously;

(ii) failed clique neutrosophic-number C (NTG) for a neutrosophic
graph NTG : (V, E, o, i) is minimum neutrosophic cardinality of a set S
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Figure 1.13: A Neutrosophic Graph in the Viewpoint of its clique Number. \ 53NTG5
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11(0.5,0.5, 0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
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n4(0.8,0.6,0.6)

Figure 1.14: A Neutrosophic Graph in the Viewpoint of its clique Number. \ 53NTG6

of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously.

Proposition 1.5.25. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

(i) if O(NTG) =0, then

CT(NTG) = 0;

(15) if O(NTG) =1, then
CT(NTG) = 0;

(#i7) if O(NTG) = 2, then
CT(NTG) = 0;

(iv) if O(NTG) = 3, then
CT(NTG) = 0;

(v) if O(NTG) > 4, then
CT(NTG) = 2.
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Proof. Suppose NTG : (V, E, 0, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex.

(4)

(iv)

If O(NTG) = 0, then there’s no vertex to be considered. So minimum
cardinality of a set is zero. It implies

C7 (NTG) = 0;

if O(NTQG) = 1, then by using Definition, there aren’t two vertices. Thus
it implies
CT(NTG) = 0;

if O(NTG) = 2, then there are two vertices. By it’s cycle-neutrosophic
graph, it’s contradiction. Since if it’s cycle-neutrosophic graph, then
O(NTG) # 2. In other words, it’s cycle-neutrosophic graph, then
O(NTG) > 3. At least two vertices are needed to have new notion
but at least three vertices are needed to have cycle-neutrosophic graph.
Thus

CT(NTG) = 0;

if O(NTG) = 3, then, by it’s cycle-neutrosophic graph, there aren’t two
vertices x and y such that x and y aren’t endpoints of an edge. It implies

CT(NTG) = 0;
if O(NTG) > 4, then, by it’s cycle-neutrosophic graph, there are two

vertices x and y such that x and y aren’t endpoints of an edge. Thus
lower bound is achieved for failed clique number. It implies

CT(NTG) = 2.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.26. There are two sections for clarifications.

(a)
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In Figure (2.15]), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If S = {ng,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s—2 implies that S = {na,n4} is corresponded to
failed clique number C* (NTG) but not failed clique neutrosophic-
number C; (NTG);



1.5. Setting of neutrosophic notion number

(i)

(iv)

(v)

(vi)

it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} sj—2 implies that S = {ny,n3} is corresponded to
failed clique number C* (NTG) but not failed clique neutrosophic-
number C; (NTG);

if S ={ny1,n3,nq,ns5} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
members either ng, ny or ng, ns of S, it’s possible to have endpoints
of an edge either nzn, or nyns. There are two edges to have exclusive
endpoints from S. But n; and ns aren’t endpoints for any given
edge. S = {ni}|s22 thus it implies that S = {nq,n3,n4,n5} is
corresponded to neither failed clique number C7 (NTG) nor failed
clique neutrosophic-number C (NTG);

it S = {ny1,ns} is a set of vertices, then there’s no vertex in S
but n; and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. S = {n;}g/—2 thus it implies that S = {n1,n5}
is corresponded to both failed clique number C* (NTG) and failed
clique neutrosophic-number C; (NTG);

2 is failed clique number and its corresponded set is {ni,ns},
{nla n4}a {nla n5}v {nQa n4}v {nQa n5}7 {nQa nﬁ}v {n3a n5}7 {n3’ nﬁ}v
and {n4,ng};

1.3 is failed clique neutrosophic-number and its corresponded set is
{n1,ns5}.

(b) In Figure (2.16), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(ii)

If S = {nq2,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} g2 implies that S = {ng,n4} is corresponded to
failed clique number C* (NTG) but not failed clique neutrosophic-
number C/ (NTG);

it S = {ny,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} sj—2 implies that S = {ny,n3} is corresponded to
failed clique number C* (NTG) but not failed clique neutrosophic-
number C; (NTG);

if S ={nq1,n3,nq4,ns5} is a set of vertices, then there’s no vertex in
S but ny,ns,ng4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
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Figure 1.15: A Neutrosophic Graph in the Viewpoint of its Failed Clique
Number.

members either ng, ny or ng, ns of S, it’s possible to have endpoints
of an edge either nzny or nyns. There are two edges to have exclusive
endpoints from S. But n; and n3 aren’t endpoints for every given
edge. S = {n;}g|%2 thus it implies that S = {ni,n3,n4,ns} is
corresponded to neither failed clique number C* (NTG) nor failed
clique neutrosophic-number C/ (NTG);

(i) if S = {n2,ns5} is a set of vertices, then there’s no vertex in S
but ny and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. S = {n;}s)=2 thus it implies that S = {n,ns}
is corresponded to both failed clique number C7 (NTG) and failed
clique neutrosophic-number C7 (NTG);

(v) 2is failed clique number and its corresponded set is {ni,n3}, {ni,n4},
{n27 ’I’L4}7 {n27 n5}a and {TL3, TL5},
(vi) 2.8 is failed clique neutrosophic-number and its corresponded set is
{na,ns}.

Definition 1.5.27. (1-clique Number).
Let NTG : (V,E, 0, u) be a neutrosophic graph. Then

(4)

30

1-clique number C(NTG) for a neutrosophic graph NTG : (V, E, o, )
is maximum cardinality of a set S of vertices such that every two vertices
of S are endpoints for an edge, simultaneously. It holds extra condition
which is as follows: two vertices have no edge in common are considered
as exception but only for one time;

1-clique neutrosophic-number C,(NTG) for a neutrosophic graph
NTG : (V,E,o0,u) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously. It holds extra condition which is as follows: two vertices
have no edge in common are considered as exception but only for one
time.
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Figure 1.16: A Neutrosophic Graph in the Viewpoint of its Failed Clique
Number.

Definition 1.5.28. (Failed 1-clique Number).
Let NTG : (V, E, o, u) be a neutrosophic graph. Then

(i) failed 1-clique number C*(NTG) for a neutrosophic graph NTG :
(V,E, o, p) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously. It
holds extra condition which is as follows: two vertices have no edge in
common are considered as exception but only for one time;

(ii) failed 1-clique neutrosophic-number C; (NTG) for a neutrosophic
graph NTG : (V, E, o, 1) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously. It holds extra condition which is as follows: two
vertices have no edge in common are considered as exception but only for
one time.

Proposition 1.5.29. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

C(NTG) = 3.

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
endpoints. These endpoints are corresponded to 1-clique number C(NT'G). Two
vertices could be satisfied in extra condition. So

C(NTG) = 3.
n

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
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about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.30. There are two sections for clarifications.

(a) In Figure (2.17)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(ii)

(iv)

(v)
(vi)

If S = {no,n4} is a set of vertices, then there’s no vertex in S but
ne and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|23 implies that S = {no,n4} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number
Co(NTG);

if S = {n1,n3} is a set of vertices, then there’s no vertex in S but
ny and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|»3 implies that S = {ny,n3} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number
Co(NTG);

if S ={nq,n3,n4,n5} is a set of vertices, then there’s no vertex in S
but n1, ng, ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ngz, n4 or ng,ns of S, it’s possible to have endpoints of an edge
either ngn4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}g/+3 thus it implies that S = {ni,n3,n4,ns5}
is corresponded to neither 1-clique number C(NT'G) nor 1-clique
neutrosophic-number C,, (NT'G);

if S = {ns,ng} is a set of vertices, then there’s no vertex in S but nj
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S| it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|23 thus it implies that S = {ns,ne} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number
C.(NTG);

3 is 1-clique number and its corresponded sets are like {ni,n2,ns},
and {ng,n3,n4} which contain two edges;

4.9 is 1-clique neutrosophic-number and its corresponded set is
{nlanQang}'

(b) In Figure (2.18)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

If S = {n2,n4} is a set of vertices, then there’s no vertex in S but
no and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|23 implies that S = {no,n4} is corresponded to
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Figure 1.17: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number. \ 55NTG5

neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number

Cn(NTG);

(79) it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|»3 implies that S = {ny,n3} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number

Cn(NTG);

(z1) if S = {n3,n4,n2} is a set of vertices, then there’s no vertex in S but
ns, n4 and ns. In other side, for having an edge, there’s a need to have
two vertices which are consecutive. So by using the members either
ng, n4 or no,ng of S, it’s possible to have endpoints of an edge either
nang or ngny. There are two edges to have exclusive endpoints from
S. 8 = {ni}|s|=3 thus it implies that S = {n3,n4,n2} is corresponded
to both 1-clique number C(NT'G) and 1-clique neutrosophic-number
C.(NTG);

(iv) if S = {ns,ne} is a set of vertices, then there’s no vertex in S but ns
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S| it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|24 thus it implies that S = {ns,n6} is corresponded to
neither 1-clique number C(NTG) nor 1-clique neutrosophic-number
C.(NTG);

(v) 31is 1-clique number and its corresponded sets are like {ny,na,n3},
and {na, n3,n4} which contain two edges;

(vi) 6.3 is 1-clique neutrosophic-number and its corresponded set is
{n37n47n2}~

Definition 1.5.31. (Matching Number).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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Figure 1.18: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number. \

(¢) matching number M(NTG) for a neutrosophic graph NTG
(V,E,o0, ) is maximum cardinality of a set S of edges such that every
two edges of S don’t have any vertex in common;

(79) matching neutrosophic-number M,,(NTG) for a neutrosophic graph
NTG : (V,E,o,pn) is maximum neutrosophic cardinality of a set S of
edges such that every two edges of S don’t have any vertex in common.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 1.5.32. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.

Then
n
M(NTG) = L§J
Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
Z1,%9,+ ,To be consecutive arrangements of vertices of NTG : (V,E, o, )
such that

$i$i+1€E7 1=1,2,---,0—1.

Define
O-1
S = {x1x27x3$47 e 7$ixi+1}i:1 .

In S, there aren’t two edges which have common endpoints. S is matching set
and it has maximum cardinality amid such these sets which are matching set
which is a set in that, there aren’t two edges which have common endpoints. So

M(NTG) = L%J.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.
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Example 1.5.33. There are two sections for clarifications.

(a) In Figure (2.19)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If S = {ning,nans,nane} is a set of edges, then there’s no edge
in S. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have at least one
endpoint for two edges. There is no edge from S. Cardinality of S
implies but the structure of S implies that S = {nins, nons, nang} is
corresponded to neither matching number M(NTG) nor matching
neutrosophic-number M, (NTG);

(79) if S = {nanz,ning} is a set of edges, then there’s no edge in S but
nsng. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of S implies
that S = {nang,ning} is corresponded to neither matching number
M(NTGQG) nor matching neutrosophic-number M, (NTG);

(#9i) if S = {nina, n3ng,nsne} is a set of edges, then there are three edges
in S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges in S. Cardinality and structure of S
implies that S = {ning, ngng, nsng} is corresponded to matching
number M(NTG) and neutrosophic cardinality, 2.5, of S implies
S = {nin2,nzng, nsng} is corresponded to matching neutrosophic-
number M, (NTG);

(iv) if S = {nanz, nyns,ngni} is a set of edges, then there are three
edges in S In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints
for two edges. There are three edges from S. Cardinality of S
implies that S = {naons, nans,nen1} is corresponded to matching
number M(NTG) and neutrosophic cardinality, 2.7, of S implies
S = {nina,n3ng} is corresponded to matching neutrosophic-number
My (NTG);

(v) 3is matching number and its corresponded sets are {ning, ngng, nsneg},
and {nans, nans, nen };

(vi) 2.5 is matching neutrosophic-number and its corresponded set is

{nmz, n3ng, n5n6}-

(b) In Figure (2.20), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) It S = {ningz,nans} is a set of edges, then there’s no edge in S. In
other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
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Figure 1.19: A Neutrosophic Graph in the Viewpoint of its Matching Number. \
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(i)

(v)
(vi)

two edges. There is no edge from S. Cardinality of S implies but
the structure of S implies that S = {ning,nany} is corresponded
to neither matching number M(NTG) nor matching neutrosophic-
number M, (NTG);

if S = {nanz,ning} is a set of edges, then there’s no edge in S but
nong. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of .S, it’s impossible to have at least one
endpoint for two edges. There is one edge from S. Cardinality of
S implies but the structure of S implies that S = {nans,ning} is
corresponded to neither matching number M(NTG) nor matching
neutrosophic-number M, (NTG);

if S = {nangz,nans} is a set of edges, then there’s no edge in S but
nong and nyns. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {nans,nyns} is corresponded to matching number M(NTG)
and neutrosophic cardinality, 2.8, of S implies S = {nans,n4ns} is
corresponded to matching neutrosophic-number M,,(NTG);

if S = {nin2,n3na} is a set of edges, then there’s no edge in S but
ning and ngng. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {nina,n3ng} is corresponded to matching number M(NTG)
but neutrosophic cardinality, 3.1, of S implies S = {ning, ngng} isn’t
corresponded to matching neutrosophic-number M,,(NTG);

2 is matching number and its corresponded sets are {ning, ngng},
and {naons, nyns};

2.8 is matching neutrosophic-number and its corresponded set is
{nansz, nyns}.
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Figure 1.20: A Neutrosophic Graph in the Viewpoint of its Matching Number.

Definition 1.5.34. (Matching Polynomial).
Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(i) matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E,o,u) is a polynomial where the coefficients of the terms of the
matching polynomial represent the number of sets of independent edges
of various cardinalities in G.

(#4) matching polynomial neutrosophic-number M,,(NTG) for a neut-
rosophic graph NTG : (V, E, 0, u) is a polynomial where the coefficients
of the terms of the matching polynomial represent the number of sets of
independent edges of various neutrosophic cardinalities in G.

Proposition 1.5.35. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

M(NTG) = 221555 4 4 S(NTG)z + 1.

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
X1,x9, - ,To be consecutive arrangements of vertices of NTG : (V,E, o, u)
such that

TiTi1 eFE i=1,2,---,0—-1.
Define

S = {.1311)2, T3Tg,y - ,.Til‘i_:,_l}?:_ll.
In S, there aren’t two edges which have common endpoints. S is matching
polynomial set and it has maximum cardinality amid such these sets which are

matching polynomial set which is a set in that, there aren’t two edges which
have common endpoints. So

S(NTG)

M(NTG) =227 = ) ... £ S(NTG)z + 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
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apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.36. There are two sections for clarifications.

(a) In Figure (2.21)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

(iv)

(vi)

If S = {nins, nans, nang} is a set of edges, then there’s no edge in S.
In other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
two edges. There is no edge from S. Cardinality of S implies but the
structure of S implies that S = {nins, nans, n4ng} is corresponded
to neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M, (NTG);

if S = {nanz,ning} is a set of edges, then there’s no edge in S but
nong. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of .S, it’s impossible to have at least one
endpoint for two edges. There is one edge from S. Cardinality of S
implies that S = {nans,ning} is corresponded to neither matching
polynomial M(NTG) nor matching polynomial neutrosophic-number

My (NTG);

if S = {n1na2,ngng, nsng} is a set of edges, then there are three edges
in S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges in S. Cardinality and structure of S
implies that S = {ning, ngng, nsng} is corresponded to matching
polynomial M(NTG) and neutrosophic cardinality, 2.5, of .S implies
S = {nina,ngng,nzne} is corresponded to matching polynomial
neutrosophic-number M,,(NTG);

if S = {nang,nans,nen1} is a set of edges, then there are three
edges in S In other side, for having a common vertex, there’s
a need to have one vertex as endpoint for two edges which is
impossible. So by using the members of S, it’s impossible to
have endpoints for two edges. There are three edges from S.
Cardinality of S implies that S = {nang, nans, nen } is corresponded
to matching polynomial M(NTG) and neutrosophic cardinality,
2.7, of S implies S = {ning,nsng} is corresponded to matching
polynomial neutrosophic-number M,,(NTG);

223 4+ 922 4+ 62 + 1 is matching polynomial and its corresponded
sets are {ning, ngng, nsngt, and {nang, nyns, ngng } for coeflicient of
biggest term;

2% + 224 4 24 is matching polynomial neutrosophic-number and
its corresponded set is {nins, ngng, nsne}.

(b) In Figure (2.22)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(1) If S = {ning,nan4} is a set of edges, then there’s no edge in S. In
other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
two edges. There is no edge from S. Cardinality of S implies but
the structure of S implies that S = {nyns,nons} is corresponded to
neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M, (NTG);

(79) if S = {nanz,nin4} is a set of edges, then there’s no edge in S but
nsng. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of .S implies but
the structure of S implies that S = {nansz,ning} is corresponded to
neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M, (NTG);

(z5i) if S = {nans,nyns} is a set of edges, then there’s no edge in S
but nong and nyns. In other side, for having a common vertex,
there’s a need to have one vertex as endpoint for two edges which
is impossible. So by using the members of S, it’s impossible
to have endpoints for two edges. There are two edges from S.
Cardinality of S implies that S = {nang,n4ns} is corresponded to
matching polynomial M(NTG) and neutrosophic cardinality, 2.8, of
S implies S = {nans,nans} is corresponded to matching polynomial
neutrosophic-number M,,(NTG);

() if S = {nina,ngna} is a set of edges, then there’s no edge in S but
ning and ngng. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {nina,n3ng} is corresponded to matching polynomial M(NTG)
but neutrosophic cardinality, 3.1, of S implies S = {nins,ngn,}
isn’t corresponded to matching polynomial neutrosophic-number
M, (NTG);

(v) 222 4 5x + 1 is matching polynomial and its corresponded sets are
{ning,ngny}, and {naons, nyns} for coefficient of biggest term;

(vi) 2*8 4+ 2% is matching polynomial neutrosophic-number and its
corresponded set is {nans, nans} for coefficient of biggest term.

Definition 1.5.37. (e-Matching Number).
Let NTG : (V,E,0,u) be a neutrosophic graph. Then

(i) e-matching number M(NTG) for a neutrosophic graph NTG
(V,E,o0,p) is maximum cardinality of a set S containing endpoints of
edges such that every two edges of S don’t have any vertex in common;

(74) e-matching neutrosophic-number M, (NTG) for a neutrosophic
graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of a set S
containing endpoints of edges such that every two edges of S don’t have
any vertex in common.
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Figure 1.21: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial. \ 60ONTG5
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Figure 1.22: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial. \ 60NTG6

Definition 1.5.38. (e-Matching Polynomial).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) e-matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E,o,u) is a polynomial where the coefficients of the terms of the
e-matching polynomial represent the number of sets of endpoints of
independent edges of various cardinalities in G.

(71) e-matching polynomial neutrosophic-number M, (NTG) for a
neutrosophic graph NTG : (V,E,o,u) is a polynomial where the
coefficients of the terms of the e-matching polynomial represent the
number of sets of endpoints of independent edges of various neutrosophic
cardinalities in G.

Proposition 1.5.39. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

M(NTG) = O(NTG)
where the parity of O(NTGQG) is even. And

M(NTG) = O(NTG) — 1
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where the parity of O(NTG) is odd.

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
X1,%2, -+ ,To be consecutive arrangements of vertices of NTG : (V,E, o, )
such that

Ty €L, 1=1,2,--- ,O—1.

Define

0-1
S = {3715527%3534, cee ,$i$i+1}i:1 .

In S, there aren’t two edges which have common endpoints. S is corresponded
to e-matching neutrosophic-number and it has maximum cardinality amid such
these sets which are corresponded to e-matching neutrosophic-number which is
a set in that, there aren’t two edges which have common endpoints. So

M(NTG) = O(NTG)
where the parity of O(NTG) is even. And
M(NTG)=0O(NTG) -1

where the parity of O(NTG) is odd. [ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.40. There are two sections for clarifications.

(a) In Figure (2.23)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If {nins,nans,nane} is a set of edges, then there’s no edge from
S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So
by using the members of S, it’s impossible to have at least one
endpoint for two edges. There is no edge from S. Cardinality of S
implies but the structure of S implies that S = {ny,n3, n2, ns, n4, ng}
is corresponded to neither e-matching number M(NTG) nor e-
matching neutrosophic-number M,,(NTG);

(79) if {nans,ning} is a set of edges, then there’s no edge from S but
nons. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of .S implies that
S = {na,n3,n1,n4} is corresponded to neither e-matching number
M(NTGQG) nor e-matching neutrosophic-number M, (NTG);
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(iid)

(vi)

if {n1,n9,n3,m4,n5,n6} is a set of edges, then there are three edges
from S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges from S. Cardinality, O(NTG) = 6, and
structure of S implies that

S - {n17n27n37n47n57n6} = V

is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 10.1 = O, (NTG), of S implies

S = {n17n27n37n47n57n6} =V

is corresponded to e-matching neutrosophic-number M,,(NTG);

if S = {nans,nans, ngn } is a set of edges, then there are three edges
from S In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So
by using the members of S, it’s impossible to have endpoints for two
edges. There are three edges from S. Cardinality of S, O(NTG) = 6,
implies that

S = {na,n3,n4,n5,n6,n1 =V

is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 10.1 = O, (NTG), of S implies

S = {n27n37n47n57n67n1} - V

is corresponded to e-matching neutrosophic-number M,,(NTG);

6 = O(NTG) is e-matching number and its corresponded set is
S = {n1,n2,n3,n4,n5,n6} = V;

10.1 = O,(NTG) is e-matching neutrosophic-number and its
corresponded set is {ny,na, n3, N4, N5, N6 }-

(b) In Figure (2.24), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i4)

If {ny1ng,nony} is a set of edges, then there’s no edge in S. In other
side, for having a common vertex, there’s a need to have one vertex as
endpoint for two edges which is impossible. So by using the members
of S, it’s impossible to have at least one endpoint for two edges.
There is no edge from S. Cardinality of S implies but the structure
of S implies that S = {ni,n3,na,n4} is corresponded to neither
e-matching number M(NTG) nor e-matching neutrosophic-number

M (NTG);

if {nons,niny} is a set of edges, then there’s no edge in S but nons.
In other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using the
members of S, it’s impossible to have at least one endpoint for two
edges. There is one edge from S. Cardinality of S implies but the
structure of S implies that S = {ng, ng,ny,ny} is corresponded to
neither e-matching number M(NTG) nor e-matching neutrosophic-
number M, (NTG);
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Figure 1.23: A Neutrosophic Graph in the Viewpoint of its e-Matching Number. \ 61NTG6

(#9i) if {naong,nyns} is a set of edges, then there’s no edge from S but
nong and ngns. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {ng, ng,ng,ns} is corresponded to e-matching number M(NTG)
but neutrosophic cardinality, 7.1, of S implies S = {na2,n3,nq4, ns}
isn’t corresponded to e-matching neutrosophic-number M,,(NTG);

(iv) if {ning,ngng} is a set of edges, then there’s no edge in S but ninsg
and ngng. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible. So
by using the members of S, it’s impossible to have endpoints for two
edges. There are two edges from S. Cardinality of S implies that

S = {n17n27n37n4} =V - {Tl5} 7& Vv

is corresponded to e-matching M(NTG) and neutrosophic cardinal-
ity, 7.2, of S implies

S = {n17n27n37n4} =V - {TL5} # v

is corresponded to e-matching neutrosophic-number M,,(NTG);
(v) 4 = ONTG) — 1 # O(NTG) is e-matching number and its
corresponded set is {ny,na,n3,ne} =V —{ns} #V;

(vi) 7.2 =0,(NTG) — Z?:l 0i(ns) is e-matching neutrosophic-number
and its corresponded set is {ny,no,ng,na}t =V — {ns} #V;

Definition 1.5.41. (Girth and Neutrosophic Girth).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V, E, o, 1) is minimum
crisp cardinality of vertices forming shortest cycle. If there isn’t, then

girth is oo;
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Figure 1.24: A Neutrosophic Graph in the Viewpoint of its e-matching Number.

(79) neutrosophic girth G,(NTG) for a neutrosophic graph NTG
(V,E,o,u) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is co.

Proposition 1.5.42. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(NTG) > 3. Then

G(NTG) = O(NTG).

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2, ", TONTG),T1 be a sequence of consecutive vertices of NTG
(V,E, o, 1) such that

i1 €EE, 1=1,2,--- ,O(NTG) -1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

Liy Tit1y 0y Li—2, Li—1, T4
is a corresponded crisp cycle for z;. Every cycle has same length. The length is

O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). It implies

G(NTG) = O(NTG).
m

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.43. There are two sections for clarifications.
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(a) In Figure (2.75)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

If n1,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

Ny, N2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni, N2, N3

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if nq1, ng, n3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1,N2,M3, 74

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if ny,n9, n3, ng, N5, ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nong, N3ng, Nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nyns and nyng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
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(v)
(vi)

cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies ny,n9, n3, ng, N5, ng, Ny is corresponded to
both of girth G(NTG) and neutrosophic girth G,,(NTG);

6 is girth and its corresponded set is only {ni,ns, ns, n4, ns, ne, n1};

8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1,na, n3, na, ns,m6, M1}

(b) In Figure (2.76)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

(iid)

If nq,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni, N2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

if nq1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if nq, ns, n3, ny4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2, N3, N4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);
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Figure 1.26: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG6

(iv) if n1,ne,n3, n4, n5,nq is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, nino, nong, n3ng, nans and nsny, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, ning, with value (0.2,0.5,0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies ny,ns, n3, ng, N5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth G,,(NTG);

(v) 5 1is girth and its corresponded set is only {n1, na, n3, n4, ns, n1 };

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1,n2,n3, 04, 05,1 }.

Definition 1.5.44. (Girth and Neutrosophic Girth).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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(1) Girth G(NTG) for a neutrosophic graph NT'G : (V, E, o, 1) is minimum
crisp cardinality of vertices forming shortest neutrosophic cycle. If there
isn’t, then girth is oco;

(it) neutrosophic girth G,(NTG) for a neutrosophic graph NTG
(V,E,o,p) is minimum neutrosophic cardinality of vertices forming
shortest neutrosophic cycle. If there isn’t, then girth is co.

| Theorem 1.5.45. Let NTG : (V,E,o,p) be a neutrosophic graph. If NTG :

(V, E,o,u) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E,o,u) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy cye)- v has two
neighbors y, z in CYC. Since NTG is strong, pu(uy) = p(uz) = o(u). It implies
there are two weakest edges in CYC. It means CY C' is neutrosophic cycle. W

Proposition 1.5.46. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(NTG) > 3. Then

G(NTG) = O(NTG).

Proof. Suppose NTG : (V,E,o,u) is a strong-cycle-neutrosophic graph.
Let 1,22, - ,xo(NTG), T1 be a sequence of consecutive vertices of NTG :
(V, E, o0, 1) such that

riviq1 €E, 1=1,2,--- ,O(NTG) -1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

Ly Lip1y 7 5 Xi—2, Lij—1, T4

is a corresponded crisp cycle for z;. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp

cycle is O(NTG). By Theorem ([2.5.49)),
G(NTG) = O(NTQ).
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.47. There are two sections for clarifications.

(a) In Figure (2.27)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

(iid)

If n1,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and ngng, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,no, n3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

n1,N2,M3, N4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if ny,n9, n3, ng, N5, ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nong, N3ng, Nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4ns and nsng with same values (0.1, 0.1, 0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies ny, ns, n3, ng, N5, ng, N1 is corresponded to
both of girth G(NT'G) and neutrosophic girth G, (NTG);
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(v)
(vi)

6 is girth and its corresponded set is only {ni,ns, ns, nq, ns, ne, n1};

8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{nla N2, N3, M4, N5, N6, nl}-

(b) In Figure (2.28)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

50

(4)

(iid)

If n1,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if nq1,n9,ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if nq, na, n3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2,n3, Ny

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,n9,n3,n4,n5,n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, nins, nonsg, ngng, nans and nsng, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
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Figure 1.28: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG6

one weakest edge, niny, with value (0.2,0.5,0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies ny,n9, n3, ng, N5, n1 is corresponded
to both of girth G(NTG) and neutrosophic girth G,,(NTG);

(v) 5 is girth and its corresponded set is only {ni,ns,ns, ng, ns, n1};

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only
{n1,n2,n3, 04, 05,1 }.

Definition 1.5.48. (Girth Polynomial and Neutrosophic Girth Polynomial).
Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(i) girth polynomial G(NTG) for a neutrosophic graph NTG : (V, E, o, )

is nia™ 4+ nea™2 + - - + nyx> where n; is the number of cycle with m;
as its crisp cardinality of the set of vertices of cycle;
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(ii) neutrosophic girth polynomial G, (NTG) for a neutrosophic graph
NTG : (V,E, o, p) is ngz™ +ngz™2 +- - - +ngaz™s where n; is the number
of cycle with m; as its neutrosophic cardinality of the set of vertices of
cycle.

| Theorem 1.5.49. Let NTG : (V,E,o, ) be a neutrosophic graph. If NTG :

(V,E, o, 1) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V, E,o, 1) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy oy e)- u has two
neighbors y, z in CYC. Since NTG is strong, pu(uy) = p(uz) = o(u). It implies
there are two weakest edges in C'Y C. It means C'Y C is neutrosophic cycle. H

Proposition 1.5.50. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(NTG) > 3. Then

GINTG) = zOWNTG),

Proof. Suppose NTG : (V,E,o,u) is a strong-cycle-neutrosophic graph.
Let z1,22, - ,xo(NTG), T1 be a sequence of consecutive vertices of NTG :
(V, E, o0, 1) such that

iz €EE, 1=1,2,--- ,O(NTG) -1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

TiyTig1y " 3 Ti—2, Li—1,T;4

is a corresponded crisp cycle for z;. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp

cycle is O(NTG). By Theorem ([2.5.49)),
G(NTG) = 2OWNTD,
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.51. There are two sections for clarifications.

(a) In Figure (2.29)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If ny,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
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(i)

consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither girth polynomial G(NT'G) nor neutro-
sophic girth polynomial G, (NTG);

if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and nsng, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni, N2, N3

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,na, n3, ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni, N2, M3, N4

is corresponded neither to girth polynomial G(NT'G) nor neutro-
sophic girth polynomial G, (NTG);

if ny,n9,n3,nyg, N5, ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, nine, nang, N3ng, nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nans and nsng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies nq, ns, n3, ng, ns, ng, N1 is corresponded to
both of girth polynomial G(NT'G) and neutrosophic girth polynomial
Gn(NTG);

20=ONTGC) g girth polynomial and its corresponded set, for

coefficient of smallest term, is only {ni, ng, ng, nq, ns, ng, n1 };

53



1.

Neutrosophic Notions

(vi)

231=0n(NTG) ig neutrosophic girth polynomial and its corresponded

set, for coefficient of smallest term, is only {n1, ng, ng, ng, ns, ne, N1 }.

(b) In Figure (2.30), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

(i)

If n1,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,ng

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,na,n3,ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2,n3,Ng

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,n9,n3,n4,ns5,n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, ning, nang, ngng, nans and nzni, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, ning, with value (0.2,0.5,0.4) and not more. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
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Figure 1.29: A Neutrosophic Graph in the Viewpoint of its girth polynomial. \ 64NTG5
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Figure 1.30: A Neutrosophic Graph in the Viewpoint of its girth polynomial. \ 64NTG6

shortest cycle has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is not a neutrosophic cycle but it is a crisp cycle.
So adding vertices has effect on finding a crisp cycle. There are only
two paths amid two given vertices. The structure of this neutrosophic
path implies nq, no, ng, ng, ns,ny is corresponded to both of girth
polynomial G(NTG) and neutrosophic girth polynomial G, (NTG);

(v) 2P=OWNTG) g girth polynomial and its corresponded set, for

coefficient of smallest term, is only {ny, ng, ng, ng, ns, n };
(vi) 28:5=O0n(NTG) ig neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {ny,na, n3, ng, ns,ny }.

Definition 1.5.52. (Hamiltonian Neutrosophic Cycle).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(¢) hamiltonian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E,o,u) is a sequence of consecutive vertices
T1,T2,** , TO(NTG), 1 Which is neutrosophic cycle;
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(71) n-hamiltonian neutrosophic cycle N (HNC) for a neutrosophic graph
NTG : (V,E,o,u) is the number of sequences of consecutive vertices
T1,T2," * , TO(NTG),T1 Which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

Theorem 1.5.53. Let NTG : (V,E,o,u) be a neutrosophic graph. If NTG :
(V,E,o,u) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E,o,u) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy (cyc)- v has two
neighbors y, z in CYC. Since NTG is strong, pu(uy) = p(uz) = o(u). It implies
there are two weakest edges in CYC. It means CY C' is neutrosophic cycle. W

Proposition 1.5.54. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CYC,,) > 3. Then

M(CYCy) s 1,20, ,TO(CY )1, TOCY ) T1-

Proof. Suppose CYC,, : (V, E, 0, 1) is a strong-cycle-neutrosophic graph. Let
T1,T2, " ,To(CYC,),T1 be a sequence of consecutive vertices of CYC,, :
(V,E, o, 1) such that

T;Tip1 € E, 1=1,2,--- ,(’)(C’YC’n) —1, Tocyc,)r € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a longest crisp cycle with length O(CYC,,). For a given vertex
x;, the sequence of consecutive vertices

T, xi-‘rl) oy T—2,Ti—1, T4

is a corresponded crisp cycle for z;. Every cycle has same length. The length is
O(CYC,,). Thus the crisp cardinality of set of vertices forming longest crisp

cycle is O(CY(C,,). By Theorem (2.5.57)),
M(CYCy) i 21,22, ,TO(CYC, )1, TO(CYC,)s T1-
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.55. There are two sections for clarifications.

(a) In Figure (2.31)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

(i)

If n1,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither hamiltonian neutrosophic cycle M(CY C,)
nor n-hamiltonian neutrosophic cycle N (CYC,,);

if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and nsng, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding longest cycle containing all vertices once. Finding longest
cycle containing all vertices once has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if n1,na, n3, ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding longest cycle containing all vertices once. Finding longest
cycle containing all vertices once has no result. Since there’s no
cycle. Neutrosophic cycle is a crisp cycle with at least two weakest
edges. So this neutrosophic path is neither a neutrosophic cycle nor
crisp cycle. So adding points has no effect to find a crisp cycle. The
structure of this neutrosophic path implies

ni, N2, N3, N4

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if ny,n9, n3, ng, N5, ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nong, N3ng, Nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nyns and nyng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding longest cycle
containing all vertices once. Finding longest cycle containing all
vertices once has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
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(v)
(vi)

neutrosophic path is both of a neutrosophic cycle and crisp cycle. So
adding vertices has effect on finding a crisp cycle. There are only two
paths amid two given vertices. The structure of this neutrosophic
path implies

ni, N2, N3, MNq,MN5, N6, 101
is corresponded to both of hamiltonian neutrosophic cycle M(CYC,)
and n-hamiltonian neutrosophic cycle N (CYC,,);

M(CYC,) : ni,ng,ng,ng,ns,ne,ny is hamiltonian neutrosophic
cycle;

N(CYC,) =1 is n-hamiltonian neutrosophic cycle.

(b) In Figure (2.32)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iid)

If nq1,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni, n2

is corresponded to neither hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N (CYC,,);

if n1,ns9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to hamiltonian neutrosophic cycle M(CY C,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if nq1,na, n3, ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2, N3, Ng
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neutrosophic cycle.

(v)
(vi)

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if n1,n9,n3,ng,ns5,ny is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, nino, nong, n3ng, nans and nsny, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, ning, with value (0.2,0.5,0.4) and not more. First step
is to have at least one crisp cycle for finding longest cycle containing
all vertices once. Finding longest cycle containing all vertices once
has one result. Since there’s one cycle. Neutrosophic cycle is a crisp
cycle with at least two weakest edges. So this neutrosophic path is
not a neutrosophic cycle but it is a crisp cycle. So adding vertices
has effect on finding a crisp cycle. There are only two paths amid
two given vertices. The structure of this neutrosophic path implies

ni,N2,MN3,M4,M5,1M1

is corresponded to neither hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);
M(CYC,,) : Not Existed is hamiltonian neutrosophic cycle;

N(CYC,) =0.

Definition 1.5.56. (Eulerian Neutrosophic Cycle).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then

(i) Eulerian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E,o,u) is a sequence of consecutive edges
T1,T2," * , TS(NTG),T1 which is neutrosophic cycle;

(1) n-Eulerian neutrosophic cycle N(NTG) for a neutrosophic graph

NT

G : (V,E,o,p) is the number of sequences of consecutive edges

T1,%2," ", TS(NTG),T1 which are neutrosophic cycles.
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6,0.6)

Figure 1.32: A Neutrosophic Graph in the Viewpoint of its hamiltonian
neutrosophic cycle.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

Theorem 1.5.57. Let NTG : (V,E,o0,u) be a neutrosophic graph. If NTG :
(V,E, o, 1) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, o, 1) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy cye)- u has two
neighbors y, z in CYC. Since NTG is strong, p(uy) = p(uz) = o(u). It implies
there are two weakest edges in C'Y C. It means C'Y C is neutrosophic cycle. H

Proposition 1.5.58. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CYC') > 3. Then

M(CYC) :w1,29, -+ ,TS(CYC)—1, TS(CYC)s T1-

Proof. Suppose CYC' : (V, E,o0,u) is a strong-cycle-neutrosophic graph. Let
T1,T2,- -, TsCyc), 1 be a sequence of consecutive edges of CY'C': (V, E, 0, 1)
such that

X, i1 have common vertex, ¢ =1,2,--- ,S(CYC) — 1,

Ts(cyc),r1 have common vertex.

There are two paths amid two given vertices. The degree of every vertex is two.

But there’s one crisp cycle for every given vertex. So the efforts lead to one
crisp cycle for finding a longest crisp cycle with length S(CY C). For a given
vertex x;, the sequence of consecutive edges

Ly Lit1s 0 3 Li—2, Li—1, L4

is a corresponded crisp cycle for z;. Every cycle has same length. The length is
S(CYC). Thus the crisp cardinality of set of edges forming longest crisp cycle

is S(CY C). By Theorem (2.5.57)),

M(CYC) i w1, 29, - yS(CYC)—1,TS(CYC)s L1-
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The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.59. There are two sections for clarifications.

(a) In Figure (2.33), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

If nino, nong is a sequence of consecutive edges, then it’s obvious
that there’s no crisp cycle. It’s only a path and there are only two
edges but it is neither crisp cycle nor neutrosophic cycle. The length
of this path implies there’s no cycle since if the length of a sequence
of consecutive edges is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ninz, n2ns;

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if ning,mong,n3ng is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are three
edges, ning, nong, and ngny according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding longest cycle containing all edges once.
Finding longest cycle containing all edges once has no result. Since
there’s one cycle but it isn’t about all edges. Neutrosophic cycle is
a crisp cycle with at least two weakest edges. So this neutrosophic
path is neither a neutrosophic cycle nor a crisp cycle. The structure
of this neutrosophic path implies

ning, Nang, nN3ng

is corresponded neither to Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if nino, nong, n3ng, nans is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are
four edges, nins,nang,ngng and nyns according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding longest cycle containing all
edges once. Finding longest cycle containing all edges once has no
result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor a crisp cycle. So adding points has no effect
to find a crisp cycle. The structure of this neutrosophic path implies

ningz, nang, N3ng, n4ns
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(v)
(vi)

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if ning, nons, n3ng, nans, nsng, ngny1 is a sequence of consecutive
edges, then it’s obvious that there’s one crisp cycle. It’s also a crisp
path and there are six edges, ninsa, nong, ngng, nans, nsng and ngnq
according to corresponded neutrosophic path and it’s neutrosophic
cycle since it has two weakest edges, nyns and nsng with same
values (0.1,0.1,0.2). First step is to have at least one crisp cycle for
finding longest cycle containing all edges once. Finding longest cycle
containing all edges once has one result. Since there’s one crisp cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
Hence this neutrosophic path is both of a neutrosophic cycle and
a crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies

n1N2, N2N3, N34, N4N5, 516, 106101
is corresponded to both of Eulerian neutrosophic cycle M(CY ()
and n-Eulerian neutrosophic cycle N (CYC);

M(CYC) : ning,nang, ngng, ngns, nsng, ngny is Eulerian neutro-
sophic cycle;

N(CYC) =1 is n-Eulerian neutrosophic cycle.

(b) In Figure (2.34), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

If nino, nong is a sequence of consecutive edges, then it’s obvious
that there’s no crisp cycle. It’s only a path and there are only two
edges but it is neither crisp cycle nor neutrosophic cycle. The length
of this path implies there’s no cycle since if the length of a sequence
of consecutive edges is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ninz, na2ns

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if ning,nong, n3ny is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are three
edges, nino, nong, and nyny according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding longest cycle containing all edges once.
Finding longest cycle containing all edges once has no result. Since
there’s one cycle but it isn’t about all edges. Neutrosophic cycle is
a crisp cycle with at least two weakest edges. So this neutrosophic
path is neither a neutrosophic cycle nor a crisp cycle. The structure
of this neutrosophic path implies

nin2, N2ng, N3y
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is corresponded neither to Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

(7i1) if nyng, nang, ngng, ngns is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are
four edges, nins,nang,ngng and nyns according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding longest cycle containing all
edges once. Finding longest cycle containing all edges once has no
result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor a crisp cycle. So adding points has no effect
to find a crisp cycle. The structure of this neutrosophic path implies

ningz,nang, N3ng, N4ans

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

(iv) if ning, nang, ngng, nyns, nsny is a sequence of consecutive edges,
then it’s obvious that there’s one crisp cycle. It’s also a crisp path
and there are five edges, nino, nang, ngng, nans and nsn, according
to corresponded neutrosophic path and it isn’t neutrosophic cycle
since it has only one weakest edge, nins, with value (0.2,0.5,0.4)
and not more. First step is to have at least one crisp cycle for
finding longest cycle containing all edges once. Finding longest cycle
containing all edges once has one result. Since there’s one crisp cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies

N1M2, M2N3; 374, T4T5, V5T
is corresponded to neither Eulerian neutrosophic cycle M(CY C) nor

n-Eulerian neutrosophic cycle N (CY C);

(v) M(CYC) : Not Existed. There is no Eulerian neutrosophic cycle
and there are no corresponded sets and sequences;

(vi) N(CYC) = 0 is n-Eulerian neutrosophic cycle and there are no
corresponded sets and sequences.

Definition 1.5.60. (Eulerian(Hamiltonian) Neutrosophic Path).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(4)

Eulerian(Hamiltonian) neutrosophic path M .(NTG)(M,(NTGQG))
for a neutrosophic graph NTG : (V,E,o,u) is a sequence of consec-
utive edges(vertices) x1, 22, -, 2s(nvra)(T1, T2, , To(nTq)) Which is
neutrosophic path;

n-Eulerian(Hamiltonian) neutrosophic path N, (NTG)(N,(NTGQG))
for a neutrosophic graph NTG : (V, E, o, 1) is the number of sequences
of consecutive edges(vertices) @1, 22, -, 2s(nrq)(T1, 22, -+, To(NTG))
which is neutrosophic path.
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n3(0.1,0.9,0.9) (0.1,0.5,0.8) 12(0.8,0.5, 0.8
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Figure 1.33: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic
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Figure 1.34: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic
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Proposition 1.5.61. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

M(CYC) : Not Ezisted;
Mp(CYC) x4, @541, ,TO(CYC)=1> TOECYC)s """ > Ti1-

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1, T2, ,Tscyeo)(T1, T2, Toeye)y) be a sequence of consecutive edges
(vertices) of CYC' : (V, E, o, 1) such that

x;, ;41 have common vertex, i =1,2,--- ,S(CYC) — 1(O(CYC) — 1),

rscyo)(Toye)), r1 have common vertex.

There are two paths amid two given vertices. The degree of every vertex is two.
There are S(CY C)(O(CY C)) paths. So the efforts lead to S(CYC)(O(CY(C))
for finding a longest paths with length S(CY C)(O(CY (C)). For a given vertex
x;, the sequence of consecutive edges (vertices)

Liy Tijg 1y Li—2, Ti—1
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is a corresponded longest path for given vertex (edge) z;. Every path has
same length. The length is S(CYC)(O(CYC)). Thus the crisp cardinal-
ity of set of edges (vertices) forming longest path is S(CYC)(O(CY(C)).
Ti,Tit1, 0 ,TS(CYC)s > Ti—1 18 a sequence of consecutive edges, there’s
no repetition of edge in this sequence and all edges are used. FEulerian
neutrosophic path is corresponded to longest path with length S(CYC).
Ti, Tip1, 0, ToCyc), > Ti—1 1S a sequence of consecutive vertices, there’s
no repetition of vertex in this sequence and all vertices are used. Hamiltonian
neutrosophic path is corresponded to longest path with length O(CY C). Thus

M. (CYC) : Not Existed;

Mu(CYC) sy mip, - yLo(cyo)-1,Xo(cyc), " ,Ti—1-
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.62. There are two sections for clarifications.

(a) In Figure (2.35)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) If ning,ngng is a sequence of consecutive pairs of vertices, then it
isn’t neutrosophic path since u(nins) ¥ 0. The number of edges
isn’t S(CYC) and the number of vertices isn’t O(CY (). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(Mp(CYC))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)(NR(CYC)) isn’t corresponded to these sequences
ny,n3, ng and nins, ngng;

(i) if ming,n3ng is a sequence of edges, then it isn’t neutrosophic
path since p(ngng) # 0. The number of edges isn’t S(CY () and
the number of vertices isn’t O(CY C'). Thus Eulerian(Hamiltonian)
neutrosophic path M. (CYC)(Mp(CYC)) doesn’t exist. Also,
n-Eulerian(Hamiltonian) neutrosophic path NV (CYC)(N,(CYC))
isn’t corresponded to these sequences ny,ns,ns, ng and nino, n3ng;

(#4i) if ning, nang, nyng, nans, nsne,neny is a sequence of consecutive
edges, then it isn’t neutrosophic path since p(ninz) > 0 and
wu(ngny) > 0. And more, it’s crisp cycle. The number of edges is
greater than S(CYC) and the number of vertices is O(CY C'). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(Mp(CY(C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N (CYC)(NR(CYC)) isn’'t corresponded to these sequences
ni, N2, N3, N4, N5, Ne, 11 and ning, Nans, N34, N4ans, N5Ne, N1,

(iv) if ning,nons is a sequence of consecutive edges, then it’s neutro-
sophic path since p(ning) > 0 and pu(ngong) > 0. But the number of
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edges isn’t S(CY C') and the number of vertices isn’t O(CY C). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M,(CY C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)YNL(CYC)) isn’t corresponded to these sequences
ni,No,n3 and nine, nang;

if nino, nong, n3ng, nyns, nsng is a sequence of consecutive edges,
then it’s neutrosophic path since p(ning) > 0, wp(nons) >
0, u(nsng) >0, p(ngns) > 0 and p(nsng) > 0. The number of edges
is S(CY (') and the number of vertices isn’t O(CY C). Thus Eulerian
neutrosophic path M (CYC) is ning, nang, ngng, nyns, nsneg and
Hamiltonian neutrosophic path My (CYC) is ny,na, n3, ng, ns, ne.
Also, n-Eulerian neutrosophic path N, (CYC) and n-Hamiltonian
neutrosophic path N, (CYC) are corresponded to these sequences
ny1, N2, N3, Nq, 15, N6 and n1n2, N2ng, N3y, g, N5, N516;
n-Hamiltonian neutrosophic path NV, (CY C) equals one and corres-
ponded sequence of consecutive edges is nins, nong, ngng, Ny, N5, N5NG-
n-Eulerian neutrosophic path NV, (CY C) equals one and corresponded
sequence of consecutive vertices is ny, no, ng, ng, ns, Ng.

(b) In Figure (2.36]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

66

(4)

(iid)

If nins, n3zny is a sequence of consecutive pairs of vertices, then it
isn’t neutrosophic path since u(ninz) ¥ 0. The number of edges
isn’t S(CYC) and the number of vertices isn’t O(CY (). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M,(CY C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)NL(CY () isn’t corresponded to these sequences
ni, N3, ng and ning, ngng;

if nino,ngnyg is a sequence of edges, then it isn’t neutrosophic
path since p(nang) # 0. The number of edges isn’t S(CYC') and
the number of vertices isn’t O(CY (). Thus Eulerian(Hamiltonian)
neutrosophic path M.(CYC)(M,(CYC)) doesn’t exist. Also,
n-Eulerian(Hamiltonian) neutrosophic path A, (CY C)(N,(CY(C))
isn’t corresponded to these sequences nq,ns,ng, ng and ning, n3ng;
if nino, nong, n3ng, nans, nsny is a sequence of consecutive edges,
then it isn’t neutrosophic path since p(ning) > 0 and p(nsny) > 0.
And more, it’s crisp cycle. The number of edges is greater
than S(CYC) and the number of vertices is O(CYC). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CY C)(M,(CY())
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N (CYC)NL(CYC)) isn’t corresponded to these sequences
ny, N2, N3, N4, N5,M1 and ning, Nans, N34, NaNns, N5MN1;

if ning, nong is a sequence of consecutive edges, then it’s neutro-
sophic path since p(ning) > 0 and p(ngong) > 0. But the number of
edges isn’t S(CYC') and the number of vertices isn’t O(CY C). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CY C)(M(CY(C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)N,(CY D)) isn’t corresponded to these sequences
n1,n2,n3 and ning, nang;
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Figure 1.35: A Neutrosophic Graph in the Viewpoint of its Eu-
lerian(Hamiltonian) neutrosophic path.
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Figure 1.36: A Neutrosophic Graph in the Viewpoint of its Eu-
lerian(Hamiltonian) neutrosophic path.

(v)

(vi)

if nino, nang, n3ng, nyns is a sequence of consecutive edges, then it’s
neutrosophic path since p(ninz) > 0, u(nang) > 0, p(ngng) > 0
and p(ngns) > 0. The number of edges is S(CYC) and the
number of vertices isn’t O(CY C). Thus Eulerian neutrosophic
path M (CYC) is ning, nang, nzng, ngns and Hamiltonian neut-
rosophic path My (CYC) is ny,na,n3,ng. Also, n-Eulerian neut-
rosophic path N.(CY(C) and n-Hamiltonian neutrosophic path
N3, (CY Q) are corresponded to these sequences ny, ng, ns, ng, ns and
N1N2, NaNg, N3N4, Ny, N5

n-Hamiltonian neutrosophic path N, (CYC) equals one and cor-
responded sequence of consecutive edges is nino, nong, n3ng, ng, ns.
n-Eulerian neutrosophic path NV, (CY C') equals one and corresponded
sequence of consecutive vertices is ny, ns, n3, ng, Ns.

Definition 1.5.63. (Neutrosophic Path Connectivity).
Let NTG : (V,E, o, 1) be a neutrosophic graph. Then

(i) a path from z to y is called weakest path if its length is maximum. This
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length is called weakest number amid x and y. The maximum number
amid all vertices is called weakest number of NTG : (V, E, 0, 1) and
it’s denoted by W(NTG);

(i) a path from z to y is called neutrosophic weakest path if its strength
is p(uv) which is less than all strengths of all paths from z to y
where z,--- ,u,v,--- ,y is a path. This strength is called neutrosophic
weakest number amid x and y. The maximum number amid all vertices
is called neutrosophic weakest number of NTG : (V,E, o, 1) and it’s
denoted by W, (NTG).

Proposition 1.5.64. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

W(CYC) = O(CYC) —1=8(CYC) —1.

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2, * ,Tocyc),¥1 be a cycle-neutrosophic graph. There are some
neutrosophic paths. The biggest length of a path is weakest number. The
biggest length of path is either size minus one or order minus one. It means the
length of this path is either S(CYC) — 1 or O(CYC) — 1. Thus

W(CYC) = O(CYC) —1=8(CYC) — 1.
m

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.65. There are two sections for clarifications.

(a) In Figure (2.37)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If ny,n9,n3,n4,n5,n6 is a neutrosophic path from n; to ng, then
it’s weakest path and weakest number amid ny and ng is five. Also,
W(CYC) = 5;

(#4) if ny,na, g3 is a neutrosophic path from n; to ngz, then it isn’t weakest

path and weakest number amid n, and ng is four corresponded to
n1, M6, N5, N4, ng. Also, W(CYC) # 2;

(#i7) if ny,n9,ng,ng is a neutrosophic path from n; to ng, then it
isn’t weakest path but weakest number amid n; and n4 is three
corresponded to ni,na, n3, ng. Also, W(CY C') # 3. For every given
couple of vertices = and y, weakest path isn’t existed but weakest
number is five and W(CYC) = 5;

(iv) if ny,n9,n3, ny is a neutrosophic path from n; to ny, then it isn’t a
neutrosophic weakest path since neutrosophic weakest number amid
ng and ng is (0.1,0.5,0.8). Also, W,,(CYC) = (0.1,0.5,0.8);

68



1.5. Setting of neutrosophic notion number
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15(0.1,0.1,0.2)

Figure 1.37: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number.

(v) if ng, ng is a neutrosophic path from ny to ng, then it’s a neutrosophic
weakest path and neutrosophic weakest number amid ny and ng is
(0.1,0.5,0.8). Also, W, (CYC) = (0.1,0.5,0.8);

(vi) for every given couple of vertices x and y, neutrosophic weakest
path isn’t existed, neutrosophic weakest number is (0.1, 0.5,0.8) and
W (CYC) = (0.1,0.5,0.8).

(b) In Figure (2.38)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ny,n9,n3,n4,n5 is a neutrosophic path from ny to ns, then it’s
weakest path and weakest number amid n; and ns is four. Also,
W(CYC) = 4;

(#i) if ny,ng, ng is a neutrosophic path from n; to ng, then it isn’t weakest
path and weakest number amid n; and ns is three corresponded to
n1,ns, na, n3. Also, W(CY C) # 2;

(#4i) if ny,m2,m3,m4 is a neutrosophic path from n; to n4, then it
isn’t weakest path but weakest number amid n; and n4 is three
corresponded to ni,ng, n3, ng. Also, W(CY C') # 3. For every given
couple of vertices = and y, weakest path isn’t existed but weakest
number is four and W(CYC) = 4;

(iv) if n1,n9,n3,n4 is a neutrosophic path from ny to ny, then it isn’t a
neutrosophic weakest path since neutrosophic weakest number amid
ng and ny is (0.8,0.6,0.6). Also, W,,(CYC) = (0.8,0.6,0.6);

(v) if ng, ng is a neutrosophic path from ng to ny, then it’s a neutrosophic

weakest path and neutrosophic weakest number amid n3 and ny is
(0.8,0.6,0.6). Also, W, (CYC) = (0.8,0.6,0.6);

vi) for every given couple of vertices x and y, neutrosophic weakest

i) f i le of i d hi k
path isn’t existed, neutrosophic weakest number is (0.8,0.6,0.6) and
W, (CYC) = (0.8,0.6,0.6).

Definition 1.5.66. (Neutrosophic Path Connectivity).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)
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Figure 1.38: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number.

(1) a path from z to y is called strongest path if its length is minimum. This
length is called strongest number amid z and y. The maximum number
amid all vertices is called strongest number of NTG : (V, E, o, i) and
it’s denoted by S(NTG);

(#i) a path from x to y is called neutrosophic strongest path if its strength
is p(uwv) which is greater than all strengths of all paths from = to y
where z,--- ,u,v,--- ,y is a path. This strength is called neutrosophic
strongest number amid x and y. The minimum number amid all vertices
is called neutrosophic strongest number of NTG : (V,E, o, 1) and
it’s denoted by S, (NTG).

Proposition 1.5.67. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
oCYC)

S(CYC) = [=5—].

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2, ,Tocyc),T1 be a cycle-neutrosophic graph. There are some
neutrosophic paths. The biggest length of a path is strongest number. For
every given couple of vertices, there are two neutrosophic paths concerning
two lengths s and O(CYC) —s. If s < O(CYC) — s, then s is intended length;
otherwise, O(CY () — s is intended length. Since minimum length amid two
vertices are on demand. In next step, amid all lengths, the biggest number is

strongest number. The biggest length of path is either order half or order half
(CYO) . 0CYo) 4
2 2 :

minus one. It means the length of this path is either o
Thus
oicyo)

S(0Y0) = | ==

|
[

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
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about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.68. There are two sections for clarifications.

(a) In Figure (2.39)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(vi)

If n1,n9,n3, ng, ns, ng is a neutrosophic path from n, to ng, then it
isn’t strongest path and strongest number amid n; and ng is one.
Also, S(CYC) = 3.

if ny,n9,n3 is a neutrosophic path from n; to ng, then it isn’t
strongest path and strongest number amid n; and ng is two
corresponded to ni, ne, n3. Also, S(CYC) # 2;

if mq,n9,n3,n4 is a neutrosophic path from n; to ny4, then it is
strongest path and strongest number amid n; and n4 is three
corresponded to ny,ng, ng,ny and ny,ng, ns, ng Also, S(CYC) = 3.
For every given couple of vertices x and y, strongest path isn’t existed
but strongest number is three and S(CYC) = 3;

if n1,ng,ng3, ny is a neutrosophic path from n; to ng, then it isn’t
a neutrosophic strongest path since neutrosophic strongest number
amid n4 and ns is (0.1,0.1,0.2) but neutrosophic strongest number
amid ny and ny4 is (0.1,0.5,0.8). Also, S,,(CYC) = (0.1,0.1,0.2);

if mo,n3 is a neutrosophic path from ns to ng, then it isn’t a
neutrosophic strongest path since neutrosophic strongest number
amid ny and njz is (0.1,0.1,0.2) but neutrosophic strongest number
amid ng and ng is (0.1,0.5,0.8). Also, S, (CY ) = (0.1,0.1,0.2);

for every given couple of vertices x and y, neutrosophic strongest
path isn’t existed, neutrosophic strongest number is (0.1,0.1,0.2)
and §,(CYC) = (0.1,0.1,0.2).

(b) In Figure (2.40), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

If n1, na, n3, n4, ns is a neutrosophic path from ni to ns, then it isn’t
strongest path and strongest number amid n; and ns is one. Also,

S(CY Q) =2

if n1,n9,ng is a neutrosophic path from n; to ng, then it’s strongest
path and strongest number amid n; and n3 is two. Also, S(CYC) =
2.

?

if n1,mn9,n3,n4 is a neutrosophic path from n; to ng4, then it
isn’t strongest path and strongest number amid n; and n4 is two
corresponded to ny,ns,n4. Also, S(CYC) # 3. For every given
couple of vertices x and y, strongest path isn’t existed but strongest
number is two and S(CYC) = 2;

if ny,m9,n3,n4 is a neutrosophic path [strength is (0.2,0.5,0.4)]
from ny to my4, then it isn’t a neutrosophic strongest path since
neutrosophic strongest number amid n; and ny4 is (0.5,0.4,0.4) but
neutrosophic strongest number amid n; and ng is (0.2,0.7,0.6);
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Figure 1.39: A Neutrosophic Graph in the Viewpoint of its strongest Number

and its Neutrosophic strongest Number. \ 71NTG5
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n4(0.8,0.6,0.6)

Figure 1.40: A Neutrosophic Graph in the Viewpoint of its strongest Number

and its Neutrosophic strongest Number. \ 71NTG6

neutrosophic strongest number amid ny and ng is (0.2,0.7,0.6). Also,
Sn,(CYC) =(0.2,0.7,0.6);

(v) if n3,ny is a neutrosophic path [strength is (0.8,0.6,0.6)] from ng
to my4, then it isn’t a neutrosophic strongest path since neutrosophic
strongest number amid nz and ny is (0.8,0.6,0.6). Also, S, (CYC) =
(0.2,0.7,0.6);

(vi) for every given couple of vertices x and y, neutrosophic strongest
path isn’t existed, neutrosophic strongest number is (0.2,0.7,0.6)
and S, (CYC) = (0.2,0.7,0.6).

Definition 1.5.69. (Neutrosophic Cycle Connectivity).
Let NTG : (V, E, o0, ) be a neutrosophic graph. Then

(i) a cycle based on z is called cyclic connectivity if its length is minimum.
This length is called connectivity number based on x. The maximum
number amid all vertices is called connectivity number of NTG :
(V,E, o, p) and it’s denoted by C(NTG);
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(i) a cycle based on z is called neutrosophic cyclic connectivity if its
strength is is greater than all strengths of all cycles based on x. This
strength is called neutrosophic connectivity number based on x. The
minimum number amid all vertices is called neutrosophic connectivity
number of NTG : (V, E, o, u) and it’s denoted by C,,(NTG).

Proposition 1.5.70. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

C(CYC) = 0(CY Q).

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,%2,* ,Toyc),¥1 be a cycle-neutrosophic graph. There are some
neutrosophic paths. The biggest length of a cycle is connectivity number.
For every given vertex, there’s only one cycle concerning length O(CY (). Since
minimum length based on one vertex is on demand, in next step, amid all
lengths, the biggest number is connectivity number. The biggest length of cycle
is order. It means the length of this cycle is O(CY C). Thus

C(CYC) = O(CY Q).

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.71. There are two sections for clarifications.

(a) In Figure (2.41)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ny,ng, ng, ng, ns, ne, N1 is a neutrosophic cycle based on ny, then
it’s cyclic connectivity and connectivity number based on n; is 6.
Also, C(CYC) = 6;

(#i) if n1,n2,m3 is a neutrosophic path from n; to ng, then it isn’t
cyclic connectivity but connectivity number based on any given
vertex is existed. There’s only one cycle. Hence there’s one cycle
related to connectivity number of this cycle-neutrosophic graph. Also,
C(CYC)=06and C(CYC) #2;

(#i7) if n1,m9,n3,n4 is a neutrosophic path from ny to ny, then it isn’t
cyclic connectivity but connectivity number based on some sequence
of consecutive vertices is existed. There’s one cycle. Hence there’s
one cycle related to connectivity number of this cycle-neutrosophic
graph. Also, C(CYC) = 6. Also, C(CYC(C) # 3. For every given
vertex x, cyclic connectivity is existed and connectivity number is
six and C(CY C) = 6;

73



1.

Neutrosophic Notions

(iv)

if n1,n2,n3,ny is a neutrosophic path from n; to ng, then it isn’t
a neutrosophic cyclic connectivity but neutrosophic connectivity
number based on any given vertex is existed. There’s one cycle so
there’s one cycle related to neutrosophic connectivity number which
is (0.1,0.1,0.2). Also, C,(CYC) = (0.1,0.1,0.2);

if ny,ns, n3, ng, N5, ng, n1 is a neutrosophic cycle based on ny, then
it’s a neutrosophic cyclic connectivity since there’s one cycle and
there’s one cycle based on n; and neutrosophic connectivity number
based on n; is (0.1,0.1,0.2). Also, C,,(CYC) = (0.1,0.1,0.2);

if no, n1,ng, ns, N4, N3, no is a neutrosophic cycle based on ng, then
it’s a neutrosophic cyclic connectivity since there’s one cycle and
there’s one cycle based on ns and neutrosophic connectivity number
based on nz is (0.1,0.1,0.2). Also, C,,(CYC) = (0.1,0.1,0.2).

(b) In Figure (2.42)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

(iv)

If n1,n9,n3,n4,n5,n1 is a neutrosophic cycle based on nq, then it’s
cyclic connectivity and connectivity number based on nj is 5. Also,
C(CYC) =5;

if n1,n9,n3 is a neutrosophic path from n; to ng, then it isn’t
cyclic connectivity but connectivity number based on any given
vertex is existed. There’s only one cycle. Hence there’s one cycle
related to connectivity number of this cycle-neutrosophic graph. Also,
C(CYC)=5and C(CYC) # 2;

if n1,n9,n3,ny is a neutrosophic path from n; to ng, then it isn’t
cyclic connectivity but connectivity number based on some sequence
of consecutive vertices is existed. There’s one cycle. Hence there’s
one cycle related to connectivity number of this cycle-neutrosophic
graph. Also, C(CYC) = 5. Also, C(CYC) # 3. For every given
vertex x, cyclic connectivity is existed and connectivity number is
five and C(CYC) = 5;

if nq1,n9,ng3, ny is a neutrosophic path from n; to ng, then it isn’t
a neutrosophic cyclic connectivity but neutrosophic connectivity
number based on any given vertex is existed. There’s one cycle so
there’s one cycle related to neutrosophic connectivity number which
is (0.2,0.5,0.4). Also, C,(CYC) = (0.2,0.5,0.4);

if n1,n9,n3,n4,ns,ny is a neutrosophic cycle based on nq, then it’s
a neutrosophic cyclic connectivity since there’s one cycle and there’s
one cycle based on n; and neutrosophic connectivity number based
on ny is (0.2,0.5,0.4). Also, C,,(CYC) = (0.2,0.5,0.4);

if ny, 1, ns5, N4, N3, no is a neutrosophic cycle based on ny, then it’s
a neutrosophic cyclic connectivity since there’s one cycle and there’s
one cycle based on ny and neutrosophic connectivity number based
on ng is (0.2,0.5,0.4). Also, C,(CYC) = (0.2,0.5,0.4).

Definition 1.5.72. (Dense Numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then
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Figure 1.41: A Neutrosophic Graph in the Viewpoint of its connectivity number

and its neutrosophic connectivity number. \ 72NTG5
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Figure 1.42: A Neutrosophic Graph in the Viewpoint of its connectivity number

and its neutrosophic connectivity number. \ 72NTG6

(7) a set of vertices is called dense set if for every vertex y outside, there’s
at least one vertex z inside such that they’re endpoints zy € E and the
number of neighbors of x is greater than the number of neighbors of y.
The minimum cardinality between all dense sets is called dense number
and it’s denoted by D(NTG);

(7i) a set of vertices S is called dense set if for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints zy € E and the
number of neighbors of x is greater than the number of neighbors of
y. The minimum neutrosophic cardinality 3 g 2?21 o;(s) between all
dense sets is called neutrosophic dense number and it’s denoted by
Dn(NTG).

Proposition 1.5.73. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

oreyc
Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,%2,"* ,To(Ccyc), T1 be a cycle-neutrosophic graph. Every vertex has two
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neighbors. So these vertices have same positions and by the minimum number
of vertices is on demand, the result is obtained. Thus

DCYC) = L@ .
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.74. There are two sections for clarifications.

(a) In Figure (2.43)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) f S = {n1,n2} is a set of vertices, then it isn’t dense set since
there are some vertices ny and ns such that have no neighbor in S.
Consider the vertex n3. The number of neighbors for ng is two which
is [greater than] equal to the number of neighbors for ns which is
two;

(7) if S = {n1} is a set of vertices, then it isn’t dense set since there
are some vertices ng,ny and ns such that have no neighbor in S.
Consider the vertex no. The number of neighbors for ny is two which
is [greater than| equal to the number of neighbors for ns which is
two;

(#i1) S1 = {n1,nq},So = {na,ns}, S3 = {n3,ne} are only sets of vertices
which are minimal sets such that they’re dense sets. Since every
vertex inside has two neighbors and every vertex outside has two
neighbors. Hence the number of neighbors for vertices in S is greater
than [equal to] the number of neighbors for vertices in V'\ S. There’re
only three dense sets. So the minimum cardinality between all dense
sets is 2. Thus D(CYC) = 2;

(i) if S = {n1,na} is a set of vertices, then it isn’t dense set since
there are some vertices ny and ns such that have no neighbor in S.
Consider the vertex ng. The number of neighbors for ny is two which
is [greater than| equal to the number of neighbors for n3 which is
two;

(v) if S = {n1} is a set of vertices, then it isn’t dense set since there
are some vertices ng,ng4 and ns such that have no neighbor in S.
Consider the vertex no. The number of neighbors for ny is two which
is [greater than] equal to the number of neighbors for ny which is
two;

(vi) S1 = {n1,n4},S2 = {na,ns}, S5 = {ns,ne} are only sets of vertices
which are minimal sets such that they’re dense sets. Since every
vertex inside has two neighbors and every vertex outside has two
neighbors. Hence the number of neighbors for vertices in S is greater
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than [equal to] the number of neighbors for vertices in V'\ S. There’re
only three dense sets. So the minimum cardinality between all dense
sets is 2. Thus D, (CYC) = 2.2 corresponded to Sy;

(b) In Figure (2.44), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If S = {n1,na} is a set of vertices, then it isn’t dense set since there’s
one vertex ny such that have no neighbor in S. Consider the vertex
n3. The number of neighbors for ns is two which is [greater than]
equal to the number of neighbors for ng which is two;

(79) if S = {ni1} is a set of vertices, then it isn’t dense set since there are
some vertices n3, and n4 such that have no neighbor in S. Consider
the vertex ng. The number of neighbors for ny is two which is [greater
than| equal to the number of neighbors for ng which is two;

(Z’LZ) Sl = {nl,ng}, SQ = {nl,n4}, S3 = {712,714}, 54 = {712,715}, S5 =
{ns,ns} are only sets of vertices which are minimal sets such that
they're dense sets. Since every vertex inside has two neighbors
and every vertex outside has two neighbors. Hence the number of
neighbors for vertices in S is greater than [equal to] the number of
neighbors for vertices in V' \ S. There’re only five dense sets. So the
minimum cardinality between all dense sets is 2. Thus D(CY C) = 2;

(1) if S = {n1,n2} is a set of vertices, then it isn’t dense set since there’s
one vertex ny such that have no neighbor in S. Consider the vertex
n3. The number of neighbors for ns is two which is [greater than]
equal to the number of neighbors for ng which is two;

(v) if S'={n1} is a set of vertices, then it isn’t dense set since there are
some vertices ng, and ny4 such that have no neighbor in S. Consider
the vertex ng. The number of neighbors for n; is two which is [greater
than] equal to the number of neighbors for ns which is two;

Sy ={ni,n3} — 2.8
Sy ={ni,ng} — 2.2
Sz ={ng,ny} — 3.4
Sy ={na,n5} — 2.5
S5 = {ns,n5} — 2.3

Minimum number is 2.2

are only sets of vertices which are minimal sets such that they’re dense
sets. Since every vertex inside has two neighbors and every vertex
outside has two neighbors. Hence the number of neighbors for vertices
in S is greater than [equal to] the number of neighbors for vertices
in V'\ S. There’re only five dense sets. So the minimum cardinality
between all dense sets is 2. Thus D, (CY C) = 2 corresponded to Ss.

Definition 1.5.75. (bulky numbers).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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Figure 1.43: A Neutrosophic Graph in the Viewpoint of its dense number and
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Figure 1.44: A Neutrosophic Graph in the Viewpoint of its dense number and
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(1) a set of edges S is called bulky set if for every edge e’ outside, there’s
at least one edge e inside such that they’'ve common vertex and the
number of edges such that they’ve common vertex with e is greater
than the number of edges such that they’ve common vertex with ¢’. The
minimum cardinality between all bulky sets is called bulky number and
it’s denoted by B(NTG);

(71) a set of edges S is called bulky set if for every edge e’ outside, there’s at
least one edge e inside such that they’ve common vertex and the number
of edges such that they’ve common vertex with e is greater than the
number of edges such that they’ve common vertex with e¢’. The minimum
neutrosophic cardinality ) g Z?:1 1i(s) between all bulky sets is called
neutrosophic bulky number and it’s denoted by B, (NTG).

Proposition 1.5.76. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
oiCcYyo)

BCYC) = | ==

|.
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1.5. Setting of neutrosophic notion number

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,%2," * ,To(Ccyc), T1 be a cycle-neutrosophic graph. Every vertex has two
neighbors. So all vertices have same positions. It implies finding edges have
common endpoint. By minimum number of edges is on demand, the result is
obtained. Thus 0(CYC

|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.77. There are two sections for clarifications.

(a) In Figure (2.45)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If S = {ning, nang} is a set of edges, then it isn’t a bulky set since an
edge nyns, outside, there’s no edge inside such that they’ve common
vertex;

(79) it S = {nin2,nans} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

(73i) All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges {nina, nans}, {nans, nsne}, {nsng, ngni} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge n;ns inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with n;ng is two
which is equal to [greater than] two which is the number of edges
such that they’ve common vertex with n;n;. Thus B(CYC) = 2;

() if S = {ning,nans} is a set of edges, then it isn’t a bulky set since
an edge nyns, outside, there’s no edge nony inside such that they’ve
common vertex;

(v) if S = {ning,nans} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

(vi) All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges Sl = {nlng,n4n5},52 = {TLQ’I’Lg,TL5TL6}, and
S3 = {nsng,neni} are only minimal bulky sets. Since for every
edge n;nj, outside, there’s at least one edge n;n, inside such that
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they’ve common vertex and the number of edges such that they’ve
common vertex with n;ns is two which is equal to [greater than] two
which is the number of edges such that they’ve common vertex with
n;n;. Thus

Sl = {nlng,n4n5} — 1.3
SQ = {ngng,n5n6} — 1.8
Sg = {n3n4,n6n1} — 2.1

Minimum number is 1.3

It implies B,(CYC) = 1.3 and corresponded set of edges is
S1 = {nina, nans}.

(b) In Figure (2.46), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

(iii)

If S = {n1na, nons} is a set of edges, then it isn’t a bulky set since an
edge n4ns, outside, there’s no edge inside such that they’ve common
vertex;

if S = {ning,nyns} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V'\ S;

All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges S1 = {ning,nans}, Soa = {nansg,nsni},S3 =
{nanz,nyns}, Sy = {ngng,nsn,}, and S5 = {nzng,nins} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge ning inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with n;ng is two
which is equal to [greater than] two which is the number of edges
such that they’ve common vertex with n;n;. Thus B(CYC) = 2;

if S = {nin2,nans} is a set of edges, then it isn’t a bulky set since
an edge nyns, outside, there’s no edge nony inside such that they’ve
common vertex;

if S = {nina,nyns} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than]| two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges S1 = {nin2,nans}, S = {nans,nsni},Ss =
{nans,nqns}, S4 = {ngng,nsn1}, and S5 = {nsng,nin2} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge nyns inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with n;ng is two
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Figure 1.45: A Neutrosophic Graph in the Viewpoint of its bulky number and
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Figure 1.46: A Neutrosophic Graph in the Viewpoint of its bulky number and

its neutrosophic bulky number. \ 74NTG6

which is equal to [greater than] two which is the number of edges
such that they’ve common vertex with n;n;. Thus

S1 = {ning,ngns}t — 2.4
Sy = {nans,nsn1} — 2.8
S3 = {nang,nans} — 2.8
Sy = {ngng,nsni} — 3.3
S5 = {ngng,ningy} — 3.1

Minimum number is 2.4

It implies B,(CYC) = 2.4 and corresponded set of edges is
Sy = {ning, nans}.

Definition 1.5.78. (collapsed numbers).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then

(i) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints xy € E
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and the number of neighbors of z is less than [equal to] the number of
neighbors of y. The minimum cardinality between all collapsed sets is
called collapsed number and it’s denoted by P(NTG);

(ii) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints zy € E
and the number of neighbors of z is less than [equal to] the number of
neighbors of y. The minimum neutrosophic cardinality > ¢ Z?:l oi(x)
between all collapsed sets is called neutrosophic collapsed number
and it’s denoted by P, (NTG).

Proposition 1.5.79. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
oiCcyo)

PCYO) = =5

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2,  ,To(CcyC), T1 be a cycle-neutrosophic graph. Every vertex has two
neighbors. So all vertices have same positions. The set

{26, Tsy3, Tspe, - 7$i}i+2>0(CYC)

of vertices is called collapsed set since for every vertex y outside, there’s at
least one vertex x inside such that they’re endpoints xy € E and the number of
neighbors of x is [less than] equal to the number of neighbors of . The minimum
cardinality |5/, L@J, between all collapsed sets is called collapsed number

and it’s denoted by P(CYC) = L@J Thus

oCYC)

PCYC) = | =5 ).

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.80. There are two sections for clarifications.

(a) In Figure (2.47)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If S = {n1,n3} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ns outside, such that there’s
no vertex inside such that they’re endpoints either nins € E or
nsns € E;

(1) if S = {n1,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mg outside, such that there’s
no vertex inside such that they’re endpoints either ning € F or
nsnz € E;
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1.5. Setting of neutrosophic notion number

(iid)

(iv)

(vi)

all sets [2-sets| of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {n1,n4}, So = {na,ns},
and S3 = {ng,ng} are called minimal collapsed sets since for every
vertex y outside, there’s at least one vertex x inside such that they’re
endpoints zy € F and the number of neighbors of z is [less than]
equal to the number of neighbors of y. The minimum cardinality
|S], 2, between all collapsed sets

Sl = {nl,n4} — 2
SQ = {nz,ng)} — 2
53 = {7137716} — 2

The minimum is 2

is called collapsed number and it’s denoted by P(CYC) = 2;
S1 ={n1,n4}, S2 = {na,ns}, and S3 = {n3,ne} are corresponded
sets;

if S'={n1,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ms outside, such that there’s
no vertex inside such that they’re endpoints either nins € E or
nsgns € F;

it S = {n1,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ng outside, such that there’s
no vertex inside such that they’re endpoints either nins € E or
nsns € B,

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets| of vertices S; = {ny,n4}, Sa = {n2,n5},
and S3 = {ns,ng} are called minimal collapsed sets since for every
vertex y outside, there’s at least one vertex x inside such that they’re
endpoints zy € E and the number of neighbors of x is [less than]
equal to the number of neighbors of y. The minimum neutrosophic
cardinality, >« Z?:1 oi(x), 2.2, between all collapsed sets

S1 ={n1,ng} — 2.2
Sy ={ng,ns} — 4.5
Sz ={nsz,ne} — 3.4
The minimum is 2.2

is called neutrosophic collapsed number and it’s denoted by
Pn(CYC) = 2.2 and corresponded set is S; = {ny,nq}.

(b) In Figure (2.48)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(0)

If S = {ny,na} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ny4 outside, such that there’s
no vertex inside such that they’re endpoints either ninys € E or
nong € F;

if S'= {n4,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mo outside, such that there’s

83



1.

Neutrosophic Notions

84

(iid)

(iv)

(vi)

no vertex inside such that they’re endpoints either nyny € E or
nsny € E;

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {ni,n4}, So =
{nl,ng}, 53 = {77@,715}, S4 = {TLQ,TL4}, and Ss = {ng,n5} are
called minimal collapsed sets since for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints zy € E and
the number of neighbors of x is [less than] equal to the number of
neighbors of y. The minimum cardinality |\S|, 2, between all collapsed
sets

Sy ={ni,ng} — 2
Sy ={ni,nz} — 2
S3 = {ng,ns} — 2
Sy ={na,ng} — 2
S5 = {n3,nz} — 2

The minimum is 2

is called collapsed number and it’s denoted by P(CYC) = 2;
corresponded sets are S; = {ny,n4}, So = {ni,n3}, S35 =
{na,ns}, Sq = {na,ng}, and S5 = {ngz,ns};

if S = {n1,na} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex my outside, such that there’s
no vertex inside such that they’re endpoints either nings € E or
Nnony € E;

it S = {n4,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mo outside, such that there’s
no vertex inside such that they’re endpoints either nyns € E or
nsny € E;

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {ni,n4}, So2 =
{ni,ns}, S5 = {na,ns}, Ss = {na,na}, and S5 = {ns,ns} are
called minimal collapsed sets since for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints
xy € E and the number of neighbors of z is [less than] equal to the
number of neighbors of y. The minimum neutrosophic cardinality,
Y zes Z?=1 oi(x), 2.8, between all collapsed sets

S1 ={ni,ng} — 34
Sy = {ni,n3} — 3.7
S3 = {na,ns} — 2.8
Sy ={ng,ng} — 3.6
S5 = {ns,ns} — 3.6

The minimum is 2.8

is called neutrosophic collapsed number and it’s denoted by
Pn(CYC) = 2.8 and corresponded set is S = {na, ns}.
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Definition 1.5.81. (path-coloring numbers).
Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(7) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set of colors in this process is called path-coloring set from z to y.
The minimum cardinality between all path-coloring sets from two given
vertices is called path-coloring number and it’s denoted by L(NTG);

(7i) for given two vertices, z and y, there are some paths from z to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set S of shared edges in this process is called path-coloring set
from x to y. The minimum neutrosophic cardinality, > ¢ Z?:1 wi(e),
between all path-coloring sets, S, is called neutrosophic path-coloring
number and it’s denoted by L, (NTG).

Proposition 1.5.82. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
LCYC) =1.
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Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths from z to y. If two paths from z to
y share one edge, then they're assigned to different colors but these two paths
don’t share one edge. The set of colors, {red}, in this process is called path-
coloring set from x to y. The minimum cardinality between all path-coloring
sets from two given vertices, 1, is called path-coloring number and it’s denoted
by L(CY C). Thus
LCYC)=1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.83. There are two sections for clarifications.

(a) In Figure (2.49)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) All paths are as follows.

Py :ny,ne & Py :ny,ng,ns, ng,nz, o — red
Py :ny,ne,n3 & Ps : ny,ng, ns, ng, ng — red
Py :nqy,ng,nz,ng & P :ny,ng,ns,ng — red
Py :nqy,n9,nz, ng,ns & Py i ny,ng,ns — red
Py :ny,n9,n3,ng,ns,ng & Py :ny,ng — red

The number is 1;

(#i) 1-paths have same color;
(iii) L(CYC) = 1;
(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;
(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

P :ny,ne & Ps i ny,ng, ns, ng, ng, no — red — no shared edge —
P :ny,no,ns & Ps i ny,ng,ns,ng, ng — red — no shared edge — 0
Py :ny,ng,ng,ng & Ps:ny,ng,ns,ng — red — no shared edge — 0
Py i ny,ng,ng,ng,ns & Py i ny,ng,ns — red — no shared edge — 0
Py :nqy,n9,n3, ng, ns,ng & Ps i np,ng — red — no shared edge — 0
L,(CYC) is 0.

(b) In Figure (2.50), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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Figure 1.49: A Neutrosophic Graph in the Viewpoint of its path-coloring number

and its neutrosophic path-coloring number. \ 76NTG5

(7) All paths are as follows.

Py :ny,ng & Py iny,ng,ng, ng, ng — red
Py :ni,ng,n3 & Py :ny,ns, ng,ng — red

Py :ny,no,n3,ng & Py :nins,ng — red
Py :nqy,no,ng, ng,ns & Py :ng,ns — red

The number is 1;

(i4) 1-paths have same color;
(i5i) L(CYC) =1,
(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;
(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

Py :ny,ng & P :ny,ns,ng,n3, ns — red — no shared edge — 0
P :nqy,no,ng & P i ny,ns,ng,ng — red — no shared edge — 0
Py :nqy,no,nz, ng & P :ny,ns,ng — red — no shared edge — 0
Py i ny,ng,ng,ng,ns & Pa i ny,ns — red — no shared edge — 0

L,(CYC) is 0.

Definition 1.5.84. (dominating path-coloring numbers).
Let NTG : (V, E, o, ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If
two paths from z to y share one edge, then they’re assigned to different
colors. The set of different colors, .S, in this process is called dominating
path-coloring set from z to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum cardinality
between all dominating path-coloring sets from two given vertices is called
dominating path-coloring number and it’s denoted by Q(NTG);
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Figure 1.50: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number.

(#4) for given two vertices, x and y, there are some paths from z to y. If
two paths from z to y share one edge, then they’re assigned to different
colors. The set S of different colors in this process is called dominating
path-coloring set from z to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum neutrosophic
cardinality, > . Zle wi(e), between all dominating path-coloring sets,
Ss, is called neutrosophic dominating path-coloring number and
it’s denoted by Q,(NTG).

Proposition 1.5.85. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

oeve) =12

Proof. Suppose CYC : (V,E, o, ) is a cycle-neutrosophic graph. For given
two vertices, x and y, there are only two paths from x to y. If two paths from
x to y share one edge, then they're assigned to different colors but these two
paths don’t share one edge. The set of colors, {red}, in this process is called
dominating path-coloring set from x to y. The minimum cardinality between all
dominating path-coloring sets from two given vertices, 1, is called dominating
path-coloring number and it’s denoted by Q(CY C). Thus

Q(CY () = LO(%YC)J.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.86. There are two sections for clarifications.
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(a) In Figure (2.51)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) All paths are as follows.

Pl 1Ny, Ng & P2 N1, Ne, N5, Ny, N3, N2 —> red
Py :ny,ng,n3 & Py i ny,ng,ns,ng,ng — red
Py :ny,ng,n3,ng & Ps:ny,ng, ns,ng — red
Py :ny,ng,ng, ng,ns & Py i ny,ng,ns — red
Py :ny,ng,ng,nyg,ns,ng & Po i ni,ng — red

The number is 1;

(#4) 1-paths have same color;
(i1i) Q(CYC) =1;

(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;

(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

P
Py
Py
P
Py

:ny,ng & Py :ny,ng,ns,ng, n3, ne — red — no shared edge —
:ny,n9,n3 & Ps i ny,ng, ns,ng, n3 — red — no shared edge —
i nq,no,ng,ng & Py :ny,ng,ns,ng — red — no shared edge —
i ny,ng,ng,ng,ns & Py i ny,ng,ns — red — no shared edge —

i N1, N9, N3, Ny, N5, Ng & Pa 2 ni,ng — red — no shared edge —

0
0
0
0

Q,(CYC) is 0.

(b) In Figure (2.52)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) All paths are as follows.

Py :ny,ng & Py i ny,ns,ng,n3, ng — red
Py ‘N1, N2, N3 & P ni, N5, Ny, N3 — red
Py 1Nni,No, N3, Ny & P nins, g — red
Py :nqy,ng,n3,ng,ns & P ny,ng — red

The number is 1;

(#i) 1-paths have same color;

(iii) Q(CYC) = 1;

(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;

(v) there are only two paths but there’s no shared edge;
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n1(0.2,0.1,0.6)

Figure 1.51: A Neutrosophic Graph in the Viewpoint of its dominating path-
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coloring number and its neutrosophic dominating path-coloring number.

n1(0.5,0.5,0.4)

Figure 1.52: A Neutrosophic Graph in the Viewpoint of its dominating path-
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coloring number and its neutrosophic dominating path-coloring number.

(vi) all paths are as follows.

Py :ny,ng & Py i ny,ns, ng,n3, ny — red = no shared edge — 0
Py :ny,ne,ng & Py i ny,ns,ng, ng — red — no shared edge — 0
Py :ny,ng,ng,ng & Py :ny,ns,ng — red — no shared edge — 0
Py :ny,no,nz, ng,ns & Py :ny,ns — red = no shared edge — 0

Q,(CYC) is 0.

Definition 1.5.87. (path-coloring numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from = to y. If two

90

paths from = to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S, in this process is called path-
coloring set from x to y. The minimum cardinality between all path-
coloring sets from two given vertices is called path-coloring number
and it’s denoted by V(NTG);
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1.5. Setting of neutrosophic notion number

(#i) for given two vertices, z and y, there are some paths from z to y. If two
paths from z to y share an endpoint, then they’re assigned to different
colors. The set S of different colors in this process is called path-coloring
set from z to y. The minimum neutrosophic cardinality, > ., Zg’zl oi(x),
between all sets Zs including the latter endpoints corresponded to path-
coloring set S', is called neutrosophic path-coloring number and it’s
denoted by V,(NTG).

Proposition 1.5.88. Let NT'G : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

V(CYC) =2 x (O(CYC) — 1).

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. If
two paths from x to y share one endpoint, then they're assigned to different
colors but there are only 2 x (O(CY C) — 1) paths for every given vertex. In
the terms of number of paths, all vertices behave the same and they’ve same
positions. The set of colors is

S = {redy,redy, - - - ,reday 0(cye)-1) )

in this process. For given two vertices, z and y, there are some paths from x to
y. If two paths from x to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S = {red;,reds,--- ,redsy (0(cyc)—1)}, in
this process is called path-coloring set from = to y. The minimum cardinality,

|S| = [{redy,redy, - - - ,redayo(cye)—1)} = 2 x (O(CYC) - 1),

between all path-coloring sets from two given vertices is called path-coloring
number and it’s denoted by V(CY C). Thus

V(CYC) =2 x (O(CYC) — 1).

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.89. There are two sections for clarifications.

(a) In Figure (2.53)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(i) Consider the vertex nj. All paths with endpoint n; are as follow:

Py :ny,ng — red

P, : nqy,ns,n3 — blue

P5 : ny,n9,ng, ng — yellow

P4 tNni, N2, N3, Ny, N5 — white
Ps :nqi,ng,ng, ng, N5, Ng —> black
Ps : ny,ng,ns5, ng, N3y, No — pil’lk
P; : nq,ng,n5,n4,n3 — purple
Ps : ny,ng, ns,ng — brown

Py : nq,ng,n5 — orange

Pig : n1,ng — green

Thus S = {red, blue, yellow, white, black, pink, purple, brown, orange, green },
is path-coloring set and its cardinality, 10, is path-coloring number.

To sum them up, for given two vertices, x and y, there are some

paths from z to y. If two paths from z to y share an endpoint, then
they’re assigned to different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown, orange, green},

in this process is called path-coloring set from = to y. The minimum
cardinality, 10, between all path-coloring sets from two given vertices
is called path-coloring number and it’s denoted by V(CYC) = 10;

(7i) all vertices have same positions in the matter of creating paths. So
for every two given vertices, the number and the behaviors of paths
are the same;

(#it) there are some different paths which have no shared endpoints. So
they could been assigned to same color;

(iv) shared endpoints form a set of representatives of colors. Each
color is corresponded to a vertex which has minimum neutrosophic
cardinality;

(v) every color in S is corresponded to a vertex has minimum neutro-
sophic cardinality. Minimum neutrosophic cardinality is obtained in
this way but other way is to use all shared endpoints to form S and
after that minimum neutrosophic cardinality is optimal;

(vi) for given two vertices, = and y, there are some paths from x to y. If
two paths from x to y share an endpoint, then they’re assigned to
different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown, orange, green},

in this process is called path-coloring set from = to y. The minimum
neutrosophic cardinality,

3

Z Zai(x) =0,(CYC) — Zoi(ng) =6,

zesS i=1 i=1
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1.5. Setting of neutrosophic notion number

between all path-coloring sets, S's, is called neutrosophic path-coloring
number and it’s denoted by

3
Va(CYC) = 0,(CYC) =Y 0i(ng) = 6.

i=1

(b) In Figure (2.54)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) Consider the vertex nj. All paths with endpoint n; are as follow:

Py :ny,ny — red

P : ny,n9,ng — blue

P5 : ny,n9,ng, ng — yellow
Py : ny,n9, n3, ng, ns — white
P5 :: ny,ns5,ng,n3, no — black
Ps : n1,n5,n4,n3 — pink

P : nqy,ns,ng — purple

Ps : ny,n5 — brown

Thus S = {red,blue, yellow, white, black, pink, purple, brown} is
path-coloring set and its cardinality, 8, is path-coloring number.
To sum them up, for given two vertices, x and y, there are some
paths from z to y. If two paths from x to y share an endpoint, then
they’re assigned to different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown},

in this process is called path-coloring set from x to y. The minimum
cardinality, 8, between all path-coloring sets from two given vertices
is called path-coloring number and it’s denoted by V(CYC) = 8;

all vertices have same positions in the matter of creating paths. So
for every two given vertices, the number and the behaviors of paths
are the same;

there are some different paths which have no shared endpoints. So
they could been assigned to same color;

shared endpoints form a set of representatives of colors. Each
color is corresponded to a vertex which has minimum neutrosophic
cardinality;

every color in S is corresponded to a vertex has minimum neutro-
sophic cardinality. Minimum neutrosophic cardinality is obtained in
this way but other way is to use all shared endpoints to form S and
after that minimum neutrosophic cardinality is optimal;

for given two vertices, x and g, there are some paths from z to y. If
two paths from z to y share an endpoint, then they're assigned to
different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown},
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Figure 1.53: A Neutrosophic Graph in the Viewpoint of its path-coloring number

and its neutrosophic path-coloring number. \ 78NTG5
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Figure 1.54: A Neutrosophic Graph in the Viewpoint of its path-coloring number

and its neutrosophic path-coloring number. \ 78NTG6

in this process is called path-coloring set from = to y. The minimum
neutrosophic cardinality,

3

3
Z Zm(ﬂf) =0,(CYC) - Z%‘(W) =6.2,

zeS i=1 i=1

between all path-coloring sets, S, is called neutrosophic path-coloring
number and it’s denoted by

3
Va(CYC) = 0,(CYC) =Y o4(ng) = 6.2.

i=1

Definition 1.5.90. (Dual-Dominating Numbers).
Let NTG : (V,E, o, u) be a neutrosophic graph. Then

(i) for given two vertices, s and n, if u(ns) = o(n) A o(s), then s dominates
n and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
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every neutrosophic vertex s in S, there’s at least one neutrosophic vertex
n in V'\ S such that n dominates s, then the set of neutrosophic vertices,
S is called dual-dominating set. The maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(NTG);

(7) for given two vertices, s and n, if u(ns) = o(n) Ao(s), then s dominates n
and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertex s in .S, there’s at least one neutrosophic
vertex n in V'\ S such that n dominates s, then the set of neutrosophic
vertices, S is called dual-dominating set. The maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic dual-
dominating number and it’s denoted by D, (NTG).

Proposition 1.5.91. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
2x0(CYC)

D(CYC) = | 5 .

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

T1,T2," ,TO(CYC)-1,TO(CYC)) T1

be a cycle-neutrosophic graph CYC : (V) E, o, u1). Two consecutive vertices
could belong to S which is dual-dominating set related to dual-dominating
number. Since these two vertices could be dominated by previous vertex and
upcoming vertex despite them. If there are no vertices which are consecutive,
then it contradicts with maximality of set S and maximum cardinality of S.
Thus, let

S = {xl,l‘g, e ,J?szo(cyc)J)_l,$L2><o(cyc)J,l‘l}
3 3

be a set of neutrosophic vertices [a vertex alongside triple pair

of its values is called neutrosophic vertex.]. For every mneutro-

sophic vertex s in S, there’s at least one neutrosophic vertex

n in V \ (s = {ml,wg,--- ,xszo(cyc>J)_17xszo(cyc)J,3;‘1}) such
3 3

that n dominates s, then the set of neutrosophic vertices, S =

{x1, 22, - ,Z‘szo(cyc)”_l,xszo(cyc)J,.731} is called dual-dominating set.
3 3

So as the maximum cardinality between all dual-dominating sets is called

dual-dominating number and it’s denoted by

POYC) = LQ X O;CYC)J.
Thus
D(CYC) = LWJ

3
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
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definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.92. There are two sections for clarifications.

(a) In Figure (2.55)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iid)

Let S = {n3,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] which
are consecutive vertices. For every neutrosophic vertex s in S, there’s
only one neutrosophic vertex n in V'\ (S = {ns, na2, ns}) such that n
dominates s, then the set of neutrosophic vertices, S = {ng, na, ns} is
called dual-dominating set and this set is maximal. As if it contradicts
with the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CY C) = 4;

let S = {ns,n4,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] which
aren’t consecutive vertices. For every neutrosophic vertex s in .5,
there’s only one neutrosophic vertex n in V' \ (S = {n3,n4,n1})
such that n dominates s, then the set of neutrosophic vertices,
S = {n3,n4,n1} is called dual-dominating set and this set isn’t
maximal. As if it contradicts with the maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(CY C) = 4;

let S = {ng,n4,n1,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\ (S = {ns, n4,n1,ne}) such that n dominates s, then the set of
neutrosophic vertices, S = {ng, ny4,n1,ng} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CYC) = 4;

let S = {ng,n3,ns,ne} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\(S = {nqa, ns, ns,ne}) such that n dominates s, then the set of
neutrosophic vertices, S = {na, n3, ns,ng} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CYC) = 4;

let S = {ni,n2,n4,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\ (S = {n1, na, n4,ns}) such that n dominates s, then the set of
neutrosophic vertices, S = {ny,na, n4,ns} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CY C) = 4;

let S = {nq,ns3,n5,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
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every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V\(S = {na, ns, ns,ne}) such that n dominates s, then the set of
neutrosophic vertices, S = {na, ns, ns,ng} is called dual-dominating
set. So as the maximum neutrosophic cardinality between all dual-
dominating sets is called neutrosophic dual-dominating number and
it’s denoted by D, (CYC) = 5.9.

(b) In Figure (2.56)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

(iv)

Let S = {n3,n2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertex s in S, there’s only
one neutrosophic vertex n in V\ (S = {ng, na}) such that n dominates
s, then the set of neutrosophic vertices, S = {ns,ns} is called dual-
dominating set and this set isn’t maximal. As if it contradicts with
the maximum cardinality between all dual-dominating sets is called
dual-dominating number and it’s denoted by D(CY C) = 3;

let S = {na,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which aren’t
consecutive vertices. For every neutrosophic vertex s in S, there’s
only one neutrosophic vertex n in V' \ (S = {n2,n4}) such that n
dominates s, then the set of neutrosophic vertices, S = {ng,n4} is
called dual-dominating set and this set is maximal. As if it contradicts
with the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CYC) = 3;

let S = {ns,n4,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V'\ (S = {n3,n4,n1}) such that n dominates s, then the set of
neutrosophic vertices, S = {ng, nq,n;1} is called dual-dominating set.
So as the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CY C) = 3;

let S = {ns,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V'\ (S = {n3,n2,ns5}) such that n dominates s, then the set of
neutrosophic vertices, S = {ng, ng, ns} is called dual-dominating set.
So as the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CY () = 3;

let S = {ns,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V'\ (S = {n3,n2,n5}) such that n dominates s, then the set of
neutrosophic vertices, S = {ns,n2,n5} is called dual-dominating
set. As if it, 5.1, contradicts with the maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic
dual-dominating number and it’s denoted by D,,(CY C) = 5.7;
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Figure 1.55: A Neutrosophic Graph in the Viewpoint of its dual-dominating
number and its neutrosophic dual-dominating number.
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Figure 1.56: A Neutrosophic Graph in the Viewpoint of its dual-dominating
number and its neutrosophic dual-dominating number.

(vi) let S = {ns,nq,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V' \ (S = {ns,n4,n1}) such that n dominates s, then the set
of neutrosophic vertices, S = {ns, n4,n1} is called dual-dominating
set. So as the maximum neutrosophic cardinality between all dual-
dominating sets is called neutrosophic dual-dominating number and
it’s denoted by D, (CYC) = 5.7.

Definition 1.5.93. (dual-resolving numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) for given two vertices, s and s if d(s,n) # d(s’,n), then n resolves s and
s’ where d is the minimum number of edges amid all paths from s to s'.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s’ in S, there’s at least one neutrosophic vertex n in V'\ S such
that n resolves s, s’, then the set of neutrosophic vertices, S is called dual-
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resolving set. The maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(NTG);

(#1) for given two vertices, s and s’ if d(s,n) # d(s’,n), then n resolves s and
s" where d is the minimum number of edges amid all paths from s to s'.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s,s’ in S, there’s at least one neutrosophic vertex n in V' \ S
such that n resolves s, s, then the set of neutrosophic vertices, S is called
dual-resolving set. The maximum neutrosophic cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted by
R.(NTG).

Proposition 1.5.94. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
R(CYC)=0(CYC) —2.

Proof. Suppose CYC' : (V, E, 0, u) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, X2, ", ZOCYC)-1:LO(CYC)s L1

be a cycle-neutrosophic graph CYC : (V,E,o,u). O(CYC) — 2 consecutive
vertices could belong to S which is dual-resolving set related to dual-resolving
number where two neutrosophic vertices outside are consecutive. Since these
two vertices could resolve all vertices. If there are no neutrosophic vertices which
are consecutive, then it contradicts with maximality of set S and maximum
cardinality of S. Thus, let

S ={x1,22,- - ,To(CcYC)-3, TO(CYC)—2}

be a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. For every neutrosophic vertices s
and s’ in S, there’s at least one neutrosophic vertex n in V \ (S =
{z1,22, - ,20(CvC)-3: To(cyc)—2}) such that n resolves s and s’ then the
set of neutrosophic vertices, S = {x1,22,--- ,To(cyc)—3, Tocyc)—2} is called
dual-resolving set. So as the maximum cardinality between all dual-resolving
sets is called dual-resolving number and it’s denoted by

R(CYC)=0(CYC) —2.
Thus
R(CYC)=0(CYC) — 2.
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.95. There are two sections for clarifications.
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(a) In Figure (2.57)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

100

(4)

(i)

Let S = {n3,n2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ns and ng
in S, there’s neutrosophic vertex ny in V' \ (S = {ng,n2}) such
that ny resolves no and ng, then the set of neutrosophic vertices,
S = {ns,na} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) = 4;

S = {ng,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ns and ng
in S, there’s neutrosophic vertex ny in V' \ (S = {n4,ns}) such
that nq resolves ny and ny4, then the set of neutrosophic vertices,
S = {n4,n2} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) =4

let S = {ng,n4,n1,n2} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ng or neutrosophic vertex ns in V'\ (S = {ns, ng,n1,na}) such
that either ng resolves s and s, or ns resolves s and s, then the set
of neutrosophic vertices, S = {ns, n4,n1,n2} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CYC) = 4;

let S = {ng,nq4,ns,ne} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ny or neutrosophic vertex ng in V'\ (S = {ns, n4,ns,ng}) such
that either n; resolves s and s, or ny resolves s and s’, then the set
of neutrosophic vertices, S = {ns, n4, ns,ng} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CY C) = 4;

let S = {nq,ns5,n1,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ng or neutrosophic vertex ng in V'\ (S = {na, n5,n1,n6}) such
that either ns3 resolves s and s, or ny resolves s and s, then the set
of neutrosophic vertices, S = {ng, ns,n1,ne} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CY C') = 4;

let S = {ng,n1,ne,n2} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ngs or neutrosophic vertex ny in V'\ (S = {ns, n1,ng, na}) such
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that either ns resolves s and s, or ny resolves s and s’, then the set
of neutrosophic vertices, S = {ns, ny,ng, na} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets is
called dual-resolving number and it’s denoted by R, (CYC) = 6.4.

(b) In Figure (2.58)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(0)

(iid)

Let S = {n3,n2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ns and ng
in S, there’s neutrosophic vertex ng in V' \ (S = {ng,n2}) such
that n4 resolves no and ng, then the set of neutrosophic vertices,
S = {ns,nz} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) = 3;

S = {na,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ny and ny
in S, there’s neutrosophic vertex ns in V' \ (S = {n4,n2}) such
that ns resolves no and ny, then the set of neutrosophic vertices,
S = {n4,n2} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) = 3;

let S = {ns,n4,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex n; or neutrosophic vertex ng in V' \ (S =
{n3,nqg,ns}) such that either ny resolves s and s’ or ny resolves s
and s, then the set of neutrosophic vertices, S = {nsz,n4,ns} is
called dual-resolving set. So as the maximum cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

let S = {ni,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex ng or neutrosophic vertex ny in V' \ (S =
{n1,n2,n5}) such that either nz resolves s and s’ or ny resolves s
and s, then the set of neutrosophic vertices, S = {ni,na,ns} is
called dual-resolving set. So as the maximum cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

let S = {ni,n2,n3} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex n4 or neutrosophic vertex ns in V' \ (S =
{n1,n2,n3}) such that either n4 resolves s and s’ or ns resolves s
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 1.57: A Neutrosophic Graph in the Viewpoint of its dual-resolving

number and its neutrosophic dual-resolving number. \

8ONTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

715(0.5,0.4, 0.4)

fU.ﬁ.U.4.U.4]
n4(0.8,0.6,0.6)

Figure 1.58: A Neutrosophic Graph in the Viewpoint of its dual-resolving

number and its neutrosophic dual-resolving number. \

8ONTG6

and s, then the set of neutrosophic vertices, S = {nj,ng,ns} is
called dual-resolving set. So as the maximum cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

(vi) let S = {n2,n3z,n4} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex n; or neutrosophic vertex ns in V' \ (S =
{n2,ns,n4}) such that either ny resolves s and s’ or nj resolves
s and &', then the set of neutrosophic vertices, S = {ng,ng,na} is
called dual-resolving set. So as the maximum neutrosophic cardinality
between all dual-resolving sets is called dual-resolving number and
it’s denoted by R, (CYC) = 5.8.

Definition 1.5.96. (joint-dominating numbers).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(7) for given vertex n if sn € E, then s joint-dominates n. Let S be a set of

102



81prp9

1.5. Setting of neutrosophic notion number

neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.|. If for every neutrosophic vertex n in V' \ S, there’s
at least one neutrosophic vertex s in .S such that s joint-dominates n, then
the set of neutrosophic vertices, .S is called joint-dominating set where
for every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-dominating sets is called joint-dominating
number and it’s denoted by J(NTG);

(ii) for given vertex n if sn € E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V' \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-dominating sets is
called neutrosophic joint-dominating number and it’s denoted by
I (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.97. Let NTG : (V, E, o, ) be a neutrosophic graph and S has
one member. Then a vertex of S dominates if and only if it joint-dominates.

Proposition 1.5.98. Let NTG : (V, E, o, 1) be a neutrosophic graph and S is
corresponded to joint-dominating number. Then V' \ D is S-like.

Proposition 1.5.99. Let NTG : (V, E, o0, 1) be a neutrosophic graph. Then S
is corresponded to joint-dominating number if and only if for all s in S, there’s
a vertexn in V' \ S, such that {n' | n'n € E} NS = {s}.

Proposition 1.5.100. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

J(CYC) =0(CYC) - 2.

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, T2, ", TOCYC)-1:TOCYC)) L1

be a cycle-neutrosophic graph CYC : (V,E,o,u). O(CYC) — 2 consecutive
vertices could belong to S which is joint-dominating set related to joint-
dominating number where two neutrosophic vertices outside are “consecutive”.
Since it’s possible to have a path amid every two of vertices in S and two
vertices outside could be joint-dominated by their neighbors in S. If there are
no neutrosophic vertices which are consecutive, then it contradicts with the
term joint-dominating set for S. Thus, let

S ={r1,22,- -+ ,To(CYC)-3,TO(CYC)-2}

be a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. For given vertex n if sn € F, then s joint-dominates
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n. Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. For every neutrosophic vertex n in
VA (S ={z1,22, - ,z0(0cv0)-3, To(CYC)—2}),

there’s only one neutrosophic vertex s in

S = {1,202, - ,To(CcYC)=3, TO(CYC)—2}

such that s joint-dominates n, then the set of neutrosophic vertices,

S = {1,229, ,To(CcYC)-3, TO(CYC)—2}

is called joint-dominating set where for every two vertices in

S ={x1,22," - ,To(CYO)-3, TOCYC)—2)5

there’s only one path in S amid them. The minimum cardinality between all
joint-dominating sets is called joint-dominating number and it’s denoted by

JICYC)=0(YC) —2.
Thus
JICYC)=0CYC) —2.
[ |

Proposition 1.5.101. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CY C) > 3. Then there are 3 x O(CYC) + 1 joint-dominating sets.

Proposition 1.5.102. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CY C) > 3. Then there are O(CY C) joint-dominating set corresponded
to joint-dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.103. There are two sections for clarifications.

(a) In Figure (2.59), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s, there are only two
paths between them:;

(74) one vertex only dominates two vertices, then it only dominates its
two neighbors thus it implies the vertex joint-dominates is different
from the vertex dominates vertices in the setting of cycle;

(#i7) all joint-dominating sets corresponded to joint-dominating number
are

{711,712,7137714}7 {'I’LQ,'I’L3,'I’L4,'I’L5}, {77/3,77/4,77/5,”6}, {TL4,TL5, neg, nl}?
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(vi)

{n5, Ne, 11, n2}, {n67n17n27n3}~

For given vertex n if sn € F, then s joint-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least one neutrosophic vertex s in S such that s
joint-dominates n, then the set of neutrosophic vertices, S is called
joint-dominating set where for every two vertices in .S, there’s a
path in S amid them. The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted

by J(CYC) = O(CYC) —2 = 4;

there are nineteen joint-dominating sets

{n1,n2,n3,n4}, {ns5,n1,n2, 13,14}, {n6, 01, N2, 13,14},
{n2,n3,n4,n5},{n1, 02,13, N4, 15}, {6, 112, 113, N4, M5},
{ns,n4,ns,ng}, {n1,n3, n4, ns, ng}, {n2, n3, n4, n5, N },
{na,n5,m6, 11}, {Nn2, 14, 5,06, 11}, {N3, 114, 15, N5, M1 },
{ns,n6,n1,n2}, {n3, 15,06, 11, N2}, {n4, 05, 6, N1, N2},
{ne,m,nz,ns}, {n4, Ne, N1, N2, 713}7 {n57n67n17n27n3}»

{n57 ne,n1,N2,N3, n4}7
as if it’s possible to have six of them

{nla n2, N3, n4}7 {n27 n3,ng, nS}a {TL3, g, N5, n6}7 {77,47 N5, Ne, n1}7
{ns,n6, 1,12}, {n6, n1,n2,n3}
as a set corresponded to neutrosophic joint-dominating number so
as neutrosophic cardinality is characteristic;

there are nineteen joint-dominating sets

{n1,n9,n3,n4},{ns,n1,n9,n3,n4},{ne,n1,n92,n3,N4},
{na,n3,nq,n5},{n1,n2,n3,n4,n5}, {ne, N2, n3,n4, N5},
{n3,n4,n5, 16}, {n1,13, 14,15, 16 }, {n2, 13,14, 15,16 },
{na,ns, 16,1}, {n2,n4, 15,06, 11}, {N3, 14,15, 16,11 },
{ns,ne,n1,na2}, {ns, ns,ng, n1, na}, {na, ns,ng, n1, N2},
{ne,n1,n2,n3}, {na,n6, 11,02, 13}, {n5,16, 11,12, N3},

{n57n67n17n27n37n4}7
as if there is six joint-dominating sets
{n1,n2,n3,n4},{n27”37n47n5},{713,"4,"5,”6},{ﬂ47”57”67ﬂ1},
{n5;n6;n1;n2}a{n67n17n27n3}7

corresponded to neutrosophic joint-dominating number so as neutro-
sophic cardinality is the determiner;

there’s only one joint-dominating set corresponded to joint-
dominating number is {n4, ns, ng, ny}. For given vertex n if sn € E,
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then s joint-dominates n. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' '\ S, there’s at
least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating
set where for every two vertices in S, there’s a path in S amid
them. The minimum neutrosophic cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted
by Jn(CYC) = 0,(CYC) — 327 (a(na) + o(n3)) = 4.1.

(b) In Figure (2.60), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s, there are only two
paths between them;

(7i) one vertex only dominates two vertices, then it only dominates its
two neighbors thus it implies the vertex joint-dominates is different
from the vertex dominates vertices in the setting of cycle;

(#i7) all joint-dominating sets corresponded to joint-dominating number
are

{n1,n2,n3}, {n2,n3,na, }, {13, na, ns }, {na, ns, n1},

{ns,n1,na},
For given vertex n if sn € F, then s joint-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least one neutrosophic vertex s in S such that s
joint-dominates n, then the set of neutrosophic vertices, S is called
joint-dominating set where for every two vertices in S, there’s a
path in S amid them. The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted

by J(CYC) = O(CYC) —2 = 3;

(iv) there are sixteen joint-dominating sets

{n1,n2,n3}, {ng,n1,n2,n3}, {ns,n1,n2,n3},
{na,ng,na}, {n1,na2,n3,na}, {n5,n2,n3,n4},
{n3,na,ns}, {n2, n3, na, ns }, {n1, n3, na, ns},
{n4,ns,n1}, {na, ng,ns,n1}, {ns, na, ns,n1},
{ns,n1,n2}, {ns,ns,n1,na}, {ng, ns,ni,na},

{n17n27n37n47n5}7

as if it’s possible to have five of them

{nl,n27n3}a {712,?13,714, }a {77,3,77,4,77,5}, {TL4,TL5,TL1},

{n57n17n2}a

as a set corresponded to neutrosophic joint-dominating number so
as neutrosophic cardinality is characteristic;
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7, 0.6)

(0.2,0.1,0.6)

11(0.2,0.1,0.6)
712(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 1.59: A Neutrosophic Graph in the Viewpoint of its joint-dominating

number and its neutrosophic joint-dominating number. 81NTG5

(v) there are sixteen joint-dominating sets

{n1,n2,n3}, {n4,n1,n2,n3}, {ns,n1,n2,n3},
{n2,n3,n4}, {n1, 12, 03,04}, {n5, N2, 13,14},
{ns,n4,ns},{ne, n3, ng, ns}, {n1, ns, ng,ns},
{n4,ns,n1}, {ne, ng,ns,n1}, {ns, na,ns,m1},
{ns,n1,n2}, {n3, ns,n1,na}, {na, ns,n1,n2},

{nh n2,n3, N4, n5}7
as if there is five joint-dominating sets

{n17n27n3}a {nQa n3,ny, }7 {n3a ny, n5}7 {n47n5vn1}7

{TL5,TL1,TL2},

corresponded to neutrosophic joint-dominating number so as neutro-
sophic cardinality is the determiner;

(vi) there’s only one joint-dominating set corresponded to joint-
dominating number is {ns,n,no}. For given vertex n if sn € E,
then s joint-dominates n. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' \ S, there’s at
least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating
set where for every two vertices in S, there’s a path in S amid
them. The minimum neutrosophic cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted

by Jn(CYC) = 0,(CYC) — 327 (0(n3) + o(ng)) = 4.2.

Definition 1.5.104. (joint-resolving numbers).
Let NTG : (V, E,o, 1) be a neutrosophic graph. Then

(i) for given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-resolves
n and n’ where d is the minimum number of edges amid all paths from
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n1(0.5,0.5,0.4)

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6,0.6)

Figure 1.60: A Neutrosophic Graph in the Viewpoint of its joint-dominating
number and its neutrosophic joint-dominating number.

the vertex and the another vertex. Let S be a set of neutrosophic
vertices [a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V'\ S, there’s at least one
neutrosophic vertex s in S such that s joint-resolves n and n’, then the set
of neutrosophic vertices, S is called joint-resolving set where for every
two vertices in S, there’s a path in S amid them. The minimum cardinality

between all joint-resolving sets is called joint-resolving number and
it’s denoted by J(NTG);

for given two vertices n and n', if d(s,n) # d(s,n’), then s joint-resolves
n and n’ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic vertices

[a vertex alongside triple pair of its values is called neutrosophic vertex.].

If for every neutrosophic vertices n and n’ in V' \ S, there’s at least
one neutrosophic vertex s in S such that s joint-resolves n and n’,
then the set of neutrosophic vertices, S is called joint-resolving set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-resolving sets is called
neutrosophic joint-resolving number and it’s denoted by J,(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.105. Let NTG : (V,E, o0, 1) be a neutrosophic graph and S

has one member. Then a vertex of S resolves if and only if it joint-resolves.

Proposition 1.5.106. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then S

is corresponded to joint-resolving number if and only if for all s in S, either
there are vertices n and n' in V'\ S, such that {s" | d(s',n) # d(s',n')}NS = {s}
or there’s vertex s' in S, such that are s and s’ twin vertices.

Proposition 1.5.107. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
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Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, T2, ,LOCYC)-1:TO(CYC), L1

be a cycle-neutrosophic graph CYC': (V, E, o, it). 2 consecutive vertices could
belong to S which is joint-resolving set related to joint-resolving number. If
there are no neutrosophic vertices which are consecutive, then it contradicts
with the term joint-resolving set for S. All joint-resolving sets corresponded to
joint-resolving number are

{-rlv .132}, {332, .133}, {x?ﬂ Jf4}7 sy

{zoevey-1,z0cver b {rocy ey, 1}
For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-resolves n and
n/ where d is the minimum number of edges amid all paths from the vertex and

the another vertex. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] like either of

{xlv xZ}a {x27 xB}a {fE3, .’E4}7 ey
{JEO(CYC)—l, zO(CYC’)}v {fUO(CYC), Ty}
For every neutrosophic vertices n and n’ in V'\ S, there’s only one neutrosophic

vertex in S such that joint-resolves m and n’, then the set of neutrosophic
vertices, S is either of

{thQ}; {1'27.273}, {1'3,1'4}, ey

{xO(CYC)—la xo(cycﬂ» {$0(CYC), x1}

is called joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum cardinality between all joint-resolving sets is called
joint-resolving number and it’s denoted by

J(CYC) =2.

Thus
J(CYC) =2.

Proposition 1.5.108. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CY C) > 3. Then there are (O(CYC) x (20(C€YE)=2 _ 1)) + 1 joint-
resolving sets.

Proposition 1.5.109. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then there are O(CY C) joint-resolving set corresponded
to joint-resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

109



1. Neutrosophic Notions

Example 1.5.110. There are two sections for clarifications.

(a) In Figure (2.77)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

110

(4)
(i)

(iid)

(iv)

For given two neutrosophic vertices, there are only two paths between
them;

one vertex only resolves some vertices as if not all if they aren’t two
neighbor vertices, then it only resolves some of all vertices and if
they aren’t two neighbor vertices, then they resolves all vertices thus
it implies the vertex joint-resolves as same as the vertex resolves
vertices in the setting of cycle, by joint-resolving set corresponded
to joint-resolving number has two neighbor vertices;

all joint-resolving sets corresponded to joint-resolving number are

{n1,n2}, {na,n3}, {n3,na},
{n4,ns},{ns,ne}, {ne,n1}.

For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.| like either of

{nla n?}a {n27 n3}7 {n37 TL4},
{na,ns}, {ns,ne}, {ne, n1}.
For every neutrosophic vertices n and n’ in V' \ S, there’s only one

neutrosophic vertex in S such that joint-resolves n and n/, then the
set of neutrosophic vertices, S is either of

{nla nQ}a {7127 n3}7 {’I’L3, TL4},

{n4,n5}, {77,5,77,6}, {n67n1}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum cardinality between all joint-
resolving sets is called joint-resolving number and it’s denoted by

JCYC) =2

there are ninety-one joint-resolving sets

{n1,n2}, {n1,ne,ns}, {n1,na,nqg},

{n17ﬂ2,n5}, {nl,nz,n6}7 {nl,ng,ng,m;}

{n1,n2,n3,n5}, {n1,n2,n3,n6}, {N1, 72, 74, N5 },
{n1,n2,n4,n6},{n1, 12,135,106}, {N1, 12,13, 14,05},
{n1,n9,n3,n4,n6}, {n1,n92,n3,n5,n6}, {N1,n2, n4, 5,16},
{n1,n2,n3, 14,135,061,

{n3,na}, {n3,n2,n1},{n3,n2,n4},

{n3»n2,n5}, {71177127"6}7 {nB,n2,n1,n4}



1.5. Setting of neutrosophic notion number

{ns,na,n1,ns}, {ns, na,n1,ng}, {ns, N2, n4, ns },
{ns3,na,nq,ng}, {ns, N2, ns,ng}, {ns, n2,n1,n4,ns},
{n3,na2,n1,m4,m6}, {n3, 12,11, 05,6 }, {n3, 12, N4, M5, M6 },
{ns,na}, {n3,na,n1}, {n3,n4,n2},
{n3,n4,ns},{n1,n4,n6}, {n3, 14,11, 12}
{n3,na,n1,ns5}, {ns, na,ni,net, {ns, na, n2, nst,
{n3,na,n2,m6}, {n3,na, n5,m6}, {n3, 14,11, M2, 05},
{71377”&4,711,712,”6},{n3,n4,n1,n5,n6}7{n37n47n27n57n6}»
{ns,n4}, {ns,na,n1}, {ns,ng, na},
{n5,n4,n3},{nl,n4,n6},{n5,n4,n1,n2}
{ns,n4,m1,m3}, {ns, na, n1,m6}, {05, 04, 12, M3},
{ns,n4,n2,16},{n5,n4,n3,M6 }, {N5, 14, 71,02, M3},
{ns,n4,n1,n2,n6}, {ns, n4,n1,n3, 06}, {N5, 14, N2, n3, N},
{ns,n6}, {ns,n6,n1}, {ns, 6, n2},
{ns,ne,n3}, {n1,n6,na}, {n5,Mm6, 11,12}
{ns,ng,n1,ns}, {ns,ne,n1,n4}, {ns5,n6,n2,n3},
{ns,ne,n2,n4}, {ns5,n6, 13,04}, {n5,n6,M1,n92,n3},
{ns,n6, 11,12, M4}, {n5, 16,11, M3, 14 }, {15, 116, N2, M3, M4 },
{n1,n6}, {n1,m6,n3}, {n1, 16,04},
{n1,n6,n5}, {n1,n6,n2}, {n1,n6, 13,14}
{n1,m6,n3,n5},{n1,n6, 13, N2}, {11, N6, M4, M5},
{n1,n6, 14,2}, {n1, 16, 15, M2}, {N1, 16, 13, M4, M5 },
{711,716,713,"4,”2},{n1,n6,n3,n5,n2}7{n17n67n47n57n2},
as if it’s possible to have one of them as a set corresponded to

neutrosophic joint-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are ninety-one joint-resolving sets

{n1,n2}, {n1,n2,n3}, {n1,n2,n4},

{n17n27n5}a {nl, na, n6}, {nl,ng,n37n4}
{n1,n9,n3,n5},{n1,n2,n3,ng}, {n1,n2,n4,ns},
{n1,n2,n4,n6}, {n1,n2,n5, 16}, {N1, 12, 13,4, 05},
{n1,n2,n3, 14,06}, {n1,n2, 13, 15,06}, {1, N2, 114, N5, N6 },
{711,712,”3,”47”57”6},

{ns3,nat, {ns,n2,n1}, {ns,no,na},

{ns,n2,ns5}, {n1,n2,ne}, {n3, na, n1,n4}
{n3,n2,n1,n5},{n3,n2,n1,n6}, {N3, M2, 14,15},
{ns3,na,nq,ng}, {ns, na, ns,ng}, {ns, n2,n1,n4,ns},
{n3,n2,n1,n4, 16}, {n3, 2, M1, 15, N6 }, {3, N2, N4, M5, M6 },
{ns,na}, {n3,na,n1}, {n3,ng,na},

{n37n47n5}7 {nla Ny, n6}7 {n37n47n17n2}
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{ns,n4,n1,n5}, {ns,n4,n1,n6}, {ns, ng,na, ns},

{ns,n4,na,ng}, {n3,n4,ns5,n6}, {N3,n4,n1,n2,n5},

{n3,na,n1,m2,n6}, {n3, 14, M1, 15, 16}, {13, 114, N2, M5, M6 },

{ns,nq4}, {ns,ng,n1}, {ns, ng, nat,

{ns,n4,n3}, {n1,n4,n6}, {ns, N4, n1, 12}

{ns,na,n1, 3}, {ns, na,n1,me}, {ns, na, n2,n3},

{ns,n4,n2,m6}, {ns, 14, 13,06}, {n5, 14,11, M2, 3},

{ns,nqg,n1,n9,n6}, {Ns,n4,n1, 03,06}, {ns5, N4, N2, N3, N6 },

{ns,ne}, {ns, ne,n1}, {ns, ng, na},

{ns,ne, a3}, {n1,n6,na}, {n5,m6, 71,12}

{ns,n6,n1,n3}, {ns,n6,n1,n4}, {ns5, 16,12, M3},

{ns,ne,na,nq4}, {ns5,n6, 13,04}, {N5, 16,01, n2,n3},

{ns,ne,n1,n2,n4}, {ns,ng,n1,n3, 4}, {ns5,n6, n2, N3, M4},

{n1,n6},{n1,m6,n3}, {n1, 16,14},

{n1,n6,n5}, {n1,n6,n2}, {n1,m6, 03,14}

{n1,n6,n3,n5}, {n1,ne, n3,na}, {ni, ne, na, ns},

{n1,n6,n4,n2}, {n1,n6, 15,02}, {n1,n6, N3, 14, 15},

{n1,n6,n3,m4,n2}, {n1, 16,13, 15, N2}, {11, M6, N4y M5, M2},
as if there’s one joint-resolving set corresponded to neutrosophic joint-
resolving number so as neutrosophic cardinality is the determiner;

all joint-resolving sets corresponded to joint-resolving number are

{nla n2}7 {n2a 7’7/3}, ‘{TL3, n4}7

{’I’L4, ’I’L5}, {7157 n6}7 {n(i» nl}'
For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of

neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of

{nla n2}7 {nZa 7’7/3}, {n37 n4}7
{n47 n5}; {n57 nG}v {n67 nl}'
For every neutrosophic vertices n and n’ in V' \ S, there’s only one

neutrosophic vertex in S such that joint-resolves n and n/, then the
set of neutrosophic vertices, S is either of

{nla n?}a {7127 713}7 {'I’L3, TL4},

{na,ns}, {ns,ne}, {ng,n1}
is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called joint-resolving number and

it’s denoted by
J.(CYC) =1.7.

S is {ny4,n5} corresponded to neutrosophic joint-resolving number.
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(b) In Figure (2.78), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
(i)

(iid)

(iv)

For given two neutrosophic vertices, there are only two paths between
them;

one vertex only resolves some vertices as if not all if they aren’t two
neighbor vertices, then it only resolves some of all vertices and if
they aren’t two neighbor vertices, then they resolves all vertices thus
it implies the vertex joint-resolves as same as the vertex resolves
vertices in the setting of cycle, by joint-resolving set corresponded
to joint-resolving number has two neighbor vertices;

all joint-resolving sets corresponded to joint-resolving number are

{nh n2}> {712, n3}a {n?n ’I’Z4},
{n47 nS}a {n5a nl}'
For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of
{nla le}, {nQa nS}a {Tlg, Tl4},
{n47 n5}7 {n57 n1}~
For every neutrosophic vertices n and n’ in V'\ S, there’s only one
neutrosophic vertex in S such that joint-resolves n and n’, then the
set of neutrosophic vertices, S is either of
{nlv 77,2}, {nQa n3}7 {n?n 77,4},
{n47 n5}7 {715, nl}
is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum cardinality between all joint-
resolving sets is called joint-resolving number and it’s denoted by
J(CYC) =2;
there are thirty-six joint-resolving sets
{n17 n2}7 {nla na, n3}; {n17 na, n4}7
{nla n2, 77’5}7 {n17 nz2,ns, TL4}{TL1, nz2,ns, TL5}
{nla n2, N4, n5}7 {n3a ’I’LQ}, {n?n na, n1}7 {’I’L3, na, n4}7
{n?n na, n5}7 {n37 na2,ni, n4}{n37 na2,Nni, n5}7
{n37 N2, Ny, n5}7 {n37 TL4}, {n37 Ty, n1}7
{n3,na,na}, {n3, na,ns}, {nz, na,n1,na},
{n3a ng,N1, 7’7/5}, {77‘3, N4, N2, n5}7 {n5a 7’7/4},
{715, N4, n1}7 {’I’L5, Ny, nQ}a {’I’Ls, N4, 713}7
{nf’)a Ny, M1, nQ}{nE’)a Ny, M1, 713}, {Tl5, Ny, N2, Tlg},
{ns,n1}, {ns,ni,na}, {ns, ni,nat,
{ns,n1,n3}, {ns, n1,na, n2H{ns, n1, n4, na},

{715,711,7127713}7 {'I’L5,'I’L1,'I’L4,'I’L2,'I’L3}
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(v)

(vi)

as if it’s possible to have one of them as a set corresponded to
neutrosophic joint-resolving number so as neutrosophic cardinality
is characteristic;

there are thirty-six joint-resolving sets

{n1,n2}, {nl,nz,%}, {n17n27n4},
{7117”27”5}, {nl,712,713,714}{711,712,”3,”5}
{n1,n2,n4,n5}, {n3, na}, {n3, n2,n1}, {nz, n2,na},
{n3,na,ns5}, {n3, na, n1, naf{ns, na, n1, s},
{ns,na,ng,ns},{ns,nat, {ns,ng,n1},
{ns,n4,na},{ns, na,ns}, {ns, na,ni,nat,
{n3,na,n1,ns5}, {na, na, na, ns}, {ns, nat,
{ns,na,n1}, {ns, na, na}t, {ns,n4,n3},
{ns,n4,n1,n2}{ns, ng,n1,n3}, {ns,ng, no, n3},
{ns,n1}, {ns,n1,na}, {ns, n1,n2},
{ns,n1,n3}, {ns, n1, na, n2 H{ns, n1, na, na},
{ns,n1,n2,n3}, {ns, n1, ng, o, n3},
as if there’s one joint-resolving set corresponded to neutrosophic joint-
resolving number so as neutrosophic cardinality is the determiner;

all joint-resolving sets corresponded to joint-resolving number are

{n1,n2}, {n2,n3}, {n3, na},
{n4,ns},{ns,n1}.

For given two vertices n and n/, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.| like either of

{nb TLQ}, {n27 77,3}7 {Tlg, Tl4},
{n47 n5}a {n5a nl}-
For every neutrosophic vertices n and n’ in V' \ S, there’s only one

neutrosophic vertex in S such that joint-resolves n and n/, then the
set of neutrosophic vertices, S is either of

{nl, nz}, {n2, 713}7 {Tl3, Tl4},

{na,ns}, {ns,n1}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by

T (CYC) =2.7.

S is {n1,n5} corresponded to neutrosophic joint-resolving number.
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n1(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

fU.l.U.l.U.Q]
n5(0.1,0.1,0.2)

Figure 1.61: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number.

ny(0.5,0.5,0.4)

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n2(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6, 0.6)

Figure 1.62: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number.

Definition 1.5.111. (perfect-dominating numbers).
Let NTG : (V,E,o, 1) be a neutrosophic graph. Then

(4)

for given vertex n, if sn € FE, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V'\ S, there’s only one neutrosophic vertex s
in S such that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum cardinality between
all perfect-dominating sets is called perfect-dominating number and
it’s denoted by P(NTG);

for given vertex n, if sn € E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V'\ S, there’s only one neutrosophic vertex s in S
such that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum neutrosophic cardinality
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between all perfect-dominating sets is called neutrosophic perfect-
dominating number and it’s denoted by P, (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.112. Let NTG : (V, E, 0, 1) be a neutrosophic graph and S has
one member. Then a vertex of S dominates if and only if it perfect-dominates.

Proposition 1.5.113. Let NTG : (V,E,o,u) be a neutrosophic graph and
dominating set has one member. Then a vertex of dominating set corresponded
to dominating number dominates if and only if it perfect-dominates.

Proposition 1.5.114. Let NTG : (V,E, o0, 1) be a neutrosophic graph. Then
S is corresponded to perfect-dominating number if and only if for all s in S,
there’s a vertex n in V'\ S, such that {s' | s'n € E} NS = {s}.

Proposition 1.5.115. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

oCYC) |

—s

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

P(CYC) = |

L1, L2, , TOCYC)-1:LO(CYC) L1

be a cycle-neutrosophic graph CY C : (V, E, o, ). All perfect-dominating sets
corresponded to perfect-dominating number are

{nl,n4, .. '}|S|:[O(C3YC)J’{n2’n5’ .. .}lSIZLo(cSyc)J PIRITIR

where last vertices could be neighbors as if they couldn’t have less than three
edges amid them. For given vertex n, if sn € E, then s perfect-dominates n
where s is the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V' \ S, there’s only one neutrosophic vertex s in S
such that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum cardinality between all perfect-
dominating sets is called perfect-dominating number and it’s denoted by

PCYC) = L@ I.
s ocyc
PCYC) = L% I

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.
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Example 1.5.116. There are two sections for clarifications.

(a) In Figure (2.63), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)
(i)

(iid)

(iv)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex couldn’t be dominated by more than
one vertex as if the structure of dominating and perfect-dominating
are the same in the terms of sets and numbers where only some sets
coincide;

all perfect-dominating sets corresponded to perfect-dominating
number are {ni,ns},{n2,n5}, and {n3,ng}. For given vertex n,
if sn € E, then s perfect-dominates n where s is the unique vertex.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertex n in V'\ S, there’s only one neutrosophic vertex s in S such
that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum cardinality between all
perfect-dominating sets is called perfect-dominating number and it’s
denoted by P(CYC) = 2 and corresponded to perfect-dominating
sets are {ny,nq}, {ne,ns}, and {nz, ng};

there are ten perfect-dominating sets

{n17n4}7 {nQa Tl5}, {n37n6}7
{n17n47n57n6}7 {nla n2,Nn3, n4}a {n27n57n67n1}7
{n27n37n47n5}7 {n?); ne, N1, nQ}a {n37n47n57n6}7

{7?,1,7?,2, , N3, Mg, N5, nG}?

as if it’s possible to have one of them as a set corresponded
to neutrosophic perfect-dominating number so as neutrosophic
cardinality is characteristic;

there are ten perfect-dominating sets

{7’?,1,714}, {n27 n5}a {n37n6}7
{n17n47n57n6}7 {nla no, N3, ’I’L4}, {n27n57n67n1}7
{n27n37n47n5}7 {n3a Neg, N1, nQ}v {n37n47n57n6}7

{n17n27 513, Mg, M, n6}7

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating
number so as neutrosophic cardinality is the determiner;

all perfect-dominating sets corresponded to perfect-dominating
number are {ni,n4}, {n2,ns5}, and {ns,neg}. For given vertex n,
if sn € E, then s perfect-dominates n where s is the unique vertex.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertex n in V'\ S, there’s only one neutrosophic vertex s in S such
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that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum neutrosophic
cardinality between all perfect-dominating sets is called neutrosophic
perfect-dominating number and it’s denoted by P, (CYC) = 2.2 and
corresponded to perfect-dominating sets are {ny,n4}.

(b) In Figure (2.64]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex couldn’t be dominated by more than
one vertex as if the structure of dominating and perfect-dominating
are the same in the terms of sets and numbers where only some sets
coincide;

all perfect-dominating sets corresponded to perfect-dominating
number are {ny,ng, ns}, {n2, ns,n1}, {n1,n2,n3}, and {ng, n3, ny}.
For given vertex n, if sn € E, then s perfect-dominates n where
s is the unique vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.|. If for every neutrosophic vertex n in V '\ S, there’s only
one neutrosophic vertex s in S such that s perfect-dominates n,
then the set of neutrosophic vertices, S is called perfect-dominating
set. The minimum cardinality between all perfect-dominating
sets is called perfect-dominating number and it’s denoted by
P(CYC) = 3 and corresponded to perfect-dominating sets are
{n1,na,ns}, {n2, ns,na}, {n1,n2,n3}, and {na, ng, nat;

there are five perfect-dominating sets

{TLl,TL4,TL5}, {TLQ,TL5,TL1}, {TLl,TLQ,TLg},

{n27n’37n4}7 {nlan27n37n47n5}7

as if it’s possible to have one of them as a set corresponded
to neutrosophic perfect-dominating number so as neutrosophic
cardinality is characteristic;

there are five perfect-dominating sets

{TLl,'I'L4,'I'L5}, {7127715,711}7 {n17n27n3}7

{n27n37n4}7 {77,1,77,2,713,714,?15}7

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating
number so as neutrosophic cardinality is the determiner;

all perfect-dominating sets corresponded to perfect-dominating
number are {ny,ng,ns}, {n2, ns,n1}, {n1, n2,n3}, and {na, n3, ng}.
For given vertex n, if sn € E, then s perfect-dominates n where
s is the unique vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' \ S, there’s only
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Figure 1.63: A Neutrosophic Graph in the Viewpoint of its perfect-dominating
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Figure 1.64: A Neutrosophic Graph in the Viewpoint of its perfect-dominating

number and its neutrosophic perfect-dominating number. \ 83NTG6

one neutrosophic vertex s in S such that s perfect-dominates n,
then the set of neutrosophic vertices, S is called perfect-dominating
set. The minimum neutrosophic cardinality between all perfect-
dominating sets is called neutrosophic perfect-dominating number
and it’s denoted by P, (CYC) = 4.2 and corresponded to perfect-
dominating sets are {nz,ns,n1}.

Definition 1.5.117. (perfect-resolving numbers).
Let NTG : (V,E, o, ) be a neutrosophic graph. Then

(7) for given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n’ in V'\ S, there’s only one neutrosophic vertex
s in S such that s perfect-resolves n and n’, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number
and it’s denoted by P(NTG);
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1. Neutrosophic Notions

(#1) for given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n’ in V' \ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n’, then
the set of neutrosophic vertices, S is called perfect-resolving set. The
minimum neutrosophic cardinality between all perfect-resolving sets is
called neutrosophic perfect-resolving number and it’s denoted by
Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.118. Let NTG : (V,E, o, 1) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it perfect-resolves.

Proposition 1.5.119. Let NTG : (V,E,o,u) be a neutrosophic graph and
resolving set has one member. Then a verter of resolving set corresponded
to resolving number resolves if and only if it perfect-resolves.

Proposition 1.5.120. Let NTG : (V,E,o0, 1) be a neutrosophic graph. Then
S is corresponded to perfect-resolving number if and only if for all s in S,
there are neutrosophic vertices n and n' in V'\ S, such that {s’ | d(s',n) #
d(s',n")} NS = {s} and for all neutrosophic vertices n and n’ in V' \ S, there’s
only one neutrosophic vertex s in S, such that {s' | d(s’,n) # d(s',n")}NS = {s}.

Proposition 1.5.121. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then V
and V\ {z} are S.

Proposition 1.5.122. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

P(CYC) = O(CYC) —1.

Proof. Suppose CYC' : (V, E,0, 1) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, L2, , TOCYC)-1:XTO(CYC)s L1

be a cycle-neutrosophic graph CYC : (V, E, o, ). In the setting of cycle, two
vertices couldn’t be resolved by more than one vertex so as the structure of
resolving and perfect-resolving are different in the terms of sets. In the setting
of cycle, a vertex of resolving set corresponded to resolving number resolves as
if it doesn’t perfect-resolve, by S has two members in settings of resolving as if
these vertices aren’t unique in the terms of resolving since some vertices are
resolved by both of them and adding them to intended growing set is useless.
Thus, by Proposition (2.5.121]), S has either O(CYC) or O(CYC) — 1. All
perfect-resolving sets corresponded to perfect-resolving number are

{m, nz,n3,...,NoCyc)—4,NoCcyc)-3,NoCyc)-2, nO(CYC)fl}a
{n1,m2,n3, ..., no(CYC)—45 NO(CY C)=35 NO(CY C)—2, ROCY ) )
{7117 nz,n3,...,NoCyCc)—4,NoCcyc)-2,"oCyc)-1, no(cyc)}7
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{n2,n3,m4,. .. yo(cyc)—-4,No(Ccyc)-3,NoCcyc)—-2,No(CcyC)-1, nO(CYC)};

For given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves n and
n/ where s is the unique vertex and d is minimum number of edges amid two
vertices. Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n’ in V' \ S, there’s only one neutrosophic vertex s in S such that s
perfect-resolves n and n’, then the set of neutrosophic vertices, S is called
perfect-resolving set. The minimum cardinality between all perfect-resolving
sets is called perfect-resolving number and it’s denoted by

P(CYC) =0(CYC) —1

and corresponded to perfect-resolving sets are

{n1,n2,n3,... yNO(CYC)—4,NO(CYC)-3,NO(CYC)—25 nO(CYC)—l}a

{'I’Ll, n2, N3, ..., NOCYC)—4,NOCYC)-3,NOCYC)-25 nO(CYC)}a

{n1,n2,m3,... yRo(cyC)—4,NoO(CYC)—2:NO(CYC)—15 no(cyc)}w

{nz, n3, N4, ..., NOCYC)-4,NOCYC)-3,NOCYC)-2,TNO(CYC)—1>5 nO(CYC)}-
Thus

P(CYC) = O(CYC) —1.
n

Proposition 1.5.123. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then perfect-resolving number isn’t equal to resolving number.

Proposition 1.5.124. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then the number of perfect-resolving sets corresponded to perfect-resolving
number is equal to O(CY ().

Proposition 1.5.125. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then the number of perfect-resolving sets is equal to O(CYC) + 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.126. There are two sections for clarifications.

(a) In Figure (2.65)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(#) For given neutrosophic vertex, s, there are only two paths with other
vertices;
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(i)

(iid)

in the setting of cycle, two vertices couldn’t be resolved by more
than one vertex so as the structure of resolving and perfect-resolving
are different in the terms of sets. In the setting of cycle, a vertex
of resolving set corresponded to resolving number resolves as if it
doesn’t perfect-resolve, by S has two members in settings of resolving
as if these vertices aren’t unique in the terms of resolving since some
vertices are resolved by both of them and adding them to intended
growing set is useless. Thus, by Proposition , S has either
O(CYC) or O(CYC) — 1,

all perfect-resolving sets corresponded to perfect-resolving number
are

{nl,nQan37n4,n5}7 {nlan25n3an4an6}7 {n17n27n37n57n6}a

{n1>n27n47n57n6}a {n17n37n47n57n6}7 {n27n37n47n57n6}7

For given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves
n and n/ where s is the unique vertex and d is minimum number
of edges amid two vertices. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertices n and n’ in V'\ S, there’s
only one neutrosophic vertex s in .S such that s perfect-resolves n and
n/, then the set of neutrosophic vertices, S is called perfect-resolving
set. The minimum cardinality between all perfect-resolving sets is
called perfect-resolving number and it’s denoted by P(CYC) = 5
and corresponded to perfect-resolving sets are

{nlvn27n37n4an5}a {77/17712777/3777/47716}7 {’I’Ll,’l’LQ,’I’L3,’I’L5,’I’L6},

{nh ng, N4, N5, nﬁ}a {nla n3,ng,Ns, 716}, {n27 n3, N4, N5, n6}7
there are seven perfect-resolving sets

{n17n27n37n47n5}3{n17n27n37n47n6}7{n17n27n37n57n6}3
{nl,ng,n4,n5,n6},{nl,ng,n4,n5,n6},{ng,n3,n4,n5,n6},
{nlan27n3,n47n57n6}a

as if it’s possible to have one of them as a set corresponded to

neutrosophic perfect-resolving number so as neutrosophic cardinality
is characteristic;

there are six perfect-resolving sets

{n17n27n37n47n5}3 {nlan27n37n47n6}7 {n17n27n37n5a TLG},

{nlanQan47n5,n6}7 {nlan3an4an5an6}7 {n27n37n47n57n6}a

corresponded to perfect-resolving number as if there’s one perfect-
resolving set corresponded to neutrosophic perfect-resolving number
so as neutrosophic cardinality is the determiner;

all perfect-resolving sets corresponded to perfect-resolving number
are {ny} and {ng}. For given vertices n and n’ if d(s,n) # d(s,n’),
then s perfect-resolves n and n’ where s is the unique vertex and
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d is minimum number of edges amid two vertices. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n' in V' \ S, there’s only one neutrosophic vertex s in S
such that s perfect-resolves n and n’, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum neutrosophic
cardinality between all perfect-resolving sets is called neutrosophic
perfect-resolving number and it’s denoted by P,(CYC) = 6 and
corresponded to perfect-resolving sets are {ny,ns, n4, ns, ne}.

(b) In Figure (2.66)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, two vertices couldn’t be resolved by more
than one vertex so as the structure of resolving and perfect-resolving
are different in the terms of sets. In the setting of cycle, a vertex
of resolving set corresponded to resolving number resolves as if it
doesn’t perfect-resolve, by S has two members in settings of resolving
as if these vertices aren’t unique in the terms of resolving since some
vertices are resolved by both of them and adding them to intended
growing set is useless. Thus, by Proposition , S has either
O(CYC) or O(CYC) — 1,

all perfect-resolving sets corresponded to perfect-resolving number
are

{n17n27n37n4}7 {nla ng,n3, n5}7 {77,1777,2777,4777,5},
{n17n37n47n5}7 {nQa n3,ng, n5}7

For given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number
of edges amid two vertices. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertices n and n’ in V'\ S, there’s
only one neutrosophic vertex s in S such that s perfect-resolves n and
n', then the set of neutrosophic vertices, S is called perfect-resolving
set. The minimum cardinality between all perfect-resolving sets is
called perfect-resolving number and it’s denoted by P(CYC) = 4
and corresponded to perfect-resolving sets are

{n17n27n37n4}7{nlan2an3an5}a{n17n27n47n5}7
{n17n37n47n5}7{n23n33n4an5};
there are six perfect-resolving sets
{n13n23n3an4}7{nlvn27n37n5}7{n13n23n47n5}7
{n17n3an47n5}7{n27n37n47n5}7{n17n25n37n4an5}7

as if it’s possible to have one of them as a set corresponded to
neutrosophic perfect-resolving number so as neutrosophic cardinality
is characteristic;
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Figure 1.65: A Neutrosophic Graph in the Viewpoint of its perfect-resolving

number and its neutrosophic perfect-resolving number. \ 84NTG5

(v) there are five perfect-resolving sets

{n17n27n37n4}7 {nlanQan?nnf)}v {n17n27n47n5}a

{nl,ng,n4,n5}, {n27n37n47n5}7

corresponded to perfect-resolving number as if there’s one perfect-
resolving set corresponded to neutrosophic perfect-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all perfect-resolving sets corresponded to perfect-resolving number
are

{n1,n2,n3,7l4}, {nlan2an3an5}7 {nl7n27n47n5}7

{n17n37n47n5}7 {n27n37n47n5}7

For given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n’ in V'\ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n’,
then the set of neutrosophic vertices, S is called perfect-resolving set.
The minimum neutrosophic cardinality between all perfect-resolving
sets is called neutrosophic perfect-resolving number and it’s denoted
by Pn(CYC) = 6.6 and corresponded to perfect-resolving sets are
{nl, no, Ny, Tl5}.

Definition 1.5.127. (total-dominating numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(¢) for given vertex n, if sn € E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
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Figure 1.66: A Neutrosophic Graph in the Viewpoint of its perfect-resolving
number and its neutrosophic perfect-resolving number.

set. The minimum cardinality between all total-dominating sets is called
total-dominating number and it’s denoted by T (NTG);

(#i) for given vertex n, if sn € F, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum neutrosophic cardinality between all total-dominating sets is
called neutrosophic total-dominating number and it’s denoted by

To(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.128. Let NTG : (V,E,o0,u) be a neutrosophic graph. Then
[S] > 2.

Proposition 1.5.129. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

o(CY Q)

TEYe) = (D=

1.

Proof. Suppose CYC' : (V, E, 0, u) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

T1,T2, ", LOCYC)-1:TOCYC), L1

be a cycle-neutrosophic graph CY C : (V, E, o, i1). In the setting of cycle, a vertex
of dominating set corresponded to dominating number dominates as if it doesn’t
total-dominate since a vertex couldn’t dominate itself. Thus two neighbors
are necessary in S. All total-dominating sets corresponded to total-dominating
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number are

{n17n27n57n67n97n10 .. '}7 {nQa ns,ne, 7, n10, 111 - - '}; {ng,ng,n4,n7,ng, ..

s

{.- s noEy)=10, NOCY C)—9,0(CY C)—65 NO(CY C)—5> NO(CY C)—2, NO(CY C)—1

{' - NoEeYC)-9,NOCYC)-8,0(CYC)—5,NO(CYC)—4,NO(CYC)—1) TLO(CYC)}~

For given vertex n, if sn € E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at least
a neutrosophic vertex s in S such that s total-dominates n, then the set of
neutrosophic vertices, S is called total-dominating set. The minimum cardinality
between all total-dominating sets is called total-dominating number and it’s
denoted by

oCcyC)

2

and corresponded to total-dominating sets are

T(CYC) = (DI 1D

{n17n27n57n67n97n10 .- ’}7 {n27 ns,ne, N7, N10,MN11 - - ‘}7 {n27n37n47n77n87 .-

{- yRO(CY C)—10; NO(CY C)-9,0(CYC)—6: MO(CY C)—5:MO(CYC)—2, NO(CYC)—

{- -5 NoECYC)-9NO(CYC)-8,0(CYC)—5,NO(CYC)—4, NO(CYC)—15 nO(CYC‘)}~

Thus
oiKcyo)

TEYC) = (D=

1.
o

Proposition 1.5.130. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then total-dominating number isn’t equal to dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.131. There are two sections for clarifications.

(a) In Figure (2.67)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(74) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself. Thus two neighbors are necessary in

S
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(iid)

all total-dominating sets corresponded to total-dominating number
are

{n17n27n57n6}, {nQa n3,ne, nl}v {7?,377?,477?,177?,2},
{n37n47n57n6}7 {n47 ns, N2, n3}a {n47n57n17n6}7

{7’7/1,712,77/4,77/5}, {TLQ, ns,ns, nﬁ}a {n37n47n67n1}7

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V| there’s at least a neutrosophic vertex s in S such that s
total-dominates n, then the set of neutrosophic vertices, S is called
total-dominating set. The minimum cardinality between all total-
dominating sets is called total-dominating number and it’s denoted
by T(CYC) = 4 and corresponded to total-dominating sets are

{n17n27n57n6}, {n27 ng, ne, nl}, {ng,n4,n1,n2},
{n37n47n57n6}7 {n4a n5, N2, ’I’L3}, {’I’L47’I’L57’I’L17’I’L6},

{nlv ng2, Ny, nS}a {nQa ns,ns, nﬁ}v {7?,37 Ny, Ng, nl}’
there are sixteen total-dominating sets

{n1,n2,n5,16}, {n2, 13,16, M1}, {N3, M4, 71, M2},
{ns,n4,n5,n6}, {n4,n5,n2,n3}, {n4, 15,01, 6},
{nl,nz,m,ns}, {TLQ, ns,ns, n6}7 {n37n47n67n1}»
{n1,n2,n3,n5,n6}, {N1,n2,n4, n5,n6}, {N1,n2,n3, N4, n5,M6},
{ne,n2,n3, 14,05}, {ng, 1,13, 14, 5}, {N6, N1, M2, N3, N4 },

{n57n17n27n37n4}7

as if it’s possible to have one of them as a set corresponded to
neutrosophic total-dominating number so as neutrosophic cardinality
is characteristic;

there are nine total-dominating sets

{nlv n2,ns, nG}a {nQa n3,ne, n1}7 {n37 N4, N1, ’I’lg},

{Tlg, Ny, M5, n6}7 {714, n5, N2, n3}7 {n47 ns,ni, n6}7

{7’?/17 n2, Ny, n5}7 {77/2, ns3,ns, nﬁ}a {n37 N4, N6, nl})
corresponded to total-dominating number as if there’s one total-

dominating set corresponded to neutrosophic total-dominating
number so as neutrosophic cardinality is the determiner;

all total-dominating sets corresponded to total-dominating number
are

{n17n27n57n6}7 {nZa ns3, ne, nl}a {n37n47n17n2}7
{n37n47n57n6}7 {’I’L4, N5, N2, ’I’L3}, {n47n57n17n6},

{n17n27n47n5}7 {nQa ns,ns, n6}7 {n37n47n67n1}7

127



1. Neutrosophic Notions

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V, there’s at least a neutrosophic vertex s in .S such that s total-
dominates n, then the set of neutrosophic vertices, S is called total-
dominating set. The minimum neutrosophic cardinality between
all total-dominating sets is called neutrosophic total-dominating
number and it’s denoted by 7,(CYC) = 4.1 and corresponded to
total-dominating sets are

{714,715,711,716}

(b) In Figure (2.68]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself. Thus two neighbors are necessary in
S;

all total-dominating sets corresponded to total-dominating number
are

{nlan27n5}7 {n2,7’l3,7’l1}, {713,714,712},

{n4,n5,n3}, {7157”17”4}7

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V| there’s at least a neutrosophic vertex s in S such that s
total-dominates n, then the set of neutrosophic vertices, S is called
total-dominating set. The minimum cardinality between all total-
dominating sets is called total-dominating number and it’s denoted
by T(CYC) = 3 and corresponded to total-dominating sets are

{n17n27n5}7 {n2,n3,n1}7 {n37n47n2}?

{na, s, na}, {ns, na1, nal;
there are eleven total-dominating sets

{’I’L]_,’I’LQ,TL5},{7’7/2,7’7/3,7’7/1},{713,714,712},
{n4,n5,n3},{n5,n1,n4}7{nl,ng,n3,n4},
{nl,ng,ng,n5},{nl,ng,n4,n5},{nl,ng,n4,n5},
{n27n37n’47n‘5}7{nlan23n3an47n5}7

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-dominating number so as neutrosophic cardinality
is characteristic;
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Figure 1.67: A Neutrosophic Graph in the Viewpoint of its total-dominating

number and its neutrosophic total-dominating number. 85NTG5

(v) there are five total-dominating sets

{n17n27n5}7 {’I’LQ, ns, nl}a {n37n47n2}7

{n4,ns,n3}, {ns,n1,nsa},

corresponded to total-dominating number as if there’s one total-
dominating set corresponded to neutrosophic total-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all total-dominating sets corresponded to total-dominating number
are

{n17n27n5}7 {712, ns, n1}7 {’I’L37’I’L47’I’L2},

{n4,ns,n3}, {ns,n1,n4},

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V| there’s at least a neutrosophic vertex s in .S such that s total-
dominates n, then the set of neutrosophic vertices, S is called total-
dominating set. The minimum neutrosophic cardinality between
all total-dominating sets is called neutrosophic total-dominating
number and it’s denoted by 7,(CYC) = 4.2 and corresponded to
total-dominating sets are

{nhnzﬂls}-

Definition 1.5.132. (total-resolving numbers).
Let NTG : (V,E,o, 1) be a neutrosophic graph. Then

(i) for given vertices n and n’ if d(s,n) # d(s,n’), then s total-resolves n and
n' where d is minimum number of edges amid two vertices, d > 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d > 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
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1. Neutrosophic Notions
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Figure 1.68: A Neutrosophic Graph in the Viewpoint of its total-dominating
number and its neutrosophic total-dominating number.

pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n’ in V| there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n/, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum cardinality between all
total-resolving sets is called total-resolving number and it’s denoted

by T(NTG);

(#1) for given vertices n and n' if d(s,n) # d(s,n’), then s total-resolves n and
n' where d is minimum number of edges amid two vertices, d > 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d > 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n’ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n/, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum neutrosophic cardinality
between all total-resolving sets is called neutrosophic total-resolving
number and it’s denoted by 7, (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.133. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then
18] > 2.

Proposition 1.5.134. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then if
there are twin vertices then total-resolving set and total-resolving number are
Not Ezisted.

Proposition 1.5.135. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) >3 and d > 0. Then

T(CYO) =2.

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

T1,T2, ", To(CYC)-1:TO(CYC)) L1
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be a cycle-neutrosophic graph CYC : (V| E, o, ). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
total-resolve since a vertex couldn’t resolve itself. Thus two [minus antipodal
pairs] vertices are necessary in S. All total-resolving sets corresponded to
total-resolving number are [minus antipodal pairs]

{m, n2}, {”17 ”3}, {nh n4}, R {nh nO(PTH)72}7 {nl, nO(PTH)A}, {nh nO(PTH)}7
{712, 713}, {n27 n4}» {7127 n5}a Sy {712, TLO(PTH)&}» {n27 nO(PTH)A}’ {n27 nO(PTH)}a
{n3,na}, {n2,ns5}, {n2,n6}, ..., {n2, noprmy-2} {n2, noprm-1}, {n2, noprm }

{nO(PTH)fZS) NO(PTH)—z}a {nO(PTH)f“Sy nO(PTH)—1}7 {nO(PTH)fisa nO(PTH)}v
{nO(PTH)—% n(’)(PTH)—l}u {n(’)(PTH)—Qa n(’)(PTH)}7
{nO(PTH)—h nO(PTH)}

For given vertex n, if sn € FE, then s total-resolves n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at least
a neutrosophic vertex s in S such that s total-resolves n, then the set of
neutrosophic vertices, S is called total-resolving set. The minimum cardinality
between all total-resolving sets is called total-resolving number and it’s denoted
by T(CYC) =2 and corresponded to total-resolving sets are [minus antipodal
pairs|

{n1,n2}, {n1,n3}, {n,na}, ... {n1, noprmy -2} {n1, noprm-1}, {n1, noprm
{n2,n3},{n2,na}, {n2,ns}, ..., {na, nO(PTH)—2}a {na, nO(PTH)—l}a {na, nO(PTH)}a
{n37 n4}, {”27 ”5}3 {n27 ne}’ S {712» nO(PTH)72}7 {n2, nO(PTH)A}, {n27 nO(PTH)}a

{HO(PTH)—3, nO(PTH)—2}; {nO(PTH)—?n nO(PTH)—l}a {nO(PTH)—Sa nO(PTH)}7
{nO(PTH)f% nO(PTH)—l}y {nO(PTH)72a nO(PTH)}7
{nO(PTH)fla nO(PTH)}
Thus
T(CYC) =2.
|

Proposition 1.5.136. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where d > 0. Then total-resolving number is equal to resolving number.

Antipodal vertices in even-cycle-neutrosophic graph differ the number in
cycle-neutrosophic graph.

Proposition 1.5.137. Let NTG : (V, E, 0, 1) be an odd-cycle-neutrosophic graph
where d > 0. Then the number of total-resolving sets corresponded to total-
resolving number is equal to O(CY C) choose two.

Proposition 1.5.138. Let NTG : (V,E,o,u) be an odd-cycle-neutrosophic
graph where d > 0. Then the number of total-resolving sets is equal to
20(CYC) _o(CY ) 1.
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We’ve to eliminate antipodal vertices due to total-resolving implies complete
resolving.

Proposition 1.5.139. Let NTG : (V,E,o,u) be an even-cycle-neutrosophic
graph where d > 0. Then the number of total-resolving sets corresponded to total-
resolving number is equal to O(CY C) choose two after that minus O(CY C).

Proposition 1.5.140. Let NTG : (V,E,o,u) be an even-cycle-neutrosophic

graph where d > 0. Then the number of total-resolving sets is equal to
20(CYC) _20(CYC) — 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.141. There are two sections for clarifications.

(a) In Figure (2.69), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(#4) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve since a vertex
couldn’t resolve itself. Thus two [minus antipodal pairs| vertices are
necessary in S. Antipodal pairs are

{nl,n4}, {712,715}7 {HB,TLG};

(#i7) all total-resolving sets corresponded to total-resolving number are
[minus antipodal pairs]

{nlv nQ}a {nlv 713}7 {nl’ TL4},

{n17 TL5}, {nQa TL3}, {Tlg, Tl4},

{n2a n5}7 {nBa 7’7/4}, {n37 n5}7

{ng,ns},....
For given vertex n, if sn € E, then s total-resolves n. Let .S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is
called total-resolving number and it’s denoted by 7(CYC) = 2 and
corresponded to total-resolving sets are [minus antipodal pairs]

{n1,n2}, {n1,n3}, {n1,na},
{n1,ns}, {n2,ns}, {n2,n4a},
{n2an5}7 {nBan4}7 {n37n5}7

{ng,ns},...;
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(iv) there are fifty-seven [minus antipodal pairs| total-resolving sets

{n1,n2}, {n1,na}, {n1,na},
{n1,n5}, {n2,n3}, {n2,na},
{n2,n5},{n3,na}, {n3,ns},
{71477”&5},{711,712,”3},{71177”&277”&4},
{n1,n2,n5}, {n1,n3,n4}, {n1,n3,n5},
{n1,na,ns5}, {n2, n3, na}, {n2,n3,ns},
{na,n4,ns}, {ns, na,ns}, {n1, na, n3, nat,
{nl,ng,ng,ng,},{nl,ng,n4,n5},{n17n37n4,n5},
{na,ng,ng,ns}, {n1,n2,n3,n4,n5}, . ..

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are fifteen [minus antipodal pairs| total-resolving sets

{nlv n2}7 {nla n3}7 {n17 n4}7
{n1,ns}t, {n2, na}, {n2, nat,
{’I’L27 n5}> {nS; n4}a {’I’L37 ’I’L5},
{n4,ns},...,
corresponded to total-resolving number as if there’s one total-

resolving set corresponded to neutrosophic total-resolving number
so as neutrosophic cardinality is the determiner;

vi) all total-resolving sets corresponded to total-resolving number are
;) all total lvi t ded to total lvi b
[minus antipodal pairs]

{TL17 n2}7 {nla n3}a {n17 ’I’L4},

{nh 7’7/5}, {nQ; n3}a {n27 n4},

{n27 n5}7 {nSa n4}7 {n37 TL5},

{n4,n5}, e
For given vertex n, if sn € E, then s total-resolves n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving set.
The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted
by 7,(CYC) = 1.3 and corresponded to total-resolving sets are

{’I’L17’I’L5}.

(b) In Figure (2.70), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) For given neutrosophic vertex, s, there are only two paths with other
vertices;
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(i)

(i)

in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve since a vertex
couldn’t resolve itself. Thus two vertices are necessary in S;

all total-resolving sets corresponded to total-resolving number are

{n1,n2}, {n1, na}, {n1, na},

{n1,ms}, {n2,na}, {n2, na},

{77‘2, n5}; {nBa ’}’L4}7 ‘{TL3, n5}7

{nq,ns}.
For given vertex n, if sn € E, then s total-resolves n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in .S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is

called total-resolving number and it’s denoted by 7(CYC) = 2 and
corresponded to total-resolving sets are

{n1,n2}, {n1,n3}, {n1,na},
{n1,ns}t, {n2, na}, {n2, na},
{n27n5}v {n3’n4}7 {n3,n5},
{n4,n5};

there are twenty-six total-resolving sets

{n1,n2}, {n1,n3}, {n1, nat,
{n1,ns}, {n2, n3}, {n2,n4a},
{n2,ns}, {na,na}, {n3,ns},
{na,ns},{n1,na,n3}, {n1,n2,na},
{n1,n2,ns5},{n1,ns,ns}, {n1,ns, ns},
{nl,n4,n5},{ng,ng,n4},{n2,n3,n5},
{n2,n4,ns}, {n3, na, ns}, {n1,n2,n3, 14},
{n1,n9,n3,n5},{n1,n2,n4,ns},{n1,n3, n4, ns},
{na,n3,n4,n5}, {n1,n2,n3,n4,n5},

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-resolving number so as neutrosophic cardinality
is characteristic;

there are ten total-resolving sets

{n1,n2}, {n1,na}, {n1, na},
{n1,n5}, {n2,n3}, {n2, nat,
{n27n5}a{n37n4}7{n3»n5}1
{na, ns},
corresponded to total-resolving number as if there’s one total-

resolving set corresponded to neutrosophic total-resolving number
so as neutrosophic cardinality is the determiner;
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Figure 1.69: A Neutrosophic Graph in the Viewpoint of its total-resolving

number and its neutrosophic total-resolving number. \ 86NTG5

(vi) all total-resolving sets corresponded to total-resolving number are

{n1,na}t, {n1,na}, {n1,na},
{n17n5}7 {nQa n3}a {n27n4},
{7’7,2,7’7,5}, {TL3, n4}a {n37n5}7

{n4,ns}.

For given vertex n, if sn € E, then s total-resolves n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving set.
The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted
by 7,(CYC) = 2.7 and corresponded to total-resolving sets are

{nhng,}.

Definition 1.5.142. (stable-dominating numbers).
Let NTG : (V,E, o, u) be a neutrosophic graph. Then

(1) for given vertex n, if sn € E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V' \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(NTG);

(#1) for given vertex n, if sn € E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V' \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
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Figure 1.70: A Neutrosophic Graph in the Viewpoint of its total-resolving
number and its neutrosophic total-resolving number.

for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The
minimum neutrosophic cardinality between all stable-dominating sets is
called neutrosophic stable-dominating number and it’s denoted by

S, (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.143. Let NTG : (V, E, o, 1) be a neutrosophic graph. Assume
|S| has one member. Then

(1) a vertex dominates if and only if it stable-dominates;
(i) S is dominating set if and only if it’s stable-dominating set;

(#i7) a number is dominating number if and only if it’s stable-dominating
number.

Proposition 1.5.144. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then S
is stable-dominating set corresponded to stable-dominating number if and only
if for every neutrosophic vertex s in S, there’s at least a neutrosophic vertexr n
in V\'S such that {s' € S| s'n € E} = {s}.

Proposition 1.5.145. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then V
isn’t S.

Proposition 1.5.146. Let NTG : (V,E, o0, 1) be a neutrosophic graph. Then

stable-dominating number is between one and O(NTG) — 1.

Proposition 1.5.147. Let NTG : (V,E,o0,u) be a neutrosophic graph. Then
stable-dominating number is between one and O, (NTG) — mingcy Z?=1 oi(z).

Proposition 1.5.148. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

o(CY Q)

S(CYC) = [—=

1.
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Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1,T2, ", To(CYC)-1-ToO(CYC), L1

be a cycle-neutrosophic graph CYC : (V) E, o, ). In the setting of cycle, a
vertex of dominating set corresponded to dominating number dominates if and
only if it stable-dominates since a vertex dominates neighbors thus in S, there
aren’t any neighbors and all vertices are neighborless in S. All stable-dominating
sets corresponded to stable-dominating number are

{nla Ng, N7y ..., NOCYC)—45 nO(CYC)—1}7
{n2;n5;n8; ce anO(CYC)—4,nO(CYC)—1}v

For given vertex n, if sn € E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V'\ .S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

Y
S(CYC) = [70(6;) C)l
and corresponded to stable-dominating sets are
{nlu N4, N7y ..., NOCYC)—4> nO(CYC)—1}7
{n2, N5, N,y - - - anO(CYC)—4,nO(CYC)—1}v
Hhos ocyc
S(CYC) = [%1

Proposition 1.5.149. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.150. There are two sections for clarifications.

(a) In Figure (2.71)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(#) For given neutrosophic vertex, s, there are only two paths with other
vertices;
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(i)

(iid)

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S

all stable-dominating sets corresponded to stable-dominating number
are

{7117”4}7 {n27n5}, {713,716}-

For given vertex n, if sn € E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V' \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CYC) = 2; and corresponded to stable-dominating
sets are

{nb TL4}, {n27 n5}v {TLg, nﬁ}a
there are five stable-dominating sets

{nh n4}a {nQa n5}7 {n37 nG}a
‘{n1,n3,7l5}, {7’7/2,7’7/4,7’16}7

as if it’s possible to have one of them as a set corresponded
to meutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

there are three stable-dominating setsc

{n17n4}7 {n27n5}7 {’I’L3,’I’L6}7

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

all stable-dominating sets corresponded to stable-dominating number
are

{n17n4}7 {n27n5}7 {n3an6}'

For given vertex n, if sn € E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in 5, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by S,,(CYC) = 2.2; and corresponded to
stable-dominating sets are

{n1,nq}.



1.5. Setting of neutrosophic notion number

(b) In Figure (2.72), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
(i)

(ii)

(iid)

(iv)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t stable-dominate since
a vertex couldn’t dominate itself. Thus two vertices are necessary in
S5

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in 9, there aren’t any neighbors
and all vertices are neighborless in S;

all stable-dominating sets corresponded to stable-dominating number
are

{77,177714}, {n27 n4}a {n27n5}7

{n17n3}7 {nf)a ’I’L3},

For given vertex n, if sn € E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
nin V' \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CYC') = 2; and corresponded to stable-dominating
sets are

{’I’L17’I’L4}, {nQa n4}7 {’I’L27’I’L5},

{n1,n3}, {ns,n3};
there are five stable-dominating sets

{77'1777'4}7{”27”4}’{”27”5}7
{n17n3}7{n5an3}a
as if it’s possible to have one of them as a set corresponded

to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

there are five stable-dominating sets

{n17n4}7 {nQa n4}7 {n27n5}7

{n17n3}7 {n5a ’fl3},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;
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11(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 1.71: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number.

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{nh TL4}, {TLQ, ’I’L4}7 {n27 TL5},

{n1,n3}, {ns,ns},

For given vertex n, if sn € E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by S, (CYC) = 2.8; and corresponded to
stable-dominating sets are

{TLQ,TL5}.

Definition 1.5.151. (stable-resolving numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(4)

for given vertices n and n/, if d(s,n) # d(s,n’), then s stable-resolves n
and n’. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n', in V' \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n’ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted
by S(NTG);

for given vertices n and n/, if d(s,n) # d(s,n’), then s stable-resolves n
and n’. Let S be a set of neutrosophic vertices [a vertex alongside triple
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1.5. Setting of neutrosophic notion number

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 1.72: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number.

pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n/, in V' \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n’ where for all given two vertices in .S,
there’s no edge between them, then the set of neutrosophic vertices, S is
called neutrosophic stable-resolving set. The minimum neutrosophic
cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by S, (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.152. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Assume
|S| has one member. Then

(1) a vertex resolves if and only if it stable-resolves;
(i1) S is resolving set if and only if it’s stable-resolving set;
(ii7) a number is resolving number if and only if it’s stable-resolving number.

Proposition 1.5.153. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then S
is stable-resolving set corresponded to stable-resolving number if and only if for

every neutrosophic vertex s in S, there are at least neutrosophic vertices n and
n' in V\ S such that {s'" € S | d(s',n) # d(s',n')} = {s}.

Proposition 1.5.154. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then V
isn’t S.

Proposition 1.5.155. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

S(CYC) =2.

Proof. Suppose CYC' : (V, E, 0, u) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

niy, N2, - ,NoCcyc)-1,NoCcyc), N1
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be a cycle-neutrosophic graph CYC : (V, E, o, ). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
stable-resolve since two neighbors aren’t allowed in the setting of stable-resolving.
All stable-resolving sets corresponded to stable-resolving number are

{7117 713}, {nl, n4}a ) {nb nO(CYC’)—S}v {nl, nO(CYC)—Q}v {nl, nO(CYC)—l}v
{n2,na}, {n1,ns5}, ..., {n2, nO(CYC)—2}7 {n2, nO(CYC)—l}v {na, nO(CYC)}a
{n?n n5}7 {713, nﬁ}a ey {’I’Lg, nO(CYC)72}7 {’I’Lg, nO(CYC)fl}W {’I’Lg, nO(CYC)}a

{n(D(CYC)—3; nO(CYC)—Q}, {nO(CYC)—3a nO(CYC)—l}a {nO(CYC’)—?aa nO(CYC)}v
{nO(CYC)72a nocyc)-1 } {nO(CYC)f% nO(CYC)};
{nO(CYC)fza nO(CYC)}'

For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves n and n'.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n’, in
V'\ S, there’s at least a neutrosophic vertex s in .S such that s stable-resolves n
and n’ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by
S(CYC) =2

and corresponded to stable-resolving sets are

{n1,n3},{n1,na}, ..., {1, nocyey-st, {n1, nocyoy—2 4, {n1, nocyey-1}s
{TLQ, 7’L4}7 {n17 n5}7 RN {n27 nO(CYC)*Q}’ {n27 nO(CYC)fl}V {’I’LQ, nO(CYC)}a
{n3,ns},{ns,ne},...,{ns, nO(C’YC)—Q}v {ns, nO(CYC)—l}v {ns, nO(CYC)}a

{nO(CYC)fiia nO(CYC)f2}7 {nO(CYC)—?n HO(CYC)A}, {nO(CYC)f& nO(CYC’)}7
{nocye)-2,nocye)-1} {noweye)—2, noecye) b

{nocyey-2,nowcyo)}-

Thus
S(CYC) =2.

Proposition 1.5.156. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then stable-resolving number is equal to resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.157. There are two sections for clarifications.
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(a) In Figure (2.73)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(0)

(vi)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

all stable-resolving sets corresponded to stable-resolving number are

{n1,ns}, {n1,ns}, {n2, na},

{TLQ, TL6}.
For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves
n and n'. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n’, in V'\ S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n’ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CYC) = 2; and corresponded to
stable-resolving sets are

{nlvnS}v {nla n5}7 {n2vn4}7

{na,ne};
there are six stable-resolving sets

{n1,n3},{n1,ns5}, {n2, na},
{’I’LQ,’I’LG},{n17n37n5},{n2,n4,n6},
as if it’s possible to have one of them as a set corresponded to

neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

there are four stable-resolving sets
{nlv nB}a {nla n5}7 {n27 n4}7
{n2,ne}

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

all stable-resolving sets corresponded to stable-resolving number are

{n1,n3}, {n1,ns}, {n2, na},
{TL27TL6}.

For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-
resolves n and n’. Let S be a set of neutrosophic vertices [a vertex
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alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n’, in V'\ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n’
where for all given two vertices in .S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by S,(CYC) = 1.3; and corresponded to stable-resolving sets are

{n1,ns}.

(b) In Figure (2.74]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iv)

(v)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

all stable-resolving sets corresponded to stable-resolving number are

{nlv TL3}, {nlv 77'4}7 {n27 TL4},

{na,ns}.
For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves
n and n'. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n’, in V'\ S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n’ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CYC) = 2; and corresponded to
stable-resolving sets are

{nla ’I’L3}, {nh 714}7 {n27 n4}7

{na,ns};

there are four stable-resolving sets
{nh Tlg}, {nlv 77,4}, {nQ, Tl4},
{n27 n5}a

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

there are four stable-resolving sets

{nlan3}7 {nlan4}7 {TLQ,TL4},

{n2,n5};



1.6. Applications in Time Table and Scheduling

n1(0.2,0.1

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7, 0.6)

(0.2,0.1,0.6)

,0.6)
712(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 1.73: A Neutrosophic Graph in the Viewpoint of its stable-resolving

number a

nd its neutrosophic stable-resolving number.

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

all stable-resolving sets corresponded to stable-resolving number are

{7117”3}, {m, n4}, {71277”&4},

{na,ns}.

For given vertices n and n', if d(s,n) # d(s,n’), then s stable-
resolves n and n'. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n’, in V'\ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n’
where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by S, (CYC) = 2.8; and corresponded to stable-resolving sets are

{na2,ns}.

1.6 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided
where the models are cycle-neutrosophic graph.

1.7 Modelling

Designing the programs to achieve some goals is general approach to apply on

some issu

es to function properly. Separation has key role in the context of this

style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.
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n1(0.5,0.5,0.4)

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

n4(0.8,0.6,0.6)

Figure 1.74: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number.

Step 1. (Definition) Time table is an approach to get some attributes to do

the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid

consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to

assign every section and to assign to relation amid sections, three numbers

belong unit interval to state indeterminacy, possibilities and determinacy.

There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1)), clarifies about the
assigned numbers to these situations.

Table 1.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model.

Sections of NTG ny No- - ns
Values (0.7,0.9,0.3) (0.4,0.2,0.8)--- (0.4,0.2,0.8)

Connections of NTG | E; FEsy--- FEg
Values (0.4,0.2,0.3) (0.5,0.2,0.3)--- (0.3,0.2,0.3)

1.8 Case 1: cycle-neutrosophic Model

Step 4. (Solution) The neutrosophic graph model, propose to use specific
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number. Every subject has connection with some subjects. Thus the
connection is applied as possible and the model demonstrates quasi-full
connections as quasi-possible. Using the notion of strong on the connection
amid subjects, causes the importance of subject goes in the highest level
such that the value amid two consecutive subjects, is determined by those
subjects. If the configuration is star, the number is different. Also, it holds
for other types such that complete, wheel, path, and cycle. The collection
of situations is another application when the notion of family is applied in
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1.8. Case 1: cycle-neutrosophic Model

n1(0.2,0.1,0.6)

n1(0.5,0.5,0.4)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

f:[).l.[).l.[).?]
n5(0.1,0.1,0.2)

Figure 1.75: A Neutrosophic Graph in the Viewpoint of its Girth.

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n2(0.2,0.7,0.6)

(0.8,0.6, 0.6) (0.2.0.5.0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

f[).ﬁ.[).—l.[).—l]
n4(0.8,0.6,0.6)

Figure 1.76: A Neutrosophic Graph in the Viewpoint of its Girth.

the way that all members of family are from same classes of neutrosophic
graphs. As follows, there are five subjects which are represented as Figure
(2.75). This model is strong and even more. And the study proposes using
specific number. There are also some analyses on other numbers in the

way that, the clarification is gained about being special number or not.

Also, in the last part, there is one neutrosophic number to assign to this
model and situation to compare them with same situations to get more
precise. Consider Figure . In Figure , a cycle-neutrosophic
graph. is illustrated. Some points are represented in follow-up items as
follows.

(a) In Figure (2.75), an even-cycle-neutrosophic graph is illustrated.

Some points are represented in follow-up items as follows.

(i) If nq,nq9 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s only a path and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of
this path implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have
cycle. So this neutrosophic path is neither a neutrosophic cycle

147

62NTG5

62NTG6




1. Neutrosophic Notions

148

(i)

(iid)

(v)

nor crisp cycle. The length of this path implies
nyi,n2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn.(NTG);

if n1,ns, ng3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two
edges, nino and nong, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a
crisp cycle with at least two weakest edges. So this neutrosophic
path is either a neutrosophic cycle nor crisp cycle. The structure
of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1,n9,n3,n4 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there
are three edges, nine and neng, according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is either a neutrosophic cycle nor crisp cycle.
So adding points has to effect to find a crisp cycle. The structure
of this neutrosophic path implies

ni,n2,n3, Ny

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if nq1,n9, n3, N4, n5, ng, N1 is a sequence of consecutive vertices,
then it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nang, N3ng, Nyns, nsng and ngny, according
to corresponded neutrosophic path and it’s neutrosophic cycle
since it has two weakest edges, nyns and nsng with same values
(0.1,0.1,0.2). First step is to have at least one crisp cycle for
finding shortest cycle. Finding shortest cycle has one result.
Since there’s one cycle. Neutrosophic cycle is a crisp cycle with
at least two weakest edges. So this neutrosophic path is both
of a neutrosophic cycle and crisp cycle. So adding vertices has
effect on finding a crisp cycle. There are only two paths amid
two given vertices. The structure of this neutrosophic path
implies n1,no, ng, ng, ns, ng, Ny is corresponded to both of girth
G(NTG@G) and neutrosophic girth G, (NTG);

6 is girth and its corresponded set is only {n1, nae, ng, ng, ns, ng, n1 };
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(vi)

8.1 = O(NTG) is neutrosophic girth and its corresponded set is
Ol’lly {nh n2,n3, N4, N5, Ng, n1}~

(b) In Figure (2.76]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

If nq,n9 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s only a path and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of
this path implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have
cycle. So this neutrosophic path is neither a neutrosophic cycle
nor crisp cycle. The length of this path implies

ni, N2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1, no, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two
edges, n1no and nong, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a
crisp cycle with at least two weakest edges. So this neutrosophic
path is either a neutrosophic cycle nor crisp cycle. The structure
of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if ny,n9,n3,n4 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there
are three edges, nine and nong, according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is either a neutrosophic cycle nor crisp cycle.
So adding points has to effect to find a crisp cycle. The structure
of this neutrosophic path implies

ni,n2, N3, N4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,no,n3,n4,n5, Ny is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are five edges, nino, nang, ngng, nyns and nsny, according to
corresponded neutrosophic path and it isn’t neutrosophic cycle
since it has only one weakest edge, ning, with value (0.2,0.5,0.4)
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n3(0.1,0.9,0.9) (0.1,0.5,0.8) 12(0.8,0.5, 0.8

(0.1,0.2, 0.9) , \
/ n6(0.2,0.7, 0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
(0.1,0.1,0.2)

n5(0.1,0.1,0.2)

Figure 1.77: A Neutrosophic Graph in the Viewpoint of its joint-resolving

number and its neutrosophic joint-resolving number. \ 82NTG5

n3(0.9.0.7,0.7)  (0.2,0.7,0.6)  12(0.2,0.7,0.6)

[’[].8.[].[,}. [].[,}] ([}.2.[}.5—1. [}.—l'l

71(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
14(0.8,0.6, 0.6)

Figure 1.78: A Neutrosophic Graph in the Viewpoint of its joint-resolving

number and its neutrosophic joint-resolving number. \ 82NTG6

and not more. First step is to have at least one crisp cycle for
finding shortest cycle. Finding shortest cycle has one result.
Since there’s one cycle. Neutrosophic cycle is a crisp cycle with
at least two weakest edges. So this neutrosophic path is not a
neutrosophic cycle but it is a crisp cycle. So adding vertices has
effect on finding a crisp cycle. There are only two paths amid two
given vertices. The structure of this neutrosophic path implies
ny, N2, N3, Ny, N5, 0y is corresponded to both of girth G(NTG)
and neutrosophic girth G, (NTG);

(v) 5 1is girth and its corresponded set is only {ny,na, n3, n4, ns, ny };

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is
Only {nlv n2, N3, N4, N5, nl}'
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1.9 Case 2: cycle-neutrosophic Model alongside its
Neutrosophic Graph

Step 4. (Solution) The neutrosophic graph as model, propose to use specific
number. Every subject has connection with every given subject in deemed
way. Thus the connection applied as possible and the model demonstrates
full connections as possible between parts but with different view where
symmetry amid vertices and edges are the matters. Using the notion
of strong on the connection amid subjects, causes the importance of
subject goes in the highest level such that the value amid two consecutive
subjects, is determined by those subjects. If the configuration is complete
multipartite, the number is different. Also, it holds for other types such
that star, wheel, path, and cycle. The collection of situations is another
application when the notion of family is applied in the way that all
members of family are from same classes of neutrosophic graphs. As
follows, there are four subjects which are represented in the formation
of one model as Figure . This model is neutrosophic strong as
individual and even more. And the study proposes using specific number
for this model. There are also some analyses on other numbers in the
way that, the clarification is gained about being special number or not.
Also, in the last part, there is one neutrosophic number to assign to these
models as individual. A model as a collection of situations to compare
them with another model as a collection of situations to get more precise.
Consider Figure . There is one section for clarifications.

(a) In Figure (2.77), an even-cycle-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, there are only two paths
between them;

(#4) one vertex only resolves some vertices as if not all if they aren’t
two neighbor vertices, then it only resolves some of all vertices
and if they aren’t two neighbor vertices, then they resolves all
vertices thus it implies the vertex joint-resolves as same as the
vertex resolves vertices in the setting of cycle, by joint-resolving
set corresponded to joint-resolving number has two neighbor
vertices;

(#i7) all joint-resolving sets corresponded to joint-resolving number
are

{TL17 n2}a {n2a n3}7 {n37 n4}a

{na,ns5}, {ns,ne}, {ne, n1}.
For given two vertices n and n’, if d(s,n) # d(s,n’), then s
joint-resolves n and n/ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let .S

be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{’I’L17’I’L2}, {n2an3}7 {’I’Lg,’I’L4},

{n4,ns},{ns,ne}, {ne,n1}.
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For every neutrosophic vertices n and n’ in V'\ S, there’s only
one neutrosophic vertex in S such that joint-resolves n and n’,
then the set of neutrosophic vertices, S is either of

{nly n?}a {n27 n?)}) {n37 n4}7
{na,ns}, {ns,ne}, {ne,n1}
is called joint-resolving set where for every two vertices in 5,
there’s a path in S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number
and it’s denoted by J(CYC) = 2;
(7v) there are ninety-one joint-resolving sets

{ni,n2}, {n1,na,ns}, {n1,na,nqg},

{Th, naz, n5}, {n17n27n6}7 {m, nz2,ns, n4}

{n1,na,n3,n5}, {n1,na, n3,n6 }, {n1, n2, n4,n5},
{n1,n2,n4,n6},{n1,n92,n5,n6}, {n1,n2, 13,04, 15},
{ni1,n9,n3,n4,n6},{n1,n92,n3,n5,n6}, {N1,n2, 04, n5,n6},
{n1,na,n3,m4,n5,n6},

{n3,na}, {ns,n2,n1}, {n3, na, na},

{n3,n2,n5}, {n1,n2,n6}, {n3,n2,n1,n4}

{ns,na,n1,ns5}, {ns,na2,n1,ne}, {ns, n2,n4, ns},
{n3,na,na, e}, {n3, na, ns,m6}, {n3, n2,n1,n4, 15},
{n3,na,n1,m4,n6}, {n3,n2,n1, 05,16}, {13, M2, N4, M5, M6 },
{ns,na}, {ns,ng,n1}, {ns, na,no},

{n3, Ny, n5}, {71177”&477”&6}, {n3, Ny, N1, n2}

{n3,na,n1,ms}, {ns, na,ni, e}, {ns, na, n2,ns
{ns,nqg,na,ng}, {ns, ng, ns,n6}, {ng, ng,n1,n2,n5},
{ns,n4,n1,n2,n6}, {n3, n4,n1,ns,ne}, {n3, N4, n2, n5,n6 },
{ns,na}, {ns,na,n1}, {ns, na, na},

{ns, 4,3}, {n1,n4,n6}, {15, 14,01, N2}
{ns,n4,n1,n3},{ns,n4,n1,n6}, {ns, na,na,n3},
{ns,n4,n9,n6}, {n5,n4,n3,06}, {N5, M4, 11,092, n3},
{ns,na,m1,m2,n6}, {n5, 14, M1, 13, 6}, {15, 114, N2, M3, M6},
{ns,n6}, {ns,n6,n1}, {ns, ng, n2},

{ns,n6,n3}, {n1, 16,04}, {n5,n6, 11,12}

{ns,ne,n1,n3}, {ns,ne,n1,n4}, {ns, ne, n2,n3},

{ns,n6, n2,n4}, {ns, 16,13, M4}, {N5, 16,11, M2, N3},
{ns,n6,11,m2,n4}, {n5, 16,11, N3, 14}, {15, 16, N2, M3, M4},
{n1,n6}, {n1,ne,ns}, {n1,ne,na},

{nl, ne, n5}, {71177”&677”&2}, {m, Nne, N3, n4}

{n1,n6, 3,5}, {n1,n6, 13, M2}, {n1, 16, 14,15},

{nla ne, N4, n2}7 {n17n67n57n2}7 {nla Ne, N3, N4, n5}7
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{TLl,TLG,TLg,TL4,TL2}, {nlanGanSanSanQ}v {TLl,TLG,TL4,TL5,TL2},

as if it’s possible to have one of them as a set corresponded
to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

(v) there are ninety-one joint-resolving sets

{n1,n2}, {n1,ne,n3}, {n1,na,ng},

{71177127715}, {nl, n2,n6}, {71177127713,”4}

{n1,n2,n3,n5}, {n1,n2,n3, 16}, {N1, 12, 14, M5 },
{n1,n2,nq4,n6}, {n1,n2,n5,n6}, {n1, n2,n3g,ng,n5},
{n1,n9,n3,n4,n6}, {n1,n2,n3,n5,n6}, {N1,n2, n4, 5,16},
{n1,n2,n3, 14,135,106},

{n3,na}, {n3,n2,n1},{n3,n2,n4},

{n3,n2,n5}, {711,712,716}, {ng,ng,nl,m}

{ns,na,n1,ns}, {ns,na2,n1,ne}, {ns, n2,n4, ns},
{n3,n2,n4,n6},{n3,12,n5,n6}, {N3, M2, 11,14, N5 },
{n3,n2,n1,n4,n6}, {n3, N2, 01,15, N6}, {n3, N2, M4, 15, N6 },
{ns,nq}, {ns,ns,n1}, {ns,ng,na},

{7137”47”5}, {n1’n4,n6}7 {ﬂ37ﬂ4,ﬂ1,ﬂ2}

{n3,n4,n1,n5}, {n3,n4,n1,M6}, {N3, 14, 12, M5 },
{n3,n4,n2,n6},{n3, 14,105,106}, {N3, M4, 11,12, N5},
{ns,n4,n1,n2,ne}, {n3, na,n1,n5,ne}, {n3, N4, n2, n5,n6},
{ns,na}, {ns,n4,n1}, {ns, 14,02},

{ns,n4,n3}, {n1,n4,n6}, {ns5,n4, 11,12}

{ns,nqg,n1,n3}, {ns, ng,n1,n6}, {ns, na,na,n3},
{ns,n4,n9,n6}, {ns5,n4,n3,n6}, {N5, M4, 11,02, 03},
{ns,n4,n1,n2,n6}, {n5,n4,n1,13, 16}, {n5, N4, M2, 13, 16 },
{ns,n6}, {ns,m6, 11}, {n5, 16, N2},

{n5>n67n3}; {711,716,714}7 {n5,n6,n1,n2}

{ns,ne,n1,n3}, {ns,ne, n1,n4}, {ns, ne, na, n3},
{ns,n6,n2,n4},{n5,16,n3,M4}, {N5, 16, 71,72, N3},
{ns,n6,n1, 12,14}, {n5, 16, 11,13, 14 }, {N5, N6, N2, M3, N4 },
{n1,n6}, {n1,ne,n3}, {n1,ng,na},

{7117”67”5}, {nl,nﬁ,nﬁ, {ﬂ17ﬂ6,ﬂ3,ﬂ4}

{n1,n6,n3,n5}, {n1,n6,n3,n2}, {n1, 16, 74, M5 },
{n1,n6,n4, 12}, {n1, 16, 15,02}, {N1, M6, 13,14, N5},

{n1,n6,n3,n4,n2}, {n1,n6,n3, 05,02}, {n1, 16, N4, N5, N2},
as if there’s one joint-resolving set corresponded to neutrosophic

joint-resolving number so as neutrosophic cardinality is the
determiner;

153



1. Neutrosophic Notions

(vi)

all joint-resolving sets corresponded to joint-resolving number
are

{nla n2}7 {n27 n?)}? {n3a n4}7

{n4a n5}7 {n57 n6}7 {nGa nl}'
For given two vertices n and n/, if d(s,n) # d(s,n’), then s
joint-resolves n and n’ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S

be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{nla n2}7 {77,2, nS}a {nSa 7'L4},
{na,ns},{ns,ne}, {ne, n1}.
For every neutrosophic vertices n and n’ in V' \ S, there’s only

one neutrosophic vertex in S such that joint-resolves n and n’,
then the set of neutrosophic vertices, S is either of

{n1,na}, {n2,ns}, {n3,na},

{n47 n5}7 {n57 n6}7 {nﬁa nl}
is called joint-resolving set where for every two vertices in .5,
there’s a path in S amid them. The minimum neutrosophic

cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by

Tn(CYC) = 1.7.

S is {n4,ns} corresponded to neutrosophic joint-resolving
number.

(b) In Figure (2.78)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
(i)

(iii)
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For given two neutrosophic vertices, there are only two paths
between them;

one vertex only resolves some vertices as if not all if they aren’t
two neighbor vertices, then it only resolves some of all vertices
and if they aren’t two neighbor vertices, then they resolves all
vertices thus it implies the vertex joint-resolves as same as the
vertex resolves vertices in the setting of cycle, by joint-resolving
set corresponded to joint-resolving number has two neighbor
vertices;

all joint-resolving sets corresponded to joint-resolving number
are

{nl, 712}7 {n27n3}7 {713, 714},

{n4, n5}, {7’L57?’Ll}.

For given two vertices n and n', if d(s,n) # d(s,n’), then s
joint-resolves n and n’ where d is the minimum number of edges
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amid all paths from the vertex and the another vertex. Let .S
be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{nlv n?}a {77‘27 77‘3}7 {n37 n4}a
{na,ns}, {ns,ni}.
For every neutrosophic vertices n and n’ in V'\ S, there’s only

one neutrosophic vertex in .S such that joint-resolves n and n/,
then the set of neutrosophic vertices, S is either of

{Tll, n2}a {77'2’ 77'3}7 {n37 n4}5

{714, TL5}, {n5a nl}
is called joint-resolving set where for every two vertices in S,
there’s a path in S amid them. The minimum cardinality

between all joint-resolving sets is called joint-resolving number
and it’s denoted by J(CYC) = 2;

(iv) there are thirty-six joint-resolving sets

{n1,na}, {n1,n2,n3}, {n1,na,na},
{nl,ng,n5},{nl,ng,ng,n4}{n1,n2,n3,n5}
{n1,n2,n4,n5}, {n3,na}, {na, n2,n1}, {ns, na, na},
{ns,na,ns}, {ns, n2,n1, ng{ns, na,n1,ns},
{n3,na,ng,ns},{ns,nat, {ns,ng,n1},
{n3,na, a2}, {n3, na,ns}, {na, na,n1,n2},
{n3,na,n1,ns5}, {na, na, na,ns}, {ns, na},
{ns,na,n1}, {ns, n4, n2}, {ns,n4,n3},
{ns,n4,n1,n2}{ns, ng,ni,n3}, {ns,ng, no, n3},
{ns,n1}, {ns,n1,na}, {ns, n1, na},
{ns,n1,n3}, {ns,ny,ng, noH{ns,ny,ng,n3},
{ns,n1,n2,n3}, {ns,n1,n4,n2,n3}

as if it’s possible to have one of them as a set corresponded

to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

(v) there are thirty-six joint-resolving sets

{711,712}, {nl, na, n3}, {nl,ng,m},

{711,712,715}7 {nl, nz2,ns, n4}{n1, nz,ns, n5}
{n1,n2,n4,m5}, {n3, na}, {na, n2,n1}, {ns, na, na},
{ns,na,ns}, {ns, na,ny, ng}{ns,na,ny,ns},
{ns3,n2,n4,ns}, {n3, na}, {n3, ng,n1},
{n3,n4,n2}, {n3,na,ns}, {n3,n4,n1,n2},
{n3,na,n1,ns5}, {na, na, na, ns}, {ns, nat,

{TL5,TL4,TL1}, {7'L5, Ny, n2}7 {n57n47n3}7
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(vi)

{ns,na,n1,n2 H{ns, na, 1,3}, {ns, na, n2, n3},

{n5, Tll}, {’/l5, ni, ’fl4}7 {TL5, ny, TLQ},

{ns,n1,n3}, {ns, 1, na, n2 H{ns, n1, na, n3},

{ns,n1,n9,n3}, {n5, 11, 14, 2, 03},
as if there’s one joint-resolving set corresponded to neutrosophic
joint-resolving number so as neutrosophic cardinality is the
determiner;

all joint-resolving sets corresponded to joint-resolving number
are

{nla TLQ}, {n27 nS}? {nSa n4}7

{TL4, TL5}, {7?,5, 7?,1}.
For given two vertices n and n/, if d(s,n) # d(s,n’), then s
joint-resolves n and n’ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S

be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{n1,n2}, {na, na}, {ns, na},
{na.ns}, {ns,n1}.
For every neutrosophic vertices n and n’ in V'\ S, there’s only

one neutrosophic vertex in S such that joint-resolves n and n’,
then the set of neutrosophic vertices, S is either of

{nla TLQ}, {n27 nS}? {nSa n4}7

{TL4, TL5}, {7?,5, nl}
is called joint-resolving set where for every two vertices in .S,
there’s a path in S amid them. The minimum neutrosophic

cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by

Tn(CYC) = 2.7.

S is {n1,n5} corresponded to neutrosophic joint-resolving
number.

1.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some

ideas to make new settings which are eligible to extend and to create new study.
Notion concerning neutrosophic zero-forcing, neutrosophic independence, neut-

rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,

neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
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neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable, are defined in cycle-neutrosophic graphs. Thus,
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Question 1.10.1. Is it possible to use other types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable?

Question 1.10.2. Are existed some connections amid different types of neut-
rosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in cycle-neutrosophic graphs?

Question 1.10.3. Is it possible to construct some classes of cycle-neutrosophic
graphs which have “nice” behavior?

Question 1.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 1.10.5. Which parameters are related to this parameter?

Problem 1.10.6. Which approaches do work to construct applications to create
independent study?

Problem 1.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

1.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.

This study uses some definitions concerning different types of neutrosophic
zero-forcing, neutrosophic independence, neutrosophic clique, neutrosophic
matching, neutrosophic girth, neutrosophic cycles, neutrosophic connectivity,
neutrosophic density, neutrosophic path-coloring, neutrosophic duality, neut-
rosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in cycle-neutrosophic graphs assigned to cycle-neutrosophic graphs. Further

Table 1.2: A Brief Overview about Advantages and Limitations of this Study

Advantages Limitations
1. Neutrosophic Numbers of Model | 1. Connections amid Classes

2. Acting on All Edges
3. Minimal Sets 2. Study on Families

4. Maximal Sets

5. Acting on All Vertices 3. Same Models in Family
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studies could be about changes in the settings to compare these notions amid
different settings of cycle-neutrosophic graphs. One way is finding some relations
amid all definitions of notions to make sensible definitions. In Table , some
limitations and advantages of this study are pointed out.
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CHAPTER 2

Neutrosophic Tools

2.1 Abstract

New setting is introduced to study different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neutro-
sophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic dens-
ity, neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs. Minimum number and max-
imum number of different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, is a number which is repres-
entative based on those vertices or edges. Minimum or maximum neutrosophic
number or polynomial of different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable, are called neutrosophic
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number or polynomial. Forming sets from different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic
duality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutro-
sophic stable to figure out different types of number of vertices in the sets from
different types of neutrosophic zero-forcing, neutrosophic independence, neutro-
sophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable sets in the terms of minimum (maximum) number of
vertices to get minimum (maximum) number to assign in cycle-neutrosophic
graphs assigned to cycle-neutrosophic graphs, is key type of approach to have

163



2. Neutrosophic Tools

these notions namely different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable, in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs. Two numbers and one set are assigned to
a neutrosophic graph, are obtained but now both settings lead to approach is on
demand which is to compute and to find representatives of sets. As concluding
results, there are some statements, remarks, examples and clarifications about
cycle-neutrosophic graphs. The clarifications are also presented in both sections
“Setting of neutrosophic notion number,” and “ Setting of notion neutrosophic-
number,” for introduced results and used classes. Some problems are proposed
to pursue this study. Basic familiarities with graph theory and neutrosophic
graph theory are proposed for this article.

Keywords: different types of neutrosophic zero-forcing, neutrosophic in-

dependence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable

AMS Subject Classification: 05C17, 05C22, 05E45

2.2 Background

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).

In this section, I use two sections to illustrate a perspective about the background
of this study.

2.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.3.1. Is it possible to use mized versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable
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number and polynomial” and “cycle-neutrosophic graphs” to define some notions
which are applied to cycle-neutrosophic graphs?

It’s motivation to find notions to use in cycle-neutrosophic graphs. Real-

world applications about time table and scheduling are another thoughts which
lead to be considered as motivation. In both settings, corresponded numbers or
polynomials conclude the discussion. Also, there are some avenues to extend
these notions.
The framework of this study is as follows. In the beginning, I introduce basic
definitions to clarify about preliminaries. In section “Preliminaries”, new notions
of different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable number and polynomial” in cycle-neutrosophic graphs
assigned to cycle-neutrosophic graphs, are highlighted, are introduced and
are clarified as individuals. As concluding results, there are some statements,
remarks, examples and clarifications about cycle-neutrosophic graphs. The
clarifications are also presented in both sections ‘Setting of neutrosophic notion
number,” and ¢ Setting of notion neutrosophic-number,” for introduced results
and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for complete notions, namely cycle-neutrosophic
graphs concerning time table and scheduling when the suspicions are about
choosing some subjects and the mentioned models are considered as individual.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

2.4 Preliminaries

In this section, basic material which is used in this article, is presented. Also,
new ideas and their clarifications are elicited.

Basic idea is about the model which is used. First definition introduces basic
model.

Definition 2.4.1. (Graph).

G = (V, E) is called a graph if V is a set of objects and F is a subset of V x V
(E is a set of 2-subsets of V') where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 2.4.2. (Neutrosophic Graph And Its Special Case).

NTG = (V,E,oc = (01,02,03),1t = (1, o, pu3)) is called a neutrosophic
graph if it’s graph, o; : V — [0, 1], and pu; : E — [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every v;v; € E,

w(vv;) < o(vi) Ao(vy).
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: o is called neutrosophic vertex set.

1 is called neutrosophic edge set.

: [V is called order of NTG and it’s denoted by O(NTG).

DY eV E?Zl 0;(v) is called neutrosophic order of NTG and it’s denoted

by O,(NTG).

¢ |E| is called size of NTG and it’s denoted by S(NTG).

) Y ecE Z§=1 wi(e) is called neutrosophic size of NTG and it’s denoted

by S, (NTG).

Some classes of well-known neutrosophic graphs are defined. These classes

of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 2.4.3. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then

(iv) :

(vi) :
(vit) :

(viii) :

: a sequence of consecutive vertices P : xo, 71, ,Tonr1a) is called path

where ;2,41 € E, i =0,1,--- ,O(NTG) — 1;

/) : strength of path P : 2o, x4, ,2ovta) 8 N\izg,... ovra)—1 M@iTiv1);

: connectedness amid vertices xy and x; is

(o, ) = \/ /\ (TiTig1);

P:xo,x1, 2y 1=0,-- ,t—1

a sequence of consecutive vertices P : xo, 1, ,TonTa), To is called
cycle where z;x;,41 € E, i = 0,1,--- ,O(NTG) — 1, zonreyTo € E
and there are two edges zy and wv such that p(xy) = p(uww) =
Nizo1, 1 #(Vivit1);

: it’s t-partite where V is partitioned to ¢ parts, V', V52, .-+ V™ and

the edge zy implies € V> and y € Vjsj where i # j. If it’s complete,
then it’s denoted by Ky, 4,,... .o, Where o; is o on V;* instead V' which
mean z ¢ V; induces o;(z) = 0. Also, |V]S = s;;

t-partite is complete bipartite if ¢ = 2, and it’s denoted by K, ,;
complete bipartite is star if |V7| = 1, and it’s denoted by 57 ¢,;

a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by Wi ,,;

: it’s complete where Yuv € V, p(uv) = o(u) A o(v);
: it’s strong where Yuv € E, p(uv) = o(u) A o(v).

To make them concrete, I bring preliminaries of this article in two upcoming

definitions in other ways.
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2.5. Setting of notion neutrosophic-number

Definition 2.4.4. (Neutrosophic Graph And Its Special Case).

NTG = (V,E,0 = (01,02,03), 14 = (u1, t2, p3)) is called a neutrosophic
graph if it’s graph, o; : V' — [0,1], and u; : E — [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every v;v; € F,

p(vivs) < o(vi) Ao(v;).

|V| is called order of NTG and it’s denoted by O(NTG). X,evo(v) is called
neutrosophic order of NTG and it’s denoted by O,,(NTG).

Definition 2.4.5. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then it’s
complete and denoted by CMT, it Va,y € Vay € E and p(zy) = o(x) Ao(y);

a sequence of consecutive vertices P : 2,71, ,To(nT@) is called path and
it’s denoted by PTH where z;2;41 € E, i = 0,1,--- ,n — 1; a sequence of
consecutive vertices P : xo, 71, ", To(NTG), To is called cycle and denoted by
CYC where rjz;41 € B, 1 =0,1,--- ,n -1, xonTe)To € E and there are

two edges zy and wv such that p(zy) = p(uv) = A_g ;... ,q #(Vivit1); it's
t-partite where V' is partitioned to ¢ parts, V;**, V52, .- |V}’ and the edge xy
implies x € V¥ and y € Vjsj where i # j. If it’s complete, then it’s denoted
by CMT, 5. .0, where o; is 0 on V;* instead V' which mean x ¢ V; induces
o;(x) = 0. Also, \V]S = s;; t-partite is complete bipartite if t = 2, and it’s
denoted by CMT,, »,; complete bipartite is star if |[V3| = 1, and it’s denoted
by STR; ,,; a vertex in V' is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1 4, .

Remark 2.4.6. Using notations which is mixed with literatures, are reviewed.

2.46.1. NTG = (Vv,E7O' = (0'170'2,03),M = (Ml,ug,ug)), O(NTG), and
O,(NTG);

2.4.6.2. CMT,,PTH,CYC,STRy 4,,CMT4y, 5,.CMTq, ... o

o and
WHL, ,,.

2.5 Setting of notion neutrosophic-number

In this section, I provide some results in the setting of neutrosophic notion
number.

Definition 2.5.1. (Zero Forcing Number).
Let NTG : (V,E, o, 1) be a neutrosophic graph. Then

(1) Zero forcing number Z(NTG) for a neutrosophic graph NTG :
(V, E, o, 1) is minimum cardinality of a set S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(1) Zero forcing neutrosophic-number Z,(NTG) for a neutrosophic
graph NTG : (V, E, o, 1) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V/(G)\ S are colored white) such that
V(G) is turned black after finitely many applications of “the color-change
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rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex.

Proposition 2.5.2. Let NTG : (V,E, o, 1) be a cycle-neutrosophic graph. Then
Z,(NTG) = min{S_04(x) + ¥,0i(y) bayer..

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Two vertices which are neighbors, are only
members of S is a set of black vertices. Thus the color-change rule implies
all vertices are black vertices. Hence V(G) is turned black after finitely many
applications of “the color-change rule”. So

Z,(NTG) = min{2}_,0:(z) + £3_,0:(y) }ayer.-
]

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.3. There are two sections for clarifications.

(a) In Figure (2.1]), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) if S = {ng,n4} is a set of black vertices, then ns is only white
neighbor of n3 and ns is only white neighbor of ny. Thus the color-
change rule implies ns is black vertex and after that n; is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ny is only white neighbor of ns. Thus the color-change
rule implies nj5 is black vertex and after that ng is only white neighbor
of n5. Thus the color-change rule implies ng is black vertex. Thus
n1,n2,n5 and ng are black vertices. Hence V(@) is turned black
after finitely many applications of “the color-change rule”;

(1) if S = {ng,nq4,ns} is a set of black vertices, then ny is only white
neighbor of ng and ng is only white neighbor of ns. Thus the color-
change rule implies no is black vertex and after that nq is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ng is only white neighbor of ns. Thus the color-change
rule implies ng is black vertex. Thus ny,ns and ng are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;

(7i1) if S = {na} is a set of black vertices, then n; and nj3 are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”;
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(iv)

(vi)

if S = {n1} is a set of black vertices, then no and ng are only white
neighbor of nq. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(@) isn’t turned black after finitely many
applications of “the color-change rule”;

2 is zero forcing number and its corresponded sets are
{nlv n2}’{n17 n3}7

{n1,na}.{n1,ns}.{n1,n6},{n2, ns},

{na,na},{n2,ns},{n2, ne},{nz, na},

{ns,ns},

{ns,ne},

{n4,ns},{n4,ne}, and

{ns,ne};

1.3 is zero forcing neutrosophic-number and its corresponded set is
{n1,ns}.

(b) In Figure (2.2), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

(iv)

(vi)

if S = {n3,ng} is a set of black vertices, then nsy is only white
neighbor of ng and ns is only white neighbor of ny4. Thus the color-
change rule implies ns is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ns is only white neighbor of ns. Thus the color-change
rule implies n5 is black vertex. Thus ni,no and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

it S = {n3,n4,n5} is a set of black vertices, then ny is only white
neighbor of ng. Thus the color-change rule implies no is black vertex
and after that nq is only white neighbor of ny. Thus the color-change
rule implies ny is black vertex. Thus n; and no are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

it S ={no} is a set of black vertices, then n; and ns are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(@) isn’t turned black after finitely many
applications of “the color-change rule”;

if S ={n1} is a set of black vertices, then ny and ng are only white
neighbor of 1. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”;

2 is zero forcing number and its corresponded sets are
{nl,n2}7{n17n3},

{n1,na},{n1,n5},

{na,n3},{n2,na},

{n2,n5}.{ns, na},

{ns,ns}, and {n4,ns};

2.7 is zero forcing neutrosophic-number and its corresponded set is
{nl, TL5}.
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
Ullillﬂlg]

n5(0.1,0.1,0.2)

Figure 2.1: A Neutrosophic Graph in the Viewpoint of its Zero Forcing
Neutrosophic-Number.

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

715(0.5,0.4, 0.4)

fU.ﬁ.U.4.U.4]
n4(0.8,0.6,0.6)

Figure 2.2: A Neutrosophic Graph in the Viewpoint of its Zero Forcing
Neutrosophic-Number.

The main definition is presented in next section. The notions of failed
zero-forcing number and failed zero-forcing neutrosophic-number facilitate the
ground to introduce new results. These notions will be applied on some classes
of neutrosophic graphs in upcoming sections and they separate the results in
two different sections based on introduced types. New setting is introduced to

study failed zero-forcing number and failed zero-forcing neutrosophic-number.

Leaf-like is a key term to have these notions. Forcing a vertex to change its
color is a type of approach to force that vertex to be zero-like. Forcing a vertex
which is only neighbor for zero-like vertex to be zero-like vertex but now reverse
approach is on demand which is finding biggest set which doesn’t force.

Definition 2.5.4. (Failed Zero-Forcing Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(1) Failed zero-forcing number Z'(NTG) for a neutrosophic graph NTG :
(V,E, o, 1) is maximum cardinality of a set .S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) isn’t turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
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vertex.

(#7) Failed zero-forcing neutrosophic-number Z/(NTG) for a neutro-
sophic graph NTG : (V, E, 0, ) is maximum neutrosophic cardinality of
a set S of black vertices (whereas vertices in V(G) \ S are colored white)
such that V(G) isn’t turned black after finitely many applications of “the
color-change rule”: a white vertex is converted to a black vertex if it is
the only white neighbor of a black vertex.

Proposition 2.5.5. Let NTG : (V, E, o0, u) be a cycle-neutrosophic graph. Then
Z,,(NTG) = max{X}_0,(2) + X} 104(j45) + - Joza.

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Vertices with distance two, are only members of
S is a maximal set of black vertices which doesn’t force. Thus the color-change
rule doesn’t imply all vertices are black vertices. Hence V(G) isn’t turned black
after finitely many applications of “the color-change rule”. So

Z;«L(NTG) = max{z?:lai(xj) + E? 10i(Tj4s) + - Fs>o.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.6. There are two sections for clarifications.

(a) In Figure (2.3), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) if S = {ng,n4} is a set of black vertices, then no is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies ng is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, n5 is only white neighbor of n4. Thus the color-change
rule implies nj5 is black vertex and after that ng is only white neighbor
of ns. Thus the color-change rule implies ng is black vertex. Thus
n1,n2,n5 and ng are black vertices. Hence V(G) is turned black
after finitely many applications of “the color-change rule”;

(79) it S = {ng,n4,ns} is a set of black vertices, then ny is only white
neighbor of ng and ng is only white neighbor of ns. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ng is only white neighbor of n5. Thus the color-change
rule implies ng is black vertex. Thus ni,ns and ng are black vertices.
Hence V(@) is turned black after finitely many applications of “the
color-change rule”;
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(iid)

(vi)

if S = {na,nq4,ne} is a set of black vertices, then n; and ns are
only white neighbors of ny. Thus the color-change rule doesn’t imply
n1 and ng are black vertices. In other view, ns and ng are only
white neighbors of n4. Thus the color-change rule doesn’t imply ns5
and ng are black vertices. In last view, ns and ny4 are only white
neighbors of ng. Thus the color-change rule doesn’t imply ns and ny4
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”. Thus S = {ng, n4,ng} could
form failed zero-forcing number;

if S ={n1} is a set of black vertices, then no and ng are only white
neighbor of n;. Thus the color-change rule doesn’t imply no and ng
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”;

3 is failed zero-forcing number and its corresponded sets are
{nQa Ty, nﬁ} and {nly ns, n5}a

4.9 is failed zero-forcing neutrosophic-number and its corresponded
set is {nq, ng, ng}.

(b) In Figure (2.4, an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iii)

(iv)

it S = {ns,na} is a set of black vertices, then ng is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ny is only white neighbor of n4. Thus the color-change
rule implies n5 is black vertex. Thus n1,n9 and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ng,nq4,ns} is a set of black vertices, then ny is only white
neighbor of ng. Thus the color-change rule implies no is black vertex
and after that ny is only white neighbor of no. Thus the color-change
rule implies ny is black vertex. Thus n; and no are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ng,nq4,ne} is a set of black vertices, then n; and ns are
only white neighbors of no. Thus the color-change rule doesn’t imply
n1 and ng are black vertices. In other view, ns and nsg are only
white neighbors of n4. Thus the color-change rule doesn’t imply ns5
and ng are black vertices. In last view, ns and ny4 are only white
neighbors of ng. Thus the color-change rule doesn’t imply ns and ny
are black vertices. Hence V(G) isn’t turned black after finitely many
applications of “the color-change rule”. Thus S = {ng, n4,ng} could
form failed zero-forcing number;

it S ={n1} is a set of black vertices, then ny and ng are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices. Hence V' (G) isn’t turned black after finitely many
applications of “the color-change rule”;
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

f:[).l.[).l.[).?]
n5(0.1,0.1,0.2)

Figure 2.3: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing

Number and its Failed Zero-Forcing Neutrosophic-Number. 48NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 2.4: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing

Number and its Failed Zero-Forcing Neutrosophic-Number. \ 48NTG6

(v) 2 is failed zero-forcing number and its corresponded sets are {ns,n4},
{n3a n5}a

{n2,n5}, {na,n1},
and {ny,ns};

(vi) 3.7 is failed zero-forcing neutrosophic-number and its corresponded
set is {n1, ns}.

The main definition is presented in next section. The notions of 1-zero-
forcing number and 1-zero-forcing neutrosophic-number facilitate the ground
to introduce new results. These notions will be applied on some classes of
neutrosophic graphs in upcoming sections and they separate the results in two
different sections based on introduced types. New setting is introduced to study
1-zero-forcing number and 1-zero-forcing neutrosophic-number. Leaf-like is a
key term to have these notions. Forcing a vertex to change its color is a type of
approach to force that vertex to be zero-like. Forcing a vertex which is only
neighbor for zero-like vertex to be zero-like vertex and now approach is on
demand which is finding smallest set which forces.
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Definition 2.5.7. (1-Zero-Forcing Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) 1-zero-forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, o, 1) is minimum cardinality of a set .S of black vertices (whereas
vertices in V(G) \ S are colored white) such that V(G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex. The last condition is as follows. For one time, black can change
any vertex from white to black.

(#4) 1-zero-forcing neutrosophic-number Z,(NTG) for a neutrosophic
graph NTG : (V, E, o, u) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V(G)\ S are colored white) such that
V(G) is turned black after finitely many applications of “the color-change
rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex. The last condition is as follows. For one time,
black can change any vertex from white to black.

Proposition 2.5.8. Let NTG : (V, E, o, 1) be a cycle-neutrosophic graph. Then
Zn(NTG) = min{zgzlo-i (-T)}w is a vertex-

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
is a neighbor for two vertices. Two vertices which are neighbors, are only
members of S is a set of black vertices through color-change rule. Thus the
color-change rule implies all vertices are black vertices but extra condition
implies every given vertex is member of S is a set of black vertices. Hence V(G)
is turned black after finitely many applications of “the color-change rule” and
extra condition. So

Zn (NTG) - min{zg)zlai (x)}x is a vertex-
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.9. There are two sections for clarifications.

(a) In Figure (2.5)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) if S = {ns,n4} is a set of black vertices, then ns is only white
neighbor of ns and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, ns is only white neighbor of n4. Thus the color-change
rule implies njy is black vertex and after that ng is only white neighbor
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(ii)

(v)
(vi)

of ns. Thus the color-change rule implies ng is black vertex. Thus
ni,na,ny and ng are black vertices. Hence V(G) is turned black
after finitely many applications of “the color-change rule”;

if S = {ns,n4,n5} is a set of black vertices, then ns is only white
neighbor of ng and ng is only white neighbor of ns. Thus the color-
change rule implies ns is black vertex and after that ny is only white
neighbor of ny. Thus the color-change rule implies ny is black vertex.
In other side, ng is only white neighbor of ns. Thus the color-change
rule implies ng is black vertex. Thus ni,no and ng are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {nsy} is a set of black vertices, then n; and ng are only white
neighbor of ny. Thus the color-change rule doesn’t imply n; and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(G) is turned black after finitely many applications
of “the color-change rule” and extra condition;

if S ={n1} is a set of black vertices, then ny and ng are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(@) is turned black after finitely many applications
of “the color-change rule” and extra condition;

1 is 1l-zero-forcing number and its corresponded sets are
{1} {n2}, {ns}, {na}, {ns}. and {ne};
0.4 is 1-zero-forcing neutrosophic-number and its corresponded set is

{ns}.

(b) In Figure (2.6, an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

if S = {ns,n4} is a set of black vertices, then no is only white
neighbor of ng and ns is only white neighbor of ny. Thus the color-
change rule implies no is black vertex and after that n, is only white
neighbor of ny. Thus the color-change rule implies n; is black vertex.
In other side, n5 is only white neighbor of ns. Thus the color-change
rule implies n5 is black vertex. Thus ni,no and ns are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S = {ns,nq4,n5} is a set of black vertices, then ns is only white
neighbor of ng. Thus the color-change rule implies ns is black vertex
and after that n; is only white neighbor of ny. Thus the color-change
rule implies n is black vertex. Thus n; and no are black vertices.
Hence V(G) is turned black after finitely many applications of “the
color-change rule”;

if S ={no} is a set of black vertices, then n; and ns are only white
neighbor of ny. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies n; and ng are black
vertices. Hence V(@) is turned black after finitely many applications
of “the color-change rule” and extra condition;
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 2.5: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number.

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n9(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

fU.ﬁ.U.4.U.4]
n4(0.8,0.6,0.6)

Figure 2.6: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number.

(iv) if S = {n1} is a set of black vertices, then ny and ng are only white
neighbor of 7. Thus the color-change rule doesn’t imply ny and ng
are black vertices but extra condition implies ny and ng are black
vertices. Hence V(G) is turned black after finitely many applications
of “the color-change rule” and extra condition;

(v) 1 is l-zero-forcing number and its corresponded sets are
{1}, {n2}, {ns}, {na}, {ns}. and {ne};

(vi) 1.3 is l-zero-forcing neutrosophic-number and its corresponded set is

{ns}.

Definition 2.5.10. (Independent Number).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(1) independent number Z(NTG) for a neutrosophic graph NTG
(V,E, 0, 1) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously;

(7) independent neutrosophic-number Z,(NT'G) for a neutrosophic
graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of a set S
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of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously.

Proposition 2.5.11. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.

Then
3

I,(NTG) = max{Z(Ui(ml) +oi(xg) + -+ oi(zy)),

=1
3
Zai(.'lfg) + U’i(x4) +o 4+ Ui($;)>}$ig;i+1eE.
i=1

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. Assume |S| > L%mj Then there are
x and y in S such that they’re endpoints of an edge, simultaneously. In other side,
for having an edge, there’s a need to have two vertices. So by using the members
of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {ni}‘s‘>LO(1\72TG)J

isn’t corresponded to independent number Z(NTG). In other side, for having
an edge, there’s a need to have two vertices. So by using the members of
S = {ni}‘s‘_LO(NTG)J, it’s impossible to have endpoints of an edge. There’s no
- 2
edge to have exclusive endpoints from S = {ni}‘s‘_LO(NTG)J. It implies that
- 2

S = {ni}lSI_LO(NTG)J is corresponded to independent number. Thus
- 2

3
7, (NTG) = max{Z(Ui(xl) +oi(zs) + -+ oi(xe)),

i=1

3
> oi(w) + oi(wa) + -+ 0i(2) barws e
i=1
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.12. There are two sections for clarifications.

(a) In Figure (2.7), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) It S = {na,n4} is a set of vertices, then there’s no vertex in .S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S but It doesn’t imply that S = {nq,n4} is corresponded to
either independent number Z(NTG) or independent neutrosophic-
number Z,,(NTG). Since S = {ni}ls#LO(NZTc)J;
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(i)

(iid)

(v)
(vi)

if S = {na,n4,ne} is a set of vertices, then there’s no vertex in
S but ng,ny and ng. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of 5, it’s
impossible to have endpoints of an edge. There’s no edge to have
exclusive endpoints from S hence it implies that S = {ny, n4, ng} is
corresponded to independent number Z(NT'G) but not independent
neutrosophic-number Z,(NTG). Since S = {ni}‘s‘:LO(l\;TG)J;

if S = {n1,ng,ng,n5} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
members either ng, ny or ng,ns of 9, it’s possible to have endpoints
of an edge either nyny or nyns. There are two edges to have exclusive
endpoints from S and It doesn’t imply that S = {ni,n3,ng, ns} is
corresponded to either independent number Z(NTG) or independent
neutrosophic-number Z,(NTG). Since S = {ni}‘s‘>to(l\;TG)J;

if S ={ny,n3,ns} is a set of vertices, then there’s no vertex in S but
ni,n3 and ns. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S hence it implies that S = {ni,ns,n5} is corresponded to
independent number Z(NTG) and independent neutrosophic-number
Z,(NTG). Since S = {ni}\S\:LO“"QTG)J;

3 is independent number and its corresponded sets are {ns, n4, ng}
and {nlv ns, 7?,5},

3.2 is independent neutrosophic-number and its corresponded set is
{n2,n4,n6}.

(b) In Figure (2.8)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(i)

If S = {ng,n4} is a set of vertices, then there’s no vertex in S
but ny and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S and it implies that S = {ns,n4} is corresponded
to independent number Z(NT'G) but not independent neutrosophic-
number Z,,(NTG). Since S = {ni}‘s‘=Lo(NzTG)J;

if S = {ns,n5} is a set of vertices, then there’s no vertex in S
but n3 and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S but It implies that S = {ng, ns} is corresponded to
independent number Z(NTG) and independent neutrosophic-number
Z,(NTG). Since S = {ni}‘s‘:LO(I\;TG)J;

if S ={ny,nz,ng,n5} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
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Figure 2.7: A Neutrosophic Graph in the Viewpoint of its Independent Number. \ 50NTG5
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Figure 2.8: A Neutrosophic Graph in the Viewpoint of its Independent Number. \ 50NTG6

the members either nz,ny or ng,ns or ns,ny of S, it’s possible
to have endpoints of an edge either nzny or ngns or nsny. There
are three edges to have exclusive endpoints from S and It doesn’t
imply that S = {ny, n3, ng, ns} is corresponded to either independent
number Z(NTG) or independent neutrosophic-number Z,,(NTG).
Since S = {ni}‘S|>LO(NzTG)J;

(i) if S = {n1,n3,n5} is a set of vertices, then there’s no vertex in .S but
ni,n3 and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of .S, it’s possible to have
endpoints of an edge nins. There’s one edge nins to have exclusive
endpoints ny and ns from S hence it implies that S = {ny,ng, ns}
isn’t corresponded to independent number Z(NT'G) and independent
neutrosophic-number Z, (NTG). Since S = {ni}IS\>LO“V2~TG)J;

(v) 2 is independent number and its corresponded sets are {ni,ns},
{n1,n4}, {n2,n4}, {na,ns}, and {ns,ns};

(vi) 2.8 is independent neutrosophic-number and its corresponded set is

{ng, ns}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”
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Definition 2.5.13. (Failed independent Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(¢) failed independent number Z(NTG) for a neutrosophic graph NTG :
(V,E, 0, 1) is minimum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

(ii) failed independent neutrosophic-number Z,(NTG) for a neutro-
sophic graph NTG : (V, E, 0, 1) is minimum neutrosophic cardinality of a
set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Thus we replace the term “minimum” by the term *maximum.” Hence,

Definition 2.5.14. (Failed independent Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) failed independent number Z(NTG) for a neutrosophic graph NTG :
(V,E, 0, 1) is maximum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

(74) failed independent neutrosophic-number Z,(NTG) for a neutro-
sophic graph NT'G : (V, E, 0, 1) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Proposition 2.5.15. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3

I,(NTG) = max{» (0i(z;) + 0i(2j41)) }z,2,41 -
i=1

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
endpoints. These endpoints are corresponded to failed independent number
I(NTG). So
3
Z,(NTG) = max{Z(Ui(:rj) +0i(2j41)) }ayz, 0B

i=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.16. There are two sections for clarifications.
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(a) In Figure (2.9)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

(iv)

(vi)

If S = {nq2,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {na,n4} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);

if S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}g=2 but it doesn’t imply that S = {ni,nsz} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);

if S ={n1,n3,nqg,ns} is a set of vertices, then there’s no vertex in S
but n1,ns,ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ng, nyg or nyg, ns of S, it’s possible to have endpoints of an edge
either ngn4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}s)22 thus it implies that S = {ni,n3,n4,ns5} is
corresponded to neither failed independent number Z(NTG) nor
failed independent neutrosophic-number Z,,(NTG);

if S = {ng,ns} is a set of vertices, then there’s no vertex in S but ng
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {n;}|s|22 thus it implies that S = {ny,n3} is corresponded to
both failed independent number Z(NTG) and failed independent
neutrosophic-number Z,(NTG);

2 is failed independent number and its corresponded set is {nq,ns},
{n1,n3}, {n1,na}, {n1,ns}, {n1,n6}, {n2,n3}, {n2,n4}, {n2,ns},
{n2,n6}, {n3,na}, {na,ns}, {n3,ne}, {na,ns}, {na,n6}, {n5,n6},
and {ng,n1};

4 is failed independent neutrosophic-number and its corresponded
set is {ng, ns}.

(b) In Figure (2.10), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

If S = {ng,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NTG);
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11(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7,0.6)
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n4(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.9: A Neutrosophic Graph in the Viewpoint of its Failed Independent

Number.

(i)

(ii)

(vi)

it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {ny,ns3} is
corresponded to either failed independent number Z(NT'G) or failed
independent neutrosophic-number Z,,(NT'G);

if S ={nq,nz,n4,n5} is a set of vertices, then there’s no vertex in S
but nq,ng, ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ngz, n4 or ng,ns of S, it’s possible to have endpoints of an edge
either ngn4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}s)#2 thus it implies that S = {ni,n3,n4,ns} is
corresponded to neither failed independent number Z(NTG) nor
failed independent neutrosophic-number Z,,(NT'G);

if S = {ng,n4} is a set of vertices, then there’s no vertex in S but ng
and ng4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {n;}|s|22 thus it implies that S = {n3,n4} is corresponded to
both failed independent number Z(NTG) and failed independent
neutrosophic-number Z,,(NTG);

2 is failed independent number and its corresponded set is {n,na},
{n1’n3}7{n1’n4}7{n17n5}7{n27n3}7{n27n4}7{n27n5}7{n37n4h
{ns3,ns}, {n4,ns}, and {ns,n1};

4.3 is failed independent neutrosophic-number and its corresponded
set is {ng, nq4}.

Definition 2.5.17. (1-independent Number).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(7) 1-independent number Z(NTG) for a neutrosophic graph NTG :
(V, E, o, 1) is maximum cardinality of a set S of vertices such that every
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6) 0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5
(0.5,0.4, 0.4)

,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 2.10: A Neutrosophic Graph in the Viewpoint of its Failed Independent
Number.

two vertices of S aren’t endpoints for an edge, simultaneously For one
time, one vertex is allowed to be endpoint;

(74) 1-independent neutrosophic-number Z,(NTG) for a neutrosophic
graph NTG : (V, E, 0, 1) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously. For one time, one vertex is allowed to be endpoint.

Definition 2.5.18. (Failed 1-independent Number).
Let NTG : (V,E, o, 1) be a neutrosophic graph. Then

(i) failed 1-independent number Z(NTG) for a neutrosophic graph
NTG : (V,E, o, u) is maximum cardinality of a set S of vertices such that
every two vertices of S are endpoints for an edge, simultaneously. For one
time, one vertex is allowed not to be endpoint;

(77) failed 1-independent neutrosophic-number Z,,(NTG) for a neutro-
sophic graph NTG : (V, E, 0, ) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for
an edge, simultaneously. For one time, one vertex is allowed not to be
endpoint.

Proposition 2.5.19. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3
2(NTG) Zal —l—maX{Z oi(z1) + oi(x3) + -+ + 0i(2)),

i=1

3
ZUZ +U% x4)+"'+0i<$;))}$iﬂﬂi+1€E'
=1

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex

isn’t a neighbor for every given vertex. Assume |S| > L%J Then there are
x and y in S such that they’re endpoints of an edge, simultaneously. In other side,
for having an edge, there’s a need to have two vertices. So by using the members
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of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {ni}‘s‘>LO(NTG)J isn’t
2

corresponded to 1-independent number Z(NTG). In other side, for having

an edge, there’s a need to have two vertices. So by using the members of

S = {ni}ISI*LO(NTG)J’ it’s impossible to have endpoints of an edge. There’s no
- 2

edge to have exclusive endpoints from S = {ni}‘sl_LO(NTG)J. It implies that

- 2

S = {ni}\S\ﬂmNTG)J is corresponded to l-independent number. But extra
- 2

condition implies

3 3
T,(NTG) = Zai(z) +max{ ) (o4(z1) + oi(3) + -+ + 03(x1)),

i=1

> oi(wa) + oi(wa) + -+ 03(2) barwsss e B
=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.20. There are two sections for clarifications.

(a) In Figure (2.11)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If S = {na,n4} is a set of vertices, then there’s no vertex in
S but no and ng. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of 5,
it’s impossible to have endpoints of an edge. There’s no edge
to have exclusive endpoints from S but It doesn’t imply that

S = {ng,n4} is corresponded to either l-independent number
Z(NTG) or l-independent neutrosophic-number Z,,(NT'G). Since
S = Anitisp 00re 4

(7) if S = {n2,n4,m6} is a set of vertices, then there’s no vertex in
S but ny,ng and ng. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ng,n4,ne} is corresponded to neither 1-independent number
Z(NTGQG) nor l-independent neutrosophic-number Z,, (NT'G). Since

S = {ni}‘s‘:LO(NZTG)J+1;
(#i1) if S = {n1,n3,n4,n5} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s

a need to have two vertices which are consecutive. So by using
the members either ng,ng or ng,ns of S, it’s possible to have
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(vi)

endpoints of an edge either ngnys or ngns. There are two edges
to have exclusive endpoints from S. But extra condition implies
that S = {ny,n3,ng,ns} is corresponded to 1-independent number
Z(NTG) but not 1-independent neutrosophic-number Z,(NTG).
Since S = {ni}‘5|>Lo(z\;Tc)J+1;

if S = {ny,n3,n5} is a set of vertices, then there’s no vertex in
S but ni,n3 and ns. In other side, for having an edge, there’s
a need to have two vertices. So by using the members of S5,
it’s impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ny,n3,ns} is corresponded to neither 1-independent number
Z(NTG) nor 1-independent neutrosophic-number Z,,(NT'G). Since

§ = Anidys- e )
4 is l-independent number and its corresponded sets are

{n25n4;n6;n1}a {nQan4an67n3}7 {’I’LQ,’I’L4,’I’LG,TL5}, {TL177L3,TL5,TL2},
{n1,n3,n5,n4}, and {n1,n3,ns,n6};

5.1 is 1-independent neutrosophic-number and its corresponded set
is {na, N4, ng, N3}

(b) In Figure (2.12), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)

(iid)

If S = {no,n4} is a set of vertices, then there’s no vertex in
S but ng and ny. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of S, it’s
impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ng2,n4} is corresponded to neither l-independent number
Z(NTG) nor l-independent neutrosophic-number Z,,(NT'G). Since

S = {ni}|S|:Lo(A72TG)J+1;

if S = {ng,ns} is a set of vertices, then there’s no vertex in
S but nz and ns. In other side, for having an edge, there’s a
need to have two vertices. So by using the members of S, it’s
impossible to have endpoints of an edge. There’s no edge to
have exclusive endpoints from S. But extra condition implies that
S = {ns,ns} is corresponded to neither l-independent number
Z(NTG) nor 1-independent neutrosophic-number Z,,(NT'G). Since

S = {ni}|S|:Lo(1\12TG)J+1;

if S ={n1,ns3,n4,n5} is a set of vertices, then there’s no vertex in S
but n1,ng,ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either n3,ng or nyg,ns or ns,ny of .S, it’s possible to have endpoints
of an edge either n3ny or nyns or nsn,. There are three edges to
have exclusive endpoints from S. But extra condition implies that
S = {ny,n3,ng,n5} isn’t corresponded to 1-independent number
Z(NTG) and 1-independent neutrosophic-number Z,,(NT'G). Since

§={ni} g c0ma) 4

185



2. Neutrosophic Tools
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Figure 2.11: A Neutrosophic Graph in the Viewpoint of its 1-Independent

Number. \ 52NTG5
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Figure 2.12: A Neutrosophic Graph in the Viewpoint of its 1-Independent

Number. \ 52NTG6

(iw) if S = {n4,na2,ns} is a set of vertices, then there’s no vertex in S
but n4,ns and ns. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s possible
to have endpoints of an edge nyns. There’s one edge nyns to have
exclusive endpoints ny and ng from S. But extra condition implies
that S = {ng4,n2,ns} is corresponded to both 1-independent number
Z(NTG) and l-independent neutrosophic-number Z,,(NTG). Since

§={ni} g4 c0re ;

v 1S I-Indaepen ent number and its corresponde sets are ni,n3, N2y,
3 is 1-ind d b di ded
{nlan3an4}7 {nlan3an5}7 {nlan4an2}7 {nlan4an3}7 {nlan4an5}7

{n2an4an1}7 {n25n4an3}7 {n2,7’l4,7’l5}, {nQanf)anl}v {7’7,2,7’7,577’7,3},
{n23n5an4}7 {n37n57n2}3 {n37n57n4}7 and {n37n57n1};

(vi) 5.1 is l-independent neutrosophic-number and its corresponded set
is {na,ns5,n3}.

The natural way proposes us to use the restriction “maximum” instead of
“minimum.”
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Definition 2.5.21. (Clique Number).
Let NTG : (V, E,o,u) be a neutrosophic graph. Then

(i) clique number C(NTG) for a neutrosophic graph NTG : (V, E, o, ) is
maximum cardinality of a set S of vertices such that every two vertices of
S are endpoints for an edge, simultaneously;

(i4) clique neutrosophic-number C,(NTG) for a neutrosophic graph
NTG : (V,E,o0,u) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously.

Proposition 2.5.22. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3
Ch(NTG) = max{Z(ai(Ij) +0i(2541)) }esz, 0B

=1

Proof. Suppose NTG : (V, E, o, u) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
endpoints. These endpoints are corresponded to clique number C(NTG). So

3
CW(NTG) = maX{Z(Ui(xj) + Ui(xj+1))}l'jwj+1€E'

i=1
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.23. There are two sections for clarifications.

(a) In Figure (2.13)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) It S = {na,n4} is a set of vertices, then there’s no vertex in .S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {ni}|s=2 but it doesn’t imply that S = {ng,n4} is
corresponded to either clique number C(NT'G) or clique neutrosophic-
number C,(NTG);

(79) it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
ny and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
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(iid)

(v)

(vi)

from S. S = {n;}sj=2 but it doesn’t imply that S = {ni,ns} is
corresponded to either clique number C(NTG) or clique neutrosophic-
number C,,(NT'G);

if S ={nq,nz,ng,n5} is a set of vertices, then there’s no vertex in
S but n1,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either nz,ngy or ng,ns of S, it’s possible to have
endpoints of an edge either ngng or nyns. There are two edges
to have exclusive endpoints from S. S = {n;}g/x2 thus it implies
that S = {ni,ns,nq,ns} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number C,(NTG);

if S = {n2,ns} is a set of vertices, then there’s no vertex in S but ng
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s)22 thus it implies that S = {nz,n3} is corresponded
to both clique number C(NTG) and clique neutrosophic-number
C.(NTG);

2 is clique number and its corresponded set is {ni,na2}, {n1,ns},
{nlv 77'4}7 {nlv n5}7 {nlv n6}7 {77,2, 77,3}, {n27 77,4}, {n27 n5}7 {n27 nﬁ}?
{ns.na}, {ns,ns}, {ns,ne}, {na,ns}, {na,ne}, {ns ne}, and
{ne,n1};

4 is clique neutrosophic-number and its corresponded set is {ng, ns}.

(b) In Figure (2.14), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(ii)

If S = {ng,ny} is a set of vertices, then there’s no vertex in S but
no and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}gj=2 but it doesn’t imply that S = {nz,n4} is
corresponded to either clique number C(NTG) or clique neutrosophic-
number C,,(NT'G);

it S = {n1,ns3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}|s=2 but it doesn’t imply that S = {n;,n3} is
corresponded to either clique number C(NTQG) or clique neutrosophic-
number C, (NTG);

if S ={ny,nz,nq,n5} is a set of vertices, then there’s no vertex in
S but nq,n3,n4 and ny. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using
the members either ns,ng or ng,ns of S, it’s possible to have
endpoints of an edge either ngny or nyns. There are two edges
to have exclusive endpoints from S. S = {n;}s)x2 thus it implies
that S = {n1,n3,n4,ns} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number C,,(NTG);
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() if S = {n3,n4} is a set of vertices, then there’s no vertex in S but ns
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {ni}|s|22 thus it implies that S = {n3,n4} is corresponded
to both clique number C(NTG) and clique neutrosophic-number
Co(NTG);

(v) 2 is clique number and its corresponded set is {ni,na}, {n1,n3},
{n13n4}7 {n13n5}7 {n23n3}7 {n23n4}7 {?7,2,’[7,5}, {n3an4}7 {’Il3,7l5},
{n4,ns}, and {ns,n1};

(vi) 4.3 1is clique neutrosophic-number and its corresponded set is {ns,n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”

Definition 2.5.24. (Failed Clique Number).
Let NTG : (V,E, o, ) be a neutrosophic graph. Then

(i) failed clique number C7(NTG) for a neutrosophic graph NTG :
(V, E, 0, 1) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously;
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(ii) failed clique neutrosophic-number C; (NTG) for a neutrosophic
graph NTG : (V, E, o, i) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously.

Proposition 2.5.25. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.

Then
(1) if O(NTG) =0, then
CI(NTG) = 0;
(#4) if OINTG) =1, then
CI(NTG) = 0;
(791) if O(NTQG) = 2, then
CI(NTG) = 0;

(iv) if O(NTG) = 3, then
CI(NTG) = 0;

(v) if O(NTQG) > 4, then
CEINTG) = minf > oi(a) + 3 s (0) by
i=1 i=1

Proof. Suppose NTG : (V, E, 0, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex.

(1) If O(NTG) = 0, then there’s no vertex to be considered. So minimum
cardinality of a set is zero. It implies

CI(NTG) = 0;

(ii) if O(NTG) = 1, then by using Definition, there aren’t two vertices. Thus
it implies
CI(NTG) = 0;

(791) if O(NTG) = 2, then there are two vertices. By it’s cycle-neutrosophic
graph, it’s contradiction. Since if it’s cycle-neutrosophic graph, then
O(NTG) # 2. In other words, it’s cycle-neutrosophic graph, then
O(NTG) > 3. At least two vertices are needed to have new notion
but at least three vertices are needed to have cycle-neutrosophic graph.
Thus

CI(NTG) = 0;

(i) if O(NTG) = 3, then, by it’s cycle-neutrosophic graph, there aren’t two
vertices x and y such that x and y aren’t endpoints of an edge. It implies

CF(NTG) = 0;
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(v) if O(NTG) > 4, then, by it’s cycle-neutrosophic graph, there are two
vertices x and y such that x and y aren’t endpoints of an edge. Thus
lower bound is achieved for failed clique number. It implies

3

3
Cr (NTG) = min{z oi(z) + Y 0i(Y) baygr-

i=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.26. There are two sections for clarifications.

(a) In Figure (2.15)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(#)

(i)

(i)

If S = {na,ny} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} g2 implies that S = {ny,n4} is corresponded to
failed clique number C7 (NTG) but not failed clique neutrosophic-
number CJ (NTG);

if S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} g2 implies that S = {ny,n3} is corresponded to
failed clique number C7 (NTG) but not failed clique neutrosophic-
number C/ (NTG);

if S = {ny1,ng,n4,ns} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
members either ng, nyg or ng, ns of S, it’s possible to have endpoints
of an edge either nzn, or nyns. There are two edges to have exclusive
endpoints from S. But ny and ns aren’t endpoints for any given
edge. S = {ni} g2z thus it implies that S = {nq,n3,n4,n5} is
corresponded to neither failed clique number C7 (NTG) nor failed
clique neutrosophic-number C; (NTG);

it S = {ny1,ns} is a set of vertices, then there’s no vertex in S
but n; and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. S = {n;} 5=z thus it implies that S = {n1,n5}
is corresponded to both failed clique number C* (NTG) and failed
clique neutrosophic-number C (NTG);
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(v)

(vi)

2 is failed clique number and its corresponded set is {ni,ns},
{n1,n4a}, {n1,ns}, {n2,na}, {n2,ns}, {n2,n6}, {n3,ns}, {n3,n6},
and {ng,ng};

1.3 is failed clique neutrosophic-number and its corresponded set is
{77,1,77,5}.

(b) In Figure (2.16), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iii)

(v)
(vi)

If S = {no,n4} is a set of vertices, then there’s no vertex in S but
ne and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} sj—2 implies that S = {no,n4} is corresponded to
failed clique number C* (NT'G) but not failed clique neutrosophic-
number C; (NTG);

if S = {n1,ns} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}g/=2 implies that S = {ni,n3} is corresponded to
failed clique number C* (NTG) but not failed clique neutrosophic-
number CJ (NTG);

if S = {n1,ng,ng,ns} is a set of vertices, then there’s no vertex in
S but ny,n3,n4 and ns. In other side, for having an edge, there’s
a need to have two vertices which are consecutive. So by using the
members either ng, ng or ng, ns of S, it’s possible to have endpoints
of an edge either nzny or nyns. There are two edges to have exclusive
endpoints from S. But ny and ng aren’t endpoints for every given
edge. S = {n;}|g22 thus it implies that S = {ni,n3,n4,n5} is
corresponded to neither failed clique number C* (NTG) nor failed
clique neutrosophic-number C; (NTG);

if S = {na,n5} is a set of vertices, then there’s no vertex in S
but ny and ns. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s impossible
to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. S = {n;}s)=2 thus it implies that S = {nz,ns}
is corresponded to both failed clique number C7 (NT'G) and failed
clique neutrosophic-number C7 (NTG);

2 is failed clique number and its corresponded set is {n1,ns}, {n1,n4},
{n2,na}, {n2,ns}, and {nz, ns};

2.8 is failed clique neutrosophic-number and its corresponded set is
{n2,ns}.

Definition 2.5.27. (1-clique Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) 1-clique number C(NTG) for a neutrosophic graph NTG : (V, E, 0, 1)
is maximum cardinality of a set S of vertices such that every two vertices
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of S are endpoints for an edge, simultaneously. It holds extra condition
which is as follows: two vertices have no edge in common are considered
as exception but only for one time;

(i4) 1-clique neutrosophic-number C,(NTG) for a neutrosophic graph
NTG : (V,E,o0,u) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously. It holds extra condition which is as follows: two vertices
have no edge in common are considered as exception but only for one
time.

Definition 2.5.28. (Failed 1-clique Number).
Let NTG : (V,E,o, 1) be a neutrosophic graph. Then

(i) failed 1-clique number C*(NTG) for a neutrosophic graph NTG :
(V,E, o0, p) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously. It
holds extra condition which is as follows: two vertices have no edge in
common are considered as exception but only for one time;
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(ii) failed 1-clique neutrosophic-number C; (NTG) for a neutrosophic
graph NTG : (V, E, o, i) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously. It holds extra condition which is as follows: two
vertices have no edge in common are considered as exception but only for
one time.

Proposition 2.5.29. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3

Co(NTG) = maX{Z(Ui(xj) + Ui(ijrl) + Ji(xj+2))}mj$j+l’xj+1$j+2€E‘
=1

Proof. Suppose NTG : (V, E, o, ) is a cycle-neutrosophic graph. Every vertex
isn’t a neighbor for every given vertex. If |S| > 2, then there are at least three
vertices x,y and z such that if x is a neighbor for y and z, then y and z aren’t
neighbors. Thus there is no triangle but there’s one edge. One edge has two
endpoints. These endpoints are corresponded to 1-clique number C(NT'G). Two
vertices could be satisfied in extra condition. So

3
CTL(NTG) = maX{Z(ai(xj) + Ui(xj+1) + Ui(xj+2))}wj$j+1730j+190j+26E'

i=1
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.30. There are two sections for clarifications.

(a) In Figure (2.17)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) I S = {na,n4} is a set of vertices, then there’s no vertex in S but
ne and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|23 implies that S = {no,n4} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number
Co(NTG);

(7) it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} g3 implies that S = {ny,n3} is corresponded to
neither 1-clique number C(NTG) nor 1-clique neutrosophic-number

Cn(NTG);
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(iid)

(v)
(vi)

if S ={n1,ns3,n4,n5} is a set of vertices, then there’s no vertex in S
but n1,ng, ng and ns. In other side, for having an edge, there’s a need
to have two vertices which are consecutive. So by using the members
either ng, ny or ny,ns of S, it’s possible to have endpoints of an edge
either ngny4 or nyns. There are two edges to have exclusive endpoints
from S. S = {n;}|s3 thus it implies that S = {ni,n3,n4,ns}
is corresponded to neither 1-clique number C(NT'G) nor 1-clique
neutrosophic-number C, (NTG);

if S ={ns,ng} is a set of vertices, then there’s no vertex in S but ns
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S| it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
S = {n;}|s|23 thus it implies that S = {ns,ne} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number

Ch(NTG);

3 is 1-clique number and its corresponded sets are like {n,ng, ns},
and {ng,ns,ng} which contain two edges;

4.9 is 1-clique neutrosophic-number and its corresponded set is
{ni,n2,n3}.

(b) In Figure (2.18)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

If S = {ng,n4} is a set of vertices, then there’s no vertex in S but
ng and ny. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of .S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;} s|23 implies that S = {ny,n4} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number

Cn(NTG);

it S = {n1,n3} is a set of vertices, then there’s no vertex in S but
n1 and ng. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints
from S. S = {n;}s|23 implies that S = {ny,n3} is corresponded to
neither 1-clique number C(NTG) nor 1-clique neutrosophic-number
Co(NTG);

it S = {ns,n4,n2} is a set of vertices, then there’s no vertex in S but
ns, n4 and ns. In other side, for having an edge, there’s a need to have
two vertices which are consecutive. So by using the members either
ng, N4 or no,ng of S, it’s possible to have endpoints of an edge either
nang or nyny. There are two edges to have exclusive endpoints from
S. S = {n;}|s|=3 thus it implies that S = {n3,n4,na} is corresponded
to both 1-clique number C(NT'G) and 1-clique neutrosophic-number
Co(NTG);

if S = {ns,ne} is a set of vertices, then there’s no vertex in S but nj
and ng. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S| it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S.
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Figure 2.18: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number. \

S = {n;}|s|24 thus it implies that S = {ns,ne} is corresponded to
neither 1-clique number C(NT'G) nor 1-clique neutrosophic-number
Cn(NTG);

(v) 3 is 1-clique number and its corresponded sets are like {n,ns,n3},
and {ng,n3,ng} which contain two edges;

(vi) 6.3 is 1l-clique neutrosophic-number and its corresponded set is
{713,714,712}.

Definition 2.5.31. (Matching Number).
Let NTG : (V, E, o, u) be a neutrosophic graph. Then

(¢) matching number M(NTG) for a neutrosophic graph NTG
(V,E, o0, ) is maximum cardinality of a set S of edges such that every
two edges of S don’t have any vertex in common;

(it) matching neutrosophic-number M, (NTG) for a neutrosophic graph

NTG : (V,E, o, ) is maximum neutrosophic cardinality of a set S of
edges such that every two edges of S don’t have any vertex in common.
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Proposition 2.5.32. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3 3

3
Mp(NTG) = max{ _ pi(wor1) + Y piwams) +-+ Y pilwj125)}s1= 2 -

i=1 i=1 =1

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
X1,Z2, - ,To be consecutive arrangements of vertices of NTG : (V,E, o, u)
such that

xixiHEE, 1=1,2,---,0—1.

Define
S = o O-1
= {561262,333!134, cee 7xz$1+1}i:1 :

In S, there aren’t two edges which have common endpoints. S is matching set
and it has maximum cardinality amid such these sets which are matching set
which is a set in that, there aren’t two edges which have common endpoints. So

3 3 3
M, (NTG) = max{z pi(Towy) + Z pi(x2ws) +- -+ Z 1i(Tj—175) }is|=| 2 -

i=1 i=1 i=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.33. There are two sections for clarifications.

(a) In Figure (2.19), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If S = {nins,nans, nang} is a set of edges, then there’s no edge
in S. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have at least one
endpoint for two edges. There is no edge from S. Cardinality of S
implies but the structure of S implies that S = {nyns, nons, nang} is
corresponded to neither matching number M(NTG) nor matching
neutrosophic-number M,,(NTG);

(79) if S = {nans,nin4} is a set of edges, then there’s no edge in S but
nons. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of S implies
that S = {nang, ning} is corresponded to neither matching number
M(NTGQG) nor matching neutrosophic-number M, (NTG);

197



2. Neutrosophic Tools

(iid)

(v)
(vi)

if S = {n1n2,n3ng, nsng} is a set of edges, then there are three edges
in S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges in S. Cardinality and structure of S
implies that S = {ning, n3ng, nsng} is corresponded to matching
number M(NTG) and neutrosophic cardinality, 2.5, of S implies
S = {nins,ngng, nsng} is corresponded to matching neutrosophic-
number M, (NTG);

if S = {nang,nyns,nen1} is a set of edges, then there are three
edges in S In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints
for two edges. There are three edges from S. Cardinality of S
implies that S = {nang, nyns,neny} is corresponded to matching
number M(NTG) and neutrosophic cardinality, 2.7, of S implies
S = {nina,n3ng} is corresponded to matching neutrosophic-number
My (NTG);

3 is matching number and its corresponded sets are {nina, ngn4, nsng},
and {nans, nans, neni };

2.5 is matching neutrosophic-number and its corresponded set is
{nlng, nsng, n5n6}.

(b) In Figure (2.20]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

198

(4)

(i)

(ii)

If S = {nins,nong} is a set of edges, then there’s no edge in S. In
other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
two edges. There is no edge from S. Cardinality of S implies but
the structure of S implies that S = {nyns,nans} is corresponded
to neither matching number M(NTG) nor matching neutrosophic-
number M, (NTG);

if S = {nans,nins} is a set of edges, then there’s no edge in S but
nong. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of .S, it’s impossible to have at least one
endpoint for two edges. There is one edge from S. Cardinality of
S implies but the structure of S implies that S = {nang, nin,} is
corresponded to neither matching number M(NTG) nor matching
neutrosophic-number M, (NTG);

if S = {nangz,nans} is a set of edges, then there’s no edge in S but
nong and ngns. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {ngnsz,nans} is corresponded to matching number M(NTG)
and neutrosophic cardinality, 2.8, of S implies S = {naons, nans} is
corresponded to matching neutrosophic-number M,,(NTG);
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() if S = {nina,ngna} is a set of edges, then there’s no edge in S but
ning and ngng. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of .S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {nina,n3ng} is corresponded to matching number M(NTG)
but neutrosophic cardinality, 3.1, of S implies S = {ning, ngng} isn’t
corresponded to matching neutrosophic-number M,,(NTG);

(v) 2 is matching number and its corresponded sets are {ning, ngn4},
and {ngns, nyns};

(vi) 2.8 is matching neutrosophic-number and its corresponded set is
{ngng, n4n5}.

Definition 2.5.34. (Matching Polynomial).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then

(1) matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E,o,u) is a polynomial where the coefficients of the terms of the
matching polynomial represent the number of sets of independent edges
of various cardinalities in G.
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(it) matching polynomial neutrosophic-number M, (NTG) for a neut-
rosophic graph NTG : (V, E, o, 1) is a polynomial where the coefficients
of the terms of the matching polynomial represent the number of sets of
independent edges of various neutrosophic cardinalities in G.

Proposition 2.5.35. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

3 P
M (NTG) = meax{Zses > m(s)}}‘slzts<N2Tc)J+' . '+C/xmin{zseE Zle wi(s)}

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
Z1,Z9,+ ,To be consecutive arrangements of vertices of NTG : (V,E, o, )
such that

Tixiy1 €L, 1=1,2,--- ,O—1.

Define
o-1
S ={x1w0, w324, ;2311 }i

In S, there aren’t two edges which have common endpoints. S is matching
polynomial set and it has maximum cardinality amid such these sets which are
matching polynomial set which is a set in that, there aren’t two edges which
have common endpoints. So

3
Mn(NTG) _ CmmaX{ZsES Zi:l Hi(s)}}\SI:LS(N2TG)J+. ) -+c/xmin{zseE ijl Mi(S)}.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.36. There are two sections for clarifications.

(a) In Figure (2.21), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If S = {nins, nans, nane} is a set of edges, then there’s no edge in S.
In other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
two edges. There is no edge from S. Cardinality of S implies but the
structure of S implies that S = {nins, nans, nang} is corresponded
to neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M, (NTG);

(1) if S = {nangz,ning} is a set of edges, then there’s no edge in S but
nong. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have at least one
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(iid)

(vi)

endpoint for two edges. There is one edge from S. Cardinality of S
implies that S = {nang,ning} is corresponded to neither matching
polynomial M(NTG) nor matching polynomial neutrosophic-number

M, (NTG);

if S = {n1ns,n3ng, nsng} is a set of edges, then there are three edges
in S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges in S. Cardinality and structure of S
implies that S = {ning, ngng, nsng} is corresponded to matching
polynomial M(NTG) and neutrosophic cardinality, 2.5, of S implies
S = {nina,ngng,nsne} is corresponded to matching polynomial
neutrosophic-number M, (NTG);

if S = {nang,nans,nen1} is a set of edges, then there are three
edges in S In other side, for having a common vertex, there’s
a need to have one vertex as endpoint for two edges which is
impossible. So by using the members of S, it’s impossible to
have endpoints for two edges. There are three edges from S.
Cardinality of S implies that S = {nang, ngns, ngni } is corresponded
to matching polynomial M(NTG) and neutrosophic cardinality,
2.7, of S implies S = {nina,n3n4} is corresponded to matching
polynomial neutrosophic-number M,,(NTG);

223 4 922 4 62 + 1 is matching polynomial and its corresponded
sets are {ning, n3na, nsne}, and {nans, nans, ngni} for coefficient of
biggest term;

2% 4+ 224 4+ 24 is matching polynomial neutrosophic-number and
its corresponded set is {ning, ngng, nsneg}.

(b) In Figure (2.22)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

If S = {nins,nans} is a set of edges, then there’s no edge in S. In
other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using
the members of S, it’s impossible to have at least one endpoint for
two edges. There is no edge from S. Cardinality of S implies but
the structure of S implies that S = {nins,nong} is corresponded to
neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M,,(NTG);

if S = {nans,nina} is a set of edges, then there’s no edge in S but
nons. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of S implies but
the structure of S implies that S = {nans,nin4} is corresponded to
neither matching polynomial M(NTG) nor matching polynomial
neutrosophic-number M, (NTG);

if S = {naons,nans} is a set of edges, then there’s no edge in S
but nong and ngns. In other side, for having a common vertex,
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Figure 2.21: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial. \ 60ONTG5

there’s a need to have one vertex as endpoint for two edges which
is impossible. So by using the members of S, it’s impossible
to have endpoints for two edges. There are two edges from S.
Cardinality of S implies that S = {nans,nyns} is corresponded to
matching polynomial M(NTG) and neutrosophic cardinality, 2.8, of
S implies S = {nang,nans} is corresponded to matching polynomial
neutrosophic-number M,,(NTG);

(iw) if S = {ning,ngns} is a set of edges, then there’s no edge in S but
ning and ngng. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {ning,n3ny} is corresponded to matching polynomial M(NTG)
but neutrosophic cardinality, 3.1, of S implies S = {nina,n3ng}
isn’t corresponded to matching polynomial neutrosophic-number

M, (NTG);

(v) 222 + 52 + 1 is matching polynomial and its corresponded sets are
{ning,n3ng}, and {naong, nyns} for coefficient of biggest term;

(vi) 228 + 22 is matching polynomial neutrosophic-number and its
corresponded set is {nang, nans} for coefficient of biggest term.

Definition 2.5.37. (e-Matching Number).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(i) e-matching number M(NTG) for a neutrosophic graph NTG
(V,E, o, ) is maximum cardinality of a set S containing endpoints of
edges such that every two edges of S don’t have any vertex in common;

(i) e-matching neutrosophic-number M, (NTG) for a neutrosophic
graph NTG : (V, E, o, ;1) is maximum neutrosophic cardinality of a set S
containing endpoints of edges such that every two edges of S don’t have
any vertex in common.

Definition 2.5.38. (e-Matching Polynomial).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then
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Figure 2.22: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial.

(i) e-matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E,o,u) is a polynomial where the coefficients of the terms of the
e-matching polynomial represent the number of sets of endpoints of
independent edges of various cardinalities in G.

(ii) e-matching polynomial neutrosophic-number M, (NTG) for a
neutrosophic graph NTG : (V,E,o,u) is a polynomial where the
coefficients of the terms of the e-matching polynomial represent the
number of sets of endpoints of independent edges of various neutrosophic
cardinalities in G.

Proposition 2.5.39. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then

Mu(NTG) = O,(NTG)
where the parity of O(NTG) is even. And
3

M, (NTG) = O,(NTG) = Y o;(x)

i=1
where the parity of O(NTG) is odd and x € {y € V | o(y) = min,cv o(2)}.
Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let

X1,%9, -+ ,To be consecutive arrangements of vertices of NTG : (V,E, o, )
such that

$i$1‘+1€E, 1=1,2,--- ,O—1.

Define
S _ o O-1
= {901952,333%4, T 7x1x1+1}i=1 .

In S, there aren’t two edges which have common endpoints. S is corresponded
to e-matching neutrosophic-number and it has maximum cardinality amid such
these sets which are corresponded to e-matching neutrosophic-number which is
a set in that, there aren’t two edges which have common endpoints. So

M, (NTG) = O, (NTG)
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where the parity of O(NTG) is even. And

3
M (NTG) = O,(NTG) = > oi(x)

i=1

where the parity of O(NTG) isoddand z € {y € V | 0(y) = min ey o(2)}. N

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.40. There are two sections for clarifications.

(a) In Figure (2.23)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

(iid)

If {nins, nons,nang} is a set of edges, then there’s no edge from
S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So
by using the members of S, it’s impossible to have at least one
endpoint for two edges. There is no edge from S. Cardinality of S
implies but the structure of S implies that S = {n1,ns3, n2, ns, n4, ng}
is corresponded to neither e-matching number M(NTG) nor e-
matching neutrosophic-number M,,(NTG);

if {nans,ning} is a set of edges, then there’s no edge from S but
nong. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So by
using the members of S, it’s impossible to have at least one endpoint
for two edges. There is one edge from S. Cardinality of S implies that
S = {na,n3,n1,n4} is corresponded to neither e-matching number
M(NTQ@G) nor e-matching neutrosophic-number M, (NTG);

if {n1,n2,n3,n4,n5,n6} is a set of edges, then there are three edges
from S. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of two edges which is impossible. So by
using the members of S, it’s impossible to have endpoints for two
edges. There are three edges from S. Cardinality, O(NT'G) = 6, and
structure of S implies that

S ={ni1,n9,n3,n4,n5,n6} =V

is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 10.1 = O, (NTG), of S implies

S = {n17n27n37n47n57n6} =V

is corresponded to e-matching neutrosophic-number M,,(NTG);
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(iv)

(vi)

if S = {nans,nans, nen1} is a set of edges, then there are three edges
from S In other side, for having a common vertex, there’s a need to
have one vertex as endpoint for two edges which is impossible. So
by using the members of S, it’s impossible to have endpoints for two
edges. There are three edges from S. Cardinality of S, O(NTG) = 6,
implies that

S = {ng, ns,ng, N5, Ne, nl} =V

is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 10.1 = O, (NTG), of S implies

S = {na,ng,na,ns,n6,n1} =V

is corresponded to e-matching neutrosophic-number M,,(NTG);

6 = O(NTG) is e-matching number and its corresponded set is
S = {n17n27n37n47n57n6} = V7

10.1 = O,(NTG) is e-matching neutrosophic-number and its
corresponded set is {ny, na, n3, n4, s, N}

(b) In Figure (2.24), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

If {nins,nons} is a set of edges, then there’s no edge in S. In other
side, for having a common vertex, there’s a need to have one vertex as
endpoint for two edges which is impossible. So by using the members
of S, it’s impossible to have at least one endpoint for two edges.
There is no edge from S. Cardinality of S implies but the structure
of S implies that S = {ni,ns,na,n4} is corresponded to neither
e-matching number M(NTG) nor e-matching neutrosophic-number

M, (NTG);

if {nons,niny} is a set of edges, then there’s no edge in S but nang.
In other side, for having a common vertex, there’s a need to have one
vertex as endpoint for two edges which is impossible. So by using the
members of S, it’s impossible to have at least one endpoint for two
edges. There is one edge from S. Cardinality of S implies but the
structure of S implies that S = {ng, ng,ny,n4} is corresponded to
neither e-matching number M(NTG) nor e-matching neutrosophic-
number M, (NTG);

if {nans,nans} is a set of edges, then there’s no edge from S but
nong and ngns. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint for two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints for
two edges. There are two edges from S. Cardinality of S implies that
S = {ng, ng,n4,ns} is corresponded to e-matching number M(NTG)
but neutrosophic cardinality, 7.1, of S implies S = {na, n3, n4, ns}
isn’t corresponded to e-matching neutrosophic-number M,,(NTG);

if {ning,ngng} is a set of edges, then there’s no edge in S but ninsg
and nsng. In other side, for having a common vertex, there’s a need
to have one vertex as endpoint for two edges which is impossible. So

205



2. Neutrosophic Tools

n3(0.1,0.9,0.9) (0.1,0.5,0.8) ,(0.8,0.5,0.8

(0.1,0.2, 0.9) , \
/ n6(0.2,0.7, 0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

(0.1,0.1,0.2)
n5(0.1,0.1,0.2)

Figure 2.23: A Neutrosophic Graph in the Viewpoint of its e-Matching Number. \

61INTG6

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

[’[].8.[].[,}. [].[,}] ([}.2.[}.:—1. [}.—ll

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 2.24: A Neutrosophic Graph in the Viewpoint of its e-matching Number. \

61INTG7

by using the members of S, it’s impossible to have endpoints for two
edges. There are two edges from S. Cardinality of .S implies that

S = {n17n27n37n4} =V - {n5} 7é |4
is corresponded to e-matching M(NTG) and neutrosophic cardinal-
ity, 7.2, of S implies

S ={ni,nz,nz,na} =V —{ns} #V

is corresponded to e-matching neutrosophic-number M,,(NTG);
(v) 4 = ONTG) — 1 # O(NTG) is e-matching number and its
corresponded set is {ny,nq,n3,na} =V —{ns} #V;
(vi) 7.2 = O0,(NTG) — Zf’zl 0i(ns) is e-matching neutrosophic-number
and its corresponded set is {n1,ng,ng,nat =V —{ns} #V;

Definition 2.5.41. (Girth and Neutrosophic Girth).
Let NTG : (V,E, o, 1) be a neutrosophic graph. Then

(1) Girth G(NTG) for a neutrosophic graph NTG : (V, E, o, 1) is minimum
crisp cardinality of vertices forming shortest cycle. If there isn’t, then
girth is oo;
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(ii) neutrosophic girth G, (NTG) for a neutrosophic graph NTG
(V,E,o,u) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is co.

Proposition 2.5.42. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(NTG) > 3. Then

Go(NTG) = O, (NTG).

Proof. Suppose NTG : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2,  ,TOo(NTG), 1 be a sequence of consecutive vertices of NTG
(V,E, o, p) such that

T;Tit1 € E i=12--- ,O(NTG) -1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

Ly Lid1y " 3 Li—2, Lj—1,T4

is a corresponded crisp cycle for z;. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp
cycle is O(NTG). It implies

G.(NTG) = 0,(NTG).
u

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.43. There are two sections for clarifications.

(a) In Figure (2.75)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) If ny,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,ng

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);
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(i)

(iid)

(v)
(vi)

if nq1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni, N2, N3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if nq, ns, n3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2,N3, Ny

is corresponded neither to girth G(NT'G) nor neutrosophic girth
G.(NTG);

if n1,n9, ns3, ng, N5, ng, Ny is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, nine, nang, n3ng, Nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nans and nsng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies ny, ns, n3, ng, N5, ng, Ny is corresponded to
both of girth G(NTG) and neutrosophic girth G,,(NTG);

6 is girth and its corresponded set is only {ni,ns, n3, nq, ns, ne, N1 };

8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{nla n2,Mn3,MN4,MNs5,Ng, nl}-

(b) In Figure (2.76)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
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If n1,ns is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
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(i)

(v)

path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni, N2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,n92,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni, N2, N3

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1,no,n3,ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. So adding points has to effect to find a crisp
cycle. The structure of this neutrosophic path implies

Nn1,N2,M3,74

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if ny,n9,n3,n4,n5,n1 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, nino, nong, n3ng, ngns and nsny, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, ning, with value (0.2,0.5,0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies ni,no, n3, n4, ns5,nq is corresponded
to both of girth G(NTG) and neutrosophic girth G, (NTG);

5 is girth and its corresponded set is only {ni,ns,n3, n4, ns,n1};
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Figure 2.25: A Neutrosophic Graph in the Viewpoint of its Girth.
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n4(0.8,0.6,0.6)

Figure 2.26: A Neutrosophic Graph in the Viewpoint of its Girth.

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is only
{nla N2, N3, T4, N5, nl}-

Definition 2.5.44. (Girth and Neutrosophic Girth).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(1) Girth G(NTG) for a neutrosophic graph NTG : (V, E, o, 1) is minimum
crisp cardinality of vertices forming shortest neutrosophic cycle. If there
isn’t, then girth is oo;

(it) neutrosophic girth G,(NTG) for a neutrosophic graph NTG
(V,E,o,p) is minimum neutrosophic cardinality of vertices forming
shortest neutrosophic cycle. If there isn’t, then girth is co.

Theorem 2.5.45. Let NTG : (V,E,o,u) be a neutrosophic graph. If NTG :

(V,E,o,u) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E,o,u) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy (cyc)- v has two

neighbors y, z in CYC. Since NTG is strong, pu(uy) = p(uz) = o(u). It implies
there are two weakest edges in CY'C. It means C'Y C' is neutrosophic cycle. H
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Proposition 2.5.46. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(NTG) > 3. Then

Go(NTG) = O, (NTG).

Proof. Suppose NTG : (V,E,o,u) is a strong-cycle-neutrosophic graph.
Let 1,22, - ,zo(NTG), T1 be a sequence of consecutive vertices of NTG :
(V,E, o, p) such that

T;Tit1 € E, i=1,2,--- 7(’)(]VTG) -1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

Ly Li1y " 5 Li—2,Li—1,T4

is a corresponded crisp cycle for x;. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp

cycle is O(NTG). By Theorem ([2.5.49)),
Gn(NTG) = O, (NTG).
[ |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.47. There are two sections for clarifications.

(a) In Figure (2.27)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If n1,ng is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni, N2
is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(#i) if ny,n9,ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and ngong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
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(v)
(vi)

for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,no,n3,ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
ning and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2,n3, Ny

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if ny,n9, n3, ng, N5, ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nang, N3ng, Nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, n4ns and nsng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1,ns, n3, ng, N5, ng, Ny is corresponded to
both of girth G(NTG) and neutrosophic girth G,,(NTG);

6 is girth and its corresponded set is only {ni,ns,ng, ng, ns, ng, N1 };
8.1 = O(NTG) is neutrosophic girth and its corresponded set is only
{nb N2, M3, Mg, N5, 16, nl}~

(b) In Figure (2.28)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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If nq1,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni, N2
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is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

(it) if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
ning and nsng, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(#91) if ny,n9,m3,ny4 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni, N2, N3, N4

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

(i) if ny,na, ng, ng,ns,ny is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, ning, nons, n3ng, nans and nsni, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only
one weakest edge, nins, with value (0.2,0.5,0.4) and not more.
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a
crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies ni,no, n3, n4,ns,ny is corresponded
to both of girth G(NTG) and neutrosophic girth G,(NTG);

(v) 5 is girth and its corresponded set is only {ni,ns,ns, ng, ns,n1};

(vi) 8.5 = O(NTGQG) is neutrosophic girth and its corresponded set is only
{nla N2, M3, Ny, N5, n1}~

Definition 2.5.48. (Girth Polynomial and Neutrosophic Girth Polynomial).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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Figure 2.27: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG5
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Figure 2.28: A Neutrosophic Graph in the Viewpoint of its Girth. \ 63NTG6

(i) girth polynomial G(NTG) for a neutrosophic graph NTG : (V, E, 0, i)
is n1a2™ 4+ nex™? + - - - + nyax® where n; is the number of cycle with m;
as its crisp cardinality of the set of vertices of cycle;

(ii) neutrosophic girth polynomial G, (NTG) for a neutrosophic graph
NTG : (V,E, o, p) is ngz™ +ngz™2 +- - -+ nga™s where n; is the number
of cycle with m; as its neutrosophic cardinality of the set of vertices of
cycle.

63thm | Theorem 2.5.49. Let NTG : (V,E,o,p) be a neutrosophic graph. If NTG :

(V,E,o,u) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V, E, o, 1) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy cye)- v has two
neighbors y, z in CYC. Since NTG is strong, p(uy) = p(uz) = o(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. H

Proposition 2.5.50. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(NTG) > 3. Then

Gn(NTG) = 20~ (NTG),
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Proof. Suppose NTG : (V,E,o,un) is a strong-cycle-neutrosophic graph.
Let 1,22, - ,xo(NTG), T1 be a sequence of consecutive vertices of NTG :
(V,E, o, p) such that

T;Tit1 € E 1=1,2,--- ,O(NTG) —1, TONTG)L1 € E.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a shortest crisp cycle. For a given vertex x;, the sequence of
consecutive vertices

Tiy Tig1, " 3 Ti=2y Ti—1,Tj

is a corresponded crisp cycle for x;. Every cycle has same length. The length is
O(NTG). Thus the crisp cardinality of set of vertices forming shortest crisp

cycle is O(NTG). By Theorem ({2.5.49)),
Gn(NTG) = 29 (NTG),
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.51. There are two sections for clarifications.

(a) In Figure (2.29)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) If ny,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

Ny, N2

is corresponded to neither girth polynomial G(NT'G) nor neutro-
sophic girth polynomial G, (NTG);

(#i) if ny,n9,ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni, N2, N3
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(vi)

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,na, 3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,N2,MN3,M4

is corresponded neither to girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);

if n1,n9,n3, ng, ns,ng, N1 is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, nino, nong, n3ng, nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nans and nsng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding shortest
cycle. Finding shortest cycle has one result. Since there’s one cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is both of a neutrosophic cycle and crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies n1, ny, n3, ng, ns, ng, N1 is corresponded to
both of girth polynomial G(NTG) and neutrosophic girth polynomial
Gn(NTG);

29=ONTE) s girth polynomial and its corresponded set, for

coefficient of smallest term, is only {n1, ng, ng, n4, ns, ne, 71 };

231=0n(NTG) ig neutrosophic girth polynomial and its corresponded

set, for coefficient of smallest term, is only {n1, na, ng, ng, ns, ne, N1 }.

(b) In Figure (2.30]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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If nq,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither girth polynomial G(NTG) nor neutro-
sophic girth polynomial G, (NTG);
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(ii) if n1,n9,ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth polynomial G(NT'G) nor neutro-
sophic girth polynomial G, (NTG);

(#i1) if ny,n9,m3,nyg is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni, N2, N3, N4

is corresponded neither to girth polynomial G(NT'G) nor neutro-
sophic girth polynomial G, (NTG);

(i) if n1,ne, 3, ng, ns,ny is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, ning, nons, n3ng, nans and nsni, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, ning, with value (0.2,0.5,0.4) and not more. First step
is to have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is not a neutrosophic cycle but it is a crisp cycle.
So adding vertices has effect on finding a crisp cycle. There are only
two paths amid two given vertices. The structure of this neutrosophic
path implies nq,no, ng, ng, ns,ny is corresponded to both of girth
polynomial G(NTG) and neutrosophic girth polynomial G, (NTG);

(v) 29=ONTG) s girth polynomial and its corresponded set, for
coefficient of smallest term, is only {ny, ng, ng, n4, ns, n1 };

(vi) 28:5=0n(NTG) i neutrosophic girth polynomial and its corresponded
set, for coefficient of smallest term, is only {n1,na, n3, n4, ns,n1}.

Definition 2.5.52. (Hamiltonian Neutrosophic Cycle).
Let NTG : (V,E, o, ) be a neutrosophic graph. Then

(¢) hamiltonian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E,o,u) is a sequence of consecutive vertices
T1,%2," * , TONTG), ¥1 which is neutrosophic cycle;
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Figure 2.29: A Neutrosophic Graph in the Viewpoint of its girth polynomial. \
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Figure 2.30: A Neutrosophic Graph in the Viewpoint of its girth polynomial. \

(#4) n-hamiltonian neutrosophic cycle N (HNC') for a neutrosophic graph
NTG : (V,E,o,u) is the number of sequences of consecutive vertices
x1,%2,  , To(NTG), L1 Which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

Theorem 2.5.53. Let NTG : (V,E,o0,u) be a neutrosophic graph. If NTG :

(V,E, o, ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E,o,u) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cy cye)- v has two
neighbors y, z in CYC. Since NTG is strong, pu(uy) = p(uz) = o(u). It implies
there are two weakest edges in CY'C. It means C'Y C' is neutrosophic cycle. H

Proposition 2.5.54. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CYC,,) > 3. Then

N(CYC,) =1.
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Proof. Suppose CYC,, : (V, E,o,u) is a strong-cycle-neutrosophic graph. Let
T1,T2,  ,To(CYC,),T1 be a sequence of consecutive vertices of CYC,, :
(V,E, o, p) such that

T;Tit1 € E, 1= 1,2, o ,O(Cycn) - 1, To(CyC,)T1 c k.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts leads to one
cycle for finding a longest crisp cycle with length O(CYC.,,). For a given vertex
x;, the sequence of consecutive vertices

Ly i1y 5 Li—2,Li—1, T4

is a corresponded crisp cycle for x;. Every cycle has same length. The length is
O(CYC,,). Thus the crisp cardinality of set of vertices forming longest crisp
cycle is O(CYC,,). By Theorem ([2.5.57]),

N(CYC,) =1.
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.55. There are two sections for clarifications.

(a) In Figure (2.31)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) If ny,no is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ny, N2

is corresponded to neither hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N (CYC,,);

(ii) if n1,n9,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding longest cycle containing all vertices once. Finding longest
cycle containing all vertices once has no result. Since there’s no cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
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(ii)

(v)
(vi)

So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if ny,na, n3, ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding longest cycle containing all vertices once. Finding longest
cycle containing all vertices once has no result. Since there’s no
cycle. Neutrosophic cycle is a crisp cycle with at least two weakest
edges. So this neutrosophic path is neither a neutrosophic cycle nor
crisp cycle. So adding points has no effect to find a crisp cycle. The
structure of this neutrosophic path implies

ni,n2,n3, Ny

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if n1,n9,ns3, ng, s, ng, Ny is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are six edges, nino, nong, N3ng, nans, nsng and ngny, according to
corresponded neutrosophic path and it’s neutrosophic cycle since it
has two weakest edges, nans and nsng with same values (0.1,0.1,0.2).
First step is to have at least one crisp cycle for finding longest cycle
containing all vertices once. Finding longest cycle containing all
vertices once has one result. Since there’s one cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is both of a neutrosophic cycle and crisp cycle. So
adding vertices has effect on finding a crisp cycle. There are only two
paths amid two given vertices. The structure of this neutrosophic
path implies
ni, N2, N3, N4, N5, Ne, 11

is corresponded to both of hamiltonian neutrosophic cycle M(CYC,,)
and n-hamiltonian neutrosophic cycle N (CYC,,);

M(CYC,,) : ni,na,ns,ng,ns,ne,nq is hamiltonian neutrosophic
cycle;

N(CYC,) =1 is n-hamiltonian neutrosophic cycle.

(b) In Figure (2.32)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

If nq,n9 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
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(iid)

So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ni,n2

is corresponded to neither hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N (CYC,,);

if n1,ns2,n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is either a neutrosophic
cycle nor crisp cycle. The structure of this neutrosophic path implies

ni,n2,n3

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N (CYC,,);

if n1,no, 3, ny is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are three edges,
nine and nong, according to corresponded neutrosophic path but it
isn’t neutrosophic cycle. First step is to have at least one crisp cycle
for finding shortest cycle. Finding shortest cycle has no result. Since
there’s no cycle. Neutrosophic cycle is a crisp cycle with at least two
weakest edges. So this neutrosophic path is neither a neutrosophic
cycle nor crisp cycle. So adding points has no effect to find a crisp
cycle. The structure of this neutrosophic path implies

ni,n2, N3, N4

is corresponded neither to hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);

if n1,n9,n3,n4,ns5,n7 is a sequence of consecutive vertices, then it’s
obvious that there’s one cycle. It’s also a path and there are five
edges, nino, nonsg, n3ng, ngns and nsny, according to corresponded
neutrosophic path and it isn’t neutrosophic cycle since it has only one
weakest edge, ning, with value (0.2,0.5,0.4) and not more. First step
is to have at least one crisp cycle for finding longest cycle containing
all vertices once. Finding longest cycle containing all vertices once
has one result. Since there’s one cycle. Neutrosophic cycle is a crisp
cycle with at least two weakest edges. So this neutrosophic path is
not a neutrosophic cycle but it is a crisp cycle. So adding vertices
has effect on finding a crisp cycle. There are only two paths amid
two given vertices. The structure of this neutrosophic path implies

N1, M2, M3,M4,MN5,11

is corresponded to neither hamiltonian neutrosophic cycle M(CYC,,)
nor n-hamiltonian neutrosophic cycle N(CYC,,);
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n3(0.1,0.9,0.9) (0.1,0.5,0.8) ,(0.8,0.5,0.8

(0.1,0.2, 0.9) , \
/ n6(0.2,0.7, 0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

(0.1,0.1,0.2)
n5(0.1,0.1,0.2)

Figure 2.31: A Neutrosophic Graph in the Viewpoint of its hamiltonian

neutrosophic cycle. 66NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)
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n1(0.5,0.5,0.4)

(0.5,0.4,0.4)

715(0.5,0.4, 0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 2.32: A Neutrosophic Graph in the Viewpoint of its hamiltonian

neutrosophic cycle. 66NTG6

(v) M(CYC,,) : Not Existed is hamiltonian neutrosophic cycle;
(vi) N(CYC,,) =0.

Definition 2.5.56. (Eulerian Neutrosophic Cycle).
Let NTG : (V,E, 0, u) be a neutrosophic graph. Then

(¢) Eulerian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E,o,u) is a sequence of consecutive edges
T1,T2,"** ,TS(NTG), 1 Which is neutrosophic cycle;

(i) n-Eulerian neutrosophic cycle N(NTG) for a neutrosophic graph
NTG : (V,E,o,u) is the number of sequences of consecutive edges
x1,%2,  ,Ts(NTG), 1 Which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.
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| Theorem 2.5.57. Let NTG : (V,E,o,p) be a neutrosophic graph. If NTG :

(V,E,o0,u) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V, E, o0, 1) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CYC, such that o(u) = mino(z),cycye)- v has two
neighbors y, z in CYC. Since NTG is strong, p(uy) = p(uz) = o(u). It implies

there are two weakest edges in CYC. It means C'YC is neutrosophic cycle. W

Proposition 2.5.58. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CY C) > 3. Then

N(CYC) =1.

Proof. Suppose CYC' : (V,E, o, ) is a strong-cycle-neutrosophic graph. Let
T1,%2, -+, Ts(CcyC), T1 be a sequence of consecutive edges of CYC': (V, E, 0, 1)
such that

Zi, Tir1 have common vertex, i =1,2,---  S(CYC) — 1,

Ts(Cyc),T1 have common vertex.

There are two paths amid two given vertices. The degree of every vertex is two.
But there’s one crisp cycle for every given vertex. So the efforts lead to one
crisp cycle for finding a longest crisp cycle with length S(CYC). For a given
vertex x;, the sequence of consecutive edges

Ly Lijp1y 3 Li—2,Li—1,T4

is a corresponded crisp cycle for x;. Every cycle has same length. The length is
S(CYC). Thus the crisp cardinality of set of edges forming longest crisp cycle

is S(CYC). By Theorem (2.5.57)),
N(CYC)=1.
[ ]

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.59. There are two sections for clarifications.

(a) In Figure (2.33), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ning, nons is a sequence of consecutive edges, then it’s obvious
that there’s no crisp cycle. It’s only a path and there are only two
edges but it is neither crisp cycle nor neutrosophic cycle. The length
of this path implies there’s no cycle since if the length of a sequence
of consecutive edges is at most 2, then it’s impossible to have cycle.
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(iid)

So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

nin2, nNa2ng

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if ning,nong, n3zny is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are three
edges, ning, nong, and nzny according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding longest cycle containing all edges once.
Finding longest cycle containing all edges once has no result. Since
there’s one cycle but it isn’t about all edges. Neutrosophic cycle is
a crisp cycle with at least two weakest edges. So this neutrosophic
path is neither a neutrosophic cycle nor a crisp cycle. The structure
of this neutrosophic path implies

nin2, N2n3, N34

is corresponded neither to Eulerian neutrosophic cycle M(CY C) nor
n-Eulerian neutrosophic cycle N (CY C);

if nyno, nong, ngng, nans is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are
four edges, ning, nang, ngng and nyns according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding longest cycle containing all
edges once. Finding longest cycle containing all edges once has no
result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor a crisp cycle. So adding points has no effect
to find a crisp cycle. The structure of this neutrosophic path implies

n1N2, N2N3, N3M4, 14175

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-Eulerian neutrosophic cycle N (CY C);

if ning, nong, ngng, nans, nsng, ngn, is a sequence of consecutive
edges, then it’s obvious that there’s one crisp cycle. It’s also a crisp
path and there are six edges, nins, nang, ngng, nans, nsng and ngnq
according to corresponded neutrosophic path and it’s neutrosophic
cycle since it has two weakest edges, nyns and nsng with same
values (0.1,0.1,0.2). First step is to have at least one crisp cycle for
finding longest cycle containing all edges once. Finding longest cycle
containing all edges once has one result. Since there’s one crisp cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
Hence this neutrosophic path is both of a neutrosophic cycle and
a crisp cycle. So adding vertices has effect on finding a crisp cycle.
There are only two paths amid two given vertices. The structure of
this neutrosophic path implies

ningz, nang, N3ng, n4ns, Nsne, NeTil
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(v)

is corresponded to both of Eulerian neutrosophic cycle M(CY ()
and n-Eulerian neutrosophic cycle N (CY C);

M(CYC) : ning,nang, nyng, ngns, nsng, ngny is Eulerian neutro-
sophic cycle;

(vi) N(CYC) =1 is n-Eulerian neutrosophic cycle.

(b) In Figure (2.34), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

If ning, nong is a sequence of consecutive edges, then it’s obvious
that there’s no crisp cycle. It’s only a path and there are only two
edges but it is neither crisp cycle nor neutrosophic cycle. The length
of this path implies there’s no cycle since if the length of a sequence
of consecutive edges is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

ninz,n2ns

is corresponded to neither Eulerian neutrosophic cycle M(CY C) nor
n-Eulerian neutrosophic cycle N (CY C);

if ning,nong,n3ng is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are three
edges, ning, nang, and ngny according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding longest cycle containing all edges once.
Finding longest cycle containing all edges once has no result. Since
there’s one cycle but it isn’t about all edges. Neutrosophic cycle is
a crisp cycle with at least two weakest edges. So this neutrosophic
path is neither a neutrosophic cycle nor a crisp cycle. The structure
of this neutrosophic path implies

ning, Nangz, N3Ny

is corresponded neither to Eulerian neutrosophic cycle M(CY C) nor
n-Eulerian neutrosophic cycle N (CY C);

if nyng, nang, ngng, nans is a sequence of consecutive edges, then it’s
obvious that there’s no crisp cycle. It’s also a path and there are
four edges, nins,nang,ngng and nyns according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding longest cycle containing all
edges once. Finding longest cycle containing all edges once has no
result. Since there’s no cycle. Neutrosophic cycle is a crisp cycle
with at least two weakest edges. So this neutrosophic path is neither
a neutrosophic cycle nor a crisp cycle. So adding points has no effect
to find a crisp cycle. The structure of this neutrosophic path implies

n1M2, N2"3, N31q, N4Ns5

is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor
n-FEulerian neutrosophic cycle N (CY C);
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11(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.33: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic

cycle.

(i) if ning, nons, n3ng, ngns, nyny is a sequence of consecutive edges,
then it’s obvious that there’s one crisp cycle. It’s also a crisp path
and there are five edges, nino, nans, ngng, nyns and nsny according
to corresponded neutrosophic path and it isn’t neutrosophic cycle
since it has only one weakest edge, n1ns, with value (0.2,0.5,0.4)
and not more. First step is to have at least one crisp cycle for
finding longest cycle containing all edges once. Finding longest cycle
containing all edges once has one result. Since there’s one crisp cycle.
Neutrosophic cycle is a crisp cycle with at least two weakest edges.
So this neutrosophic path is not a neutrosophic cycle but it is a crisp
cycle. So adding vertices has effect on finding a crisp cycle. There
are only two paths amid two given vertices. The structure of this
neutrosophic path implies

N2, N2N3, N3N4, N4aTls, 5N
is corresponded to neither Eulerian neutrosophic cycle M(CY C') nor

n-Eulerian neutrosophic cycle N (CY C);

(v) M(CYC) : Not Existed. There is no Eulerian neutrosophic cycle
and there are no corresponded sets and sequences;

(vi) N(CYC) = 0 is n-Eulerian neutrosophic cycle and there are no
corresponded sets and sequences.

Definition 2.5.60. (Eulerian(Hamiltonian) Neutrosophic Path).
Let NTG : (V, E, o, u) be a neutrosophic graph. Then

(4)
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Eulerian(Hamiltonian) neutrosophic path M ,(NTG)(M,(NTG))
for a neutrosophic graph NTG : (V,E,o,u) is a sequence of consec-
utive edges(vertices) x1,22, -, Ts(n7e)(T1, T2, ,TonTe)) Which is
neutrosophic path;

n-Eulerian(Hamiltonian) neutrosophic path N, (NTG)(N,(NTQ))
for a neutrosophic graph NTG : (V, E, o, 1) is the number of sequences
of consecutive edges(vertices) 1,22, -, 2snra) (21,22, , ToNnTa))
which is neutrosophic path.

67NTG5
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 2.34: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic
cycle.

Proposition 2.5.61. Let NTG : (V, E, o, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

N(CYC) =0;
N(CYC) = O(CYO).

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
r1,22,- -, Tscye) (21,72, ,2ocye)) be a sequence of consecutive edges
(vertices) of CYC : (V, E, o, 1) such that

X, Tiy1 have common vertex, i =1,2,--- ,S(CYC) — 1(O(CYC) —1),

rscyey(Toye)), v1 have common vertex.

There are two paths amid two given vertices. The degree of every vertex is two.
There are S(CYC)(O(CY C)) paths. So the efforts lead to S(CYC)(O(CYC))
for finding a longest paths with length S(CYC)(O(CY (). For a given vertex
x;, the sequence of consecutive edges (vertices)

Ly Li1y " 5 Li—2, Lij—1

is a corresponded longest path for given vertex (edge) ;. Every path has
same length. The length is S(CYC)(O(CYC)). Thus the crisp cardinal-
ity of set of edges (vertices) forming longest path is S(CYC)(O(CYC)).
TiyTit1, 0 ,TS(CYC)s > Ti—1 18 a sequence of consecutive edges, there’s
no repetition of edge in this sequence and all edges are used. FEulerian
neutrosophic path is corresponded to longest path with length S(CYC).
Ti,Tit1, 0 ,To(CYC), > Ti—1 1S a sequence of consecutive vertices, there’s
no repetition of vertex in this sequence and all vertices are used. Hamiltonian
neutrosophic path is corresponded to longest path with length O(CY C). Thus

N(CYC) = 0;
N (CYC) =0(CYC).
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The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.62. There are two sections for clarifications.

(a) In Figure (2.35), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(i)

(iid)

If nin3, ngny is a sequence of consecutive pairs of vertices, then it
isn’t neutrosophic path since p(ninz) # 0. The number of edges
isn’t S(CYC) and the number of vertices isn’t O(CYC). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M,(CY C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N (CYC)(NL(CYC)) isn’t corresponded to these sequences
ni,n3, ng and ning, ngng;

if nino,ngnyg is a sequence of edges, then it isn’t neutrosophic
path since p(nang) # 0. The number of edges isn’t S(CYC') and
the number of vertices isn’t O(CY (). Thus Eulerian(Hamiltonian)
neutrosophic path M.(CYC)(M,(CYC)) doesn’t exist. Also,
n-Eulerian(Hamiltonian) neutrosophic path A, (CY C)(N,(CY(C))
isn’t corresponded to these sequences ny,ns,ng,ng and ning, n3ng;

if ning, nong, ngng, nans, nsng, ngny is a sequence of consecutive
edges, then it isn’t neutrosophic path since p(nins) > 0 and
wu(ngny) > 0. And more, it’s crisp cycle. The number of edges is
greater than S(C'Y (') and the number of vertices is O(CY C'). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M,(CY C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)NL(CYC)) isn’t corresponded to these sequences
ni,N2,N3,MN4,N5,MNe, 11 and nNing, Nans, N3ng, NaNy, N5Ne, N1,

if nins, nang is a sequence of consecutive edges, then it’s neutro-
sophic path since p(ning) > 0 and p(nang) > 0. But the number of
edges isn’t S(CY (') and the number of vertices isn’t O(CY C). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M,(CY C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)NL(CY () isn’t corresponded to these sequences
ni,No,n3 and nine, nang;

if nino, nong, n3ng, nyns, nsng is a sequence of consecutive edges,
then it’s neutrosophic path since p(ning) > 0, wp(ngng) >
0, u(nsng) >0, p(nans) > 0 and p(nsng) > 0. The number of edges
is S(CY ') and the number of vertices isn’t O(CY C). Thus Eulerian
neutrosophic path M (CYC) is ning, nang, ngng, nans, nsng and
Hamiltonian neutrosophic path M (CYC) is ny,na, n3, ng, ns, ne.
Also, n-Eulerian neutrosophic path A, (CYC) and n-Hamiltonian
neutrosophic path N, (CYC) are corresponded to these sequences
n1, N2, N3, N4, N5, Ne and ning, Nang, n3ng, N4, N5, N5Ne;
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(vi)

n-Hamiltonian neutrosophic path A, (CY C) equals one and corres-
ponded sequence of consecutive edges is nins, nong, N3ng, N4, Ny, N5NG.
n-Eulerian neutrosophic path NV, (CY C') equals one and corresponded
sequence of consecutive vertices is ny, no, n3, ng, N5, Ng.

(b) In Figure (2.36)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

(vi)

If nins3,n3ny is a sequence of consecutive pairs of vertices, then it
isn’t neutrosophic path since u(nins) ¥ 0. The number of edges
isn’t S(CYC) and the number of vertices isn’t O(CY (). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(Mp(CYC))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
NA(CYC)NR(CY(C)) isn’t corresponded to these sequences

ni,ng, g and ning, nzng;

if nimo,n3nyg is a sequence of edges, then it isn’t neutrosophic
path since p(ngns) # 0. The number of edges isn’t S(CYC) and
the number of vertices isn’t O(CY C). Thus Eulerian(Hamiltonian)
neutrosophic path M.(CYC)(M(CYC)) doesn’t exist. Also,
n-Eulerian(Hamiltonian) neutrosophic path AN, (CY C)(N,(CY(C))
isn’t corresponded to these sequences ny,ns,ng,ng and nino, n3ng;

if ming, nong, nyng, nans, nsny is a sequence of consecutive edges,
then it isn’t neutrosophic path since p(ning) > 0 and p(nsni) > 0.
And more, it’s crisp cycle. The number of edges is greater
than S(CYC) and the number of vertices is O(CYC). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(M(CY(C))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
N(CYC)(NR(CYC)) isn’'t corresponded to these sequences
ny, N2, N3, N4, N5, N1 and nNing, NaNg, N3MN4g, N4Ns5, N5,

if ning, nong is a sequence of consecutive edges, then it’s neutro-
sophic path since p(ning) > 0 and p(ngong) > 0. But the number of
edges isn’t S(C'Y C') and the number of vertices isn’t O(CY C). Thus
Eulerian(Hamiltonian) neutrosophic path M.(CYC)(Mp(CYC))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
NA(CYC)NR(CYQ)) isn’t corresponded to these sequences
n1,n2,ng and ning, nang;

if nyno, nang, ngng, nans is a sequence of consecutive edges, then it’s
neutrosophic path since p(ninz) > 0, u(nang) > 0, p(nsng) > 0
and p(ngns) > 0. The number of edges is S(CYC) and the
number of vertices isn’t O(CY C). Thus Eulerian neutrosophic
path M (CYC) is ning, naons, nzng, ngns and Hamiltonian neut-
rosophic path M, (CYC) is ni,n2,n3,ng. Also, n-Eulerian neut-
rosophic path N.(CY(C) and n-Hamiltonian neutrosophic path
Ny (CY Q) are corresponded to these sequences ny,ns, ns, ng, ns and
ning, Nang, N3Ny, N4, Ns;

n-Hamiltonian neutrosophic path N, (CYC) equals one and cor-
responded sequence of consecutive edges is nino, nong, n3ng, ng, Ns.
n-Eulerian neutrosophic path AV, (CY C) equals one and corresponded
sequence of consecutive vertices is ny, no, ng, ng, ns.
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Figure 2.35: A Neutrosophic Graph in the Viewpoint of its FEu-

lerian(Hamiltonian) neutrosophic path. \ 68NTG5
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Figure 2.36: A Neutrosophic Graph in the Viewpoint of its FEu-

lerian(Hamiltonian) neutrosophic path. \ 68NTG6

Definition 2.5.63. (Neutrosophic Path Connectivity).
Let NTG : (V, E, o, 1) be a neutrosophic graph. Then

(1) a path from x to y is called weakest path if its length is maximum. This
length is called weakest number amid x and y. The maximum number
amid all vertices is called weakest number of NTG : (V, E, o, ) and
it’s denoted by W(NTG);

(i) a path from z to y is called neutrosophic weakest path if its strength
is p(uv) which is less than all strengths of all paths from z to y
where z,--- ,u,v,--- ,y is a path. This strength is called neutrosophic
weakest number amid = and y. The maximum number amid all vertices
is called neutrosophic weakest number of NTG : (V,E, o, 1) and it’s
denoted by W, (NTG).

Proposition 2.5.64. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

Wi (CYC) = max{pu(zy) | pulay) = /\ w(vivig1), P vy, vg, -, vs}.
i=1,2, ,5—1
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Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,%2," * ,ToCcyc),T1 be a cycle-neutrosophic graph. There are some
neutrosophic paths. The biggest length of a path is weakest number. The
biggest length of path is either size minus one or order minus one. It means the
length of this path is either S(CYC) — 1 or O(CYC) — 1. Thus

Wh(CYC) = max{u(zy) | u(zy) = A /\ w(viviyr), P oy, ve, -0 vt

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.65. There are two sections for clarifications.

(a) In Figure (2.37)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ny,n9,n3,n4,n5,n6 is a neutrosophic path from ny to ng, then
it’s weakest path and weakest number amid n, and ng is five. Also,
W(CYC) =5;

(ii) if n1,ng, ng is a neutrosophic path from n; to ng, then it isn’t weakest
path and weakest number amid n; and ng is four corresponded to
n1,ng, N5, N4, ng. Also, W(CY C) # 2;

(#i7) if my,m9,n3,n4 is a neutrosophic path from n; to ny, then it
isn’t weakest path but weakest number amid n; and n4 is three
corresponded to ny,na, n3, ng. Also, W(CYC') # 3. For every given
couple of vertices = and y, weakest path isn’t existed but weakest
number is five and W(CYC) = 5;

(iv) if ny,n9,ng,ny is a neutrosophic path from n; to ng, then it isn’t a
neutrosophic weakest path since neutrosophic weakest number amid
ng and ng is (0.1,0.5,0.8). Also, W,,(CYC) = (0.1,0.5,0.8);

(v) if ng, ng is a neutrosophic path from ny to ng, then it’s a neutrosophic
weakest path and neutrosophic weakest number amid ns and ng is
(0.1,0.5,0.8). Also, W, (CYC) = (0.1,0.5,0.8);

(vi) for every given couple of vertices x and y, neutrosophic weakest

path isn’t existed, neutrosophic weakest number is (0.1, 0.5,0.8) and
Wn(CYC) = (0.1,0.5,0.8).

(b) In Figure (2.38), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) If ny,n9,n3,ng,ns is a neutrosophic path from n; to ns, then it’s
weakest path and weakest number amid n; and ns is four. Also,

W(CYC) = 4;
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Figure 2.37: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number.

(i)

(iii)

if ny,no, n3 is a neutrosophic path from nq to ns, then it isn’t weakest
path and weakest number amid n; and ng is three corresponded to
ny,ns, ng, nz. Also, W(CYC) # 2;

if my,n9,n3,n4 is a neutrosophic path from n; to n4, then it
isn’t weakest path but weakest number amid n; and n4 is three
corresponded to ny,na, n3, ny. Also, W(CYC') # 3. For every given
couple of vertices = and y, weakest path isn’t existed but weakest
number is four and W(CY C) = 4;

if n1,n9, n3, ng is a neutrosophic path from n; to ny, then it isn’t a
neutrosophic weakest path since neutrosophic weakest number amid
ns and ny is (0.8,0.6,0.6). Also, W,,(CYC) = (0.8, 0.6, 0.6);

if n3, n4 is a neutrosophic path from ns to ny, then it’s a neutrosophic
weakest path and neutrosophic weakest number amid n3 and ny is
(0.8,0.6,0.6). Also, W,,(CYC) = (0.8,0.6,0.6);

for every given couple of vertices x and y, neutrosophic weakest
path isn’t existed, neutrosophic weakest number is (0.8,0.6,0.6) and
W, (CYC) = (0.8,0.6,0.6).

Definition 2.5.66. (Neutrosophic Path Connectivity).
Let NTG : (V,E, o0, u) be a neutrosophic graph. Then

(i) a path from x to y is called strongest path if its length is minimum. This
length is called strongest number amid x and y. The maximum number
amid all vertices is called strongest number of NTG : (V, E, o, 1) and
it’s denoted by S(NTG);

(it) a path from z to y is called neutrosophic strongest path if its strength
is p(uv) which is greater than all strengths of all paths from z to y
where x,--- ju,v,--- ,y is a path. This strength is called neutrosophic
strongest number amid x and y. The minimum number amid all vertices
is called neutrosophic strongest number of NTG : (V,E, o, 1) and
it’s denoted by S,(NTG).
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Figure 2.38: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number.

Proposition 2.5.67. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CY C) > 3. Then

Sn(CYQ) = min o(v).

Proof. Suppose CYC : (V,E,o,u) is a strong-cycle-neutrosophic graph.
Let z1,z2, -+ ,Zo(cyc),r1 be a cycle-neutrosophic graph. There are some
neutrosophic paths. The biggest length of a path is strongest number. For every
given couple of vertices, there are two neutrosophic paths concerning two lengths
sand O(CYC) —s. If s < O(CYC) — s, then s is intended length; otherwise,
O(CYC)— s is intended length. Since minimum length amid two vertices are on
demand. In next step, amid all lengths, the biggest number is strongest number.
The biggest length of path is either order half or order half minus one. It means
the length of this path is either OCYC) op QCYC) 1 There are only two paths
amid given couple of vertices. Consider s € S such that o(s) = min,ey o(v).
All paths involving s has the strength o(s) = min,cy o(v). So the maximum
strengths of paths from s to a given vertex is o(s) = min,ey o(v). Consider
the maximum number assigning to couple of vertices arising from their paths
as the start and the end. Thus the maximum strengths of paths from s to a
given vertex is o(s) = min,ey o(v). It implies the minimum number amid these
intended numbers is o(s) = min,ecy o(v). Thus

Sp(CYQ) = min o(v).

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.68. There are two sections for clarifications.
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(a) In Figure (2.39)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

(iv)

(vi)

If n1,n9,n3, ng, ns, ng is a neutrosophic path from n, to ng, then it
isn’t strongest path and strongest number amid n; and ng is one.
Also, S(CYC) = 3.

if m1,n9,n3 is a neutrosophic path from n; to ngz, then it isn’t
strongest path and strongest number amid n; and ng is two
corresponded to ny,n2,nz. Also, S(CYC) # 2;

if mq,n9,n3,n4 is a neutrosophic path from n; to n4, then it is
strongest path and strongest number amid n; and n4 is three
corresponded to ny, ng, ng,ng and nq,ng, ns, ng Also, S(CYC) = 3.
For every given couple of vertices x and y, strongest path isn’t existed
but strongest number is three and S(CYC) = 3;

if n1,n9,n3,n4 is a neutrosophic path from n; to ng, then it isn’t
a neutrosophic strongest path since neutrosophic strongest number
amid ny and njy is (0.1,0.1,0.2) but neutrosophic strongest number
amid ny and ng4 is (0.1,0.5,0.8). Also, S, (CYC) = (0.1,0.1,0.2);

if mo,n3 is a neutrosophic path from ns, to ng, then it isn’t a
neutrosophic strongest path since neutrosophic strongest number
amid ny and njy is (0.1,0.1,0.2) but neutrosophic strongest number
amid ny and ng is (0.1,0.5,0.8). Also, S, (CYC) = (0.1,0.1,0.2);

for every given couple of vertices = and y, neutrosophic strongest
path isn’t existed, neutrosophic strongest number is (0.1,0.1,0.2)
and S, (CYC) = (0.1,0.1,0.2).

(b) In Figure (2.40), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

If ny,na,n3,ng, ny is a neutrosophic path from ny to ns, then it isn’t
strongest path and strongest number amid n; and ns is one. Also,
S(CYC) =2

if nq,n9,ng is a neutrosophic path from nq to ng, then it’s strongest
path and strongest number amid n; and ns is two. Also, S(CYC) =
2;
if my,n9,n3,n4 is a neutrosophic path from n; to n4, then it
isn’t strongest path and strongest number amid n; and n4 is two
corresponded to ny,ns,ng. Also, S(CYC) # 3. For every given
couple of vertices x and y, strongest path isn’t existed but strongest
number is two and S(CY () = 2;

if n1,n9,n3,n4 is a neutrosophic path [strength is (0.2,0.5,0.4)]
from ny to ny4, then it isn’t a neutrosophic strongest path since
neutrosophic strongest number amid n; and ny is (0.5,0.4,0.4) but
neutrosophic strongest number amid n; and ny is (0.2,0.7,0.6);
neutrosophic strongest number amid nqe and ng is (0.2,0.7,0.6). Also,
S,(CYC) =(0.2,0.7,0.6);

if n3,n4 is a neutrosophic path [strength is (0.8,0.6,0.6)] from ng
to ny4, then it isn’t a neutrosophic strongest path since neutrosophic
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Figure 2.40: A Neutrosophic Graph in the Viewpoint of its strongest Number
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strongest number amid n3 and ny is (0.8,0.6,0.6). Also, S,,(CYC) =
(0.2,0.7,0.6);

(vi) for every given couple of vertices z and y, neutrosophic strongest
path isn’t existed, neutrosophic strongest number is (0.2,0.7,0.6)
and S, (CYC) = (0.2,0.7,0.6).

Definition 2.5.69. (Neutrosophic Cycle Connectivity).
Let NTG : (V,E,0,u) be a neutrosophic graph. Then

(i) a cycle based on z is called cyclic connectivity if its length is minimum.
This length is called connectivity number based on z. The maximum
number amid all vertices is called connectivity number of NTG :
(V,E,o, 1) and it’s denoted by C(NTG);

(i4) a cycle based on z is called neutrosophic cyclic connectivity if its
strength is is greater than all strengths of all cycles based on x. This
strength is called neutrosophic connectivity number based on x. The

minimum number amid all vertices is called neutrosophic connectivity
number of NTG : (V,E, o, ) and it’s denoted by C,(NTG).
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Proposition 2.5.70. Let NTG : (V,E,o,u) be a strong-cycle-neutrosophic
graph where O(CYC') > 3. Then

Cn(CYC) = min o(v).

Proof. Suppose CYC : (V, E, 0, ) is a strong-cycle-neutrosophic graph. There’s
only one cycle for all given vertices so all vertices are only based on one cycle
which is common for all of them. Consider s € S such that o(s) = min,ey o(v).
All cycles based on s has the strength o(s) = min,ey o(v). So the maximum
strengths of all cycles based on s is o(s) = min,ecy o(v) which is representative
strength based on s. It implies the minimum number amid all representative
numbers is o(s) = min,ey o(v). Thus

Cn(CYC) = mino(v).

veV

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.71. There are two sections for clarifications.

(a) In Figure (2.41)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ny, no, ng, ng, ns, ne, 1 is a neutrosophic cycle based on ny, then
it’s cyclic connectivity and connectivity number based on nj is 6.
Also, C(CYC) = 6;

(ii) if n1,n2,n3 is a neutrosophic path from n; to ng, then it isn’t
cyclic connectivity but connectivity number based on any given
vertex is existed. There’s only one cycle. Hence there’s one cycle
related to connectivity number of this cycle-neutrosophic graph. Also,
C(CYC)=6and C(CYC) #2;

(#i7) if my,n9,n3,n4 is a neutrosophic path from n; to ny, then it isn’t
cyclic connectivity but connectivity number based on some sequence
of consecutive vertices is existed. There’s one cycle. Hence there’s
one cycle related to connectivity number of this cycle-neutrosophic
graph. Also, C(CYC) = 6. Also, C(CYC) # 3. For every given
vertex x, cyclic connectivity is existed and connectivity number is
six and C(CY C) = 6;

(iv) if nq1,na,ng, ng is a neutrosophic path from ny to ny, then it isn’t
a neutrosophic cyclic connectivity but neutrosophic connectivity
number based on any given vertex is existed. There’s one cycle so
there’s one cycle related to neutrosophic connectivity number which
is (0.1,0.1,0.2). Also, C,(CYC) = (0.1,0.1,0.2);
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(v) if n1,n9,ns, ng,ns,ng,ny is a neutrosophic cycle based on nq, then
it’s a neutrosophic cyclic connectivity since there’s one cycle and
there’s one cycle based on n; and neutrosophic connectivity number
based on n; is (0.1,0.1,0.2). Also, C,(CYC) = (0.1,0.1,0.2);

(vi) if ng,n1,me, n5,n4,n3, N2 is a neutrosophic cycle based on ng, then
it’s a neutrosophic cyclic connectivity since there’s one cycle and
there’s one cycle based on ns and neutrosophic connectivity number
based on ng is (0.1,0.1,0.2). Also, C,(CYC) = (0.1,0.1,0.2).

(b) In Figure (2.42)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) If ny, ng, ng,ng,ns,ny is a neutrosophic cycle based on ny, then it’s
cyclic connectivity and connectivity number based on n; is 5. Also,
C(CYC) =5;

(#i) if ni,n2,m3 is a neutrosophic path from n; to ng, then it isn’t
cyclic connectivity but connectivity number based on any given
vertex is existed. There’s only one cycle. Hence there’s one cycle
related to connectivity number of this cycle-neutrosophic graph. Also,
C(CYC)=5and C(CYC) #2;

(7i1) if n1,m9,n3,n4 is a neutrosophic path from nq to ny, then it isn’t
cyclic connectivity but connectivity number based on some sequence
of consecutive vertices is existed. There’s one cycle. Hence there’s
one cycle related to connectivity number of this cycle-neutrosophic
graph. Also, C(CYC) = 5. Also, C(CYC(C) # 3. For every given
vertex x, cyclic connectivity is existed and connectivity number is
five and C(CY C) = 5;

(iv) if ny,n9,n3,n4 is a neutrosophic path from n; to ng4, then it isn’t
a neutrosophic cyclic connectivity but neutrosophic connectivity
number based on any given vertex is existed. There’s one cycle so
there’s one cycle related to neutrosophic connectivity number which
is (0.2,0.5,0.4). Also, C,,(CYC) = (0.2,0.5,0.4);

(v) if ny,n9,ng,ng,ns5,n1 is a neutrosophic cycle based on ny, then it’s
a neutrosophic cyclic connectivity since there’s one cycle and there’s
one cycle based on n; and neutrosophic connectivity number based
on ny is (0.2,0.5,0.4). Also, C,(CYC) = (0.2,0.5,0.4);

(vi) if ng,ny,ns5, N4, n3,no is a neutrosophic cycle based on ng, then it’s
a neutrosophic cyclic connectivity since there’s one cycle and there’s
one cycle based on ns and neutrosophic connectivity number based
on ng is (0.2,0.5,0.4). Also, C,(CYC) = (0.2,0.5,0.4).

Definition 2.5.72. (Dense Numbers).
Let NTG : (V,E, o, u) be a neutrosophic graph. Then

(i) a set of vertices is called dense set if for every vertex y outside, there’s
at least one vertex z inside such that they’re endpoints zy € E and the
number of neighbors of x is greater than the number of neighbors of y.
The minimum cardinality between all dense sets is called dense number
and it’s denoted by D(NTG);
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Figure 2.41: A Neutrosophic Graph in the Viewpoint of its connectivity number

and its neutrosophic connectivity number. \ 72NTG5
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(0.5.0.4,0.4)
n4(0.8,0.6,0.6)

Figure 2.42: A Neutrosophic Graph in the Viewpoint of its connectivity number

and its neutrosophic connectivity number. \ 72NTG6

(#4) a set of vertices S is called dense set if for every vertex y outside, there’s
at least one vertex z inside such that they’re endpoints zy € E and the
number of neighbors of x is greater than the number of neighbors of
y. The minimum neutrosophic cardinality ) Zle 0;(s) between all

dense sets is called neutrosophic dense number and it’s denoted by
D,.(NTG).

Proposition 2.5.73. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

o(CYC)-3
D,(CYC) = min{ Z o(Tits)}

i=—2

where rearrangements of indexes are possible in any arbitrary ways.

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
x1,%2, " ,To(CcyC), 1 be a cycle-neutrosophic graph. Every vertex has two
neighbors. So these vertices have same positions and by the minimum number
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of vertices is on demand, the result is obtained. Thus

o[y C)-3
Dn (CYC) = min{ Z O'(.’EiJrg)}
i=—2
where rearrangements of indexes are possible in any arbitrary ways. |

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.74. There are two sections for clarifications.

(a) In Figure (2.43), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

If S = {n1,n2} is a set of vertices, then it isn’t dense set since
there are some vertices ny and ns such that have no neighbor in S.
Consider the vertex ng. The number of neighbors for ny is two which
is [greater than| equal to the number of neighbors for ns which is
two;

it S = {n1} is a set of vertices, then it isn’t dense set since there
are some vertices ng,ng and ns such that have no neighbor in S.
Consider the vertex no. The number of neighbors for ny is two which
is [greater than| equal to the number of neighbors for ny which is
two;

Sy ={n1,n4},S2 = {na,ns}, S35 = {n3,ne} are only sets of vertices
which are minimal sets such that they’re dense sets. Since every
vertex inside has two neighbors and every vertex outside has two
neighbors. Hence the number of neighbors for vertices in S is greater
than [equal to] the number of neighbors for vertices in V'\ S. There’re
only three dense sets. So the minimum cardinality between all dense
sets is 2. Thus D(CYC) = 2;

it S = {n1,n2} is a set of vertices, then it isn’t dense set since
there are some vertices ny and ns such that have no neighbor in S.
Consider the vertex ng. The number of neighbors for ny is two which
is [greater than] equal to the number of neighbors for n3 which is
two;

it S = {n1} is a set of vertices, then it isn’t dense set since there
are some vertices ng,ny and ng such that have no neighbor in S.
Consider the vertex no. The number of neighbors for ny is two which
is [greater than| equal to the number of neighbors for ny which is
two;

Sy ={n1,n4}, 52 = {na,n5},S3 = {ns, ng} are only sets of vertices
which are minimal sets such that they’re dense sets. Since every
vertex inside has two neighbors and every vertex outside has two
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neighbors. Hence the number of neighbors for vertices in S is greater
than [equal to] the number of neighbors for vertices in V'\ S. There're
only three dense sets. So the minimum cardinality between all dense
sets is 2. Thus D, (CYC) = 2.2 corresponded to Si;

(b) In Figure (2.44), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(iid)

If S = {n1,na} is a set of vertices, then it isn’t dense set since there’s
one vertex ny such that have no neighbor in S. Consider the vertex
n3. The number of neighbors for ns is two which is [greater than]
equal to the number of neighbors for ng which is two;

it S ={n1} is a set of vertices, then it isn’t dense set since there are
some vertices ng, and ng such that have no neighbor in S. Consider
the vertex ng. The number of neighbors for n is two which is [greater
than] equal to the number of neighbors for ny which is two;

S1 = {n1,n3},8 = {ni1,n4},S3 = {na,na}, 84 = {n2,ns},S5 =
{ns,ns} are only sets of vertices which are minimal sets such that
they’'re dense sets. Since every vertex inside has two neighbors
and every vertex outside has two neighbors. Hence the number of
neighbors for vertices in S is greater than [equal to] the number of
neighbors for vertices in V'\ S. There’re only five dense sets. So the
minimum cardinality between all dense sets is 2. Thus D(CYC) = 2;

if S = {n1,na} is a set of vertices, then it isn’t dense set since there’s
one vertex ny such that have no neighbor in S. Consider the vertex
n3. The number of neighbors for ny is two which is [greater than]
equal to the number of neighbors for ng which is two;

if S ={n1} is a set of vertices, then it isn’t dense set since there are
some vertices ng, and ny such that have no neighbor in S. Consider
the vertex ng. The number of neighbors for n; is two which is [greater
than] equal to the number of neighbors for ny which is two;

S1 ={ni,n3} — 2.8
So ={ni,na} — 2.2
Sz = {nz,n4} — 3.4
Sy ={n2,n5} — 2.5
S5 ={ns,n5} — 2.3

Minimum number is 2.2

are only sets of vertices which are minimal sets such that they’re dense
sets. Since every vertex inside has two neighbors and every vertex
outside has two neighbors. Hence the number of neighbors for vertices
in S is greater than [equal to] the number of neighbors for vertices
in V'\ S. There’re only five dense sets. So the minimum cardinality
between all dense sets is 2. Thus D,,(CY C) = 2 corresponded to Sa.

Definition 2.5.75. (bulky numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)
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14(0.2,0.2,0.9)
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Figure 2.43: A Neutrosophic Graph in the Viewpoint of its dense number and

its neutrosophic dense number. \ 73NTG5
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n4(0.8,0.6,0.6)

Figure 2.44: A Neutrosophic Graph in the Viewpoint of its dense number and

its neutrosophic dense number. \ 73NTG6

(i) a set of edges S is called bulky set if for every edge e’ outside, there’s
at least one edge e inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with e is greater
than the number of edges such that they’ve common vertex with ¢’. The
minimum cardinality between all bulky sets is called bulky number and
it’s denoted by B(NTG);

(i1) a set of edges S is called bulky set if for every edge €’ outside, there’s at
least one edge e inside such that they’ve common vertex and the number
of edges such that they’ve common vertex with e is greater than the
number of edges such that they’ve common vertex with ¢’. The minimum
neutrosophic cardinality > g Z?:l i (s) between all bulky sets is called
neutrosophic bulky number and it’s denoted by B,(NTG).

Proposition 2.5.76. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

oCYC)-3

B.(CYC)=min{ > pleirs)}.

i=—2
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Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2, ** ,To(CyC),T1 be a cycle-neutrosophic graph. Every vertex has two
neighbors. So all vertices have same positions. It implies finding edges have
common endpoint. By minimum number of edges is on demand, the result is

obtained. Thus
oECcyYc)-3

B,(CYC)=min{ >  pleiys)}.

i=—2
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.77. There are two sections for clarifications.

(a) In Figure (2.45)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If S = {ning, nang} is a set of edges, then it isn’t a bulky set since an
edge nyns, outside, there’s no edge inside such that they’ve common
vertex;

(7) if S = {nin2,nans} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

(7i1) All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges {nina, nans}, {nans, nsne}, {nsns, ngni} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge nyns inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with n;ng is two
which is equal to [greater than| two which is the number of edges
such that they’ve common vertex with n;n;. Thus B(CYC) = 2;

(iv) if S = {nina,nans} is a set of edges, then it isn’t a bulky set since
an edge nyns, outside, there’s no edge nony inside such that they’ve
common vertex;

(v) if S = {nin2,nans} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge nino inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than]| two which is the number of edges such that they’ve
common vertex with vertices of V'\ S;

(vi) All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges S1 = {ning,nyns},Se = {nans,nsng}, and
S3 = {nsng,ngni} are only minimal bulky sets. Since for every
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edge n;nj, outside, there’s at least one edge n;n, inside such that
they’ve common vertex and the number of edges such that they’ve
common vertex with nsns is two which is equal to [greater than] two
which is the number of edges such that they’ve common vertex with
n;n;. Thus

Sl = {nlng,n4n5} — 1.3

52 = {’I’Lgﬂg,ﬂg)’ng} — 1.8

Sg = {TL3TL4,7”LGTL1} — 2.1

Minimum number is 1.3

It implies B,(CYC) = 1.3 and corresponded set of edges is
Sy = {ning, nans}.

(b) In Figure (2.46)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(i)

(i)

If S = {ninq,nang} is a set of edges, then it isn’t a bulky set since an
edge nyns, outside, there’s no edge inside such that they’ve common
vertex;

if S = {nina,nyns} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges Sl = {nlng,n4n5},52 = {n2n37n5n1},53 =
{nang,nans}, Sy = {nsn4,nsn1}, and S5 = {ngn4,nins} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge n:ng inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with nng is two
which is equal to [greater than] two which is the number of edges
such that they’ve common vertex with n;n;. Thus B(CYC) = 2;

if S'={nin2,nanz} is a set of edges, then it isn’t a bulky set since
an edge nyns, outside, there’s no edge nony inside such that they’ve
common vertex;

if S = {ning,nyns} is a set of edges, then it’s bulky set since for
every edge n;n;, outside, there’s at least one edge niny inside such
that they’ve common vertex and the number of edges such that
they’ve common vertex with vertices of S is two which is equal to
[greater than] two which is the number of edges such that they’ve
common vertex with vertices of V' \ S;

All sets [2-sets] of edges containing two edges aren’t bulky sets.
The sets of edges S1 = {ning,ngns}, Sa = {nang,nsni},S3 =
{nansz,nans}, Sy = {ngn4,nsn1}, and S5 = {nzng,nins} are only
minimal bulky sets. Since for every edge n;n;, outside, there’s at
least one edge n;ns inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with n;ng is two
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Figure 2.45: A Neutrosophic Graph in the Viewpoint of its bulky number and

its neutrosophic bulky number. \ 74NTG5
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Figure 2.46: A Neutrosophic Graph in the Viewpoint of its bulky number and

its neutrosophic bulky number. \ 74NTG6

which is equal to [greater than| two which is the number of edges
such that they’ve common vertex with n;n;. Thus

S1 = {ning,ngns}t — 2.4
Sy = {nans,nsni} — 2.8
S3 = {nang,ngns} — 2.8
Sy = {ngng,nsni} — 3.3
S5 = {ngng,ning} — 3.1

Minimum number is 2.4

It implies B, (CYC) = 2.4 and corresponded set of edges is
S1 = {ning,nans}.

Definition 2.5.78. (collapsed numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(1) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints zy € E
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and the number of neighbors of z is less than [equal to] the number of
neighbors of y. The minimum cardinality between all collapsed sets is
called collapsed number and it’s denoted by P(NTG);

(77) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints zy € E
and the number of neighbors of x is less than [equal to] the number of
neighbors of . The minimum neutrosophic cardinality ) ¢ 23:1 oi(x)
between all collapsed sets is called neutrosophic collapsed number
and it’s denoted by P, (NTG).

Proposition 2.5.79. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

Pn(CYC) = min Z o(z;).

TFE{Ts,Ts 43,8546, Tifit2>0(CYC)

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. Let
T1,T2,"* ,To(Ccyc),T1 be a cycle-neutrosophic graph. Every vertex has two
neighbors. So all vertices have same positions. The set

{Ts, X543, Tst6, ,Ii}i+2>O(CYC)

of vertices is called collapsed set since for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints
xzy € FE and the number of neighbors of z is [less than] equal to
the number of neighbors of y. The minimum neutrosophic cardinality,
S oo oi(z), miny o(x;), between all
zeS 2ui=19i\Y)s TjE{Ts,Ts43,T546," »Ti }it2>0(CYC) 0
collapsed sets is called neutrosophic collapsed number and it’s denoted by
Pu(CYC) =mind >, crp oo o a0y o o(z;). Thus
P, (CYC) = min Z o(xj).

z; e{msyx.§+3’x.§+67“' 7mi}i+2>@(CYC)

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.80. There are two sections for clarifications.

(a) In Figure (2.47), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) If S = {n1,n3} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ms outside, such that there’s
no vertex inside such that they’re endpoints either nins; € E or
nsns € B,
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(i)

(iii)

it S = {n1,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ms outside, such that there’s
no vertex inside such that they’re endpoints either ning € F or
nsng € E;

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {n1,n4}, Sz = {n2,ns},
and Ss = {ns,ne} are called minimal collapsed sets since for every
vertex y outside, there’s at least one vertex x inside such that they’re
endpoints zy € E and the number of neighbors of x is [less than]
equal to the number of neighbors of y. The minimum cardinality
|S], 2, between all collapsed sets

S = {nl,n4} — 2
SQ = {nz,ng,} — 2
Sg = {ng,m;} — 2

The minimum is 2

is called collapsed number and it’s denoted by P(CYC) = 2;
S1 ={n1,ng}, S2 = {ng,ns}, and S3 = {n3,ne} are corresponded
sets;

if S = {n1,n3} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ns outside, such that there’s
no vertex inside such that they’re endpoints either nins € E or
nsns € E;

if S ={ny,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mg outside, such that there’s
no vertex inside such that they’re endpoints either ning € E or
nsns € E;

all sets [2-sets| of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {n1,n4}, So = {ne,ns},
and S3 = {ng, ng} are called minimal collapsed sets since for every
vertex y outside, there’s at least one vertex z inside such that they’re
endpoints zy € E and the number of neighbors of x is [less than]
equal to the number of neighbors of y. The minimum neutrosophic
cardinality, > ¢ Z?:l oi(x), 2.2, between all collapsed sets

Sy ={ny,na} — 2.2
Sy = {ng,ns} — 4.5
S3 ={nz,ng} — 34
The minimum is 2.2

is called neutrosophic collapsed number and it’s denoted by
Pn(CYC) = 2.2 and corresponded set is S1 = {ni,n4}.

(b) In Figure (2.48)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
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(i)

no vertex inside such that they’re endpoints either niny € E or
nang € F;

if S = {n4,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mo outside, such that there’s
no vertex inside such that they’re endpoints either nyn, € E or
nsny € I,

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {ni,n4}, So =
{ni,n3}, S3 = {na,n5}, Ss = {na,n4}, and S5 = {n3,n5} are
called minimal collapsed sets since for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints xy € E and
the number of neighbors of z is [less than] equal to the number of
neighbors of y. The minimum cardinality |S|, 2, between all collapsed
sets

S1 ={ni,ng} — 2
Sy ={n1,n3} — 2
Sz ={na2,n5} — 2
Sy ={ng,ng} — 2
S5 = {ns,ns} — 2
The minimum is 2

is called collapsed number and it’s denoted by P(CYC) = 2;
corresponded sets are S; = {nj,ng}t, So = {ni,n3}, Sz =
{na,ns}, Sq = {na,n4}, and S5 = {n3,ns};

if S = {n1,na} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex ny outside, such that there’s
no vertex inside such that they’re endpoints either nyny € E or
nong € F;

if S'= {n4,ns} is a set of vertices, then a set of vertices S isn’t called
collapsed set since there’s a vertex mo outside, such that there’s
no vertex inside such that they’re endpoints either nyny € E or
nsny € K,

all sets [2-sets] of vertices containing two vertices, aren’t called
collapsed sets. Sets [2-sets] of vertices S1 = {ni,n4}, S2 =
{n1,n3}, S3 = {n2,ns}, S4 = {n2,n4}, and S5 = {nz,ns} are
called minimal collapsed sets since for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints
ay € E and the number of neighbors of x is [less than] equal to the
number of neighbors of y. The minimum neutrosophic cardinality,
Y zes Zf:l oi(z), 2.8, between all collapsed sets

Sy ={ni,ng} — 34
Sy ={ni,n3} — 3.7
Sz ={ng,n5} — 2.8
Sy ={na,ng} — 3.6
S5 = {nsz,ns} — 3.6

The minimum is 2.8
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Figure 2.47: A Neutrosophic Graph in the Viewpoint of its collapsed number

and its neutrosophic collapsed number. \ 75NTG5
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Figure 2.48: A Neutrosophic Graph in the Viewpoint of its collapsed number

and its neutrosophic collapsed number. \ 75NTG6

is called neutrosophic collapsed number and it’s denoted by
Pn(CYC) = 2.8 and corresponded set is S3 = {nz2,n5}.

Definition 2.5.81. (path-coloring numbers).
Let NTG : (V,E, 0, u) be a neutrosophic graph. Then

(7) for given two vertices, x and y, there are some paths from = to y. If two
paths from x to y share one edge, then they're assigned to different colors.
The set of colors in this process is called path-coloring set from z to y.
The minimum cardinality between all path-coloring sets from two given
vertices is called path-coloring number and it’s denoted by L(NTG);

(#4) for given two vertices, 2 and y, there are some paths from x to y. If two
paths from x to y share one edge, then they're assigned to different colors.
The set S of shared edges in this process is called path-coloring set
from 2 to y. The minimum neutrosophic cardinality, > g Zle wi(e),
between all path-coloring sets, Ss, is called neutrosophic path-coloring
number and it’s denoted by £, (NTG).
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Proposition 2.5.82. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then
3
L,(CYC)=min » p;i(e).

ecsS 4
=1

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. For given
two vertices, x and y, there are only two paths from z to y. If two paths
from x to y share one edge, then they’re assigned to different colors but these
two paths don’t share one edge. The set S of shared edges in this process is
called path-coloring set from x to y. The minimum neutrosophic cardinality,
D oecs Z?:l ui(e), between all path-coloring sets, Ss, is called neutrosophic
path-coloring number and it’s denoted by

3
L,(CYC)=miny  p(e).

ecsS 4
=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.83. There are two sections for clarifications.

(a) In Figure (2.49), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(¢) All paths are as follows.

Py :ny,ne & Py :ny,ng,ns, ng, nz, no — red
Py :ny,no,ng & P ng,ng,ns,ng,ng — red
Py :ny,ng,nz, ng & P :ny,ng,ns,ng — red
P :nqi,no,n3, ng,ns & Py i ny,ng,ns — red
Py :ny,n9,n3,ng,ns,ng & Po i ny,ng — red

The number is 1;

(i) 1-paths have same color;
(133) L(CYC) = 1;

(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;

(v) there are only two paths but there’s no shared edge;
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(vi) all paths are as follows.

P
Py
Py
P
P

:ny,ne & Py i nyi,ng,ns, ng, n3, ne — red — no shared edge —
i nq,no,ng & Py i ny,ng, ns, ng, n3 — red — no shared edge —

i1, N9, n3,ng & Py i ny,ng,ns, ng — red — no shared edge —

ni,no, N3, Ny, ns & Po : ni,ng,ns — red — no shared edge —

i N1, No, N3, Ny, N5, Ng & Po : ny,ng — red — no shared edge —

0
0
0
0

£.(CYC)is 0.

(b) In Figure (2.50)), an odd-cycle-neutrosophic graph is illustrated. Some

points are represented in follow-up items as follows.

(7) All paths are as follows.

Py :nqy,ne & Po iy, ng,ng, n3, no — red
Py :ny,ne,n3 & Ps:ny,ns, ng,ng — red
Py :ny,ng,ng,ng & Py :nins,ng — red
Py :nq,ng,nz,ng,ns & Py :ny,ns — red

The number is 1;

(#4) 1-paths have same color;

LCYC) =1;

(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;

(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

P
P
Py

Pli

:ny,ng & Po:ng,ng, ng,n3, ny — red — no shared edge —
1ny,n9,ng & Pa i ny,ns,ng,n3 — red — no shared edge — 0
iny,no,ng,ng & Py :ni,ns,ng — red = no shared edge — 0
ni,no, N3, Ny, ns & Po : ni,ny — red — no shared edge — 0
L,(CY(C) is 0.

Definition 2.5.84. (dominating path-coloring numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(¢) for given two vertices, x and y, there are some paths from z to y. If
two paths from z to y share one edge, then they’re assigned to different
colors. The set of different colors, .S, in this process is called dominating
path-coloring set from x to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum cardinality
between all dominating path-coloring sets from two given vertices is called
dominating path-coloring number and it’s denoted by Q(NTG);
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2.5. Setting of notion neutrosophic-number

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 2.49: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number.

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n2(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

fU.5.0.4.U.4]
n4(0.8,0.6, 0.6)

Figure 2.50: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number.

path-coloring set from x to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum neutrosophic
cardinality, ) ¢ Zle wi(e), between all dominating path-coloring sets,
Ss, is called neutrosophic dominating path-coloring number and
it’s denoted by Q,(NTG).

Proposition 2.5.85. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

3
Q,(CYC)= " min >3 p(e).

S, |8|=12Exr9 ees i=1

Proof. Suppose CYC : (V,E,o,u) is a cycle-neutrosophic graph. For given
two vertices, x and y, there are only two paths from = to y. If two paths
from x to y share one edge, then they’re assigned to different colors but these
two paths don’t share one edge. The set S of shared edges in this process is
called dominating path-coloring set from x to y. The minimum neutrosophic
cardinality, > g Z?:l wi(e), between all dominating path-coloring sets, Ss, is
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2. Neutrosophic Tools

called neutrosophic dominating path-coloring number and it’s denoted by

Qn(CYC) - mlor}cyc).‘ Z Z Hl

S, |S] ecS i=1

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.86. There are two sections for clarifications.

(a) In Figure (2.51)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(7) All paths are as follows.

Py :ny,ng & Ps :nq,ng, ns, ng, n3, no — red
Py :ny,n9,n3 & Ps i ny,ng, ns, nyg, ng — red
Py :ny,ne,n3,ng & Py :ny,ng,ns,ng — red
Py :ny,mo,nz,na,ns & Py i ny,ne,ns — red
P1 tni,N2,N3, N4, N5, Ng & P2 ny,Neg — red

The number is 1;

(7i) 1-paths have same color;

(7i1) Q(CYC) =1

(iv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;

(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

Py :ny,ng & P :ny,ng,ns, ng, n3, ne — red — no shared edge —

Py :ny,ng,ng & Py :ny,ng,ns, ng, ng — red — no shared edge —

Py :ny,no,nz, ng,ns & Py :ny,ng,ns — red — no shared edge —
Py i ny,ng,ng,ng,ns,ng & Py : ni,ng — red — no shared edge —

0

0

P :ny,no,nz,ng & P i ny,ng,ns,ng — red — no shared edge — 0
0

0

Q,(CYC) is 0.

(b) In Figure (2.52)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(¢) All paths are as follows.

Py :ny,ng & Py i ny,ng,ng,ng, ng — red
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
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712(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.51: A Neutrosophic Graph in the Viewpoint of its dominating path-

coloring number and its neutrosophic dominating path-coloring number. \ 77NTG5

Py :ny,ng,ng & P ny,ng, ng,ng — red
Py :ny,no,n3,ng & Py :ning,ng — red
Py :ny,ng,nz, ng,ns & Py :ny,ns — red

The number is 1;

(7i) 1-paths have same color;
(t33) Q(CYC) =1;
(tv) the position of given vertices could be different in the terms of
creating path and the behaviors in path;
(v) there are only two paths but there’s no shared edge;

(vi) all paths are as follows.

Py :ny,ng & Py :ny,ng, ng,n3, ne — red — no shared edge —
Py :ny,ng,ng & P :ny,ns,ng,n3 — red — no shared edge — 0
P :ny,no,nz, ng & P :ny,ns,ng — red — no shared edge — 0
Py i ny,ng,ng,ng,ns & Py :ny,ns — red — no shared edge — 0
Q,(CYC) is 0.

Definition 2.5.87. (path-coloring numbers).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then

(7) for given two vertices, x and y, there are some paths from x to y. If two
paths from = to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S, in this process is called path-
coloring set from x to y. The minimum cardinality between all path-
coloring sets from two given vertices is called path-coloring number
and it’s denoted by V(NTG);

(#4) for given two vertices, 2 and y, there are some paths from z to y. If two
paths from x to y share an endpoint, then they’re assigned to different
colors. The set S of different colors in this process is called path-coloring

253



2. Neutrosophic Tools

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6,0.6)

Figure 2.52: A Neutrosophic Graph in the Viewpoint of its dominating path-
coloring number and its neutrosophic dominating path-coloring number.

set from z to y. The minimum neutrosophic cardinality, >, Z?:1 oi(x),
between all sets Zs including the latter endpoints corresponded to path-
coloring set Ss, is called neutrosophic path-coloring number and it’s
denoted by V,,(NTG).

Proposition 2.5.88. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

3

Va(CYC) = 0n(CY C) — max ; oi(x).
Proof. Suppose CYC' : (V, E, 0, 1) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. If
two paths from x to y share one endpoint, then they’re assigned to different
colors but there are only 2 x (O(CY C) — 1) paths for every given vertex. In
the terms of number of paths, all vertices behave the same and they’ve same
positions. The set of colors is

S = {redy,redy, - -+ ,redax 0y c)-1) }s

in this process. For given two vertices,  and y, there are some paths from x to
y. If two paths from = to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S = {red;,reds,--- ,redsy (0(cycy—1)}, in
this process is called path-coloring set from = to y. The minimum cardinality,

|S| = [{redy,redy, - - - ,reday (o(cve)-1)} = 2 x (O(CYC) - 1),

between all path-coloring sets from two given vertices is called path-coloring
number and it’s denoted by V(CY C'). Thus

V(CYC) =2 x (O(CYC) —1).

For given two vertices, x and y, there are some paths from x to y. If two paths
from x to y share an endpoint, then they’re assigned to different colors. The
set S of different colors in this process is called path-coloring set from z to y.
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The minimum neutrosophic cardinality, > ., Z?zl o;(x), between all sets Zs
including the latter endpoints corresponded to path-coloring set Ss, is called
neutrosophic path-coloring number and it’s denoted by V,,(CY C). Thus

3
Vo(CYC) = 0,(CYC) —max » o;(x).

xesS 4
=1
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.89. There are two sections for clarifications.

(a) In Figure (2.53), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) Consider the vertex n;. All paths with endpoint n; are as follow:

Py :ny,ng — red

P5 : ny,no,n3 — blue

P53 : ny,n9,ng, ng — yellow

Py : ny,n9,n3,n4,n5 — white

Ps5 : ny,ng, ng, ng, ns, ng — black

Fs - ni, Ne, N5, M4, M3, N —> pink

P; : ny,ng, ns,ng, ng — purple

Ps : ny,ng, ns,ng — brown

Py : nq,ng,n5 — orange

Pig : n1,ng — green

Thus S = {red, blue, yellow, white, black, pink, purple, brown, orange, green },

is path-coloring set and its cardinality, 10, is path-coloring number.
To sum them up, for given two vertices, = and y, there are some

paths from = to y. If two paths from x to y share an endpoint, then
they’re assigned to different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown, orange, green},

in this process is called path-coloring set from z to y. The minimum
cardinality, 10, between all path-coloring sets from two given vertices
is called path-coloring number and it’s denoted by V(CYC) = 10;

(7i) all vertices have same positions in the matter of creating paths. So
for every two given vertices, the number and the behaviors of paths
are the same;

(71) there are some different paths which have no shared endpoints. So
they could been assigned to same color;
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(iv) shared endpoints form a set of representatives of colors. Each
color is corresponded to a vertex which has minimum neutrosophic
cardinality;

(v) every color in S is corresponded to a vertex has minimum neutro-
sophic cardinality. Minimum neutrosophic cardinality is obtained in
this way but other way is to use all shared endpoints to form S and
after that minimum neutrosophic cardinality is optimal;

(vi) for given two vertices, x and y, there are some paths from z to y. If
two paths from x to y share an endpoint, then they’re assigned to
different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown, orange, green},

in this process is called path-coloring set from = to y. The minimum
neutrosophic cardinality,

3

3
Z Zai(x) =0,(CYC) — Zai(m) =6,

zeS i=1 i=1
between all path-coloring sets, S, is called neutrosophic path-coloring

number and it’s denoted by

3
Va(CYC) = 0,(CYC) = > ai(ny) =6.

i=1

(b) In Figure (2.54), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) Consider the vertex ny. All paths with endpoint n; are as follow:

Py :ny,ng — red

Py : ny,ny,n3 — blue

P5 : ny,n9,n3, ng — yellow

Py : nqy,n9,n3,ng,ns — white

Ps :: ny,ns5,n4,n3,ne — black

Ps : n1,n5,n4,n3 — pink

P7 : ny,n5,ny — purple

Pg : ny,n5 — brown
Thus S = {red,blue,yellow, white, black, pink, purple, brown} is
path-coloring set and its cardinality, 8, is path-coloring number.
To sum them up, for given two vertices, x and y, there are some

paths from x to y. If two paths from z to y share an endpoint, then
they’re assigned to different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown},

in this process is called path-coloring set from = to y. The minimum
cardinality, 8, between all path-coloring sets from two given vertices
is called path-coloring number and it’s denoted by V(CYC') = 8;
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Figure 2.53: A Neutrosophic Graph in the Viewpoint of its path-coloring number

and its neutrosophic path-coloring number. \ 78NTG5

(7i) all vertices have same positions in the matter of creating paths. So
for every two given vertices, the number and the behaviors of paths
are the same;

(79i) there are some different paths which have no shared endpoints. So
they could been assigned to same color;
(iv) shared endpoints form a set of representatives of colors. Each

color is corresponded to a vertex which has minimum neutrosophic
cardinality;

(v) every color in S is corresponded to a vertex has minimum neutro-
sophic cardinality. Minimum neutrosophic cardinality is obtained in
this way but other way is to use all shared endpoints to form S and
after that minimum neutrosophic cardinality is optimal,

(vi) for given two vertices, x and y, there are some paths from z to y. If
two paths from z to y share an endpoint, then they're assigned to
different colors. The set of different colors,

S = {red, blue, yellow, white, black, pink, purple, brown},
in this process is called path-coloring set from z to y. The minimum
neutrosophic cardinality,

3

3
Z Zai(x) =0,(CYC) — Zoi(ng) =6.2,

zeS i=1 i=1

between all path-coloring sets, S's, is called neutrosophic path-coloring
number and it’s denoted by

3
Va(CYC) = 0,(CYC) = ai(ns) =6.2.

i=1

Definition 2.5.90. (Dual-Dominating Numbers).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)
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Figure 2.54: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number.

(i) for given two vertices, s and n, if u(ns) = o(n) A o(s), then s dominates
n and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex s in 9, there’s at least one neutrosophic vertex
n in V'\ S such that n dominates s, then the set of neutrosophic vertices,
S is called dual-dominating set. The maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(NTG);

(74) for given two vertices, s and n, if p(ns) = o(n) Ao(s), then s dominates n
and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertex s in 5, there’s at least one neutrosophic
vertex n in V' \ S such that n dominates s, then the set of neutrosophic
vertices, S is called dual-dominating set. The maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic dual-
dominating number and it’s denoted by D,,(NTG).

Proposition 2.5.91. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

3
D,(CYC) = max oi(x)

zeS={z1,x2, & T .
{z1,22 L2XO(§YC)J)—1 szo(scyc)J} i—1

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

L1, L2, , TOCYC)-1:TO(CYC)s L1

be a cycle-neutrosophic graph CYC : (V,E, o, u). Two consecutive vertices
could belong to S which is dual-dominating set related to dual-dominating
number. Since these two vertices could be dominated by previous vertex and
upcoming vertex despite them. If there are no vertices which are consecutive,
then it contradicts with maximality of set S and maximum cardinality of S.
Thus, let

S = {1’1,.732, - 7xszo(cyc)D_l,xszo(cyc)J,le}
3 3
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be a set of neutrosophic vertices [a vertex alongside triple pair

of its wvalues is called neutrosophic vertex.]. For every mneutro-

sophic vertex s in S, there’s at least one neutrosophic vertex

n in V \ (s = {xl,xg,--- ,xszo(cyc)J)_l,l‘szo(cyc)J,xl}) such
3 3

that n dominates s, then the set of neutrosophic vertices, S =
{z1, 29, - ,fozXo(cyc)J)_l,xtgxo(cyc”,zl} is called dual-dominating set.
3 3

So as the maximum neutrosophic cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by

3
D,(CYC) = max oi(x)
z€S={z1,22, ,fL’L2xo(Scyc)J)_l’wtzxo(gyc”} Pt
Thus
3
D,(CYC) = max oi(z)

zeS={x1,22,,T 2x0(CYC) Ho1’®
3

L 2><o(§7yc)J} =1

L

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.92. There are two sections for clarifications.

(a) In Figure (2.55)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) Let S = {n3,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] which
are consecutive vertices. For every neutrosophic vertex s in S, there’s
only one neutrosophic vertex n in V'\ (S = {ns, n2,ns}) such that n
dominates s, then the set of neutrosophic vertices, S = {ng, no, ns} is
called dual-dominating set and this set is maximal. As if it contradicts
with the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CYC) = 4;

(i) let S = {ns,n4,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] which
aren’t consecutive vertices. For every neutrosophic vertex s in S,
there’s only one neutrosophic vertex n in V' \ (S = {ns,n4,n1})
such that n dominates s, then the set of neutrosophic vertices,
S = {n3,n4,n1} is called dual-dominating set and this set isn’t
maximal. As if it contradicts with the maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(CY C) = 4;

(7i1) let S = {ns,n4,n1,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
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(iv)

(vi)

every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\(S = {ns,n4, n1,ns}) such that n dominates s, then the set of
neutrosophic vertices, S = {ns, ng4,n1,ng} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CYC) = 4;

let S = {ng,ng,ns,ng} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\ (S = {na, n3, ns,ne}) such that n dominates s, then the set of
neutrosophic vertices, S = {ns, n3, ns,ng} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CYC) = 4;

let S = {ni1,n2,n4,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in 9, there’s only one neutrosophic vertex
nin V\ (S = {n1,na, n4,ns}) such that n dominates s, then the set of
neutrosophic vertices, S = {ny,na, n4, ns} is called dual-dominating
set. So as the maximum cardinality between all dual-dominating sets
is called dual-dominating number and it’s denoted by D(CY () = 4;

let S = {ng,ng,ns,ne} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
nin V\ (S = {na, n3, ns,ne}) such that n dominates s, then the set of
neutrosophic vertices, S = {na, ns, ns,ne} is called dual-dominating
set. So as the maximum neutrosophic cardinality between all dual-
dominating sets is called neutrosophic dual-dominating number and
it’s denoted by D, (CYC) = 5.9.

(b) In Figure (2.56), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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Let S = {ns,na2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertex s in .S, there’s only
one neutrosophic vertex n in V'\ (S = {ns3, na}) such that n dominates
s, then the set of neutrosophic vertices, S = {ng,n2} is called dual-
dominating set and this set isn’t maximal. As if it contradicts with
the maximum cardinality between all dual-dominating sets is called
dual-dominating number and it’s denoted by D(CY C) = 3;

let S = {ng2,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which aren’t
consecutive vertices. For every neutrosophic vertex s in S, there’s
only one neutrosophic vertex n in V' \ (S = {na,n4}) such that n
dominates s, then the set of neutrosophic vertices, S = {nqg,ns} is
called dual-dominating set and this set is maximal. As if it contradicts
with the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CY C) = 3;

let S = {ns,n4,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
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Figure 2.55: A Neutrosophic Graph in the Viewpoint of its dual-dominating

number a

nd its neutrosophic dual-dominating number.

every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V'\ (S = {n3,n4,n1}) such that n dominates s, then the set of
neutrosophic vertices, S = {ng, nq4,n;} is called dual-dominating set.
So as the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CYC) = 3;

let S = {ns,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V'\ (S = {n3,n2,n5}) such that n dominates s, then the set of
neutrosophic vertices, S = {ng, ng, ns} is called dual-dominating set.
So as the maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(CYC) = 3;

let S = {ns,n2,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in S, there’s only one neutrosophic vertex
n in V' \ (S = {ns, na2,n5}) such that n dominates s, then the set of
neutrosophic vertices, S = {ns,n2,n5} is called dual-dominating
set. As if it, 5.1, contradicts with the maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic
dual-dominating number and it’s denoted by D, (CY C) = 5.7;

let S = {ns,n4,n1} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex s in .S, there’s only one neutrosophic vertex
nin V' \ (S = {n3,n4,n1}) such that n dominates s, then the set
of neutrosophic vertices, S = {ns, nq4,n;} is called dual-dominating
set. So as the maximum neutrosophic cardinality between all dual-
dominating sets is called neutrosophic dual-dominating number and
it’s denoted by D, (CYC) = 5.7.

Definition 2.5.93. (dual-resolving numbers).
Let NTG : (V,E,o,u) be a neutrosophic graph. Then
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)
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Figure 2.56: A Neutrosophic Graph in the Viewpoint of its dual-dominating
number and its neutrosophic dual-dominating number.

(¢) for given two vertices, s and s if d(s,n) # d(s’,n), then n resolves s and
s’ where d is the minimum number of edges amid all paths from s to s'.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s’ in S, there’s at least one neutrosophic vertex n in V'\ S such
that n resolves s, s’, then the set of neutrosophic vertices, S is called dual-
resolving set. The maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(NTG);

(#i) for given two vertices, s and s’ if d(s,n) # d(s’,n), then n resolves s and
s’ where d is the minimum number of edges amid all paths from s to s’.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s,s in S, there’s at least one neutrosophic vertex n in V' \ S
such that n resolves s, s’, then the set of neutrosophic vertices, S is called
dual-resolving set. The maximum neutrosophic cardinality between all

dual-resolving sets is called dual-resolving number and it’s denoted by
R.(NTG).

Proposition 2.5.94. Let NTG : (V, E, 0, 1) be a cycle-neutrosophic graph where
O(CYC) > 3. Then

R.(CYC)=0,(CYC) — mir%/ (0i(z) + 04i(y)).
z,yeVv <
i=1
Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, L2, , TOCYC)-1:TO(CYC) L1

be a cycle-neutrosophic graph CYC : (V, E,o,u). O(CYC) — 2 consecutive
vertices could belong to S which is dual-resolving set related to dual-resolving
number where two neutrosophic vertices outside are consecutive. Since these
two vertices could resolve all vertices. If there are no neutrosophic vertices which
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are consecutive, then it contradicts with maximality of set S and maximum
cardinality of S. Thus, let

S ={z1,22," ,To(CYC)-3, TO(CYO)-2}

be a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. For every neutrosophic vertices s
and s in S, there’s at least one neutrosophic vertex n in V \ (S =
{z1,22,- - ,20(Cv0)=3; To(cyC)—2)) such that n resolves s and s’ then the
set of neutrosophic vertices, S = {x1, 22, -+ ,To(cyo)-3, Tocyc)—2} is called
dual-resolving set. So as the maximum neutrosophic cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted by

3
R.(CYC) = 0,(CYC) — min (oi(x) + 0:(y)).

z,yeV P

Thus
Rn(CYC) = 0,(CYC) — min Y (o4(x) + 03(y)).
i=1

z,yeV “
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.95. There are two sections for clarifications.

(a) In Figure (2.57), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) Let S = {ng,na2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ns and ng
in S, there’s neutrosophic vertex ny in V' \ (S = {ng,n2}) such
that ny resolves no and ng, then the set of neutrosophic vertices,
S = {ns,n2} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) = 4;

(11) S = {na2,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ny and ny
in S, there’s neutrosophic vertex n; in V' \ (S = {n4,n2}) such
that ny resolves no and ny, then the set of neutrosophic vertices,
S = {n4,n2} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by

R(CYC) = 4;
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(iid)

let S = {ns,n4,n1,n2} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ng or neutrosophic vertex ns in V'\ (S = {ns, n4,n1,n2}) such
that either ng resolves s and s, or ns resolves s and s, then the set
of neutrosophic vertices, S = {ns,n4,n1,n2} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CY C) = 4;

let S = {n3,n4,ns5,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex np or neutrosophic vertex ny in V'\ (S = {ns, n4,ns, ng}) such
that either ny resolves s and s’, or ns resolves s and s, then the set
of neutrosophic vertices, S = {ns, n4, ns, ng} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CY C) = 4;

let S = {na,ns,n1,n6} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ng or neutrosophic vertex ny in V'\ (S = {ng, n5,n1,ng}) such
that either ns resolves s and s’, or n4 resolves s and s, then the set
of neutrosophic vertices, S = {na, ns,n1,n6} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(CYC) = 4;

let S = {ng,n1,ne,na} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertices s and s’ in S, there are either neutrosophic
vertex ns or neutrosophic vertex ng in V'\ (S = {ns, n1,ne, n2}) such
that either ns resolves s and s, or n4 resolves s and s, then the set
of neutrosophic vertices, S = {ns,ny,ng,n2} is called dual-resolving
set. So as the maximum cardinality between all dual-resolving sets is
called dual-resolving number and it’s denoted by R, (CYC) = 6.4.

(b) In Figure (2.58)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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Let S = {n3,n2} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ng and ng
in S, there’s neutrosophic vertex ny in V' \ (S = {ns,na2}) such
that n4 resolves no and ng, then the set of neutrosophic vertices,
S = {ns,na} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by

R(CYC) = 3;

S = {na,n4} be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] which are
consecutive vertices. For every neutrosophic vertices ny and ng
in S, there’s neutrosophic vertex ns in V' \ (S = {n4,n2}) such
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that ns resolves no and ng4, then the set of neutrosophic vertices,
S = {n4,n2} is called dual-resolving set and this set isn’t maximal.
As if it contradicts with the maximum cardinality between all dual-
resolving sets is called dual-resolving number and it’s denoted by
R(CYC) = 3;

(7ii) let S = {ns,n4,n5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex nj or neutrosophic vertex ng in V' \ (S =
{ns,nq4,ns}) such that either ny resolves s and s’ or ny resolves s
and s, then the set of neutrosophic vertices, S = {nsz,n4,ns} is
called dual-resolving set. So as the maximum cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

() let S = {n1,n2,ns5} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex ng or neutrosophic vertex ny in V' \ (S =
{n1,mn2,n5}) such that either nz resolves s and s’ or n4 resolves s
and s’, then the set of neutrosophic vertices, S = {ni,na,ns} is
called dual-resolving set. So as the maximum cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

(v) let S = {ny,n2,n3} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex n4 or neutrosophic vertex ns in V' \ (S =
{n1,n2,n3}) such that either n4 resolves s and s’ or ns resolves s
and s, then the set of neutrosophic vertices, S = {ni,ng,ng} is
called dual-resolving set. So as the maximum cardinality between all

dual-resolving sets is called dual-resolving number and it’s denoted
by R(CYC) = 3;

(vi) let S = {ng,n3,n4} be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.].
For every neutrosophic vertices s and s’ in S, there are either
a neutrosophic vertex n; or neutrosophic vertex ns in V' \ (S =
{na,ng,n4}) such that either ny resolves s and s’ or ny resolves
s and s', then the set of neutrosophic vertices, S = {ns,n3,ng} is
called dual-resolving set. So as the maximum neutrosophic cardinality
between all dual-resolving sets is called dual-resolving number and
it’s denoted by R,,(CYC) = 5.8.

Definition 2.5.96. (joint-dominating numbers).
Let NTG : (V,E,0,u) be a neutrosophic graph. Then

(7) for given vertex n if sn € E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V' \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n, then
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Figure 2.57: A Neutrosophic Graph in the Viewpoint of its dual-resolving

number and its neutrosophic dual-resolving number. \
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Figure 2.58: A Neutrosophic Graph in the Viewpoint of its dual-resolving

number and its neutrosophic dual-resolving number. \
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the set of neutrosophic vertices, S is called joint-dominating set where
for every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-dominating sets is called joint-dominating
number and it’s denoted by J(NTG);

(74) for given vertex n if sn € E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.|. If for every neutrosophic vertex n in V'\ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-dominating sets is
called neutrosophic joint-dominating number and it’s denoted by
Jn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
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‘ Proposition 2.5.97. Let NTG : (V, E, 0, 1) be a neutrosophic graph and S has

one member. Then a vertex of S dominates if and only if it joint-dominates.

Proposition 2.5.98. Let NTG : (V, E, o, 1) be a neutrosophic graph and S is
corresponded to joint-dominating number. Then V '\ D is S-like.

Proposition 2.5.99. Let NTG : (V,E, o0, 1) be a neutrosophic graph. Then S
is corresponded to joint-dominating number if and only if for all s in S, there’s
a vertexn in V' \ S, such that {n’ | n'n € E} NS = {s}.

Proposition 2.5.100. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then
3
Jn(CYC) = 0,(CYC) — max Y (oi(z) + 0i(y)).
1=1

zyeV “

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let
L1, T2, ", TOCYC)-1:TOCYC) L1

be a cycle-neutrosophic graph CYC : (V,E,o,u). O(CYC) — 2 consecutive
vertices could belong to S which is joint-dominating set related to joint-
dominating number where two neutrosophic vertices outside are “consecutive”.
Since it’s possible to have a path amid every two of vertices in S and two
vertices outside could be joint-dominated by their neighbors in S. If there are
no neutrosophic vertices which are consecutive, then it contradicts with the
term joint-dominating set for S. Thus, let

S ={z1,22," ,To(CYC)-3,TO(CYC)-2}

be a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. For given vertex n if sn € F, then s joint-dominates
n. Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. For every neutrosophic vertex n in

VA(S= {50175827 T »$0(cyc)—37$0(cyc)—2})7
there’s only one neutrosophic vertex s in
S={z1,22, - ,To(CYC)-3, TO(CYC)—2}
such that s joint-dominates n, then the set of neutrosophic vertices,
S ={x1, 20, - 7$o(CYC)—3a$0(CYc)—2}
is called joint-dominating set where for every two vertices in
S ={z1,22," ,To(CYC)-3,TOCYC)-2}>

there’s only one path in S amid them. The minimum neutrosophic cardinality
between all joint-dominating sets is called joint-dominating number and it’s
denoted by

3
Tn(CYC) = 0,(CYC) — max Y (o3(z) + 0i(y)).

z,yeV 4
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Thus

In(CYC) = On(CYC) = max ) (0i(x) +04(y)).

Proposition 2.5.101. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then there are 3 x O(CYC) + 1 joint-dominating sets.

Proposition 2.5.102. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CY C) > 3. Then there are O(CY C) joint-dominating set corresponded
to joint-dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.103. There are two sections for clarifications.

(a) In Figure (2.59)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s, there are only two
paths between them:;

(7i) one vertex only dominates two vertices, then it only dominates its
two neighbors thus it implies the vertex joint-dominates is different
from the vertex dominates vertices in the setting of cycle;

(#i7) all joint-dominating sets corresponded to joint-dominating number
are

{7117712,7743,714}7 {n27n37n47n5}3 {n37n47n57n6}7 {n47n5a neg, n1}7

{715,77,6,77,1,77,2}7 {n67n17n27n3}'

For given vertex n if sn € F, then s joint-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least one neutrosophic vertex s in S such that s
joint-dominates n, then the set of neutrosophic vertices, S is called
joint-dominating set where for every two vertices in S, there’s a
path in S amid them. The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted

by J(CYC)=0(CYC) -2 =4;
(#v) there are nineteen joint-dominating sets
{nh na2,n3, Tl4}, {715, niy,n2,n3s, 77,4}, {n67 niy,n2,Nn3, Tl4},
{n2,”3,n4,n5}, {nl,n2,n3,n4,n5}7 {n6,n2,n3,n4,n5},

{n37n4,n5an6}; {nlan35n4an5an6}7 {n27n37n47n57n6}7

{’I’L4,’I’L5,'I’L6,TL1}, {712,7147715,716,711}7 {'I’L3,'I’L4,'I’L5,'I’L6,TL1},
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{TL5,TL6,7”L1,7’L2}, {n3a N5, Ne, N, 77,2}, {n47n57n67n17n2}7
{n67n17n27n3}7 {n47 ne, N1, N2, n3}’ {n57n67n17n27n3}7

{n57n67n17n27n37n4}7

as if it’s possible to have six of them

{nla n2, N3, n4}a {n27 n3,ng, nS}, {’I’Lg, Ny4,MNs5, nﬁ}a {n47 N5, N6, nl})
{n5, ng, N1, n2}7 {7167 ny, n2, ns}
as a set corresponded to neutrosophic joint-dominating number so
as neutrosophic cardinality is characteristic;

(v) there are nineteen joint-dominating sets

{n1,n9,n3,n4},{ns5,n1,n92,n3,n4},{Ng,n1,n2,n3,N4},
{na,n3,n4,n5}, {n1,n2,n3,n4, 05}, {n6, N2, N3, M4, 15},
{n3,n4,n5,n6}, {n1, 13,4, 05, 16 }, {2, 113, 114, 15, N6 },
{n4,ns,n6,n1}, {N2, N4, ns5,ng, N1}, {n3, 14, ns5,ng, N1},
{ns,ne,n1,n2}, {n3, ns5,n6, N1, N2}, {n4, ns,ne, n1,n2},
{ne,n1,n2,n3}, {n4,n6,n1, 12,03}, {n5, 06, 1,2, 13},

{n57 ne, N1, N2,N3, 77,4},
as if there is six joint-dominating sets

{nla ng,n3, 7'L4}, {n27n37n47n5}7 {n3a g, N5, nG}v {n47n57n6,n1},

{ns, Ne, N1, 712}’ {n67n17n27n3}7

corresponded to neutrosophic joint-dominating number so as neutro-
sophic cardinality is the determiner;

(vi) there’s only one joint-dominating set corresponded to joint-
dominating number is {n4, ns, ng,n1}. For given vertex n if sn € E,
then s joint-dominates n. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' \ S, there’s at
least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating
set where for every two vertices in S, there’s a path in S amid
them. The minimum neutrosophic cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted
by Jn(CYC) = 0,(CYC) =322 (0(n2) + o(n3)) = 4.1.

(b) In Figure (2.60)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s, there are only two
paths between them;

(74) one vertex only dominates two vertices, then it only dominates its
two neighbors thus it implies the vertex joint-dominates is different
from the vertex dominates vertices in the setting of cycle;
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(#i7) all joint-dominating sets corresponded to joint-dominating number
are

{n17n27n3}7 {nQan3an4? }? {n37n47n5}7 {n47n57n1}?

{n5an17n2}a

For given vertex n if sn € F, then s joint-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least one neutrosophic vertex s in S such that s
joint-dominates n, then the set of neutrosophic vertices, S is called
joint-dominating set where for every two vertices in S, there’s a
path in S amid them. The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted
by J(CYC)=0(CYC)—-2=3;

(iv) there are sixteen joint-dominating sets

{n1,n2,n3}, {n4,n1,m2,n3}, {ns, 01,12, n3},
{n2,n3,n4}, {n1,n2,n3,n4}, {n5,n2, 13,14},
{ns,n4,ns}, {ne, ns, na,ns}, {n1, ng, ng, ns},
{n4,ns,n1}, {n2, ng,n5,n1}, {ns, ng,n5,n1},
{ns,n1,m2},{n3,ns,n1,n2}, {n4, n5,n1, 12},

{nl,ng,ng,n4,n5},

as if it’s possible to have five of them

{n17n27n3}a {nQan3an4a }7 {TL3,7’L4,’I’L5}7 {n47n57n1}7
{n5an17n2};

as a set corresponded to neutrosophic joint-dominating number so
as neutrosophic cardinality is characteristic;

(v) there are sixteen joint-dominating sets

{n1,n2,n3}, {n4,n1,n2,n3}, {ns,n1,n2,n3},
{n2,n3,na}, {n1,n2, n3, na}, {ns, n2, na, nat,
{n3,na,ns}, {n2, n3, na, ns}, {n1, n3, na, ns},
{n4,ns,n1}, {ne,nq,ns,n1}, {ns, ng,n5,n1},
{ns,n1,n2}, {ns,ns,ni1,nat, {ng, ns,ni,na},

{nlan2an37n47n5}7

as if there is five joint-dominating sets

{n17n27n3}7 {nQansan4a }7 {n3an47n5}7 {n47n57n1}?

‘{’I’L5,’I’L1,’I’L2},

corresponded to neutrosophic joint-dominating number so as neutro-
sophic cardinality is the determiner;
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 2.59: A Neutrosophic Graph in the Viewpoint of its joint-dominating
number and its neutrosophic joint-dominating number.

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

fU.5.0.4.U.4]
n4(0.8,0.6, 0.6)

Figure 2.60: A Neutrosophic Graph in the Viewpoint of its joint-dominating
number and its neutrosophic joint-dominating number.

(vi) there’s only one joint-dominating set corresponded to joint-
dominating number is {ns,ny,no}. For given vertex n if sn € E,
then s joint-dominates n. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' \ S, there’s at
least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating
set where for every two vertices in S, there’s a path in S amid
them. The minimum neutrosophic cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted

by Jn(CYC) = 0,(CYC) =327 (0(n3) + o(ny)) = 4.2.

Definition 2.5.104. (joint-resolving numbers).
Let NTG : (V,E, o0, u) be a neutrosophic graph. Then

(7) for given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-resolves

n and n’ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic
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vertices [a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V'\ S, there’s at least one
neutrosophic vertex s in S such that s joint-resolves n and n’, then the set
of neutrosophic vertices, S is called joint-resolving set where for every
two vertices in S, there’s a path in .S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by J(NTG);

(#4) for given two vertices n and n/, if d(s,n) # d(s,n’), then s joint-resolves
n and n’ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n’ in V' \ S, there’s at least
one neutrosophic vertex s in S such that s joint-resolves n and n/,
then the set of neutrosophic vertices, S is called joint-resolving set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-resolving sets is called
neutrosophic joint-resolving number and it’s denoted by 7, (NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.105. Let NTG : (V,E, o, 1) be a neutrosophic graph and S
has one member. Then a verter of S resolves if and only if it joint-resolves.

Proposition 2.5.106. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then S
is corresponded to joint-resolving number if and only if for all s in S, either
there are vertices n and n’ in V'\ S, such that {s' | d(s',n) # d(s',n')} NS = {s}
or there’s vertex s’ in S, such that are s and s’ twin vertices.

Proposition 2.5.107. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

3
jn(CYC) = mln{Z(Jz (SIJ) + 0y (y))}m and y are consecutive vertices.-
=1

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

T1,T2, ", TOCYC)-1,TO(CYC), L1

be a cycle-neutrosophic graph CYC : (V, E, 0, 1). 2 consecutive vertices could
belong to S which is joint-resolving set related to joint-resolving number. If
there are no neutrosophic vertices which are consecutive, then it contradicts
with the term joint-resolving set for S. All joint-resolving sets corresponded to
joint-resolving number are

{xlva}a {33271’3}, {$3,QZ’4}, cey

{JJO(CYC)A, xO(CYC)}v {$O(CYC), -rl}-

For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-resolves n and
n’ where d is the minimum number of edges amid all paths from the vertex and
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the another vertex. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] like either of

{xla x2}a {an .Tg}, {x?)? .’L‘4}, sy
{xo(CYC)—h xO(CYC)}v {$O(cyc)7 $1}.

For every neutrosophic vertices n and n’ in V' \ S, there’s only one neutrosophic
vertex in S such that joint-resolves m and n’, then the set of neutrosophic
vertices, S is either of

{1'17 xQ}a {.’B27 1’3}, {1'3, 1'4}, ey
{960(01/0)—1’ xO(CYC)}a {ZO(CYC’)a T}

is called joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum neutrosophic cardinality between all joint-resolving
sets is called joint-resolving number and it’s denoted by

3
jn(CYC) = mln{Z(gl (1') + 0y (y))}T and y are consecutive vertices.+

i=1
Thus

3
jn(CYC> - min{Z(Ui (-T) + 0 (y))}a: and y are consecutive vertices. -

i=1

Proposition 2.5.108. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CY C) > 3. Then there are (O(CYC) x (20(C€YE)=2 _ 1)) + 1 joint-
resolving sets.

Proposition 2.5.109. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then there are O(CY C) joint-resolving set corresponded
to joint-resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.110. There are two sections for clarifications.

(a) In Figure (2.77), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, there are only two paths between
them;

(7i) one vertex only resolves some vertices as if not all if they aren’t two
neighbor vertices, then it only resolves some of all vertices and if
they aren’t two neighbor vertices, then they resolves all vertices thus
it implies the vertex joint-resolves as same as the vertex resolves
vertices in the setting of cycle, by joint-resolving set corresponded
to joint-resolving number has two neighbor vertices;
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(#i7) all joint-resolving sets corresponded to joint-resolving number are

{n1,n2}, {n2,n3}, {n3,na},
{n4,ns},{ns,ne}, {ne,n1}.

For given two vertices n and n/, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.| like either of

{n1,n2}, {na, n3}, {n3, na},
{n47 n5}a {n5a n6}7 {716, n1}~
For every neutrosophic vertices n and n’ in V' \ S, there’s only one

neutrosophic vertex in S such that joint-resolves n and n/, then the
set of neutrosophic vertices, S is either of

{n17 nQ}a {n27 n3}7 {n37 Tl4},

{na,ns},{ns,ne}, {ne,n1}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum cardinality between all joint-
resolving sets is called joint-resolving number and it’s denoted by

JCYe) =2

(iv) there are ninety-one joint-resolving sets

{n1,n2}, {n1,ne,ns}, {n1,na,nyg},

{711,”2,715}, {n1,n2,n6}7 {nl,ng,ng,m;}

{n1,na,n3,n5}, {n1,n2, 3,6}, {n1, 12,14, 05},
{n1,n2,nqg,ng}, {n1,n2,n5,n6}, {n1, n2,ng, ng,ns},
{n1,n9,n3,n4,n6}, {n1,n92,n3,n5,n6}, {N1,n2, 14, 5,06},
{n1,n2,n3,m4,n5,n6},

{n3,na}, {na,n2,n1}, {n3, na, na},

{n3,n2,ns5}, {n1,n2,m6}, {n3,n2,n1, 14}

{ns,na,n1,n5}, {ns,na2,n1,n6}, {ns, n2,n4, ns},

{n3,na, 4,6}, {n3,n2, 5,6}, {n3, 12,11, N4, M5},
{n3,na,n1,m4,n6}, {n3, 12, M1, 05,16}, {13, N2, N4, M5, M6 },
{ns,na}, {ns,ns,n1}, {ns,ng,na},

{TL3,TL4,TL5}, {n1’n4an6}7 {n3,n4,n1,n2}

{n3,na,n1,ms5}, {ns, na,n1,ne}, {ns, na, n2,ns5},
{ns,nqg,na2,ng}, {ns, ng, ns,n6}, {ns, ng,n1,n2,n5},
{ns,nq4,n1,n2,n6}, {n3, n4,n1,ns5,n6}, {n3, N4, n2, n5,n6},
{ns,na}, {ns,na,n1}, {ns, na, 2},

{ns,na,na}, {n1,n4,n6}, {15, 14,01, 12}

{’I’L5,’I’L4,’I’L1,'I’L3}, {7745,7744,711,7746}7 {’I’L5,’I’L4,’I’L2,'I’L3},
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{ns,n4,n2,n6}, {ns5,n4, 13,06}, {n5,n4,M1,n92,n3},
{ns,n4,n1,n2,n6}, {ns, n4,n1,n3, 06}, {N5, 14, N2, n3, N},
{ns,n6}, {ns,n6,n1}, {ns, 6, n2},
{ns,n6,n3}, {n1,n6, 14}, {n5,Mn6, 01,12}
{ns,ne,n1,ns}, {ns,ne,n1,n4}, {ns5,n6, 12,03},
{ns,n6,n2,n4}, {ns5, 16,13, M4}, {N5, 16, 121, M2, N3},
{ns,n6, 11,12, 04}, {n5, 16,11, M3, 14}, {15, 116, N2, N3, M4 },
{n1,n6}, {n1,m6,n3}, {n1, 16,14},
{n17n67n5}7{n1;n6;n2}’{n17n67n37n4}
{n1,n6,n3,n5}, {n1,n6, n3, N2}, {n1,n6, 14, M5},
{n1,n6, 14,2}, {n1, 16, 15, M2}, {N1, 16, 13,114, M5 },
{n1,n6,n3, 14,02}, {n1, 16, M3, 15, N2}, {11, N6, N4, M5, M2},
as if it’s possible to have one of them as a set corresponded to

neutrosophic joint-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are ninety-one joint-resolving sets

{n1,n2}, {n1,n2,n3}, {n1,n2,n4},

{711,712,”5}, {nl, na, nﬁ}, {nl,ng,ng,m}
{n1,n9,n3,n5},{n1,n2,n3,ng}, {n1,n2,n4,ns},
{n1,n2,n4,n6}, {n1,n2,n5, 16}, {N1, 12, 13,04, 5},
{n1,n2,n3,n4,n6}, {n1,n2,n3, 15, n6 }, {n1, N2, 4,15, 16 },
{n17n27n37n47n57n6}7

{n3,na}, {n3,na,n1}, {n3,n2,n4},

{ns,n2,ns5}, {n1,n2,n6}, {n3, na, n1,n4}
{n3,n2,n1,n5},{n3,n2,n1,n6}, {n3, M2, 14,15},
{ns3,na,ny4,ng}, {ns, na, ns,ng}, {ns, n2,n1,n4,ns},
{n3,n2,n1,n4, 16}, {n3, 2,01, 15, N6}, {n3, N2, N4, M5, 16 },
{ns,na}, {n3,n4,n1}, {n3,ng,na},

{ng,n4,n5}, {m, Ny, n6}, {n37n47n17n2}

{ns3,n4,n1,ns}, {ns, ng,n1,ng}, {N3, N4, na,ns },
{ns,n4,m2,n6}, {n3,n4,n5, M6}, {N3, 14,11, N2, 05},
{ns,n4,n1,n2,n6}, {n3, 14,11, 15,06}, {n3, M4, M2, 15, N6 },
{7157714}, {n5, Ny, n1}, {ns,m,nz},

{71577147”3}7 {n1, Ny, nﬁ}, {715771477117712}

{ns,n4,n1,n3}, {ns,n4,n1,16}, {15, 14, 02, M3},
{ns,n4,n2,n6},{n5,14,n3,n6 }, {05, N4, 111, 02, N3},
{ns,n4,n1,n2,n6}, {ns5, n4,n1,n3, 6}, {N5, 14, N2, n3, N},
{ns,n6}, {ns,n6, 11}, {n5, 16, N2},

{ns,n6,n3}, {n1, 16,4}, {n5,n6, 11,12}

{n57n67n17n3}7 {7'L5, N, N1, n4}7 {77,5777,6777,2777,3},
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(vi)

{ns,ne,na,nq4}, {ns5,n6,n3,04}, {N5, 06,01, n2,n3},
{ns,ne,n1,n2,n4}, {ns,n6,n1,n3, N4}, {N5,n6, n2, N3, M4},
{n1,n6}, {n1,n6,n3}, {n1, 16,14},
{n1,m6,n5}, {n1,n6,n2}, {n1,n6,n3, M4}
{n1,n6,n3,n5}, {n1,n6,n3,n2}, {n1, ne, na, ns},
{711,716,714,712}, {n1,n6,n5,n2}7 {n17n6,n3,n4,n5},
{n1,m6,n3, 04,02}, {n1,n6, 13, 15, N2}, {N1, M6, N4, N5, M2},
as if there’s one joint-resolving set corresponded to neutrosophic joint-
resolving number so as neutrosophic cardinality is the determiner;

all joint-resolving sets corresponded to joint-resolving number are

{nla n?}a {712, 713}7 {n37 n4}a

{na,ns},{ns,n6}, {ne,n1}.

For given two vertices n and n/, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.| like either of

{nla nQ}a {’I’LQ, n3}7 {TL3, TL4},
{na,ns}, {ns,ne}, {ng, n1}.
For every neutrosophic vertices n and n’ in V'\ S, there’s only one

neutrosophic vertex in S such that joint-resolves n and n’, then the
set of neutrosophic vertices, S is either of

{m, nz}, {7127 713}7 {n3, n4}a

{n4,ns},{ns,n6}, {ne,n1}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by

Tn(CYC) =1.7.

S is {n4,n5} corresponded to neutrosophic joint-resolving number.

(b) In Figure (2.78)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(i)

For given two neutrosophic vertices, there are only two paths between
them;

one vertex only resolves some vertices as if not all if they aren’t two
neighbor vertices, then it only resolves some of all vertices and if
they aren’t two neighbor vertices, then they resolves all vertices thus
it implies the vertex joint-resolves as same as the vertex resolves
vertices in the setting of cycle, by joint-resolving set corresponded
to joint-resolving number has two neighbor vertices;
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(7i7) all joint-resolving sets corresponded to joint-resolving number are

{n17n2}7 {nQa n3}a {’I’L37TL4},

{n4,n5}, {’I’L5, ’I’Ll}.

For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of

{n17n2}7 {n23 n3}a {’I’L37TL4},

{n4,n5}, {’I’L57 ’I’Ll}.

For every neutrosophic vertices n and n’ in V' \ S, there’s only one
neutrosophic vertex in S such that joint-resolves n and n’, then the
set of neutrosophic vertices, S is either of

{n17n2}7 {nQ; n3}a {n37n4}7

{n47n5}7 {TL5, nl}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum cardinality between all joint-
resolving sets is called joint-resolving number and it’s denoted by

JCYC) =2

(iv) there are thirty-six joint-resolving sets

{ni,n2}, {n1,na,ns}, {n1,na,ng},

{nl,n2,n5}7 {711,712,713,714}{711,”27713,715}
{n1,n2,n4,n5}, {n3, na}, {na, n2,n1}, {n3, na, na},
{ng,na,ns}t, {ns, na,ni, ngp{ns, na,ni, ns},
{ns,na,n4,ns},{ns, ns}, {ns, ng,n1},
{n3,n4,n2}, {n3, na,ns}, {n3, na,n1,n2},
{n3,na,n1,ms5}, {n3, na, n2,ns}t, {ns, na},
{ns,n4,n1}, {ns,n4,n2}, {n5, 14,13},
{ns,n4,n1,n2H{ns, ng, n1,n3}, {ns, n4,no, n3},
{ns,n1}, {ns,n1,na}, {ns, n1, na},
{ns,n1,n3}, {ns,n1, na, n2 H{ns, n1, na, na},

{n5,n1,n2,n3}, {n5,n1,n4,n2,n3}

as if it’s possible to have one of them as a set corresponded to
neutrosophic joint-resolving number so as neutrosophic cardinality
is characteristic;
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(v) there are thirty-six joint-resolving sets

{n1,na2}, {n1,m2,n3}, {n1,n2,n4},
{n1,na,ns5}, {n1, na, ng, nap{n1, na, nz, ns
{n1,n9,n4,n5},{ns,nat, {ns, na,n1}, {ns, na,nq},
{ns,na,ns}, {ns, na,ni, ng{ns, na,n1, ns},
{n3,n2,na,ns5}, {n3, na}, {na, na,n1},
{ns,na,na}, {n3, na, ns}, {n3, na, n1, nat,
{ns,n4,n1,ns}, {n3, ng,no,ns}, {ns,n4},
{71577”&477”&1}, {n5,n4,n2}, {7157”47”3},
{ns, na, n1,maH{ns, na, ni,naf, {ns, na, n2,n3t,
{ns,n1}, {ns,n1,n4}, {ns, n1,n2},
{ns,n1,ns}, {ns,ni,ng, no{ns, n1,ng, ns},
{ns,n1,m2,n3}, {ns, 11,114,012, 13},
as if there’s one joint-resolving set corresponded to neutrosophic joint-
resolving number so as neutrosophic cardinality is the determiner;

all joint-resolving sets corresponded to joint-resolving number are

{n17 nQ}a {n27 77,3}7 {Tlg, Tl4},

{’I’L4,’I’L5}7 {n5,n1}.

For given two vertices n and n’, if d(s,n) # d(s,n’), then s joint-
resolves n and n’ where d is the minimum number of edges amid
all paths from the vertex and the another vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of

{nlan2}7 {n2an3}7 {n37n4}7

{n4,ns},{ns,n1}.

For every neutrosophic vertices n and n’ in V' \ S, there’s only one
neutrosophic vertex in S such that joint-resolves n and n’, then the
set of neutrosophic vertices, S is either of

{n17 n2}a {nQa n3}7 {n37 n4}7

{n47n5}; {nf)anl}

is called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by

T (CYC) =2.7.

S is {n1,n5} corresponded to neutrosophic joint-resolving number.

Definition 2.5.111. (perfect-dominating numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then
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n1(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

fU.l.U.l.U.Q]
n5(0.1,0.1,0.2)

Figure 2.61: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number.

n1(0.5,0.5,0.4)

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

(0.5,0.4,0.4)

715(0.5,0.4, 0.4)

fU.5.0.4.U.4]
n4(0.8,0.6,0.6)

Figure 2.62: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number.

(4)

for given vertex n, if sn € E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V'\ S, there’s only one neutrosophic vertex s
in S such that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum cardinality between
all perfect-dominating sets is called perfect-dominating number and
it’s denoted by P(NTG);

for given vertex n, if sn € E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V'\ S, there’s only one neutrosophic vertex s in S
such that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum neutrosophic cardinality
between all perfect-dominating sets is called neutrosophic perfect-
dominating number and it’s denoted by P,(NTG).

For convenient usages, the word neutrosophic which is used in previous
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definition, won’t be used, usually.

Proposition 2.5.112. Let NTG : (V, E, 0, 1) be a neutrosophic graph and S has
one member. Then a vertex of S dominates if and only if it perfect-dominates.

Proposition 2.5.113. Let NTG : (V,E,o,u) be a neutrosophic graph and
dominating set has one member. Then a vertex of dominating set corresponded
to dominating number dominates if and only if it perfect-dominates.

Proposition 2.5.114. Let NTG : (V,E,o,u) be a neutrosophic graph. Then
S is corresponded to perfect-dominating number if and only if for all s in S,
there’s a vertex m in V'\ S, such that {s' | sn € E} NS = {s}.

Proposition 2.5.115. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

P.(CYC) = mo%Eyc>J > Z oi(x

IS1= zeS i=1

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

L1, L2, , TOCYC)-1:LO(CYC)s L1

be a cycle-neutrosophic graph CY C : (V, E, o, ). All perfect-dominating sets
corresponded to perfect-dominating number are

{nl,n4, . .}lslzto(cSYC)J,{TL27TL57 . .}|S|:LO(CSYC)J IR

where last vertices could be neighbors as if they couldn’t have less than three
edges amid them. For given vertex n, if sn € E, then s perfect-dominates n
where s is the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V'\ S, there’s only one neutrosophic vertex s in S such
that s perfect-dominates n, then the set of neutrosophic vertices, S is called
perfect-dominating set. The minimum neutrosophic cardinality between all
perfect-dominating sets is called neutrosophic perfect-dominating number and
it’s denoted by

Pn(CYC): O(CYC)JZZUZ

|S|= €S i=1
Thus

Pn(CYC) = Ig}rclyaJ Z ZU’

zeS i=1
|

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.
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2.5. Setting of notion neutrosophic-number

Example 2.5.116. There are two sections for clarifications.

(a) In Figure (2.63), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)
(i)

(iid)

(iv)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex couldn’t be dominated by more than
one vertex as if the structure of dominating and perfect-dominating
are the same in the terms of sets and numbers where only some sets
coincide;

all perfect-dominating sets corresponded to perfect-dominating
number are {ni,ns},{n2,n5}, and {n3,ng}. For given vertex n,
if sn € E, then s perfect-dominates n where s is the unique vertex.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertex n in V'\ S, there’s only one neutrosophic vertex s in S such
that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum cardinality between all
perfect-dominating sets is called perfect-dominating number and it’s
denoted by P(CYC) = 2 and corresponded to perfect-dominating
sets are {ny,nq}, {ne,ns}, and {nz, ng};

there are ten perfect-dominating sets

{n17n4}7 {nQa Tl5}, {n37n6}7
{n17n47n57n6}7 {nla n2,Nn3, n4}a {n27n57n67n1}7
{n27n37n47n5}7 {n?); ne, N1, nQ}a {n37n47n57n6}7

{7?,1,7?,2, , N3, Mg, N5, nG}?

as if it’s possible to have one of them as a set corresponded
to neutrosophic perfect-dominating number so as neutrosophic
cardinality is characteristic;

there are ten perfect-dominating sets

{7’?,1,714}, {n27 n5}a {n37n6}7
{n17n47n57n6}7 {nla no, N3, ’I’L4}, {n27n57n67n1}7
{n27n37n47n5}7 {n3a Neg, N1, nQ}v {n37n47n57n6}7

{n17n27 513, Mg, M, n6}7

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating
number so as neutrosophic cardinality is the determiner;

all perfect-dominating sets corresponded to perfect-dominating
number are {ni,n4}, {n2,ns5}, and {ns,neg}. For given vertex n,
if sn € E, then s perfect-dominates n where s is the unique vertex.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertex n in V'\ S, there’s only one neutrosophic vertex s in S such
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2. Neutrosophic Tools

that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum neutrosophic
cardinality between all perfect-dominating sets is called neutrosophic
perfect-dominating number and it’s denoted by P, (CYC) = 2.2 and
corresponded to perfect-dominating sets are {ny,n4}.

(b) In Figure (2.64]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex couldn’t be dominated by more than
one vertex as if the structure of dominating and perfect-dominating
are the same in the terms of sets and numbers where only some sets
coincide;

all perfect-dominating sets corresponded to perfect-dominating
number are {ny,ng, ns}, {n2, ns,n1}, {n1,n2,n3}, and {ng, n3, ny}.
For given vertex n, if sn € E, then s perfect-dominates n where
s is the unique vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.|. If for every neutrosophic vertex n in V '\ S, there’s only
one neutrosophic vertex s in S such that s perfect-dominates n,
then the set of neutrosophic vertices, S is called perfect-dominating
set. The minimum cardinality between all perfect-dominating
sets is called perfect-dominating number and it’s denoted by
P(CYC) = 3 and corresponded to perfect-dominating sets are
{n1,na,ns}, {n2, ns,na}, {n1,n2,n3}, and {na, ng, nat;

there are five perfect-dominating sets

{TLl,TL4,TL5}, {TLQ,TL5,TL1}, {TLl,TLQ,TLg},

{n27n’37n4}7 {nlan27n37n47n5}7

as if it’s possible to have one of them as a set corresponded
to neutrosophic perfect-dominating number so as neutrosophic
cardinality is characteristic;

there are five perfect-dominating sets

{TLl,'I'L4,'I'L5}, {7127715,711}7 {n17n27n3}7

{n27n37n4}7 {77,1,77,2,713,714,?15}7

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating
number so as neutrosophic cardinality is the determiner;

all perfect-dominating sets corresponded to perfect-dominating
number are {ny,ng,ns}, {n2, ns,n1}, {n1, n2,n3}, and {na, n3, ng}.
For given vertex n, if sn € E, then s perfect-dominates n where
s is the unique vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V' \ S, there’s only



2.5. Setting of notion neutrosophic-number

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)

f:[).l.[).l.[).?]
n5(0.1,0.1,0.2)

Figure 2.63: A Neutrosophic Graph in the Viewpoint of its perfect-dominating

number and its neutrosophic perfect-dominating number. 83NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

71(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

f[).ﬁ.[).—l.[).—l]
14(0.8,0.6, 0.6)

Figure 2.64: A Neutrosophic Graph in the Viewpoint of its perfect-dominating

number and its neutrosophic perfect-dominating number. \ 83NTG6

one neutrosophic vertex s in S such that s perfect-dominates n,
then the set of neutrosophic vertices, S is called perfect-dominating
set. The minimum neutrosophic cardinality between all perfect-
dominating sets is called neutrosophic perfect-dominating number
and it’s denoted by P, (CYC) = 4.2 and corresponded to perfect-
dominating sets are {nz,ns,n1}.

Definition 2.5.117. (perfect-resolving numbers).
Let NTG : (V,E, o, ) be a neutrosophic graph. Then

(7) for given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n’ in V'\ S, there’s only one neutrosophic vertex
s in S such that s perfect-resolves n and n’, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number
and it’s denoted by P(NTG);
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(#1) for given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n’ in V' \ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n’, then
the set of neutrosophic vertices, S is called perfect-resolving set. The
minimum neutrosophic cardinality between all perfect-resolving sets is
called neutrosophic perfect-resolving number and it’s denoted by
Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.118. Let NTG : (V,E, o, 1) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it perfect-resolves.

Proposition 2.5.119. Let NTG : (V,E,o,u) be a neutrosophic graph and
resolving set has one member. Then a verter of resolving set corresponded
to resolving number resolves if and only if it perfect-resolves.

Proposition 2.5.120. Let NTG : (V,E, o0, 1) be a neutrosophic graph. Then
S is corresponded to perfect-resolving number if and only if for all s in S,
there are neutrosophic vertices n and n' in V' \ S, such that {s’ | d(s',n) #
d(s',n")} NS = {s} and for all neutrosophic vertices n and n’ in V' \ S, there’s
only one neutrosophic vertex s in S, such that {s' | d(s',n) # d(s',n")}NS = {s}.

Proposition 2.5.121. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then V
and V\ {z} are S.

Proposition 2.5.122. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

3
Pu(CYC) = Oy (CYC) — max ; oix).

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

L1, T2, ", TOCYC)-1,TO(CYC), L1

be a cycle-neutrosophic graph CYC : (V, E, o, u). In the setting of cycle, two
vertices couldn’t be resolved by more than one vertex so as the structure of
resolving and perfect-resolving are different in the terms of sets. In the setting
of cycle, a vertex of resolving set corresponded to resolving number resolves as
if it doesn’t perfect-resolve, by S has two members in settings of resolving as if
these vertices aren’t unique in the terms of resolving since some vertices are
resolved by both of them and adding them to intended growing set is useless.
Thus, by Proposition (2.5.121)), S has either O(CYC) or O(CYC) — 1. All

perfect-resolving sets corresponded to perfect-resolving number are

{n1,m2,n3, ..., NO(CYC)—4s NO(CY C) =35 NO(CY C)—25 NO(CY C)—1 )5

{7117 nz,n3,...,NoCyCc)—4,NoCcyc)-3,NoCyc)-2, no(cyc)}7
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{n1,n2,n3,... yo(cyc)—4,No(Ccyc)—-2;MoCcyc)—1; nO(CYC)}a

{n2,n3,n4, ..., NOCY )1, NO(CY C) =35 NO(CY C)—2, PO(CY C)—1, NO(CY C) }»

For given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves n and
n' where s is the unique vertex and d is minimum number of edges amid two
vertices. Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n’ in V' \ S, there’s only one neutrosophic vertex s in S such that s
perfect-resolves n and n’, then the set of neutrosophic vertices, S is called
perfect-resolving set. The minimum cardinality between all perfect-resolving
sets is called perfect-resolving number and it’s denoted by

zeV 4

3
Pu(CYC) = 0,(CYC) —max Y oi(x)

and corresponded to perfect-resolving sets are

{n1,m2,n3, ..., noCY )4y NO(CY C) =35 NO(CY C) =2, RO(CY C)—1 )

{nla n2, N3, ..., NOCYC)-4,NOCYC)-3,NOCYC)-25 nO(CYC)}a

{n1,n2,m3,... y oy C)—4,NO(CY C)—2:NO(CYC)—15 no(cyc)}n

{n2,n3,m4,. .. yo(cyc)—-4,No(CYyC)-3,No(Ccyc)-2,No(CcyC)-1, nO(CYC)}-
Thus

3
Pu(CYC) = 0,(CYC) - max Zl oi(z).

Proposition 2.5.123. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then perfect-resolving number isn’t equal to resolving number.

Proposition 2.5.124. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then the number of perfect-resolving sets corresponded to perfect-resolving
number is equal to O(CYC).

Proposition 2.5.125. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then the number of perfect-resolving sets is equal to O(CYC) + 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.126. There are two sections for clarifications.

(a) In Figure (2.65)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iii)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, two vertices couldn’t be resolved by more
than one vertex so as the structure of resolving and perfect-resolving
are different in the terms of sets. In the setting of cycle, a vertex
of resolving set corresponded to resolving number resolves as if it
doesn’t perfect-resolve, by S has two members in settings of resolving
as if these vertices aren’t unique in the terms of resolving since some
vertices are resolved by both of them and adding them to intended
growing set is useless. Thus, by Proposition , S has either
O(CYC) or O(CYC) —1;

all perfect-resolving sets corresponded to perfect-resolving number
are

{n17n27n37n47n5}3 {nlan27n37n47n6}7 {n17n27n37n5a TLG},

{nlanQan47n5,n6}7 {nlan3an4an5an6}7 {n27n37n47n57n6}a

For given vertices n and n’ if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number
of edges amid two vertices. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertices n and n’ in V'\ S, there’s
only one neutrosophic vertex s in S such that s perfect-resolves n and
n’, then the set of neutrosophic vertices, S is called perfect-resolving
set. The minimum cardinality between all perfect-resolving sets is
called perfect-resolving number and it’s denoted by P(CYC) =5
and corresponded to perfect-resolving sets are

{n17n27n37n47n5}a {n1,n2,n3,n4,n6}7 {n17n27n37n57n6}7

{n1,na,m4,m5,n6}, {n1, 13,14, 15, 6 }, {12, 113, N4y M5, M6 )5
there are seven perfect-resolving sets

{nlan27n3,n4an5};{nlanZanBan4an6}7{n17n27n37n57n6}7
{nlvn27n47n5an6}u{n17n37n47n57n6}7{n27n37n47n57n6}7
{n17n27n3an4an5’n6}a

as if it’s possible to have one of them as a set corresponded to

neutrosophic perfect-resolving number so as neutrosophic cardinality
is characteristic;

there are six perfect-resolving sets

{'I’Ll, N2, N3, N4, n5}; {nla n2,Nn3, N4, n6}7 {n17 n2, N3, N5, 716},
{nla n2, N4, N5, nG}a {nlv n3,ng,Ns, n6}7 {n27 n3, N4, N5, nﬁ}a
corresponded to perfect-resolving number as if there’s one perfect-

resolving set corresponded to neutrosophic perfect-resolving number
so as neutrosophic cardinality is the determiner;
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(vi)

all perfect-resolving sets corresponded to perfect-resolving number
are {n1} and {ng}. For given vertices n and n’ if d(s,n) # d(s,n’),
then s perfect-resolves n and n’ where s is the unique vertex and
d is minimum number of edges amid two vertices. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n' in V \ S, there’s only one neutrosophic vertex s in S
such that s perfect-resolves n and n/, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum neutrosophic
cardinality between all perfect-resolving sets is called neutrosophic
perfect-resolving number and it’s denoted by P,(CYC) = 6 and
corresponded to perfect-resolving sets are {ni,ns, nqg, n5,ng}.

(b) In Figure (2.66), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i)
(i)

(ii)

(iv)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, two vertices couldn’t be resolved by more
than one vertex so as the structure of resolving and perfect-resolving
are different in the terms of sets. In the setting of cycle, a vertex
of resolving set corresponded to resolving number resolves as if it
doesn’t perfect-resolve, by S has two members in settings of resolving
as if these vertices aren’t unique in the terms of resolving since some
vertices are resolved by both of them and adding them to intended
growing set is useless. Thus, by Proposition , S has either
O(CYC) or O(CYC) — 1;

all perfect-resolving sets corresponded to perfect-resolving number
are

{n1,n2,n3,n4}, {n1,n2,n3,n5}, {n1, 12,14, M5},

{n1,n3,n4,n5}, {n2,n3, 04,05},
For given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number
of edges amid two vertices. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertices n and n’ in V' \ S, there’s
only one neutrosophic vertex s in .S such that s perfect-resolves n and
n', then the set of neutrosophic vertices, S is called perfect-resolving
set. The minimum cardinality between all perfect-resolving sets is
called perfect-resolving number and it’s denoted by P(CYC) = 4
and corresponded to perfect-resolving sets are

{n17n27n37n4}7 {nla ng,n3, n5}7 {nlvn27n47n5}7

{n1,n3,n4,n5}, {n2, n3,m4,n5};
there are six perfect-resolving sets

{nla ng,ns, n4}a {n17n27n37n5}, {’I’L]_, N2, M4, ’I’L5},

{nla n3,ny, n5}7 {77,2777,3777,4777,5}, {nla n27n37n47n5}7
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11(0.2,0.1,0.6)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n4(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.65: A Neutrosophic Graph in the Viewpoint of its perfect-resolving
number and its neutrosophic perfect-resolving number.

as if it’s possible to have one of them as a set corresponded to
neutrosophic perfect-resolving number so as neutrosophic cardinality
is characteristic;

there are five perfect-resolving sets

{n17n27n37n4}3 {nlan27n37n5}7 {n17n27n47n5}a

{n17n37n47n5}7 {nQan3an4an5}7

corresponded to perfect-resolving number as if there’s one perfect-
resolving set corresponded to neutrosophic perfect-resolving number
so as neutrosophic cardinality is the determiner;

all perfect-resolving sets corresponded to perfect-resolving number
are

{n17n2,n3an4}; {nlanQanBan5}7 {n17n27n47n5}7

{n17n37n47n5}a {712,713,714,715}7

For given vertices n and n' if d(s,n) # d(s,n’), then s perfect-resolves
n and n’ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n’ in V'\ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n’,
then the set of neutrosophic vertices, S is called perfect-resolving set.
The minimum neutrosophic cardinality between all perfect-resolving
sets is called neutrosophic perfect-resolving number and it’s denoted
by Pn(CYC) = 6.6 and corresponded to perfect-resolving sets are
{TLl, o, Ny, 7’L5}.

Definition 2.5.127. (total-dominating numbers).
Let NTG : (V, E, o, ) be a neutrosophic graph. Then

(1) for given vertex n, if sn € E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
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n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 2.66: A Neutrosophic Graph in the Viewpoint of its perfect-resolving
number and its neutrosophic perfect-resolving number.

called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
set. The minimum cardinality between all total-dominating sets is called
total-dominating number and it’s denoted by T(NTG);

(73) for given vertex m, if sn € E, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum neutrosophic cardinality between all total-dominating sets is
called neutrosophic total-dominating number and it’s denoted by
Tn(NTG).

For convenient usages, the word neutrosophic which is used in previous

definition, won’t be used, usually.

Proposition 2.5.128. Let NTG : (V,E,o0,u) be a neutrosophic graph. Then
S| > 2.

Proposition 2.5.129. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

3
T.(CYC) = min oi().
ISI=(DI <L)+ fegima

Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, T2, ", LOCYC)-1:TO(CYC)> L1

be a cycle-neutrosophic graph CY C : (V, E, o, 1). In the setting of cycle, a vertex
of dominating set corresponded to dominating number dominates as if it doesn’t
total-dominate since a vertex couldn’t dominate itself. Thus two neighbors
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are necessary in S. All total-dominating sets corresponded to total-dominating
number are

{nlanQan57n67n97n10 e ~}, {n27 ns, ne, N7, n10,M11 - - ~}; {n2a ng, N4, N7, Ng, - -

3

{.. y NO(CY C)—10, NO(CY C)—9,0(CY C)—6, NO(CYC)—5: NO(CYC)—25 nO(CYC)—l}

{- yRO(CY C)—9: MO (CY C)—-8,0(CYC)—5, NO(CYC)—4>O(CYC)—13 nO(CYC)}~

For given vertex n, if sn € E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then the
set of neutrosophic vertices, S is called total-dominating set. The minimum
neutrosophic cardinality between all total-dominating sets is called neutrosophic
total-dominating number and it’s denoted by

3
T.(CYC) = min o;(x)
\S\:u)rwmwnxesg

and corresponded to total-dominating sets are

{n17n27n57n67n97n10 .- '}7 {nQa ng, e, 1z, 1o, 11 - - '}5 {n23n3an4an7an8a <.

{-- - noEY)=10: NO(CY C)—9,0(CY C) =65 NO(CY C) 55 NO(CY C)—25 NO(CY C)—

{ yO(CY C)—9, NO(CYC)—8,0(CYC)—5NO(CYC)—4O(CYC)—1) HO(CYC)}

Thus s
To(CYC) = min oi(z).
|S\:<L>r%m><+1>m§;

Proposition 2.5.130. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then total-dominating number isn’t equal to dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.131. There are two sections for clarifications.

(a) In Figure (2.67)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;
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(i)

(iid)

(iv)

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself. Thus two neighbors are necessary in
S5
all total-dominating sets corresponded to total-dominating number
are
{nh n2,ns, 7’L6}, {nQa ns3, ne, n1}7 {’I’L37 N4, N1, ’I’LQ},
{n37 Ny, N5, nﬁ}’ {Tl4, N5, N2, 77,3}, {7’L47 Ny, Ny, n6}7
{nlv n2,M4, n5}7 {n27 ns,ns, nﬁ}’ {7137 N4, Mg, n1}7
For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V, there’s at least a neutrosophic vertex s in S such that s
total-dominates n, then the set of neutrosophic vertices, S is called
total-dominating set. The minimum cardinality between all total-
dominating sets is called total-dominating number and it’s denoted
by T(CYC) = 4 and corresponded to total-dominating sets are
{n1,n2,n5,n6}, {n2, n3,n6, n1}, {n3, na, n1,n2t,
{n3,na,n5,m6}, {na, n5,n2,n3}, {n4, 15,11, M6},
{n1,n2,n4,m5}, {n2,n3, 15,16}, {N3, N4, 16, M1 };5
there are sixteen total-dominating sets

{711,712,7157716},{nz,ns,nﬁ,m},{71377"&477”&17”2},
{n3,na,m5,m6}, {n4, 15, 12,3}, {n4, 15,11, M6},
{n1,n2,m4,n5}, {n2, n3, ns5, 6}, {n3, 14, 16,01},
{n1,n9,n3,n5,n6}, {N1,n2, n4, n5, 06}, {N1,n2, n3, N4, N5, M6},
{ne,n2,n3,n4,n5}, {ne, n1,n3, 14, 15}, {16, 1, N2, M3, N4 },
{ns,n1,n9,m3, M4},

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-dominating number so as neutrosophic cardinality
is characteristic;

there are nine total-dominating sets

{71177”&277”&577”&6},{n2,n3,n6,n1},{7137”47”17”2},

{ns,na,n5,n6}, {na,n5,n2, 13}, {4, 15,11, M6 1},

{n1,na,n4,n5}, {n2, n3, ns,n6}, {n3, 14, 6,1},
corresponded to total-dominating number as if there’s one total-

dominating set corresponded to neutrosophic total-dominating
number so as neutrosophic cardinality is the determiner;

all total-dominating sets corresponded to total-dominating number
are

{nh n2, N5, nG}y {nZa ns3, ne, nl}a {’I’Lg, Ng,MN1, TLQ},

{n?n N4, N5, 716}', {’I’L4, N5, N2, ’I’L3}, {n47 N5, N1, nG},

{n17n27n47n5}7 {nQa ns,ns, n6}7 {n37n47n67n1}7
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For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V, there’s at least a neutrosophic vertex s in .S such that s total-
dominates n, then the set of neutrosophic vertices, S is called total-
dominating set. The minimum neutrosophic cardinality between
all total-dominating sets is called neutrosophic total-dominating
number and it’s denoted by 7,(CYC) = 4.1 and corresponded to
total-dominating sets are

{714,715,711,716}

(b) In Figure (2.68]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself. Thus two neighbors are necessary in
S;

all total-dominating sets corresponded to total-dominating number
are

{nlan27n5}7 {n2,7’l3,7’l1}, {713,714,712},

{n4,n5,n3}, {7157”17”4}7

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V| there’s at least a neutrosophic vertex s in S such that s
total-dominates n, then the set of neutrosophic vertices, S is called
total-dominating set. The minimum cardinality between all total-
dominating sets is called total-dominating number and it’s denoted
by T(CYC) = 3 and corresponded to total-dominating sets are

{n17n27n5}7 {n2,n3,n1}7 {n37n47n2}?

{na, s, na}, {ns, na1, nal;
there are eleven total-dominating sets

{’I’L]_,’I’LQ,TL5},{7’7/2,7’7/3,7’7/1},{713,714,712},
{n4,n5,n3},{n5,n1,n4}7{nl,ng,n3,n4},
{nl,ng,ng,n5},{nl,ng,n4,n5},{nl,ng,n4,n5},
{n27n37n’47n‘5}7{nlan23n3an47n5}7

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-dominating number so as neutrosophic cardinality
is characteristic;



2.5. Setting of notion neutrosophic-number

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7, 0.6)

(0.2,0.1,0.6)

11(0.2,0.1,0.6)
712(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.67: A Neutrosophic Graph in the Viewpoint of its total-dominating

number and its neutrosophic total-dominating number. 85NTG5

(v) there are five total-dominating sets

{n17n27n5}7 {’I’LQ, ns, nl}a {n37n47n2}7

{n4,ns,n3}, {ns,n1,nsa},

corresponded to total-dominating number as if there’s one total-
dominating set corresponded to neutrosophic total-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all total-dominating sets corresponded to total-dominating number
are

{n17n27n5}7 {712, ns, n1}7 {’I’L37’I’L47’I’L2},

{n4,ns,n3}, {ns,n1,n4},

For given vertex n, if sn € E, then s total-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V| there’s at least a neutrosophic vertex s in .S such that s total-
dominates n, then the set of neutrosophic vertices, S is called total-
dominating set. The minimum neutrosophic cardinality between
all total-dominating sets is called neutrosophic total-dominating
number and it’s denoted by 7,(CYC) = 4.2 and corresponded to
total-dominating sets are

{nhnzﬂls}-

Definition 2.5.132. (total-resolving numbers).
Let NTG : (V,E,o, 1) be a neutrosophic graph. Then

(i) for given vertices n and n’ if d(s,n) # d(s,n’), then s total-resolves n and
n' where d is minimum number of edges amid two vertices, d > 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d > 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
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2. Neutrosophic Tools

n1(0.5,0.5,0.4)

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6,0.6)

Figure 2.68: A Neutrosophic Graph in the Viewpoint of its total-dominating
number and its neutrosophic total-dominating number.

(i)

pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n’ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n/, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum cardinality between all
total-resolving sets is called total-resolving number and it’s denoted

by T(NTG);

for given vertices n and n' if d(s,n) # d(s,n’), then s total-resolves n and
n’ where d is minimum number of edges amid two vertices, d > 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d > 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n’ in V| there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n/, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum neutrosophic cardinality
between all total-resolving sets is called neutrosophic total-resolving
number and it’s denoted by 7,(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.133. Let NTG : (V,E,o0,u) be a neutrosophic graph. Then
|S| > 2.

Proposition 2.5.134. Let NTG : (V, E, o0, 1) be a neutrosophic graph. Then if

there are twin vertices then total-resolving set and total-resolving number are
Not Ezisted.

Proposition 2.5.135. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
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where O(CYC) >3 and d > 0. Then

3

> (oi(@) + oi(y))-

1=

T(CYC) =

min
z,yeV, x,y aren’t antipodal.
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Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, L2, , LOCYC)-1:LOCYC)s L1

be a cycle-neutrosophic graph CYC : (V, E,o0,1). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
total-resolve since a vertex couldn’t resolve itself. Thus two [minus antipodal
pairs| vertices are necessary in S. All total-resolving sets corresponded to
total-resolving number are [minus antipodal pairs]

{711, 712}, {nh n3}7 {7117 714}, Sy {nh TLO(PTH)&}» {nh nO(PTH)A}’ {nh nO(PTH)}a
{na,n3}, {n2,na}, {n2,ns},..., {ne, n(’)(PTH)—2}7 {na, nO(PTH)—l}a {na, nO(PTH)};
{n3,na}, {na,ns}, {na,ne}, ..., {n2, nO(PTH)—2}a {na, nO(PTH)—l}a {na, nO(PTH)}a

{nO(PTH)—37 n(’)(PTH)—Q}u {n(’)(PTH)—Sa n(’)(PTH)—l}a {n(’)(PTH)—37 n(’)(PTH)}»
{nO(PTH)—27 nO(PTH)—l}; {nO(PTH)—Za nO(PTH)}>

{NO(PTH)A, nO(PTH)}

For given vertex n, if sn € FE, then s total-resolves n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at least
a neutrosophic vertex s in S such that s total-resolves n, then the set of
neutrosophic vertices, S is called total-resolving set. The minimum cardinality
between all total-resolving sets is called total-resolving number and it’s denoted
by T(CYC) =2 and corresponded to total-resolving sets are [minus antipodal
pairs|

{711, 712}, {nh n3}7 {7117 714}7 Sy {nh nO(PTH)72}7 {?117 ﬂO(PTH)A}y {nh nO(PTH)}a
{n2,n3}, {n2,na}, {n2,ns},..., {na, nO(PTH)—2}7 {na, nO(PTH)—l}a {na, nO(PTH)}a
{nz,na},{n2,ns}, {n2,ne}, ..., {na, nO(PTH)—2}a {na, nO(PTH)—l}a {na, nO(PTH)}a

{nO(PTH)—37 n(’)(PTH)—Q}a {nO(PTH)—Sa nO(PTH)—l}a {n(’)(PTH)—37 nO(PTH)}»
{nO(PTH)—27 nO(PTH)—l}; {nO(PTH)—Za nO(PTH)}>
{nO(PTH)fhnO(PTH)}
Thus
T(CYC)=2.
|
Proposition 2.5.136. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph

where d > 0. Then total-resolving number is equal to resolving number.

Antipodal vertices in even-cycle-neutrosophic graph differ the number in
cycle-neutrosophic graph.

Proposition 2.5.137. Let NTG : (V, E, 0, 1) be an odd-cycle-neutrosophic graph
where d > 0. Then the number of total-resolving sets corresponded to total-
resolving number is equal to O(CY C) choose two.
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Proposition 2.5.138. Let NTG : (V,E,o,u) be an odd-cycle-neutrosophic
graph where d > 0. Then the number of total-resolving sets is equal to
20(CYC) _ o(0Y ) — 1.

We’ve to eliminate antipodal vertices due to total-resolving implies complete
resolving.

Proposition 2.5.139. Let NTG : (V,E,o,u) be an even-cycle-neutrosophic
graph where d > 0. Then the number of total-resolving sets corresponded to total-
resolving number is equal to O(CY C) choose two after that minus O(CYC).

Proposition 2.5.140. Let NTG : (V,E,o,u) be an even-cycle-neutrosophic

graph where d > 0. Then the number of total-resolving sets is equal to
20(EYC) _20(CYC) — 1.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.141. There are two sections for clarifications.

(a) In Figure (2.69)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(74) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve since a vertex
couldn’t resolve itself. Thus two [minus antipodal pairs| vertices are
necessary in .S. Antipodal pairs are

{n17n4}7 {n27n5}a {n?nnﬁ};

(#i7) all total-resolving sets corresponded to total-resolving number are
[minus antipodal pairs]

{nla n?}a {nlv n3}7 {nlv TL4},

{n17 TL5}, {n27 TL3}7 {n27 TL4},

{712, n5}7 {n?n n4}7 {713, n5}7

{n4,n5}, e
For given vertex n, if sn € E, then s total-resolves n. Let .S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is
called total-resolving number and it’s denoted by T(CYC) = 2 and
corresponded to total-resolving sets are [minus antipodal pairs]

{nla n?}a {nh 713}7 {nlv TL4},

296



2.5. Setting of notion neutrosophic-number

(iv)

(vi)

{n1,n5}, {n2,n3}, {n2,na},
{na,ns}, {n3,na}, {n3,ns},

{n4,n5}, ey
there are fifty-seven [minus antipodal pairs| total-resolving sets

{n1,na}, {n1,na}, {n1,na},
{n1,ns}, {n2, na}, {n2,na},
{n2,n5}, {n3,na}, {n3,ns},
{n4,ns}, {n1,n2,n3}, {n1,ne,na},
{n1,n2,n5}, {n1,n3,n4}, {n1,n3,n5},
{n1,n4,n5}, {n2, n3, na}, {n2,n3,n5},
{n2,n4,n5}, {n3,n4,n5}, {n1,n2, n3,n4},
{n1,n9,n3,n5},{n1,n2,n4,n5}, {n1,n3, 14,05},
{na2,ng,ng,ns}, {n1,n2,n3,n4,n5}, ...

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-resolving number so as neutrosophic cardinality
is characteristic;

there are fifteen [minus antipodal pairs] total-resolving sets

{nh TLQ}', {nla n3}a {nh n4},
{nlv ’17,5}, {nQa n3}7 {77,27 77,4},
{n2,ns}, {ns, na}, {ns,ns},
{7’?,4,715}, B
corresponded to total-resolving number as if there’s one total-

resolving set corresponded to neutrosophic total-resolving number
so as neutrosophic cardinality is the determiner;

all total-resolving sets corresponded to total-resolving number are
[minus antipodal pairs]

{7’2;1,7’2;2}, {nla n3}a {7117714},
{7’7/1,7’7/5}, {nQ; n3}a {n27n4}7
{n27n5}7 {nSa n4}7 {n37n5}7

{n4,n5}, e

For given vertex n, if sn € E, then s total-resolves n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving set.
The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted
by 7,(CYC) = 1.3 and corresponded to total-resolving sets are

{nhng,}.
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(b) In Figure (2.70), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(1) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(74) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve since a vertex
couldn’t resolve itself. Thus two vertices are necessary in S/

(#i7) all total-resolving sets corresponded to total-resolving number are

{n17 n2}a {nla n3}7 {n17 n4}7

{nla n5}; {nQa 7’L3}7 ‘{TLQ, n4}7

{n27 n5}? {713, 714}7 {n37 n5}a

{na,ns}.
For given vertex n, if sn € E, then s total-resolves n. Let .S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is

called total-resolving number and it’s denoted by T(CYC) = 2 and
corresponded to total-resolving sets are

{nlanQ}; {nlan3}7 {N1,7'L4},
{nla n5}a {712, 713}7 {n27 TL4},
{n2,ns}, {ns, na}, {ns, ns},

{n47 n5}7
(iv) there are twenty-six total-resolving sets

{n1,n2}, {n1,n3}, {n1, naj,
{n1,ns}, {n2,na}, {n2, na},
{n27n5}1{n37n4}7{n37n5}1
{n4,ns}, {n1,ne,ns}, {n1,na,ng},
{nl,ng,ng,},{nl,ng,n4},{n1,n3,n5},
{n1,n4,n5}, {n2,n3, 14}, {n2,n3,n5},
{na,n4,ns5},{ns, na,ns}, {n1,ne, n3, na},
{n1,n2,n3,n5}, {n1,n2, n4,ns},{ni, ns, ng, ns},
{n2,n3, 4,5}, {n1,n2,n3, M4, 15},

as if it’s possible to have one of them as a set corresponded to

neutrosophic total-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are ten total-resolving sets
{nla n?}a {nh 713}7 {nlv TL4},
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) o \
/ ng(0.2,0.7, 0.6)

(0.2,0.1,0.6)

11(0.2,0.1,0.6)
712(0.2,0.2,0.9)

(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.69: A Neutrosophic Graph in the Viewpoint of its total-resolving

number and its neutrosophic total-resolving number. \ 86NTG5

{n17n5}7 {712, n3}a {’I’L27’I’L4},
{n27n5}7 {n3a 7'L4}, {’I’L37’I’L5},

{na, ns},

corresponded to total-resolving number as if there’s one total-
resolving set corresponded to neutrosophic total-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all total-resolving sets corresponded to total-resolving number are

{n17n2}7 {nla n3}a {n17n4}7
{’I’L17’I’L5}, {nZa 713}, {’I’L27’I’L4},
{TLQ,TL5}, {n3a n4}7 {7?,3,7?,5},

{na4,ns}.

For given vertex n, if sn € E, then s total-resolves n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-resolves
n, then the set of neutrosophic vertices, S is called total-resolving set.
The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted
by 7,(CYC) = 2.7 and corresponded to total-resolving sets are

{n1,ns}.

Definition 2.5.142. (stable-dominating numbers).
Let NTG : (V,E,0,u) be a neutrosophic graph. Then

(i) for given vertex n, if sn € F, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V' \ S,
there’s at least a neutrosophic vertex s in .S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
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2. Neutrosophic Tools

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6,0.6)

Figure 2.70: A Neutrosophic Graph in the Viewpoint of its total-resolving
number and its neutrosophic total-resolving number.

then the set of neutrosophic vertices, S is called stable-dominating set.

The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(NTG);

(73) for given vertex m, if sn € E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V'\ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The
minimum neutrosophic cardinality between all stable-dominating sets is
called neutrosophic stable-dominating number and it’s denoted by
S,(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.143. Let NTG : (V, E, o, u) be a neutrosophic graph. Assume
|S| has one member. Then

(1) a vertex dominates if and only if it stable-dominates;
(i) S is dominating set if and only if it’s stable-dominating set;

(#i1) a number is dominating number if and only if it’s stable-dominating
number.

Proposition 2.5.144. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then S
is stable-dominating set corresponded to stable-dominating number if and only
if for every neutrosophic vertex s in S, there’s at least a neutrosophic vertexr n
in V\'S such that {s' € S | s'n € E} = {s}.

Proposition 2.5.145. Let NTG : (V, E, o, 1) be a neutrosophic graph. Then V
isn’t S.

Proposition 2.5.146. Let NTG : (V,E,o0,u) be a neutrosophic graph. Then
stable-dominating number is between one and O(NTG) — 1.
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Proposition 2.5.147. Let NTG : (V,E,o,u) be a neutrosophic gmph Then
stable-dominating number is between one and O,(NTG) — mingey Z _, 0i(z).

Proposition 2.5.148. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

S, (CYC) = mm oi(x
Proof. Suppose CYC' : (V, E, o, ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from = to y. Let

L1, T2, ", TOCYC)-1-TOCYC), L

be a cycle-neutrosophic graph CYC : (V, E,o,u). In the setting of cycle, a
vertex of dominating set corresponded to dominating number dominates if and
only if it stable-dominates since a vertex dominates neighbors thus in S, there
aren’t any neighbors and all vertices are neighborless in S. All stable-dominating
sets corresponded to stable-dominating number are

{nla Na, N7y -y nO(CYC)747nO(CYC)71}7

{n2,n5,n8, ... yRO(CY C)—45 no(cyc)—1}7

For given vertex n, if sn € E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in 1\ S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

SiCYO) = mino Z;ZU
x K3
and corresponded to stable-dominating sets are

{n1,n4,m7,... yNO(CY C)—45 nO(CYC)—l}v
{712, N5, Mgy -+ -, NOCYC)—45 nO(CYC)71}7

Thus
SCYO) = min,., > ot

IS1= zeS i=1
|

Proposition 2.5.149. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then stable-dominating number is equal to dominating number.
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2. Neutrosophic Tools

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.150. There are two sections for clarifications.

(a) In Figure (2.71), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)
(i)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S}

all stable-dominating sets corresponded to stable-dominating number
are

{n1,na}, {n2,ns}, {ns, ne}-

For given vertex n, if sn € E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
nin V' \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in .S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CYC) = 2; and corresponded to stable-dominating
sets are

{nla n4}7 {n27 n5}a {n37 nﬁ}’
there are five stable-dominating sets

{nla TL4}, {n27 7’L5}7 {n37 nG}a
{n17 ns, TL5}, {n27 Ny, n6}7
as if it’s possible to have one of them as a set corresponded

to mneutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

there are three stable-dominating setsc

{n17n4}7 {712,715}, {n37n6}7

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;



2.5. Setting of notion neutrosophic-number

(vi)

all stable-dominating sets corresponded to stable-dominating number
are

{nl, n4}, {Tlg,’rlg,}, {ng, nﬁ}.

For given vertex n, if sn € E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by S, (CYC) = 2.2; and corresponded to
stable-dominating sets are

{ni,n4}.

(b) In Figure (2.72), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
(i)

(iid)

(iid)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t stable-dominate since
a vertex couldn’t dominate itself. Thus two vertices are necessary in
S5

in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S}

all stable-dominating sets corresponded to stable-dominating number
are

{n17n4}7 {TLQ, n4}a {TL27'I’L5},

{7’7/1,7’7/3}, {TL5, TL3},

For given vertex n, if sn € E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V'\ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CYC) = 2; and corresponded to stable-dominating
sets are

{n17n4}’7 {nQ; n4}a {n27n5}7

{nlvnS}v {n5, ns};

303



2. Neutrosophic Tools

(iv) there are five stable-dominating sets

{m, n4}, {7127 714}7 {nz» n5},

{n1,ns}, {ns, ns},

as if it’s possible to have one of them as a set corresponded
to mneutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are five stable-dominating sets

{nla TL4}, {7127 714}7 {n27 TL5},

{n1,n3}, {ns, ns},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{nlanél}; {nQan4}7 {TLQ,TL{)},

{n1,n3},{ns,n3},

For given vertex n, if sn € E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V'\ S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in .S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by S,,(CYC) = 2.8; and corresponded to
stable-dominating sets are

{TLQ,TL5}.

Definition 2.5.151. (stable-resolving numbers).
Let NTG : (V,E, 0, 1) be a neutrosophic graph. Then

(4)

for given vertices n and n/, if d(s,n) # d(s,n’), then s stable-resolves n
and n’. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n', in V' \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n’ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted
by S(NTG);

for given vertices n and n', if d(s,n) # d(s,n’), then s stable-resolves n
and n’. Let S be a set of neutrosophic vertices [a vertex alongside triple
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)
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Figure 2.71: A Neutrosophic Graph in the Viewpoint of its stable-dominating

number and its neutrosophic stable-dominating number. 87NTG5

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n2(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4, 0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6,0.6)

Figure 2.72: A Neutrosophic Graph in the Viewpoint of its stable-dominating

number and its neutrosophic stable-dominating number. \ 87NTG6

pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n/, in V' \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n’ where for all given two vertices in S,
there’s no edge between them, then the set of neutrosophic vertices, S is
called neutrosophic stable-resolving set. The minimum neutrosophic
cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by S,,(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

88prp9 ‘ Proposition 2.5.152. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Assume

|S| has one member. Then
(i) a vertez resolves if and only if it stable-resolves;
(i) S is resolving set if and only if it’s stable-resolving set;
(ii7) a number is resolving number if and only if it’s stable-resolving number.
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Proposition 2.5.153. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then S
1s stable-resolving set corresponded to stable-resolving number if and only if for

every neutrosophic vertex s in S, there are at least neutrosophic vertices n and
n' in V\ S such that {s' € S | d(s',n) # d(s',n')} = {s}.

Proposition 2.5.154. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then V
isn’t S.

Proposition 2.5.155. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph
where O(CYC) > 3. Then

3 3

Sn (CYC) - miIl{Z g; (n1)+z g; (nj)}n, and nj; are neither antipodal nor neighbor -

i=1 i=1

Proof. Suppose CYC' : (V, E, 0, 1) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from z to y. Let

ni, N2, -, NOCYC)-1,NOCYC), N1

be a cycle-neutrosophic graph CYC : (V, E, o, u). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
stable-resolve since two neighbors aren’t allowed in the setting of stable-resolving.
All stable-resolving sets corresponded to stable-resolving number are

{nl, 713}7 {711» 714}7 sy {nh no(CYC)fs}a {nh no(cyc)—2}7 {nh no(cyc)—1}7
{n2,na}, {n1,ns}, ..., {n2, nocyey—2}, {1n2; nocyey-1}, {n2; nocy ey }
{n37 n5}7 {TL3, nﬁ}a R {n37 nO(CYC)—Q}? {n37 nO(CYC)—l}? {n37 nO(CYC)}a

{n(’)(CYC)—Sa n(’)(CYC)—2}» {no(cyc)—37 nO(CYC)—1}7 {no(cyc)—?ﬂ no(cyc)]n
{nO(CYC)—Q; nO(CYC)—l}, {nO(CYC)—Zv nocycC) }
{nO(CYC)72a nO(CYC)}~

For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves n and n'.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n’, in
V'\ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n’ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

3 3
Sn (CYC) = mln{z g; (n1)+z g; (nj)}n, and nj; are neither antipodal nor neighbor 5
i=1

i=1

and corresponded to stable-resolving sets are

{n1,n3},{n1,nat, ..., {n1, n(’)(CYC)—S}v {n1, n(’)(CYC)—Q}a {n1, TlO(cyc)—l},
{na,na}, {n1,ns},... . {n2,no@cvoy-2}, {n2; nocyey-1}, {n2, noccvey b
{n37 n5}'7 ‘{’I’Lg, n6}7 ey {n?n nO(CYC)72}’ {’I’L37 nO(CYC)71}7 ‘{’I’Lg, nO(CYC)}a
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{nO(CYC’)—:}a nO(CYC)—2}v {nO(CYC)—Sa nO(CYC’)—l}a {nO(CYC)—3, nO(CYC)}a
{nO(CYC)f% TLO(CYC)A}v {nO(CYC)f% nO(CYC)}7
{nO(cycy% noCcyC) b

Thus

3 3
Sn(CYC) = mln{z g; (nz)+z 0; (n])}’ﬂl and n; are neither antipodal nor neighbor -

i=1 i=1

Proposition 2.5.156. Let NTG : (V,E,o,u) be a cycle-neutrosophic graph.
Then stable-resolving number is equal to resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.5.157. There are two sections for clarifications.

(a) In Figure (2.73)), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(7i) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

(7i7) all stable-resolving sets corresponded to stable-resolving number are

{n1,n3},{n1,ns5}, {n2,na},

{na,ng}.

For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves
n and n/. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n’, in V'\ S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n’ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CYC) = 2; and corresponded to
stable-resolving sets are

{n17n3}7 {nla n5}a {n27n4}7

{na,ne};
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(iv)

there are six stable-resolving sets

{nlan3}7 {n17n5}a {TLQ,TL4},
{n2an6}7 {n17n37n5}7 {n27n47n6}7

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

there are four stable-resolving sets

{n1,n3}, {n1,ns}, {n2,n4a},

{n2,n6}

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

all stable-resolving sets corresponded to stable-resolving number are

{n1,n3}, {n1,ns}, {n2,n4a},

{na,ng}.

For given vertices n and n/, if d(s,n) # d(s,n’), then s stable-
resolves n and n'. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n’, in V'\ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n/
where for all given two vertices in .S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by S,(CYC) = 1.3; and corresponded to stable-resolving sets are

{n1,ns}.

(b) In Figure (2.74]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.
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(4)

For given neutrosophic vertex, s, there are only two paths with other
vertices;

in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

all stable-resolving sets corresponded to stable-resolving number are

{n17 n3}; {nla 7’L4}7 {TLQ, n4}a
{TLQ, TL5}.
For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-resolves

n and n'. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
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neutrosophic vertices n and n’, in V'\ S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n’ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CYC) = 2; and corresponded to
stable-resolving sets are

{n17n3}7 {Tl/l, n4}a {n27n4}7
{n2,ns};

(iv) there are four stable-resolving sets

{nh n3}> {nla n4}7 {’I’L27 ’I’L4},
{7?,2,7?/5},
as if it’s possible to have one of them as a set corresponded to

neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are four stable-resolving sets

{n17n3}7 {nla n4}7 {n27n4}7

{77'27”5};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1,na}, {n1,na}, {n2,na},
{na,ns}.

For given vertices n and n’, if d(s,n) # d(s,n’), then s stable-
resolves n and n'. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n’, in V' \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n’
where for all given two vertices in .S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by S, (CYC) = 2.8; and corresponded to stable-resolving sets are

{na,ns}.

2.6 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided
where the models are cycle-neutrosophic graph.
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
fU.l.U.l.U.Q]

n5(0.1,0.1,0.2)

Figure 2.73: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number.

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7, 0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

n1(0.5,0.5,0.4) (0.5,0.4,0.4)

n5(0.5,0.4,0.4)

fU.ﬁ.U.4.U.4]
n4(0.8,0.6,0.6)

Figure 2.74: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number.

2.7 Modelling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers

belong unit interval to state indeterminacy, possibilities and determinacy.

There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1)), clarifies about the
assigned numbers to these situations.
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Table 2.1: Scheduling concerns its Subjects and its Connections as a neutrosophic

graph in a Model. \ 88tbll
Sections of NT'GG ny Ty~ - - ns
Values (0.7,0.9,0.3) (0.4,0.2,0.8)--- (0.4,0.2,0.8)
Connections of NTG | E; FEy--- FEg
Values (0.4,0.2,0.3) (0.5,0.2,0.3)--- (0.3,0.2,0.3)

n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2,0.9] . - "
’ ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

11(0.2,0.1,0.6)

n4(0.2,0.2,0.9)
(0.1,0.1,0.2)

15(0.1,0.1,0.2)

Figure 2.75: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG5

n3(0.9,0.7,0.7)  (0.2,0.7,0.6) n5(0.2,0.7,0.6)

(0.8,0.6,0.6)

(0.2,0.5,0.4)

ny(0.5,0.5,0.4) (0.5,0.4, 0.4)

n5(0.5,0.4,0.4)
(0.5,0.4,0.4)

14(0.8,0.6, 0.6)

Figure 2.76: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG6

2.8 Case 1: cycle-neutrosophic Model

Step 4. (Solution) The neutrosophic graph model, propose to use specific
number. Every subject has connection with some subjects. Thus the
connection is applied as possible and the model demonstrates quasi-full
connections as quasi-possible. Using the notion of strong on the connection
amid subjects, causes the importance of subject goes in the highest level
such that the value amid two consecutive subjects, is determined by those
subjects. If the configuration is star, the number is different. Also, it holds
for other types such that complete, wheel, path, and cycle. The collection
of situations is another application when the notion of family is applied in
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the way that all members of family are from same classes of neutrosophic
graphs. As follows, there are five subjects which are represented as Figure
(2.75)). This model is strong and even more. And the study proposes using
specific number. There are also some analyses on other numbers in the
way that, the clarification is gained about being special number or not.
Also, in the last part, there is one neutrosophic number to assign to this
model and situation to compare them with same situations to get more

precise. Consider Figure (2.75). In Figure (2.75)), a cycle-neutrosophic
graph. is illustrated. Some points are represented in follow-up items as

follows.

(a) In Figure (2.75)), an even-cycle-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(4)

(i)

(iii)

If ny,n9 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s only a path and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of
this path implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have
cycle. So this neutrosophic path is neither a neutrosophic cycle
nor crisp cycle. The length of this path implies

ni, N2

is corresponded to neither girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if n1,ng, ng is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two
edges, nino and nong, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a
crisp cycle with at least two weakest edges. So this neutrosophic
path is either a neutrosophic cycle nor crisp cycle. The structure
of this neutrosophic path implies

ni,n2,ng

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if nq,n9,n3,n4 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there
are three edges, nine and nong, according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is either a neutrosophic cycle nor crisp cycle.
So adding points has to effect to find a crisp cycle. The structure
of this neutrosophic path implies

ni,n2,ng, Ny
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(vi)

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

if nq,ns,n3, n4,n5, ng, N1 is a sequence of consecutive vertices,
then it’s obvious that there’s one cycle. It’s also a path and there
are six edges, ning, nang, n3ng, nans, nsng and ngny, according
to corresponded neutrosophic path and it’s neutrosophic cycle
since it has two weakest edges, nyns and nsng with same values
(0.1,0.1,0.2). First step is to have at least one crisp cycle for
finding shortest cycle. Finding shortest cycle has one result.
Since there’s one cycle. Neutrosophic cycle is a crisp cycle with
at least two weakest edges. So this neutrosophic path is both
of a neutrosophic cycle and crisp cycle. So adding vertices has
effect on finding a crisp cycle. There are only two paths amid
two given vertices. The structure of this neutrosophic path
implies n1,no, N3, ng, ns5, ng, N1 is corresponded to both of girth
G(NTG) and neutrosophic girth G, (NTG);

6 is girth and its corresponded set is only {n1, n2, n3, ng, ns, ng, N1 };

8.1 = O(NTG) is neutrosophic girth and its corresponded set is
Ol’lly {n17 N2, M3, N4, N5, 16, nl}'

(b) In Figure (2.76]), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)

(iid)

If n1,ns is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s only a path and it’s only one edge
but it is neither crisp cycle nor neutrosophic cycle. The length of
this path implies there’s no cycle since if the length of a sequence
of consecutive vertices is at most 2, then it’s impossible to have
cycle. So this neutrosophic path is neither a neutrosophic cycle
nor crisp cycle. The length of this path implies

ni,ng

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1, no, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s no crisp cycle. It’s also a path and there are two
edges, n1no and nong, according to corresponded neutrosophic
path but it isn’t neutrosophic cycle. First step is to have at least
one crisp cycle for finding shortest cycle. Finding shortest cycle
has no result. Since there’s no cycle. Neutrosophic cycle is a
crisp cycle with at least two weakest edges. So this neutrosophic
path is either a neutrosophic cycle nor crisp cycle. The structure
of this neutrosophic path implies

ni,n2,n3

is corresponded neither to girth G(NTG) nor neutrosophic girth
Gn(NTG);

if n1,n9,n3,n4 is a sequence of consecutive vertices, then it’s
obvious that there’s no crisp cycle. It’s also a path and there
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are three edges, nine and mong, according to corresponded
neutrosophic path but it isn’t neutrosophic cycle. First step is to
have at least one crisp cycle for finding shortest cycle. Finding
shortest cycle has no result. Since there’s no cycle. Neutrosophic
cycle is a crisp cycle with at least two weakest edges. So this
neutrosophic path is either a neutrosophic cycle nor crisp cycle.
So adding points has to effect to find a crisp cycle. The structure
of this neutrosophic path implies

ni,N2,N3,M4

is corresponded neither to girth G(NT'G) nor neutrosophic girth
Gn(NTG);

(i) if ny,ne, n3, ng, s, np is a sequence of consecutive vertices, then
it’s obvious that there’s one cycle. It’s also a path and there
are five edges, nins, nang, ngng, nans and nsny, according to
corresponded neutrosophic path and it isn’t neutrosophic cycle
since it has only one weakest edge, nins, with value (0.2,0.5,0.4)
and not more. First step is to have at least one crisp cycle for
finding shortest cycle. Finding shortest cycle has one result.
Since there’s one cycle. Neutrosophic cycle is a crisp cycle with
at least two weakest edges. So this neutrosophic path is not a
neutrosophic cycle but it is a crisp cycle. So adding vertices has
effect on finding a crisp cycle. There are only two paths amid two
given vertices. The structure of this neutrosophic path implies
ny,na, N3, N4, N5, nq is corresponded to both of girth G(NTG)
and neutrosophic girth G, (NTG);

(v) b5 is girth and its corresponded set is only {ni,na, n3, n4, ns, n1 };

(vi) 8.5 = O(NTG) is neutrosophic girth and its corresponded set is
only {ni,na,n3, ng,ns,ny}.

2.9 Case 2: cycle-neutrosophic Model alongside its
Neutrosophic Graph

Step 4. (Solution) The neutrosophic graph as model, propose to use specific
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number. Every subject has connection with every given subject in deemed
way. Thus the connection applied as possible and the model demonstrates
full connections as possible between parts but with different view where
symmetry amid vertices and edges are the matters. Using the notion
of strong on the connection amid subjects, causes the importance of
subject goes in the highest level such that the value amid two consecutive
subjects, is determined by those subjects. If the configuration is complete
multipartite, the number is different. Also, it holds for other types such
that star, wheel, path, and cycle. The collection of situations is another
application when the notion of family is applied in the way that all
members of family are from same classes of neutrosophic graphs. As
follows, there are four subjects which are represented in the formation
of one model as Figure (2.77). This model is neutrosophic strong as
individual and even more. And the study proposes using specific number
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n3(0.1,0.9,0.9)  (0.1,0.5,0.8)

(0.1,0.2, 0.9) , o
' ng(0.2,0.7,0.6)

(0.2,0.1,0.6)

n1(0.2,0.1,0.6)
14(0.2,0.2,0.9)
f:[).l.[).l.[).?]

n5(0.1,0.1,0.2)

Figure 2.77: A Neutrosophic Graph in the Viewpoint of its joint-resolving

number and its neutrosophic joint-resolving number. \ 82NTG5

n3(0.9,0.7,0.7) (0.2,0.7,0.6) n2(0.2,0.7,0.6)

(0.8,0.6,0.6) (0.2,0.5,0.4)

ny(0.5,0.5,0.4)

(0.5,0.4,0.4)

n5(0.5,0.4,0.4)

(0.5,0.4,0.4)
n4(0.8,0.6, 0.6)

Figure 2.78: A Neutrosophic Graph in the Viewpoint of its joint-resolving

number and its neutrosophic joint-resolving number. \ 82NTG6

for this model. There are also some analyses on other numbers in the
way that, the clarification is gained about being special number or not.
Also, in the last part, there is one neutrosophic number to assign to these
models as individual. A model as a collection of situations to compare
them with another model as a collection of situations to get more precise.
Consider Figure . There is one section for clarifications.

(a) In Figure (2.77), an even-cycle-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, there are only two paths
between them;

(7i) one vertex only resolves some vertices as if not all if they aren’t
two neighbor vertices, then it only resolves some of all vertices
and if they aren’t two neighbor vertices, then they resolves all
vertices thus it implies the vertex joint-resolves as same as the
vertex resolves vertices in the setting of cycle, by joint-resolving
set corresponded to joint-resolving number has two neighbor
vertices;
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(#i1) all joint-resolving sets corresponded to joint-resolving number

are

{nla n2}a {n27 n3}7 {n?n n4}a

{Tl4, Tl5}, {TL5,TL6}, {TLG, Tl1}.

For given two vertices n and n/, if d(s,n) # d(s,n’), then s
joint-resolves n and n’ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S
be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{nla TLQ}, {n27 n3}7 {n?)a n4}7
{na,ns}, {ns,ne}, {ne, n1}.
For every neutrosophic vertices n and n’ in V' \ S, there’s only

one neutrosophic vertex in S such that joint-resolves n and n’,
then the set of neutrosophic vertices, S is either of

{nla n2}7 {77,2,77,3}, {n3) n4}7

{n4,ns5},{ns,n6}, {ne,n1}

is called joint-resolving set where for every two vertices in .5,
there’s a path in S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number
and it’s denoted by J(CYC) = 2;

(iv) there are ninety-one joint-resolving sets

{m, HQ}, {711,71277”&3}7 {774, naz, n4},

{n1,na, 5}, {n1,n2,n6}, {1, 12,13, 4}

{n1,na,ng,ns}, {n1,n2,n3, ne}, {n1, na, ng, s},
{n1,n2,n4,n6}, {n1,n2,n5,n6}, {n1,n2, 13,14, 15},

{Th, n2,ns, Ny, Tlﬁ}, {n17n27n37n57n6}, {m, nz,nq, N5, nﬁ},
{n1,na,n3,m4,n5,n6},

{ns,na}, {ns,na,n1}, {ns, na,ng},

{ns, naz, ns}, {7117712,”6}, {ns, nz,ni, n4}

{n3,na,n1,ms}, {n3, na, n1, e}, {ns, na, na, ns},
{n3,na,na, e}, {n3,n2, 5,6}, {n3, n2,n1, 04,15},
{ns,na,n1,n4,n6}, {n3,na,n1,n5,n6}, {N3, N2, n4, N5, M6},
{ns,na}, {ns,ng,n1}, {n3, na,no},

{n3,na,ns5}, {n1,n4,n6}, {n3, 14,01, 2}

{n3,na,n1,ms}, {ns, na,ni,net, {ns, na, n2,ns
{ns,nq4,na,ng}, {ns, na,ns,ng}, {ns, na,n1,na,ns},
{n3,na,m1,m2,n6}, {n3, 14, M1, 05, 16}, {13, M4, N2, M5, M6 },
{ns,na}, {ns,na,n1}, {ns, na, na},

{TL5, Ny, 7'L3}, {n17n47n6}7 {7'L5, Nng,N1, nZ}
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{ns,n4,n1,n3}, {ns,n4,n1,n6}, {ns5, n4,n2,n3},
{ns,n4,n9,n6}, {N5,n4,n3,n6}, {05, M4, n1,n2,n3},
{ns,na,m1,m2,n6}, {n5, 14,111, 13, 16 }, {15, M4, N2, M3, M6 },
{ns,n6},{ns,n6,n1}, {ns, 16, n2},
{ns,n6,n3}, {n1,n6, 04}, {n5,n6, 11,12}
{ns,ne,n1,n3}, {ns, ne, n1,n4}, {ns, 16, M2, M3},
{ns,n6, n2, na}, {ns, e, n3, na}, {ns, N6, n1, M2, M3},
{ns,ng, n1,na,ngt, {ns,n6,n1, 03,14}, {ns, ng, N2, N3, N4},
{n1,n6}, {n1,ne,ns}, {n1,ng,na},
{”17”6%5},{nl,nﬁ,n2}7{n17n67n3,n4}
{n1,n6,n3,n5}, {n1,n6, 13,02}, {n1, 16,14, 05},
{n1,n6,n4,n2},{n1,n6,n5,n2}, {N1, N6, N3, N4, N5 },
{n1,n6,n3,n4,n2}, {n1,n6,n3, n5,n2}, {n1,n6, 04, n5,n2},
as if it’s possible to have one of them as a set corresponded

to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

(v) there are ninety-one joint-resolving sets

{n1,n2}, {n1,ne,n3}, {n1,na,ng},

{7117”27”5}, {nl,nz,nﬁ}, {ﬂ17ﬂ2,ﬂ3,ﬂ4}

{n1,n2,n3,n5}, {n1,n2,n3,n6}, {n1, 12, 74, N5 },
{n1,n2,n4,n6},{n1,12,n5,n6}, {N1, M2, 13,14, 05},
{n1,n9,n3,n4,n6}, {n1,n2,n3,n5,n6}, {N1, N2, n4, 5,06},
{n1,n2,n3,n4, 15,06},

{ns,na}, {n3,n2,n1}, {n3,no,na},

{ng,nz,%}, {711,712,716}7 {ng,nQ,nl,n4}
{ns,na,n1,ns},{ns,na2,n1,ne}, {ns, n2,n4, ns},
{n3,n2,n4,n6},{n3,12,n5,n6 }, {N3, M2, 11,14, N5 },
{n3,n2,n1,n4,n6}, {n3, N2, 01,15, 16}, {n3, N2, N4, 15, N6 },
{ns,na}, {ns,ns,n1}, {ns,ng,na},

{”377147”5}, {711,714,”6}, {n37n4,n1,n2}
{n3,n4,n1,n5},{n3,n4,n1,n6}, {N3, 14, 12, M5 },
{n3,n4,m2,n6},{n3,14,15,06}, {N3, M4, 11, 12, N5},
{ns,nq4,n1,n2,ne}, {n3, na,n1,n5,n6}, {n3, N4, n2, n5,n6},
{ns,n4}, {ns,na,n1}, {ns,ng,na},

{ns,n4,n3}, {n1,n4,n6}, {n5,n4,n1,n2}

{ns,n4,n1,n3}, {ns,n4,n1,m6}, {5, 114, N2, N3},
{ns,n4,n9,n6}, {n5,n4,n3,n6}, {05, 04,01, N2, 03},
{ns,n4,n1, 12,16}, {n5,n4,n1,13, 16}, {n5, 4, M2, 13, 16 },
{ns,n6}, {ns, 16,11}, {n5,n6, M2},

{n57n67n3}a {n17n67n4}7 {n5an67n17n2}
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{ns,ne,n1,n3}, {ns,ne, n1,n4}, {ns, ne, na, n3},
{ns,ne,n2,n4}, {ns,n6, 13,04}, {ns5,n6, 11,02, n3},
{ns,n6, 11,2, 4}, {n5, 16,11, N3, M4}, {105, M6, N2, M3, M}
{n1,n¢}, {n1,ne,n3}, {n1,ne, na},

{n1,n6,n5}, {n1,m6,n2}, {n1,n6, 13,14}

{n1,n6,n3, 15}, {n1,n6,n3,n2}, {11, M6, 14,05},

{n1,n6, 4, n2}, {n1, 16,15, M2}, {n1, 16, 13,114, M5},

{nla ne, N3, N4, n2}7 {n17n67n37n57n2}7 {nla ne, N4, N5, n2}7

as if there’s one joint-resolving set corresponded to neutrosophic
joint-resolving number so as neutrosophic cardinality is the
determiner;

all joint-resolving sets corresponded to joint-resolving number
are

{nla TLQ}, {n27n3}7 {nSa n4}7

{n4,ns5},{ns,n6}, {ne,n1}.

For given two vertices n and n’, if d(s,n) # d(s,n), then s
joint-resolves n and n’ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S
be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{nl, n2}7 {n27 TLB}, {713, 714},

{na,ns},{ns,n6}, {ne,n1}.

For every neutrosophic vertices n and n’ in V'\ S, there’s only
one neutrosophic vertex in S such that joint-resolves n and n/,
then the set of neutrosophic vertices, S is either of

{nla ’I’LQ}, {n27 n3}7 {n?n ’I’L4},

{TL4, n5}7 {n57 nG}a {nGa nl}
is called joint-resolving set where for every two vertices in .S,
there’s a path in S amid them. The minimum neutrosophic

cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by

T (CYC) =1.7.

S is {n4,ns} corresponded to neutrosophic joint-resolving
number.

(b) In Figure (2.78)), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(4)
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For given two neutrosophic vertices, there are only two paths
between them;



2.9. Case 2: cycle-neutrosophic Model alongside its Neutrosophic Graph

(i)

(iid)

(iv)

one vertex only resolves some vertices as if not all if they aren’t
two neighbor vertices, then it only resolves some of all vertices
and if they aren’t two neighbor vertices, then they resolves all
vertices thus it implies the vertex joint-resolves as same as the
vertex resolves vertices in the setting of cycle, by joint-resolving
set corresponded to joint-resolving number has two neighbor
vertices;

all joint-resolving sets corresponded to joint-resolving number
are

{TL17TL2}, {nQanS}v {TL3,TL4},

{n4,n5}, {n5, nl}.

For given two vertices n and n’, if d(s,n) # d(s,n’), then s
joint-resolves n and n/ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let .S
be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of

{’I’L17’I’L2}, {n2an3}7 {’I’Lg,’l’L4},

{n4,ns},{ns,n1}.

For every neutrosophic vertices n and n’ in V'\ S, there’s only
one neutrosophic vertex in .S such that joint-resolves n and n/,
then the set of neutrosophic vertices, S is either of

{Tll,nQ}, {nQanS}v {n37n4}a

{na,ns}, {ns,n1}

is called joint-resolving set where for every two vertices in S,
there’s a path in S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number
and it’s denoted by J(CYC) = 2;

there are thirty-six joint-resolving sets

{n17n2}, {nl, na, n3}, {nl,ng,m},
{711,712,715}7 {nl, n2,ns, 714}{711, n2,ns, ns}
{n1,n2,n4,n5}, {n3,n2}, {n3,na,n1}, {n3,n2, 74},
{ns,n2,n5},{n3,n2,n1,na}{n3, n2,n1,ns},
{713771277147”5}, {n3, n4}, {ng,m,m},
{n3,n4,na}, {ns,na,ns}, {ns, na,ni,nat,
{ns,na,n1,n5}, {n3,na, 2,5}, {ns,n4},
{ns,n4,n1}, {n5,n4, 02}, {n5, 14,03},
{ns,n4,n1,n2}{ns, ng,n1,n3}, {ns,ng, no, n3},
{ns,n1}, {ns,n1,n4}, {ns,n1,n2},
{ns,n1,n3}, {ns,n1,na, na}{ns, n1,n4,n3},

{n57n17n27n3}7 {7'L5, ni, N4, N2, nS}
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(v)

as if it’s possible to have one of them as a set corresponded
to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

there are thirty-six joint-resolving sets

{n17 Tlg}, {nla na2, 77’3}7 {n17 na, TL4},
{n17 na, n5}) {nla n2,n3, n4}{n1a n2,n3, n5}
{nh n2, N4, nS}; {n?n 712}7 {’I’Lg, na, nl}a {TL?,, na, 7’L4}7
{ns,n2,ns5}, {n3, n2, n1, naf{ns, n2,n1,ns},
{n3,n2,n4,n5}, {n3z,na}, {nz, na,n1},
{’I’L3, Ny, ’I’L2}, {nSa Ny, n5}7 {’I’L3, Ng,MN1, n2}7
{’I’Lg, Nng4,N1, n5}a {n?n N4, M2, ’I’L5}7 {n57 n4}a
{TL5, Ny, nl}; {n57 Ny, n2}7 {TL5, Ny, TLg},
{TL5, Ty, My, n2}{n57 Ty, My, n3}a {n5a Ty, N2, n3}7
{’I’L5, nl}; {n5a ni, n4}7 {’I’L5, ni, n?}a
{’I’L5, ni, ’I’Lg}, {715, ni, ng, n2}{“57 ni,nyg, 713}7
{Tl5, niy,na, n3}a {nf’)a ny, Ny, N2, 713},
as if there’s one joint-resolving set corresponded to neutrosophic
joint-resolving number so as neutrosophic cardinality is the
determiner;
all joint-resolving sets corresponded to joint-resolving number
are
{nly n?}a {n27 n?)}) {n37 n4}7
{na,ns}, {ns,n1}.
For given two vertices n and n/, if d(s,n) # d(s,n’), then s
joint-resolves n and n’ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S
be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] like either of
{nla nQ}a {n27 n3}7 {n?n ’I’L4},
{n4,ns},{ns,n1}.
For every neutrosophic vertices n and n’ in V'\ S, there’s only
one neutrosophic vertex in S such that joint-resolves n and n/,
then the set of neutrosophic vertices, S is either of
{nla TLQ}, {n27 n3}7 {n-?)a n4}7
{na,ns}, {ns,n1}
is called joint-resolving set where for every two vertices in .S,
there’s a path in S amid them. The minimum neutrosophic

cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by

TIn(CYC) =2.7.

S is {n1,n5} corresponded to neutrosophic joint-resolving
number.



2.10. Open Problems

2.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable, are defined in cycle-neutrosophic graphs. Thus,

Question 2.10.1. Is it possible to use other types of meutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable?

Question 2.10.2. Are existed some connections amid different types of neut-
rosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in cycle-neutrosophic graphs?

Question 2.10.3. Is it possible to construct some classes of cycle-neutrosophic
graphs which have “nice” behavior?

Question 2.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 2.10.5. Which parameters are related to this parameter?

Problem 2.10.6. Which approaches do work to construct applications to create
independent study?

Problem 2.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

2.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.

This study uses some definitions concerning different types of neutrosophic
zero-forcing, neutrosophic independence, neutrosophic clique, neutrosophic
matching, neutrosophic girth, neutrosophic cycles, neutrosophic connectivity,
neutrosophic density, neutrosophic path-coloring, neutrosophic duality, neut-
rosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in cycle-neutrosophic graphs assigned to cycle-neutrosophic graphs. Further
studies could be about changes in the settings to compare these notions amid
different settings of cycle-neutrosophic graphs. One way is finding some relations
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Table 2.2: A Brief Overview about Advantages and Limitations of this Study \ 88tbl

Advantages Limitations
1. Neutrosophic Numbers of Model | 1. Connections amid Classes

2. Acting on All Edges
3. Minimal Sets 2. Study on Families

4. Maximal Sets

5. Acting on All Vertices 3. Same Models in Family

amid all definitions of notions to make sensible definitions. In Table (2.2)), some
limitations and advantages of this study are pointed out.
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