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Abstract

In this book, some notions are introduced about “Neutrosophic Complete”.
Some frameworks are devised as “Different Types” of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs.

New setting is introduced to study different types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs. Minimum
number and maximum number of different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, is a number
which is representative based on those vertices or edges. Minimum or max-
imum neutrosophic number or polynomial of different types of neutrosophic
zero-forcing, neutrosophic independence, neutrosophic clique, neutrosophic
matching, neutrosophic girth, neutrosophic cycles, neutrosophic connectivity,
neutrosophic density, neutrosophic path-coloring, neutrosophic duality, neut-
rosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
are called neutrosophic different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable number or polynomial.
Forming sets from different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable to figure out different types of
number of vertices in the sets from different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
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rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable sets in the terms of
minimum (maximum) number of vertices to get minimum (maximum) number
to assign in complete-neutrosophic graphs assigned to complete-neutrosophic
graphs, is key type of approach to have these notions namely different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic du-
ality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic
stable, in complete-neutrosophic graphs assigned to complete-neutrosophic
graphs. Two numbers and one set are assigned to a neutrosophic graph, are
obtained but now both settings lead to approach is on demand which is to com-
pute and to find representatives of sets. As concluding results, there are some
statements, remarks, examples and clarifications about complete-neutrosophic
graphs. The clarifications are also presented in both sections “Setting of
neutrosophic notion number,” and “ Setting of notion neutrosophic-number,”
for introduced results and used classes. Some problems are proposed to pursue
this study. Basic familiarities with graph theory and neutrosophic graph theory
are proposed for this article.

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).

In this study, there’s an idea which could be considered as a motivation.

Question 0.0.1. Is it possible to use mixed versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable
number and polynomial” and “complete-neutrosophic graphs” to define some
notions which are applied to complete-neutrosophic graphs?

It’s motivation to find notions to use in complete-neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. In both settings, corresponded
numbers or polynomials conclude the discussion. Also, there are some avenues
to extend these notions.
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The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In section “Preliminaries”,
new notions of different types of neutrosophic zero-forcing, neutrosophic in-
dependence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable number and polynomial’ in
complete-neutrosophic graphs assigned to complete-neutrosophic graphs, are
highlighted, are introduced and are clarified as individuals. As concluding
results, there are some statements, remarks, examples and clarifications about
complete-neutrosophic graphs. The clarifications are also presented in both
sections ‘Setting of neutrosophic notion number,” and “ Setting of notion
neutrosophic-number,” for introduced results and used classes. In section
“Applications in Time Table and Scheduling”, two applications are posed for
complete notions, namely complete-neutrosophic graphs concerning time table
and scheduling when the suspicions are about choosing some subjects and the
mentioned models are considered as individual. In section “Open Problems”,
some problems and questions for further studies are proposed. In section “Con-
clusion and Closing Remarks”, gentle discussion about results and applications
is featured. In section “Conclusion and Closing Remarks”, a brief overview con-
cerning advantages and limitations of this study alongside conclusions is formed.

Some frameworks are devised as “Different Types” of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutrosophic
path-coloring, neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable, in complete-neutrosophic graphs assigned to complete-
neutrosophic graphs.
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CHAPTER 1

Neutrosophic Notions

1.1 Abstract

New setting is introduced to study different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs. Minimum
number and maximum number of different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, is a number
which is representative based on those vertices or edges. Minimum or max-
imum neutrosophic number or polynomial of different types of neutrosophic
zero-forcing, neutrosophic independence, neutrosophic clique, neutrosophic
matching, neutrosophic girth, neutrosophic cycles, neutrosophic connectivity,
neutrosophic density, neutrosophic path-coloring, neutrosophic duality, neut-
rosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
are called neutrosophic different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable number or polynomial.
Forming sets from different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable to figure out different types of
number of vertices in the sets from different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable sets in the terms of
minimum (maximum) number of vertices to get minimum (maximum) number
to assign in complete-neutrosophic graphs assigned to complete-neutrosophic
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1. Neutrosophic Notions

graphs, is key type of approach to have these notions namely different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic du-
ality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic
stable, in complete-neutrosophic graphs assigned to complete-neutrosophic
graphs. Two numbers and one set are assigned to a neutrosophic graph, are
obtained but now both settings lead to approach is on demand which is to com-
pute and to find representatives of sets. As concluding results, there are some
statements, remarks, examples and clarifications about complete-neutrosophic
graphs. The clarifications are also presented in both sections “Setting of neut-
rosophic notion number,” and “ Setting of notion neutrosophic-number,” for
introduced results and used classes. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.
Keywords: different types of neutrosophic zero-forcing, neutrosophic in-

dependence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable
AMS Subject Classification: 05C17, 05C22, 05E45

1.2 Background

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).
In this section, I use two sections to illustrate a perspective about the background
of this study.

1.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 1.3.1. Is it possible to use mixed versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable
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1.4. Preliminaries

number and polynomial” and “complete-neutrosophic graphs” to define some
notions which are applied to complete-neutrosophic graphs?

It’s motivation to find notions to use in complete-neutrosophic graphs. Real-
world applications about time table and scheduling are another thoughts which
lead to be considered as motivation. In both settings, corresponded numbers or
polynomials conclude the discussion. Also, there are some avenues to extend
these notions.
The framework of this study is as follows. In the beginning, I introduce basic
definitions to clarify about preliminaries. In section “Preliminaries”, new notions
of different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial’ in complete-neutrosophic graphs
assigned to complete-neutrosophic graphs, are highlighted, are introduced and
are clarified as individuals. As concluding results, there are some statements,
remarks, examples and clarifications about complete-neutrosophic graphs. The
clarifications are also presented in both sections ‘Setting of neutrosophic notion
number,” and “ Setting of notion neutrosophic-number,” for introduced results
and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for complete notions, namely complete-neutrosophic
graphs concerning time table and scheduling when the suspicions are about
choosing some subjects and the mentioned models are considered as individual.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

1.4 Preliminaries

In this section, basic material which is used in this article, is presented. Also,
new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 1.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 1.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

3



1. Neutrosophic Notions

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V

∑3
i=1 σi(v) is called neutrosophic order of NTG and it’s denoted

by On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 1.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path
where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG)− 1;

(ii) : strength of path P : x0, x1, · · · , xO(NTG) is
∧
i=0,··· ,O(NTG)−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called
cycle where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG) − 1, xO(NTG)x0 ∈ E
and there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and
the edge xy implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt where σi is σ on V sii instead V which
mean x 6∈ Vi induces σi(x) = 0. Also, |V sij | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

To make them concrete, I bring preliminaries of this article in two upcoming
definitions in other ways.
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1.5. Setting of neutrosophic notion number

Definition 1.4.4. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

|V | is called order of NTG and it’s denoted by O(NTG). Σv∈V σ(v) is called
neutrosophic order of NTG and it’s denoted by On(NTG).

Definition 1.4.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then it’s
complete and denoted by CMTσ if ∀x, y ∈ V,xy ∈ E and µ(xy) = σ(x)∧σ(y);
a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path and
it’s denoted by PTH where xixi+1 ∈ E, i = 0, 1, · · · , n − 1; a sequence of
consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called cycle and denoted by
CY C where xixi+1 ∈ E, i = 0, 1, · · · , n − 1, xO(NTG)x0 ∈ E and there are
two edges xy and uv such that µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1); it’s

t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and the edge xy
implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete, then it’s denoted
by CMTσ1,σ2,··· ,σt where σi is σ on V sii instead V which mean x 6∈ Vi induces
σi(x) = 0. Also, |V sij | = si; t-partite is complete bipartite if t = 2, and it’s
denoted by CMTσ1,σ2 ; complete bipartite is star if |V1| = 1, and it’s denoted
by STR1,σ2 ; a vertex in V is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1,σ2 .

Remark 1.4.6. Using notations which is mixed with literatures, are reviewed.

1.4.6.1. NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)), O(NTG), and
On(NTG);

1.4.6.2. CMTσ, PTH,CY C, STR1,σ2 , CMT σ1,σ2 , CMT σ1,σ2,··· ,σt , and
WHL1,σ2 .

1.5 Setting of neutrosophic notion number

In this section, I provide some results in the setting of stable-resolving number.

Definition 1.5.1. (Zero Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Zero forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(ii) Zero forcing neutrosophic-number Zn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V (G)\S are colored white) such that
V (G) is turned black after finitely many applications of “the color-change
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1. Neutrosophic Notions

rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex.

In next result, a complete-neutrosophic graph is considered in the way that,
its neutrosophic zero forcing number and its zero forcing neutrosophic-number
this model are computed. A complete-neutrosophic graph has specific attribute
which implies every vertex is neighbor to all other vertices in the way that, two
given vertices have edge is incident to these endpoints.

Proposition 1.5.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Z(NTG) = O(NTG)− 1.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of
black vertices and S < O(NTG)− 1, then there are x and y such that they’ve
more than one neighbor in S. Thus the color-change rule doesn’t imply these
vertices are black vertices. Hence V (G) isn’t turned black after finitely many
applications of “the color-change rule”. So

Z(NTG) = O(NTG)− 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.3. In Figure (2.1), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n3, n4} is a set of black vertices, then n2 is white neighbor of n3
and n4. Thus the color-change rule doesn’t imply n2 is black vertex. n1 is
white neighbor of n3 and n4. Thus the color-change rule doesn’t imply n1
is black vertex. Thus n1 and n2 aren’t black vertices. Hence V (G) isn’t
turned black after finitely many applications of “the color-change rule”;

(ii) if S = {n2, n3, n4} is a set of black vertices, then n1 is only white neighbor
of n2. Thus the color-change rule implies n1 is black vertex. Thus n1 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iii) if S = {n1, n2, n4} is a set of black vertices, then n3 is only white neighbor
of n1. Thus the color-change rule implies n3 is black vertex. Thus n3 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iv) if S = {n1, n3, n4} is a set of black vertices, then n2 is only white neighbor
of n1. Thus the color-change rule implies n2 is black vertex. Thus n2 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;
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1.5. Setting of neutrosophic notion number

Figure 1.1: A Neutrosophic Graph in the Viewpoint of its Zero Forcing Number. 47NTG2

(v) 3 is zero forcing number and its corresponded sets are {n1, n2, n3}, {n1, n2, n4},
{n1, n3, n4}, and {n2, n3, n4};

(vi) 3.9 is zero forcing neutrosophic-number and its corresponded set is
{n1, n3, n4}.

The main definition is presented in next section. The notions of failed
zero-forcing number and failed zero-forcing neutrosophic-number facilitate the
ground to introduce new results. These notions will be applied on some classes
of neutrosophic graphs in upcoming sections and they separate the results in
two different sections based on introduced types. New setting is introduced to
study failed zero-forcing number and failed zero-forcing neutrosophic-number.
Leaf-like is a key term to have these notions. Forcing a vertex to change its
color is a type of approach to force that vertex to be zero-like. Forcing a vertex
which is only neighbor for zero-like vertex to be zero-like vertex but now reverse
approach is on demand which is finding biggest set which doesn’t force.

Definition 1.5.4. (Failed Zero-Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Failed zero-forcing number Z ′(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) isn’t turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(ii) Failed zero-forcing neutrosophic-number Z ′n(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of
a set S of black vertices (whereas vertices in V (G) \ S are colored white)
such that V (G) isn’t turned black after finitely many applications of “the
color-change rule”: a white vertex is converted to a black vertex if it is
the only white neighbor of a black vertex.

In next result, a complete-neutrosophic graph is considered in the way
that, its neutrosophic failed zero-forcing number and its failed zero-forcing
neutrosophic-number this model are computed. A complete-neutrosophic graph
has specific attribute which implies every vertex is neighbor to all other vertices
in the way that, two given vertices have edge is incident to these endpoints.
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Proposition 1.5.5. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Z ′(NTG) = O(NTG)− 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of
black vertices and S < O(NTG)− 1, then there are x and y such that they’ve
more than one neighbor in S. Thus the color-change rule doesn’t imply these
vertices are black vertices. Hence V (G) isn’t turned black after finitely many
applications of “the color-change rule”. So

Z ′(NTG) = O(NTG)− 2.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.6. In Figure (2.2), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n3, n4} is a set of black vertices, then n2 is white neighbor of n3
and n4. Thus the color-change rule doesn’t imply n2 is black vertex. n1 is
white neighbor of n3 and n4. Thus the color-change rule doesn’t imply n1
is black vertex. Thus n1 and n2 aren’t black vertices. Hence V (G) isn’t
turned black after finitely many applications of “the color-change rule”.
Thus S = {n3, n4} could form failed zero-forcing number;

(ii) if S = {n2, n3, n4} is a set of black vertices, then n1 is only white neighbor
of n2. Thus the color-change rule implies n1 is black vertex. Thus n1 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iii) if S = {n1, n2, n4} is a set of black vertices, then n3 is only white neighbor
of n1. Thus the color-change rule implies n3 is black vertex. Thus n3 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iv) if S = {n1, n3, n4} is a set of black vertices, then n2 is only white neighbor
of n1. Thus the color-change rule implies n2 is black vertex. Thus n2 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(v) 2 is failed zero-forcing number and its corresponded sets are
{n1, n2}, {n1, n3},
{n1, n4}, {n2, n3},{n2, n4}, and {n3, n4};

(vi) 3.6 is failed zero-forcing neutrosophic-number and its corresponded set is
{n1, n2}.
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Figure 1.2: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing
Number and its Failed Zero-Forcing Neutrosophic-Number. 48NTG2

The main definition is presented in next section. The notions of 1-zero-
forcing number and 1-zero-forcing neutrosophic-number facilitate the ground
to introduce new results. These notions will be applied on some classes of
neutrosophic graphs in upcoming sections and they separate the results in two
different sections based on introduced types. New setting is introduced to study
1-zero-forcing number and 1-zero-forcing neutrosophic-number. Leaf-like is a
key term to have these notions. Forcing a vertex to change its color is a type of
approach to force that vertex to be zero-like. Forcing a vertex which is only
neighbor for zero-like vertex to be zero-like vertex and now approach is on
demand which is finding smallest set which forces.

Definition 1.5.7. (1-Zero-Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-zero-forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex. The last condition is as follows. For one time, black can change
any vertex from white to black.

(ii) 1-zero-forcing neutrosophic-number Zn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V (G)\S are colored white) such that
V (G) is turned black after finitely many applications of “the color-change
rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex. The last condition is as follows. For one time,
black can change any vertex from white to black.

In next result, a complete-neutrosophic graph is considered in the way
that, its neutrosophic 1-zero-forcing number and its 1-zero-forcing neutrosophic-
number these models are computed. A complete-neutrosophic graph has specific
attribute which implies every vertex is neighbor to all other vertices in the way
that, two given vertices have edge is incident to these endpoints.

Proposition 1.5.8. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then
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Z(NTG) = O(NTG)− 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of black
vertices and |S| < O(NTG)− 1, then there are x and y such that they’ve more
than one neighbor in S. Thus the color-change rule doesn’t imply these vertices
are black vertices but extra condition implies where |S| = O(NTG)− 2. Hence
V (G) is turned black after finitely many applications of “the color-change rule”
and extra condition. So

Z(NTG) = O(NTG)− 2.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.9. In Figure (2.3), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n1, n4} is a set of black vertices, then n2 and n3 are white
neighbors of n1 and n4. Thus the color-change rule doesn’t imply n2 is
black vertex but extra condition implies. n2 is white neighbor of n1 and
n4. Thus the color-change rule implies n3 is black vertex. Thus n2 and
n3 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;

(ii) if S = {n2, n4} is a set of black vertices, then n1 and n3 are white
neighbors of n3 and n4. Thus the color-change rule doesn’t imply n1 is
black vertex but extra condition implies. n1 is white neighbor of n3 and
n4. Thus the color-change rule implies n3 is black vertex. Thus n1 and
n3 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;

(iii) if S = {n1} is a set of black vertices, then n2, n3 and n4 are white neighbors
of n2. Thus the color-change rule doesn’t imply neither of n2, n3 and n4
are black vertices and extra condition doesn’t imply, too. Hence V (G)
isn’t turned black after finitely many applications of “the color-change
rule” and extra condition;

(iv) if S = {n3, n4} is a set of black vertices, then n1 and n2 are white
neighbors of n3 and n4. Thus the color-change rule doesn’t imply n1 is
black vertex but extra condition implies. n1 is white neighbor of n3 and
n4. Thus the color-change rule implies n2 is black vertex. Thus n1 and
n2 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;

(v) 3 is 1-zero-forcing number and its corresponded sets are {n1, n2}, {n1, n3},
{n1, n4}, {n2, n3}, {n2, n4}, and {n3, n4};
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Figure 1.3: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number. 49NTG2

(vi) 2.3 is 1-zero-forcing neutrosophic-number and its corresponded set is
{n3, n4}.

Definition 1.5.10. (Independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously;

(ii) independent neutrosophic-number In(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously.

Proposition 1.5.11. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

I(NTG) = 1.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x and
y in S such that they’re endpoints of an edge, simultaneously. If S = {n1, n2}
is a set of vertices, then there’s no vertex in S but n1 and n2. In other side, for
having an edge, there’s a need to have two vertices. So by using the members
of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {n1} isn’t corresponded
to independent number I(NTG). It induces if S = {n} is a set of vertices, then
there’s no vertex in S but n. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints from S. It
implies that S = {n} is corresponded to independent number. Thus

I(NTG) = 1.

�
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The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.12. In Figure (2.4), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. It implies that S = {n1}
is corresponded to independent number I(NTG) but not independent
neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. It implies that S = {n2}
is corresponded to independent number I(NTG) but not independent
neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
Furthermore, There’s one edge to have exclusive endpoints from S. It
implies that S = {n1} isn’t corresponded to both independent number
I(NTG) and independent neutrosophic-number In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. There’s no edge to have exclusive endpoints from S. It implies
that S = {n4} is corresponded to independent number I(NTG) and
independent neutrosophic-number In(NTG);

(v) 1 is independent number and its corresponded sets are {n1}, {n2}, {n3},
and {n4};

(vi) 0.9 is independent neutrosophic-number and its corresponded set is {n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”

Definition 1.5.13. (Failed independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

12



1.5. Setting of neutrosophic notion number

Figure 1.4: A Neutrosophic Graph in the Viewpoint of its Independent Number. 50NTG2

(ii) failed independent neutrosophic-number In(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a
set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Example 1.5.14. In Figure (2.5), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n1, n2} is corresponded to failed independent number I(NTG)
but not failed independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n2, n4} is corresponded to failed independent number I(NTG)
but not failed independent neutrosophic-number In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both failed independent
number I(NTG) and failed independent neutrosophic-number In(NTG);

(iv) if S = {n3, n4} is a set of vertices, then there’s no vertex in S but n3
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n2, n4} is corresponded to both failed independent number
I(NTG) and failed independent neutrosophic-number In(NTG);

(v) 2 is failed independent number and its corresponded sets are
{n1, n2}, {n1, n3}, {n1, n4}, {n2, n3}, {n2, n4}, and {n3n4};

13



1. Neutrosophic Notions

Figure 1.5: A Neutrosophic Graph in the Viewpoint of its Failed independent
Number and its Failed Independent Neutrosophic-Number. 51NTG1

(vi) 2.3 is failed independent neutrosophic-number and its corresponded set is
{n3, n4}.

But the results are always about the number two where connected model is
used. For example,

Proposition 1.5.15. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

I(NTG) = 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| = 2. Then there
are x and y in S such that they’re endpoints of an edge, simultaneously. If
S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and n2. In
other side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s possible to have endpoints of an edge. Furthermore,
There’s one edge to have exclusive endpoints from S. It implies that S = {n1, n2}
is corresponded to failed independent number I(NTG). It induces by using the
members of S, it’s possible to have endpoints of an edge. There’s one edge to
have exclusive endpoints from S. It implies that S = {ni}|S|=2 is corresponded
to failed independent number. Thus

I(NTG) = 2.

�

Thus we replace the term “minimum” by the term ’‘maximum.” Hence,

Definition 1.5.16. (Failed independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

(ii) failed independent neutrosophic-number In(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

14
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For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.5.17. In Figure (2.5), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n1, n2} isn’t corresponded to both of failed independent number
I(NTG) and failed independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n2, n4} isn’t corresponded to both of failed independent number
I(NTG) and failed independent neutrosophic-number In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But it
implies that S = {n1} isn’t corresponded to both of failed independent
number I(NTG) and failed independent neutrosophic-number In(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. There are twelve edges to have exclusive endpoints
from S. It implies that S = {n1, n2, n3, n4} is corresponded to both
failed independent number I(NTG) and failed independent neutrosophic-
number In(NTG);

(v) 4 is failed independent number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is failed independent neutrosophic-number and its
corresponded set is {n3, n4}.

Proposition 1.5.18. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

I(NTG) = O(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
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1. Neutrosophic Notions

Figure 1.6: A Neutrosophic Graph in the Viewpoint of its Failed independent
Number and its Failed Independent Neutrosophic-Number. 51NTG1

form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to failed independent number. Thus

I(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.19. In Figure (2.6), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but
n1 and n2. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. There’s one edge to have exclusive endpoints
from S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1, n2} isn’t
corresponded to both of failed independent number I(NTG) and failed
independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither failed
independent number I(NTG) nor failed independent neutrosophic-number
In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
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Figure 1.7: A Neutrosophic Graph in the Viewpoint of its Failed Independent
Number. 51NTG2

edge. Furthermore, There’s no edge to have exclusive endpoints from
S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1} is corresponded
to neither failed independent number I(NTG) nor failed independent
neutrosophic-number In(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4}
is corresponded to both failed independent number I(NTG) and failed
independent neutrosophic-number In(NTG);

(v) 4 is failed independent number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is failed independent neutrosophic-number and its
corresponded set is {n3, n4}.

Definition 1.5.20. (1-independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously For one
time, one vertex is allowed to be endpoint;

(ii) 1-independent neutrosophic-number In(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously. For one time, one vertex is allowed to be endpoint.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.
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1. Neutrosophic Notions

Figure 1.8: A Neutrosophic Graph in the Viewpoint of its 1-Independent Number
and its 1-Independent Neutrosophic-Number. 52NTG1

Example 1.5.21. In Figure (2.8), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. Extra condition implies that
S = {n1} is corresponded to neither 1-independent number I(NTG) nor
1-independent neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. Extra condition implies that
S = {n2} is corresponded to neither 1-independent number I(NTG) nor
1-independent neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. Furthermore, There’s one edge to have exclusive endpoints from
S but extra condition implies that S = {n1, n2} is corresponded to both
1-independent number I(NTG) and 1-independent neutrosophic-number
In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S but extra condition
implies that S = {n4} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(v) 2 is 1-independent number and its corresponded sets are {n1, n2},{n1, n3},{n1, n4},{n2, n3},{n2, n4},
and {n3, n4};

(vi) 3.6 is 1-independent neutrosophic-number and its corresponded set is
{n1, n2}.
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Definition 1.5.22. (Failed 1-independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed 1-independent number I(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum cardinality of a set S of vertices such that
every two vertices of S are endpoints for an edge, simultaneously. For one
time, one vertex is allowed not to be endpoint;

(ii) failed 1-independent neutrosophic-number In(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for
an edge, simultaneously. For one time, one vertex is allowed not to be
endpoint.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.5.23. In Figure (2.8), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n1, n2} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n2, n4} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using the
members of S, it’s impossible to have endpoints of an edge. Furthermore,
There’s no edge to have exclusive endpoints from S. But it implies that
S = {n1} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S
but n1, n2, n3, and n4. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s possible to
have endpoints of an edge. There are twelve edges to have exclusive
endpoints from S. It implies that S = {n1, n2, n3, n4} is corresponded
to both failed 1-independent number I(NTG) and failed 1-independent
neutrosophic-number In(NTG);
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Figure 1.9: A Neutrosophic Graph in the Viewpoint of its Failed 1-Independent
Number and its Failed 1-Independent Neutrosophic-Number. 52NTG1

(v) 4 is failed 1-independent number and its corresponded sets is
{n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is failed 1-independent neutrosophic-number and its
corresponded set is {n3, n4}.

Proposition 1.5.24. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

I(NTG) = 2.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there
are x and y in S such that they’re endpoints of an edge, simultaneously. If
S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and n2. In
other side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s possible to have endpoints of an edge. Furthermore,
There’s one edge to have exclusive endpoints from S. It implies that S = {n1}
isn’t corresponded to 1-independent number I(NTG). It induces if S = {n} is
a set of vertices, then there’s no vertex in S but n. In other side, for having
an edge, there’s a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. But extra condition implies that S = {n} is corresponded to
1-independent number. Thus

I(NTG) = 2.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.25. In Figure (2.9), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.
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1.5. Setting of neutrosophic notion number

Figure 1.10: A Neutrosophic Graph in the Viewpoint of its 1-Independent
Number. 52NTG2

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n1} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n2} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
Furthermore, There’s one edge to have exclusive endpoints from S. But
extra condition implies that S = {n1, n2} is corresponded to both of
1-independent number I(NTG) and 1-independent neutrosophic-number
In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n4} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(v) 2 is 1-independent number and its corresponded sets are {n1, n2}, {n1, n3},
{n1, n4}, {n2, n3}, {n2, n4}, and {n3, n4};

(vi) 3.6 is 1-independent neutrosophic-number and its corresponded set is
{n1, n2}.

The natural way proposes us to use the restriction “maximum” instead of
“minimum.”
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Definition 1.5.26. (Clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) clique number C(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is
maximum cardinality of a set S of vertices such that every two vertices of
S are endpoints for an edge, simultaneously;

(ii) clique neutrosophic-number Cn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously.

Proposition 1.5.27. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

C(NTG) = O(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to clique number. Thus

C(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.28. In Figure (2.10), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1, n2} isn’t corresponded to both of clique
number C(NTG) and clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number Cn(NTG);
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Figure 1.11: A Neutrosophic Graph in the Viewpoint of its clique Number. 53NTG2

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using the
members of S, it’s impossible to have endpoints of an edge. Furthermore,
There’s no edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4}
is corresponded to both clique number C(NTG) and clique neutrosophic-
number Cn(NTG);

(v) 4 is clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is clique neutrosophic-number and its corresponded set
is {n1, n2, n3, n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”

Definition 1.5.29. (Failed Clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed clique number CF (NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously;

(ii) failed clique neutrosophic-number CFn (NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously.

Proposition 1.5.30. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

CF (NTG) = 0.
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Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=0 is corresponded to clique number. Thus

CF (NTG) = 0.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.31. In Figure (2.11), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=0. Thus
it implies that S = {n1, n2} isn’t corresponded to both of failed clique
number CF (NTG) and failed clique neutrosophic-number CFn (NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=0.
Thus it implies that S = {n2, n4} is corresponded to neither failed clique
number CF (NTG) nor failed clique neutrosophic-number CFn (NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. Furthermore, There’s no edge to have exclusive endpoints from S.
S = {ni}|S|6=0. Thus it implies that S = {n1} is corresponded to neither
failed clique number CF (NTG) nor failed clique neutrosophic-number
CFn (NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|6=0. Thus there are twelve edges to
have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4} isn’t
corresponded to both failed clique number CF (NTG) and failed clique
neutrosophic-number CFn (NTG);

(v) 0 is failed clique number and its corresponded sets is {};
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Figure 1.12: A Neutrosophic Graph in the Viewpoint of its Failed Clique
Number. 54NTG2

(vi) On(NTG) = 0 is failed clique neutrosophic-number and its corresponded
set is {}.

Definition 1.5.32. (1-clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-clique number C(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is maximum cardinality of a set S of vertices such that every two vertices
of S are endpoints for an edge, simultaneously. It holds extra condition
which is as follows: two vertices have no edge in common are considered
as exception but only for one time;

(ii) 1-clique neutrosophic-number Cn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously. It holds extra condition which is as follows: two vertices
have no edge in common are considered as exception but only for one
time.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.5.33. In Figure (2.13), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n1, n2} isn’t corresponded to both of 1-clique number C(NTG) and
1-clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
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Figure 1.13: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number
and its 1-Clique Neutrosophic-Number. 55NTG1

So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n2, n4} isn’t corresponded to both of 1-clique number C(NTG) and
1-clique neutrosophic-number Cn(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both of 1-clique number
C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There are twelve edges to have exclusive endpoints from S. It
implies that S = {n1, n2, n3, n4} is corresponded to both 1-clique number
C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(v) 4 is 1-clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is 1-clique neutrosophic-number and its corresponded
set is {n1, n2, n3, n4}.

Definition 1.5.34. (Failed 1-clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed 1-clique number CF (NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously. It
holds extra condition which is as follows: two vertices have no edge in
common are considered as exception but only for one time;

(ii) failed 1-clique neutrosophic-number CFn (NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously. It holds extra condition which is as follows: two
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vertices have no edge in common are considered as exception but only for
one time.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.5.35. In Figure (2.13), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S. But it
implies that S = {n1, n2} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S. But it
implies that S = {n2, n4} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. There are twelve edges to have exclusive endpoints
from S. It implies that S = {n1, n2, n3, n4} isn’t corresponded to both
failed 1-clique number CF (NTG) and failed 1-clique neutrosophic-number
CFn (NTG);

(v) 0 is failed 1-clique number and its corresponded sets is {};

(vi) On(NTG) = 0 is failed 1-clique neutrosophic-number and its corresponded
set is {}.

Proposition 1.5.36. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

C(NTG) = O(NTG).
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Figure 1.14: A Neutrosophic Graph in the Viewpoint of its Failed 1-Clique
number and its Failed 1-Clique neutrosophic-number. 55NTG1

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to 1-clique number. Thus

C(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.37. In Figure (2.14), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1, n2} isn’t corresponded to both of 1-clique
number C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither 1-clique
number C(NTG) nor 1-clique neutrosophic-number Cn(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
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Figure 1.15: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number. 55NTG2

So by using the members of S, it’s impossible to have endpoints of an
edge. Furthermore, There’s no edge to have exclusive endpoints from
S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1} is corresponded
to neither 1-clique number C(NTG) nor 1-clique neutrosophic-number
Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4} is
corresponded to both 1-clique number C(NTG) and 1-clique neutrosophic-
number Cn(NTG);

(v) 4 is 1-clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is 1-clique neutrosophic-number and its corresponded
set is {n1, n2, n3, n4}.

Definition 1.5.38. (Matching Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) matching number M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of edges such that every
two edges of S don’t have any vertex in common;

(ii) matching neutrosophic-numberMn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
edges such that every two edges of S don’t have any vertex in common.

Proposition 1.5.39. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

M(NTG) = bn2 c.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
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one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

M(NTG) = bn2 c.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.40. In Figure (2.15), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3
and n2n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n3, n2n4} is
corresponded to matching numberM(NTG) but neutrosophic cardinality,
1.7, of S implies S = {n1n3, n2n4} isn’t corresponded to matching
neutrosophic-numberMn(NTG);

(ii) if S = {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have one
vertex as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n2n3, n1n4} is corresponded to
matching numberM(NTG) but neutrosophic cardinality, 1.7, of S implies
S = {n2n3, n1n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);

(iii) if S = {n1n4} is a set of edges, then there’s no edge in S but n1n4. In
other side, for having a common vertex, there’s a need to have one vertex
as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n4} isn’t corresponded
to matching number M(NTG) and neutrosophic cardinality, 0.9, of S
implies S = {n1n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have one
vertex as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n2, n3n4} is corresponded to
matching numberM(NTG) and neutrosophic cardinality, 2.2, of S implies
S = {n1n2, n3n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);
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Figure 1.16: A Neutrosophic Graph in the Viewpoint of its matching Number. 58NTG2

(v) 2 is matching number and its corresponded sets are {n1n2, n3n4},
{n2n3, n1n4}, and {n1n3, n2n4};

(vi) 2.2 is matching neutrosophic-number and its corresponded set is
{n1n2, n3n4}.

Definition 1.5.41. (Matching Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is a polynomial where the coefficients of the terms of the
matching polynomial represent the number of sets of independent edges
of various cardinalities in G.

(ii) matching polynomial neutrosophic-numberMn(NTG) for a neut-
rosophic graph NTG : (V,E, σ, µ) is a polynomial where the coefficients
of the terms of the matching polynomial represent the number of sets of
independent edges of various neutrosophic cardinalities in G.

Proposition 1.5.42. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

M(NTG) = (O(NTG)− 1)xb
O(NTG)

2 c + · · ·+ S(NTG)x+ 1.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

M(NTG) = (O(NTG)− 1)xb
O(NTG)

2 c + · · ·+ S(NTG)x+ 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Example 1.5.43. In Figure (2.16), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3
and n2n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n3, n2n4}
is corresponded to matching polynomial M(NTG) but neutrosophic
cardinality, 1.7, of S implies S = {n1n3, n2n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(ii) if S = {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3
and n1n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n2n3, n1n4}
is corresponded to matching polynomial M(NTG) but neutrosophic
cardinality, 1.7, of S implies S = {n2n3, n1n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(iii) if S = {n1n4} is a set of edges, then there’s no edge in S but n1n4. In
other side, for having a common vertex, there’s a need to have one vertex
as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n4} isn’t corresponded
to matching polynomial M(NTG) and neutrosophic cardinality, 0.9,
of S implies S = {n1n4} isn’t corresponded to matching polynomial
neutrosophic-numberMn(NTG);

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2
and n3n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n2, n3n4}
is corresponded to matching polynomial M(NTG) and neutrosophic
cardinality, 2.2, of S implies S = {n1n2, n3n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(v) 3x2 + 6x + 1 is matching polynomial and its corresponded sets are
{n1n2, n3n4}, {n2n3, n1n4}, and {n1n3, n2n4} for coefficient of biggest
term;

(vi) x2.2 + x1.1 is matching polynomial neutrosophic-number and its corres-
ponded set is {n1n2, n3n4} for coefficient of biggest term.

Definition 1.5.44. (e-Matching Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) e-matching number M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S containing endpoints of
edges such that every two edges of S don’t have any vertex in common;
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Figure 1.17: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial. 60NTG2

(ii) e-matching neutrosophic-number Mn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
containing endpoints of edges such that every two edges of S don’t have
any vertex in common.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 1.5.45. In Figure (2.17), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
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Figure 1.18: A Neutrosophic Graph in the Viewpoint of its e-Matching Number
and its e-Matching Neutrosophic-Number. 61NTG1

S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);

(iv) if {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two edges which is impossible. So by using the
members of S, it’s impossible to have endpoints of two edges. There are
two edges from S. Cardinality of S implies that S = {n1, n2, n3, n4} = V
is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 5.9, of S implies {n1, n2, n3, n4} is corresponded to e-matching
neutrosophic-numberMn(NTG);

(v) 4 = O(NTG) is e-matching number and its corresponded set is S =
{n1, n2, n3, n4} = V ;

(vi) 5.9 = On(NTG) is e-matching neutrosophic-number and its corresponded
set is S = {n1, n2, n3, n4} = V.

Definition 1.5.46. (e-Matching Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) e-matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is a polynomial where the coefficients of the terms of the
e-matching polynomial represent the number of sets of endpoints of
independent edges of various cardinalities in G.

(ii) e-matching polynomial neutrosophic-number Mn(NTG) for a
neutrosophic graph NTG : (V,E, σ, µ) is a polynomial where the
coefficients of the terms of the e-matching polynomial represent the
number of sets of endpoints of independent edges of various neutrosophic
cardinalities in G.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.
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1.5. Setting of neutrosophic notion number

Example 1.5.47. In Figure (2.18), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but
n1n2 and n3n4. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint of two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints of
two edges. There are two edges from S. Cardinality of S implies that
S = {n1, n2, n3, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n2, n3, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(v) x4 + 3x2 is e-matching polynomial and its corresponded sets are
{n1n2, n3n4}, {n2n3, n1n4}, and {n1n3, n2n4} for coefficient of biggest
term; also S = {n1, n2, n3, n4};

(vi) x5.9 + x3.4 is e-matching polynomial neutrosophic-number and its
corresponded set is {n1n2, n3n4} for coefficient of biggest term; also
S = {n1, n2, n3, n4}.

Proposition 1.5.48. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

M(NTG) = O(NTG).
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Figure 1.19: A Neutrosophic Graph in the Viewpoint of its e-Matching
Polynomial and its e-Matching Polynomial Neutrosophic-Number. 61NTG2

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

M(NTG) = O(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.49. In Figure (2.19), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
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Figure 1.20: A Neutrosophic Graph in the Viewpoint of its e-Matching Number. 61NTG3

of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);

(iv) if {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two edges which is impossible. So by using the
members of S, it’s impossible to have endpoints of two edges. There are
two edges from S. Cardinality of S implies that S = {n1, n2, n3, n4} = V
is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 5.9, of S implies {n1, n2, n3, n4} is corresponded to e-matching
neutrosophic-numberMn(NTG);

(v) 4 = O(NTG) is e-matching number and its corresponded set is S =
{n1, n2, n3, n4} = V ;

(vi) 5.9 = On(NTG) is e-matching neutrosophic-number and its corresponded
set is S = {n1, n2, n3, n4} = V.

Definition 1.5.50. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest cycle. If there isn’t, then
girth is ∞;

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is ∞.

Proposition 1.5.51. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = 3.
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Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

G(NTG) = 3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.52. In Figure (2.20), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
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Figure 1.21: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG2

sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Definition 1.5.53. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest neutrosophic cycle. If there
isn’t, then girth is ∞;

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest neutrosophic cycle. If there isn’t, then girth is ∞.
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63thm Theorem 1.5.54. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 1.5.55. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = 3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

G(NTG) = 3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.56. In Figure (2.21), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3
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is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Definition 1.5.57. (Girth Polynomial and Neutrosophic Girth Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) girth polynomial G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is n1x

m1 + n2x
m2 + · · ·+ nsx

3 where ni is the number of cycle with mi

as its crisp cardinality of the set of vertices of cycle;

(ii) neutrosophic girth polynomial Gn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is n1x

m1 +n2x
m2 + · · ·+nsxms where ni is the number

of cycle with mi as its neutrosophic cardinality of the set of vertices of
cycle.
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Figure 1.22: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG2

63thm Theorem 1.5.58. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 1.5.59. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

G(NTG) = xO(NTG) +O(NTG)xO(NTG)−1 + · · ·+
(
O(NTG)

3

)
x3.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth polynomial
is three. Thus

G(NTG) = xO(NTG) +O(NTG)xO(NTG)−1 + · · ·+
(
O(NTG)

3

)
x3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.60. In Figure (2.22), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
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2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth polynomial G(NTG) but neutrosophic length of
this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length of
this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);
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Figure 1.23: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG2

(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient of
smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and its
corresponded set, for coefficient of smallest term, is {n1, n3, n4}.

Definition 1.5.61. (Hamiltonian Neutrosophic Cycle).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) hamiltonian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is a sequence of consecutive vertices
x1, x2, · · · , xO(NTG), x1 which is neutrosophic cycle;

(ii) n-hamiltonian neutrosophic cycleN (HNC) for a neutrosophic graph
NTG : (V,E, σ, µ) is the number of sequences of consecutive vertices
x1, x2, · · · , xO(NTG), x1 which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

66thm Theorem 1.5.62. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 1.5.63. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

M(CMTσ) : x1, x2, · · · , xO(CMTσ)−1, xO(CMTσ), x1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. In other
hand, there’s a cycle if and only if O(CMTσ) ≥ 3. It’s complete. So there’s
at least one neutrosophic cycle which its length is O(CMTσ) = 3. By longest
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cycle is on demand, the n-hamiltonian neutrosophic cycle is four. The length of
longest cycle is O(CMTσ). Thus it’s hamiltonian neutrosophic cycle. Thus

M(CMTσ) : x1, x2, · · · , xO(CMTσ)−1, xO(CMTσ), x1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.64. In Figure (2.23), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither hamiltonian neutrosophic cycle M(CMTσ)
nor n-hamiltonian neutrosophic cycle N (CMTσ);

(ii) if n1, n2, n3, n1 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3, n1

isn’t corresponded to hamiltonian neutrosophic cycleM(CMTσ) and as
its consequences, length of this crisp cycle implies

n1, n2, n3, n1

isn’t corresponded to n-hamiltonian neutrosophic cycle N (CMTσ);

(iii) if n1, n2, n3, n4, n1 is a sequence of consecutive vertices, then it’s obvious
that there’s two crisp cycles with length two and three. It’s also a path
and there are three edges but there are some crisp cycles but there are
only two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
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Figure 1.24: A Neutrosophic Graph in the Viewpoint of its hamiltonian
neutrosophic cycle. 66NTG2

it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path, four,
implies

n1, n2, n3, n4, n1

is corresponded to hamiltonian neutrosophic cycleM(CMTσ) and it’s
effective to construct n-hamiltonian neutrosophic cycle N (CMTσ);

(iv) if n1, n3, n4, n1 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle, three, implies

n1, n3, n4, n1

isn’t corresponded to hamiltonian neutrosophic cycle M(CMTσ). The
vertex, n2, isn’t in sequence related to this neutrosophic cycle. Thus it
implies

n1, n3, n4, n1

isn’t corresponded to n-hamiltonian neutrosophic cycle N (CMTσ);

(v) M(CMTσ) : n1, n2, n3, n4, n1 is hamiltonian neutrosophic cycle and its
corresponded sets. are the sequences which have both the edges n1n4
and n3n4. Since these edges are two weakest edges in this complete-
neutrosophic graph. Other sequences even if they’re cycles having all
vertices, once, are hamiltonian cycles and not hamiltonian neutrosophic
cycles;

(vi) N (CMTσ) = 1 is n-hamiltonian neutrosophic cycle.

Definition 1.5.65. (Eulerian Neutrosophic Cycle).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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(i) Eulerian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is a sequence of consecutive edges
x1, x2, · · · , xS(NTG), x1 which is neutrosophic cycle;

(ii) n-Eulerian neutrosophic cycle N (NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is the number of sequences of consecutive edges
x1, x2, · · · , xS(NTG), x1 which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

66thm Theorem 1.5.66. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 1.5.67. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

M(CMTσ) : Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. So
there’s a cycle if and only if O(CMTσ) ≥ 3. It’s complete. Hence there’s only
one neutrosophic cycle which its length is S(CMTσ) = 3 where O(CMTσ) = 3.
By longest cycle is on demand in the way that all edges are used and there’s no
repetition of edges, the n-Eulerian neutrosophic cycle doesn’t exist. The length
of longest cycle isn’t S(CMTσ). Thus it isn’t an Eulerian neutrosophic cycle.
Thus

M(CMTσ) : Not Existed.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.68. In Figure (2.24), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1n2, n2n3 is a sequence of consecutive edges, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only two edges but it is
neither crisp cycle nor neutrosophic cycle. The length of this path implies
there’s no cycle since if the length of a sequence of consecutive edges is
at most 2, then it’s impossible to have cycle. So this neutrosophic path
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is neither a neutrosophic cycle nor crisp cycle. The length of this path
implies

n1n2, n2n3

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);

(ii) if n1n2, n2n3, n3n1 is a sequence of consecutive edges, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive edges is at most
3, then it’s possible to have cycle but there aren’t two weakest edges
which imply there is no neutrosophic cycle. So this crisp cycle isn’t a
neutrosophic cycle but it’s crisp cycle. The crisp length of this crisp cycle
implies

n1n2, n2n3, n3n1

isn’t corresponded to Eulerian neutrosophic cycleM(CMTσ) and as its
consequences, length of this crisp cycle implies

n1n2, n2n3, n3n1

isn’t corresponded to n-Eulerian neutrosophic cycle N (CMTσ);

(iii) if n1n2, n2n3, n3n4, n4n1 is a sequence of consecutive edges, then it’s
obvious that there are two crisp cycles with length three and four. It’s
also a path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1n3, n3n4, n4n1,
and with length four, n1n2, n2n3, n3n4, n4n1. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic cycles
since if the length of a sequence of consecutive edges is at most 4 and
it’s crisp complete, then it’s possible to have some crisp cycles and two
neutrosophic cycles with two different lengths three and four. So this
neutrosophic path forms some neutrosophic cycles and some crisp cycles.
Lack of having all edges, for instance n1n3, implies

n1n2, n2n3, n3n4, n4n1

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);

(iv) if n1n3, n3n4, n4n1 is a sequence of consecutive edges, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive edges is at most
3, then it’s possible to have cycle but there are two weakest edges, n3n4
and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle, three, and lack of having all edges, for instance n1n2,
implies

n1n3, n3n4, n4n1

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);
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Figure 1.25: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic
cycle. 67NTG2

(v) M(CMTσ) : Not Existed. There is no Eulerian neutrosophic cycle and
there are no corresponded sets and sequences;

(vi) N (CMTσ) = 0 is n-Eulerian neutrosophic cycle and there are no
corresponded sets and sequences.

Definition 1.5.69. (Eulerian(Hamiltonian) Neutrosophic Path).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Eulerian(Hamiltonian) neutrosophic pathMe(NTG)(Mh(NTG))
for a neutrosophic graph NTG : (V,E, σ, µ) is a sequence of consec-
utive edges(vertices) x1, x2, · · · , xS(NTG)(x1, x2, · · · , xO(NTG)) which is
neutrosophic path;

(ii) n-Eulerian(Hamiltonian) neutrosophic path Ne(NTG)(Nh(NTG))
for a neutrosophic graph NTG : (V,E, σ, µ) is the number of sequences
of consecutive edges(vertices) x1, x2, · · · , xS(NTG)(x1, x2, · · · , xO(NTG))
which is neutrosophic path.

Proposition 1.5.70. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

Me(CMTσ) : Not Existed;
Mh(CMTσ) : vτ(1), vτ(2), · · · , vτ(O(CMTσ)−1), vτ(O(CMTσ))

where τ is a permutation on O(CMTσ).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
longest path is on demand in the way that all edges are used and there’s no
repetition of edges, the Eulerian neutrosophic path doesn’t exist. The length of
longest path isn’t S(CMTσ). Thus it isn’t an Eulerian neutrosophic path. By
longest path is on demand in the way that all vertices are used and there’s no
repetition of vertices, the Hamiltonian neutrosophic path doesn’t exist. The
length of longest path isn’t O(CMTσ). Thus it isn’t a Hamiltonian neutrosophic
path. Thus

Me(CMTσ) : Not Existed;
Mh(CMTσ) : vτ(1), vτ(2), · · · , vτ(O(CMTσ)−1), vτ(O(CMTσ))

where τ is a permutation on O(CMTσ). �
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Figure 1.26: A Neutrosophic Graph in the Viewpoint of its Eu-
lerian(Hamiltonian) neutrosophic path. 68NTG2

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.71. In Figure (2.25), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1n2, n2n3 is a sequence of consecutive edges, then it’s neutrosophic
path since µ(n1n2) > 0 and µ(n2n3) > 0. But the number of edges
isn’t S(CMTσ) and the number of vertices isn’t O(CMTσ). Thus
Eulerian(Hamiltonian) neutrosophic path Me(CMTσ)(Mh(CMTσ))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
Ne(CMTσ)(Nh(CMTσ)) isn’t corresponded to these sequences n1, n2, n3
and n1n2, n2n3;

(ii) if n1n2, n2n3, n3n4 is a sequence of consecutive edges, then it’s neutro-
sophic path since µ(n1n2) > 0, µ(n2n3) > 0 and µ(n3n4) > 0. But the
number of edges isn’t S(CMTσ). The number of vertices isn’t O(CMTσ).
Thus Eulerian neutrosophic pathMe(CMTσ) doesn’t exist but Hamilto-
nian neutrosophic path Mh(CMTσ) is n1, n2, n3, n4. Also, n-Eulerian
neutrosophic path Ne(CMTσ) equals to zero and n-Hamiltonian neutro-
sophic path Nh(CMTσ)) is greater than six.

Definition 1.5.72. (Neutrosophic Path Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a path from x to y is called weakest path if its length is maximum. This
length is called weakest number amid x and y. The maximum number
amid all vertices is called weakest number of NTG : (V,E, σ, µ) and
it’s denoted by W(NTG);

(ii) a path from x to y is called neutrosophic weakest path if its strength
is µ(uv) which is less than all strengths of all paths from x to y
where x, · · · , u, v, · · · , y is a path. This strength is called neutrosophic
weakest number amid x and y. The maximum number amid all vertices
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is called neutrosophic weakest number of NTG : (V,E, σ, µ) and it’s
denoted by Wn(NTG).

Proposition 1.5.73. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

W(CMTσ) = O(CMTσ)− 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Longest
path is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph,
all vertices are connected to each other. So there’s a path containing all vertices.
The number of vertices is O(CMTσ). But the length of the path forms weakest
number. Thus

W(CMTσ) = O(CMTσ)− 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.74. In Figure (2.26), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2, n3, n4 is a path from n1 to n4, then it’s weakest path and weakest
number amid n1 and n4 is three. Also, W(CMTσ) = 3;

(ii) if n1, n2, n3 is a path from n1 to n3, then it isn’t weakest path and weakest
number amid n1 and n3 isn’t two. Also, W(CMTσ) 6= 2;

(iii) if n1, n2, n3 is a path from n1 to n3, then it isn’t weakest path and weakest
number amid n1 and n3 isn’t two. Also, W(CMTσ) 6= 2. For every given
couple of vertices x and y, weakest path is existed, weakest number is
three and W(CMTσ) = 3;

(iv) if n1, n2, n3, n4 is a path from n1 to n4, then it isn’t a neutrosophic weakest
path since neutrosophic weakest number amid n1 and n4 is (0.3, 0.2, 0.1).
Also, Wn(CMTσ) = (0.3, 0.2, 0.1);

(v) if n1, n2, n4 is a path from n1 to n4, then it’s a neutrosophic weakest path
and neutrosophic weakest number amid n1 and n4 is (0.3, 0.2, 0.1). Also,
Wn(CMTσ) = (0.3, 0.2, 0.1);

(vi) for every given couple of vertices x and y, neutrosophic weakest path is
existed, neutrosophic weakest number is (0.3, 0.2, 0.1) and Wn(CMTσ) =
(0.3, 0.2, 0.1).

Definition 1.5.75. (Neutrosophic Path Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 1.27: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number. 70NTG2

(i) a path from x to y is called strongest path if its length is minimum. This
length is called strongest number amid x and y. The maximum number
amid all vertices is called strongest number of NTG : (V,E, σ, µ) and
it’s denoted by S(NTG);

(ii) a path from x to y is called neutrosophic strongest path if its strength
is µ(uv) which is greater than all strengths of all paths from x to y
where x, · · · , u, v, · · · , y is a path. This strength is called neutrosophic
strongest number amid x and y. The minimum number amid all vertices
is called neutrosophic strongest number of NTG : (V,E, σ, µ) and
it’s denoted by Sn(NTG).

Proposition 1.5.76. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

S(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Min-
imum path is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic
graph, all vertices are connected to each other. So there’s a path containing all
vertices and there’s one edge between two vertices. The number of vertices is
O(CMTσ). But the length of the path forms strongest number. Thus

S(CMTσ) = 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.77. In Figure (2.27), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2, n3, n4 is a path from n1 to n4, then it isn’t strongest path and
strongest number amid n1 and n4 is one. Also, S(CMTσ) = 1;
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(ii) if n1, n2, n3 is a path from n1 to n3, then it isn’t strongest path and
strongest number amid n1 and n3 isn’t two. Also, S(CMTσ) 6= 2;

(iii) if n1, n2, n3 is a path from n1 to n3, then it isn’t strongest path and
strongest number amid n1 and n3 isn’t two. Also, S(CMTσ) 6= 2. For
every given couple of vertices x and y, strongest path is existed, strongest
number is one and S(CMTσ) = 1;

(iv) if n1, n4, n3, n2 is a path from n1 to n2, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n1 and n2 is
(0.3, 0.8, 0.2) where there are four paths as follows.

P1 : n1, n4, n3, n2 ⇒ (0.3, 0.3, 0.2)
P2 : n1, n4, n2 ⇒ (0.3, 0.2, 0.1)
P3 : n1, n3, n2 ⇒ (0.3, 0.3, 0.2)

P4 : n1, n2 ⇒ (0.3, 0.8, 0.2)
Maximum is (0.3, 0.8, 0.2)

Also, Sn(CMTσ) = (0.6, 0.2, 0.1);

(v) if n2, n1, n4, n3 is a path from n2 to n3, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n1 and n2 is
(0.6, 0.3, 0.2) where there are four paths as follows.

P1 : n2, n1, n4, n3 ⇒ (0.6, 0.2, 0.1)
P2 : n2, n4, n3 ⇒ (0.3, 0.2, 0.1)
P3 : n2, n1, n3 ⇒ (0.6, 0.3, 0.2)

P4 : n2, n3 ⇒ (0.3, 0.3, 0.2)
Maximum is (0.6, 0.3, 0.2)

Also, Sn(CMTσ) = (0.6, 0.2, 0.1);

(vi) if n3, n2, n1, n4 is a path from n3 to n4, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n3 and n4 is
(0.3, 0.8, 0.2) where there are four paths as follows.

P1 : n3, n2, n1, n4 ⇒ (0.3, 0.3, 0.2)
P2 : n3, n1, n4 ⇒ (0.6, 0.2, 0.1)
P3 : n3, n2, n4 ⇒ (0.3, 0.2, 0.1)

P4 : n3, n4 ⇒ (0.6, 0.2, 0.1)
Maximum is (0.6, 0.2, 0.1)

Also, Sn(CMTσ) = (0.6, 0.2, 0.1).

Definition 1.5.78. (Neutrosophic Cycle Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 1.28: A Neutrosophic Graph in the Viewpoint of its strongest Number
and its Neutrosophic strongest Number. 71NTG2

(i) a cycle based on x is called cyclic connectivity if its length is minimum.
This length is called connectivity number based on x. The maximum
number amid all vertices is called connectivity number of NTG :
(V,E, σ, µ) and it’s denoted by C(NTG);

(ii) a cycle based on x is called neutrosophic cyclic connectivity if its
strength is is greater than all strengths of all cycles based on x. This
strength is called neutrosophic connectivity number based on x. The
minimum number amid all vertices is called neutrosophic connectivity
number of NTG : (V,E, σ, µ) and it’s denoted by Cn(NTG).

Proposition 1.5.79. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
where O(CMTσ) ≥ 3. Then

C(CMTσ) = 3.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Min-
imum cycle is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic
graph, all vertices are connected to each other. So there’s one edge between
two vertices. The number of vertices is O(CMTσ). By O(CMTσ) ≥ 3, there’s
a cycle. But the length of the cycle forms connectivity number. Thus

C(CMTσ) = 3.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.80. In Figure (2.28), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2, n3, n4, n1 is a cycle based on n1, then it isn’t cyclic connectivity
and connectivity number based on n1 is three. Also, C(CMTσ) = 3;
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(ii) if n1, n2, n3, n1 is a cycle based on n1, then it’s cyclic connectivity and
connectivity number based on n1 is three. Also, C(CMTσ) = 3;

(iii) Consider n1, n2, n1. Then it isn’t a cycle based on n1, since the length
of consecutive vertices has to be at least three. Then it isn’t cyclic
connectivity and connectivity number based on n1 isn’t two. Also,
C(CMTσ) 6= 2. For every given vertex x, cyclic connectivity is existed,
connectivity number is three and C(CMTσ) = 3;

(iv) if n1, n4, n3, n2, n1 is a cycle based on n1, then it isn’t a neutrosophic
cyclic connectivity since neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.

P1 : n1, n4, n3, n1 ⇒ (0.6, 0.2, 0.1)
P2 : n1, n2, n3, n1 ⇒ (0.3, 0.3, 0.2)
P3 : n1, n2, n4, n1 ⇒ (0.3, 0.2, 0.1)

P4 : n1, n4, n3, n2, n1 ⇒ (0.3, 0.3, 0.2)
P5 : n1, n3, n4, n2, n1 ⇒ (0.3, 0.2, 0.1)
P6 : n1, n4, n2, n3, n1 ⇒ (0.3, 0.2, 0.1)

Maximum is (0.6, 0.2, 0.1)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2;

(v) if n2, n1, n4, n3, n2 is a cycle based on n2, then it isn’t a neutrosophic
cyclic connectivity since neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.

P1 : n2, n4, n3, n2 ⇒ (0.3, 0.2, 0.1)
P2 : n2, n1, n3, n2 ⇒ (0.3, 0.3, 0.2)
P3 : n2, n1, n4, n2 ⇒ (0.3, 0.2, 0.1)

P4 : n2, n4, n3, n1, n2 ⇒ (0.3, 0.2, 0.1)
P5 : n2, n3, n4, n1, n2 ⇒ (0.3, 0.3, 0.2)
P6 : n2, n4, n1, n3, n2 ⇒ (0.3, 0.2, 0.1)

Maximum is (0.3, 0.3, 0.2)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2;

(vi) if n3, n2, n1, n4, n3 is a cycle based on n3, then it’s a neutrosophic
cyclic connectivity and neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.
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Figure 1.29: A Neutrosophic Graph in the Viewpoint of its connectivity number
and its neutrosophic connectivity number. 72NTG2

P1 : n3, n4, n2, n3 ⇒ (0.3, 0.2, 0.1)
P2 : n3, n1, n2, n3 ⇒ (0.3, 0.3, 0.2)
P3 : n3, n1, n4, n3 ⇒ (0.6, 0.2, 0.1)

P4 : n3, n4, n2, n1, n3 ⇒ (0.3, 0.2, 0.1)
P5 : n3, n2, n4, n1, n3 ⇒ (0.3, 0.2, 0.1)
P6 : n3, n4, n1, n2, n3 ⇒ (0.3, 0.3, 0.2)

Maximum is (0.6, 0.2, 0.1)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2.

Definition 1.5.81. (Dense Numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set of vertices is called dense set if for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints xy ∈ E and the
number of neighbors of x is greater than the number of neighbors of y.
The minimum cardinality between all dense sets is called dense number
and it’s denoted by D(NTG);

(ii) a set of vertices S is called dense set if for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints xy ∈ E and the
number of neighbors of x is greater than the number of neighbors of
y. The minimum neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all

dense sets is called neutrosophic dense number and it’s denoted by
Dn(NTG).

Proposition 1.5.82. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

D(CMTσ) = bO(CMTσ)
2 c+ 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
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to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). Sets of vertices with cardinality bO(CMTσ)

2 c+ 1 are dense sets
since every vertex inside has bO(CMTσ)

2 c neighbors inside and bO(CMTσ)
2 c − 1

neighbors outside. Hence the number of neighbors inside is greater than the
number of neighbors outside. The minimum cardinality between all dense sets
is bO(CMTσ)

2 c+ 1. Thus

D(CMTσ) = bO(CMTσ)
2 c+ 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.83. In Figure (2.29), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then it isn’t dense set since every
vertex inside has one neighbor inside and two neighbors outside. Hence
the number of neighbors inside isn’t greater than the number of neighbors
outside;

(ii) if S = {n1} is a set of vertices, then it isn’t dense set since every vertex
inside has no neighbor inside and three neighbors outside. Hence the
number of neighbors inside isn’t greater than the number of neighbors
outside;

(iii) if S1 = {n1, n2, n3}, S2 = {n1, n2, n4}, S3 = {n2, n3, n4} are sets of
vertices, then they’re dense sets since every vertex inside has two neighbors
inside and one neighbor outside. Hence the number of neighbors inside is
greater than the number of neighbors outside. The minimum cardinality
between all dense sets is 3. Thus D(CMTσ) = 3;

(iv) if S = {n1, n2} is a set of vertices, then it isn’t dense set since every
vertex inside has one neighbor inside and two neighbors outside. Hence
the number of neighbors inside isn’t greater than the number of neighbors
outside;

(v) if S = {n1} is a set of vertices, then it isn’t dense set since every vertex
inside has no neighbor inside and three neighbors outside. Hence the
number of neighbors inside isn’t greater than the number of neighbors
outside;

(vi) if S1 = {n1, n2, n3}, S2 = {n1, n2, n4}, S3 = {n2, n3, n4} are sets of
vertices, then they’re dense sets since every vertex inside has two
neighbors inside and one neighbor outside. Hence the number of neighbors
inside is greater than the number of neighbors outside. The minimum
neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all dense sets is 3.9.

Thus Dn(CMTσ) = 3.9.
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Figure 1.30: A Neutrosophic Graph in the Viewpoint of its dense number and
its neutrosophic dense number. 73NTG2

Definition 1.5.84. (bulky numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set of edges S is called bulky set if for every edge e′ outside, there’s
at least one edge e inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with e is greater
than the number of edges such that they’ve common vertex with e′. The
minimum cardinality between all bulky sets is called bulky number and
it’s denoted by B(NTG);

(ii) a set of edges S is called bulky set if for every edge e′ outside, there’s at
least one edge e inside such that they’ve common vertex and the number
of edges such that they’ve common vertex with e is greater than the
number of edges such that they’ve common vertex with e′. The minimum
neutrosophic cardinality

∑
e∈S

∑3
i=1 µi(s) between all bulky sets is called

neutrosophic bulky number and it’s denoted by Bn(NTG).

Proposition 1.5.85. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

B(CMTσ) = bO(CMTσ)
2 c.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). If S = {e1, e2, · · · , ebO(CMTσ)

2 c} is a set of edges, then it’s a bulky
set since for every edge e′j , outside, there’s at least one edge ei inside such that
they’ve common vertex and the number of edges such that they’ve common
vertex with ei is O(CMTσ)− 2 which is equal to [greater than] O(CMTσ)− 2
which is the number of edges such that they’ve common vertex with e′j . Hence
the number of neighbors inside is greater than the number of neighbors outside.
The minimum cardinality between all bulky sets is bO(CMTσ)

2 c. Thus

B(CMTσ) = bO(CMTσ)
2 c.

�
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The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.86. In Figure (2.30), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n2n4, n3n1} is a set of edges, then it’s a bulky set since for every
edge ninj , outside, there’s at least one edge n2n4 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n2n4 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(ii) if S = {n1n2, n2n3} is a set of edges, then it’s bulky set since for every
edge ninj , outside, there’s at least one edge n1n2 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n1n2 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(iii) All sets [2-sets] of edges containing two edges are bulky sets. Since for
every edge ninj , outside, there’s at least one edge ntns inside such that
they’ve common vertex and the number of edges such that they’ve common
vertex with ntns is three which is equal to [greater than] three which is
the number of edges such that they’ve common vertex with ninj . Thus
B(CMTσ) = 2;

(iv) if S = {n2n4, n3n1} is a set of edges, then it’s a bulky set since for every
edge ninj , outside, there’s at least one edge n2n4 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n2n4 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(v) if S = {n1n2, n2n3} is a set of edges, then it’s bulky set since for every
edge ninj , outside, there’s at least one edge n1n2 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n1n2 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(vi) if S = {n2n3, n2n4} is set of edges, then they’re bulky sets since for every
edge ninj , outside, there’s at least one edge n2n3 inside such that they’ve
common vertex and the number of edges such that they’ve common
vertex with n2n3 is three which is equal to [greater than] three which is
the number of edges such that they’ve common vertex with ninj . The
minimum neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all bulky

sets is 3.9. Thus Bn(CMTσ) = 1.4.

Definition 1.5.87. (collapsed numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 1.31: A Neutrosophic Graph in the Viewpoint of its bulky number and
its neutrosophic bulky number. 74NTG2

(i) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints xy ∈ E
and the number of neighbors of x is less than [equal to] the number of
neighbors of y. The minimum cardinality between all collapsed sets is
called collapsed number and it’s denoted by P(NTG);

(ii) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints xy ∈ E
and the number of neighbors of x is less than [equal to] the number of
neighbors of y. The minimum neutrosophic cardinality

∑
x∈S

∑3
i=1 σi(x)

between all collapsed sets is called neutrosophic collapsed number
and it’s denoted by Pn(NTG).

Proposition 1.5.88. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

P(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). All sets [1-set] of vertices containing one vertex {x}, are called
collapsed sets since for every vertex y outside, there’s [at least] only one vertex
x inside such that they’re endpoints xy ∈ E and the number of neighbors of x
is [less than] equal to the number of neighbors of y. The minimum cardinality
|S|, 1, between all collapsed sets is called collapsed number and it’s denoted by
P(CMTσ) = 1. Thus

P(CMTσ) = 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

60



1.5. Setting of neutrosophic notion number

Example 1.5.89. In Figure (2.31), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then a set of vertices S is called collapsed
set since for every vertex ni outside, there’s only one vertex n1 inside
such that they’re endpoints n1ni ∈ E and the number of neighbors of n1
is [less than] equal to the number of neighbors of ni;

(ii) if S = {n1, n2} is a set of vertices, then a set of vertices S is called
collapsed set since for every vertex ni outside, there are two vertices n1
and n2 inside such that they’re endpoints n1ni, n2ni ∈ E and the number
of neighbors of n1 and n2 is [less than] equal to the number of neighbors
of ni;

(iii) all sets [1-set] of vertices containing one vertex, are called collapsed sets
since for every vertex y outside, there’s at least one vertex x inside such
that they’re endpoints xy ∈ E and the number of neighbors of x is [less
than] equal to the number of neighbors of y. The minimum cardinality
|S|, 1, between all collapsed sets is called collapsed number and it’s
denoted by P(CMTσ) = 1;

(iv) if S = {n1} is a set of vertices, then a set of vertices S is called collapsed
set since for every vertex ni outside, there’s only one vertex n1 inside
such that they’re endpoints n1ni ∈ E and the number of neighbors of n1
is [less than] equal to the number of neighbors of ni;

(v) if S = {n1, n2} is a set of vertices, then a set of vertices S is called
collapsed set since for every vertex ni outside, there are two vertices n1
and n2 inside such that they’re endpoints n1ni, n2ni ∈ E and the number
of neighbors of n1 and n2 is [less than] equal to the number of neighbors
of ni;

(vi) all sets [1-set] of vertices containing one vertex, are called collapsed sets
since for every vertex y outside, there’s at least one vertex x inside such
that they’re endpoints xy ∈ E and the number of neighbors of x is [less
than] equal to the number of neighbors of y. The minimum neutrosophic
cardinality,

∑
x∈S

∑3
i=1 σi(x), 0.9, between all collapsed sets is called

neutrosophic collapsed number and it’s denoted by Pn(CMTσ) = 0.9.

Definition 1.5.90. (path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set of colors in this process is called path-coloring set from x to y.
The minimum cardinality between all path-coloring sets from two given
vertices is called path-coloring number and it’s denoted by L(NTG);

(ii) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set S of shared edges in this process is called path-coloring set
from x to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e),
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Figure 1.32: A Neutrosophic Graph in the Viewpoint of its collapsed number
and its neutrosophic collapsed number. 75NTG2

between all path-coloring sets, Ss, is called neutrosophic path-coloring
number and it’s denoted by Ln(NTG).

Proposition 1.5.91. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

L(CMTσ) = min
S
|S|.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). For given two vertices, x and y, there are some paths from x to
y. If two paths from x to y share one edge, then they’re assigned to different
colors. The set of colors in this process is called path-coloring set from x to y.
The minimum cardinality between all path-coloring sets from two given vertices
is called path-coloring number and it’s denoted by L(CMTσ). Thus

L(CMTσ) = min
S
|S|.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.92. In Figure (2.32), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.

(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → red
P3 : n1, n4, n2 → red
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P4 : n1, n3, n4, n2 → blue
P5 : n1, n4, n3, n2 → yellow

The paths P1, P2 and P3 has no shared edge so they’ve been colored
the same as red. The path P4 has shared edge n1n3 with P2 and shared
edge n4n2 with P3 thus it’s been colored the different color as blue in
comparison to them. The path P5 has shared edge n1n4 with P3 and
shared edge n3n4 with P4 thus it’s been colored the different color as
yellow in comparison to different paths in the terms of different colors.
Thus S = {red,blue, yellow} is path-coloring set and its cardinality, 3, is
path-coloring number. To sum them up, for given two vertices, x and
y, there are some paths from x to y. If two paths from x to y share
one edge, then they’re assigned to different colors. The set of colors,
S = {red,blue, yellow}, in this process is called path-coloring set from
x to y. The minimum cardinality between all path-coloring sets from
two given vertices, 3, is called path-coloring number and it’s denoted by
L(CMTσ) = 3;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are three different paths which have no shared edges. So they’ve
been assigned to same color;

(iv) shared edges form a set of representatives of colors. Each color is
corresponded to an edge which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to an edge has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way but
other way is to use all shared edges to form S and after that minimum
neutrosophic cardinality is optimal;

(vi) two edges n1n3 and n4n2 are shared with P4 by P3 and P2. The minimum
neutrosophic cardinality is 0.6 corresponded to n4n2. Other corresponded
color has only one shared edge n3n4 and minimum neutrosophic cardinality
is 0.9. Thus minimum neutrosophic cardinality is 1.5. And corresponded
set is S = {n4n2, n3n4}. To sum them up, for given two vertices, x and
y, there are some paths from x to y. If two paths from x to y share one
edge, then they’re assigned to different colors. The set S = {n4n2, n3n4}
of shared edges in this process is called path-coloring set from x to y.
The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between all

path-coloring sets, Ss, is called neutrosophic path-coloring number and
it’s denoted by Ln(CMTσ) = 1.5.

Definition 1.5.93. (dominating path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If
two paths from x to y share one edge, then they’re assigned to different
colors. The set of different colors, S, in this process is called dominating
path-coloring set from x to y if for every edge outside there’s at least
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Figure 1.33: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number. 76NTG2

one edge inside which they’ve common vertex. The minimum cardinality
between all dominating path-coloring sets from two given vertices is called
dominating path-coloring number and it’s denoted by Q(NTG);

(ii) for given two vertices, x and y, there are some paths from x to y. If
two paths from x to y share one edge, then they’re assigned to different
colors. The set S of different colors in this process is called dominating
path-coloring set from x to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum neutrosophic
cardinality,

∑
e∈S

∑3
i=1 µi(e), between all dominating path-coloring sets,

Ss, is called neutrosophic dominating path-coloring number and
it’s denoted by Qn(NTG).

Proposition 1.5.94. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Q(CMTσ) = min
S
|S|.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). For given two vertices, x and y, there are some paths from x to
y. If two paths from x to y share one edge, then they’re assigned to different
colors. The set of colors in this process is called dominating path-coloring set
from x to y. The minimum cardinality between all dominating path-coloring
sets from two given vertices is called dominating path-coloring number and it’s
denoted by Q(CMTσ). Thus

Q(CMTσ) = min
S
|S|.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Example 1.5.95. In Figure (2.33), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.

(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → red
P3 : n1, n4, n2 → red

P4 : n1, n3, n4, n2 → blue
P5 : n1, n4, n3, n2 → yellow

The paths P1, P2 and P3 has no shared edge so they’ve been colored
the same as red. The path P4 has shared edge n1n3 with P2 and shared
edge n4n2 with P3 thus it’s been colored the different color as blue in
comparison to them. The path P5 has shared edge n1n4 with P3 and
shared edge n3n4 with P4 thus it’s been colored the different color as yellow
in comparison to different paths in the terms of different colors. Thus
S = {red,blue, yellow} is dominating path-coloring set and its cardinality,
3, is dominating path-coloring number. To sum them up, for given two
vertices, x and y, there are some paths from x to y. If two paths from x to y
share one edge, then they’re assigned to different colors. The set of colors,
S = {red,blue, yellow}, in this process is called dominating path-coloring
set from x to y. The minimum cardinality between all dominating path-
coloring sets from two given vertices, 3, is called dominating path-coloring
number and it’s denoted by Q(CMTσ) = 3;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are three different paths which have no shared edges. So they’ve
been assigned to same color;

(iv) shared edges form a set of representatives of colors. Each color is
corresponded to an edge which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to an edge has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way but
other way is to use all shared edges to form S and after that minimum
neutrosophic cardinality is optimal;

(vi) two edges n1n3 and n4n2 are shared with P4 by P3 and P2. The minimum
neutrosophic cardinality is 0.6 corresponded to n4n2. Other corresponded
color has only one shared edge n3n4 and minimum neutrosophic cardinality
is 0.9. Thus minimum neutrosophic cardinality is 1.5. And corresponded
set is S = {n4n2, n3n4}. To sum them up, for given two vertices, x and y,
there are some paths from x to y. If two paths from x to y share one edge,
then they’re assigned to different colors. The set S = {n4n2, n3n4} of
shared edges in this process is called dominating path-coloring set from x
to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between

65



1. Neutrosophic Notions

Figure 1.34: A Neutrosophic Graph in the Viewpoint of its dominating path-
coloring number and its neutrosophic dominating path-coloring number. 77NTG2

all dominating path-coloring sets, Ss, is called neutrosophic dominating
path-coloring number and it’s denoted by Qn(CMTσ) = 1.5.

Definition 1.5.96. (path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S, in this process is called path-
coloring set from x to y. The minimum cardinality between all path-
coloring sets from two given vertices is called path-coloring number
and it’s denoted by V(NTG);

(ii) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share an endpoint, then they’re assigned to different
colors. The set S of different colors in this process is called path-coloring
set from x to y. The minimum neutrosophic cardinality,

∑
x∈Z

∑3
i=1 σi(x),

between all sets Zs including the latter endpoints corresponded to path-
coloring set Ss, is called neutrosophic path-coloring number and it’s
denoted by Vn(NTG).

Proposition 1.5.97. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

V(CMTσ) = (O(CMTσ)− 1)!.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are
connected to each other. So there’s one edge between two vertices. If
P : vi, vs, vs+1, · · · , vs+z, vj is a path from vi to vj , then all permutations
of internal vertices, it means all vertices on the path excluding vi and vj , is a
path from vi to vj , too. Furthermore, all permutations of vertices make a new
path. The number of vertices is O(CMTσ). For given two vertices, x and y,
there are some paths from x to y. If two paths from x to y share an endpoint,
then they’re assigned to different colors. The set of different colors, S, in this
process is called path-coloring set from x to y. The minimum cardinality, |S|,
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between all path-coloring sets from two given vertices is called path-coloring
number and it’s denoted by

V(CMTσ) = (O(CMTσ)− 1)!.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.98. In Figure (2.34), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.

(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → blue

P3 : n1, n4, n2 → yellow
P4 : n1, n3, n4, n2 → white
P5 : n1, n4, n3, n2 → black

Thus ∪3
i=1Si = {redi,bluei, yellowi,whitei,blacki}, is path-coloring set

and its cardinality, 15, is path-coloring number. To sum them up, for
given two vertices, x and y, there are some paths from x to y. If two paths
from x to y share an endpoint, then they’re assigned to different colors.
The set of different colors, ∪3

i=1Si = {redi,bluei, yellowi,whitei,blacki},
in this process is called path-coloring set from x to y. The minimum
cardinality, 15, between all path-coloring sets from two given vertices is
called path-coloring number and it’s denoted by V(CMTσ) = 15;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are some different paths which have no shared endpoints. So they
could been assigned to same color;

(iv) shared endpoints form a set of representatives of colors. Each color is
corresponded to a vertex which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to a vertex has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way
but other way is to use all shared endpoints to form S and after that
minimum neutrosophic cardinality is optimal;

(vi) for given two vertices, x and y, there are some paths from x to
y. If two paths from x to y share an endpoint, then they’re as-
signed to different colors. The set of different colors, ∪3

i=1Si =
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Figure 1.35: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number. 78NTG2

{redi,bluei, yellowi,whitei,blacki}, in this process is called path-
coloring set from x to y. The minimum neutrosophic cardinality,∑
x∈S

∑3
i=1 σi(x) = On(CMTσ) −

∑3
i=1 σi(n2) = 3.9, between all

path-coloring sets, Ss, is called neutrosophic path-coloring number and
it’s denoted by

Vn(CMTσ) = On(CMTσ)−
3∑
i=1

σi(n2) = 3.9.

Definition 1.5.99. (Dual-Dominating Numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, s and n, if µ(ns) = σ(n) ∧ σ(s), then s dominates
n and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex s in S, there’s at least one neutrosophic vertex
n in V \ S such that n dominates s, then the set of neutrosophic vertices,
S is called dual-dominating set. The maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(NTG);

(ii) for given two vertices, s and n, if µ(ns) = σ(n)∧σ(s), then s dominates n
and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertex s in S, there’s at least one neutrosophic
vertex n in V \ S such that n dominates s, then the set of neutrosophic
vertices, S is called dual-dominating set. The maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic dual-
dominating number and it’s denoted by Dn(NTG).

Proposition 1.5.100. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

D(CMTσ) = O(CMTσ)− 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
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to each other. So there’s one edge between two vertices. For given two vertices,
s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates n and n dominates s. Let
S = V \ {n} be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.] For every neutrosophic vertex s in
S, there’s only one neutrosophic vertex n in V \ (S = V \ {n}) such that n
dominates s, then the set of neutrosophic vertices, S = V \ {n} is called dual-
dominating set. The maximum cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(NTG) = O(NTG)− 1.
Thus

D(CMTσ) = O(CMTσ)− 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.101. In Figure (2.35), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two vertices, s and n, µ(ns) = σ(n)∧ σ(s). Thus s dominates n
and n dominates s;

(ii) the existence of one vertex to do this function, dominating, is obvious
thus this vertex form a set which is necessary and sufficient in the term
of minimum dominating set and minimal dominating set;

(iii) for given two vertices, s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates n
and n dominates s. Let S = V \ {n} be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.] If
for every neutrosophic vertex s in S, there’s only one neutrosophic vertex n
in V \ (S = V \{n}) such that n dominates s, then the set of neutrosophic
vertices, S = V \ {n} is called dual-dominating set. The maximum
cardinality between all dual-dominating sets is called dual-dominating
number and it’s denoted by D(CMTσ) = O(CMTσ)− 1;

(iv) the corresponded set doesn’t have to be dominated by the set;

(v) V is exception when the set is considered in this notion;

(vi) for given two vertices, s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates
n and n dominates s. Let S = V \ {n} be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.]
If for every neutrosophic vertex s in S, there’s only one neutrosophic
vertex n in V \ (S = V \ {n}) such that n dominates s, then the set
of neutrosophic vertices, S = V \ {n} is called dual-dominating set.
The maximum neutrosophic cardinality between all dual-dominating
sets is called neutrosophic dual-dominating number and it’s denoted
by Dn(CMTσ) = On(CMTσ)−

∑3
i=1 σi(n4) = 5.
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Figure 1.36: A Neutrosophic Graph in the Viewpoint of its dual-dominating
number and its neutrosophic dual-dominating number. 79NTG2

Definition 1.5.102. (dual-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, s and s′ if d(s, n) 6= d(s′, n), then n resolves s and
s′ where d is the minimum number of edges amid all paths from s to s′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s′ in S, there’s at least one neutrosophic vertex n in V \ S such
that n resolves s, s′, then the set of neutrosophic vertices, S is called dual-
resolving set. The maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(NTG);

(ii) for given two vertices, s and s′ if d(s, n) 6= d(s′, n), then n resolves s and
s′ where d is the minimum number of edges amid all paths from s to s′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s′ in S, there’s at least one neutrosophic vertex n in V \ S
such that n resolves s, s′, then the set of neutrosophic vertices, S is called
dual-resolving set. The maximum neutrosophic cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted by
Rn(NTG).

Proposition 1.5.103. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

R(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. For given two vertices,
s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t resolve s and s′ where d is
the minimum number of edges amid all paths from s to s′. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. For every two neutrosophic vertices s, s′ in S, there’s
no neutrosophic vertex n in V \ S such that n resolves s, s′, then the set of
neutrosophic vertices, S = {s} is called dual-resolving set. The maximum
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cardinality between all dual-resolving sets is called dual-resolving number and
it’s denoted by R(NTG) = 1. Thus

R(CMTσ) = 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.104. In Figure (2.36), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s, s′, d(s, n) = 1 = d(s′, n). Thus n
doesn’t resolve s and s′;

(ii) the existence of one neutrosophic vertex to do this function, resolving,
is obvious thus this vertex form a set which is necessary and sufficient
in the term of minimum resolving set and minimal resolving set as if it
seems there’s no neutrosophic vertex to resolve so as to choose one vertex
outside resolving set so as the function of resolving is impossible;

(iii) for given two vertices, s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t
resolve s and s′ where d is the minimum number of edges amid all
paths from s to s′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For every
two neutrosophic vertices s, s′ in S, there’s no neutrosophic vertex n in
V \ S such that n resolves s, s′, then the set of neutrosophic vertices,
S = {s} is called dual-resolving set. The maximum cardinality between
all dual-resolving sets is called dual-resolving number and it’s denoted by
R(NTG) = 1;

(iv) the corresponded set doesn’t have to be resolved by the set;

(v) V isn’t used when the set is considered in this notion since V \ {v} always
works;

(vi) for given two vertices, s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t
resolve s and s′ where d is the minimum number of edges amid all paths
from s to s′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. For every two
neutrosophic vertices s, s′ in S, there’s no neutrosophic vertex n in V \ S
such that n resolves s, s′, then the set of neutrosophic vertices, S = {s} is
called dual-resolving set. The maximum neutrosophic cardinality between
all dual-resolving sets is called dual-resolving number and it’s denoted by
Rn(NTG) = 2;

Definition 1.5.105. (joint-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 1.37: A Neutrosophic Graph in the Viewpoint of its dual-resolving
number and its neutrosophic dual-resolving number. 80NTG2

(i) for given vertex n if sn ∈ E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n, then
the set of neutrosophic vertices, S is called joint-dominating set where
for every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-dominating sets is called joint-dominating
number and it’s denoted by J (NTG);

(ii) for given vertex n if sn ∈ E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-dominating sets is
called neutrosophic joint-dominating number and it’s denoted by
Jn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

81prp9 Proposition 1.5.106. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S dominates if and only if it joint-dominates.

Proposition 1.5.107. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S is
corresponded to joint-dominating number. Then V \D is S-like.

Proposition 1.5.108. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is corresponded to joint-dominating number if and only if for all s in S, there’s
a vertex n in V \ S, such that {n′ | n′n ∈ E} ∩ S = {s}.

Proposition 1.5.109. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

J (CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
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to each other. So there’s one edge between two vertices. For given vertex n,
sn ∈ E, then s joint-dominates n. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex n in V \ S, there’s only one neutrosophic vertex s
in S such that s joint-dominates n, then the set of neutrosophic vertices, S is
called joint-dominating set where for every two vertices in S, there’s a path in
S amid them. The minimum cardinality between all joint-dominating sets is
called joint-dominating number and it’s denoted by J (CMTσ) = 1. Thus

J (CMTσ) = 1.

�

Proposition 1.5.110. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then joint-dominating number is equal to dominating number.

Proof. S has one member thus by Proposition (2.5.103), the result holds. �

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.111. In Figure (2.37), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) one vertex dominates all other vertices thus by there’s only one member
for S and Proposition (2.5.103), this vertex joint-dominates other vertices;

(iii) all joint-dominating sets corresponded to joint-dominating number are
{n1}, {n2}, {n3} and {n4} For given vertex n, sn ∈ E, thus by Proposition
(2.5.103), s joint-dominates n. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.]
like {n1}, {n2}, {n3} and {n4}. For every neutrosophic vertex n in V \ S,
there’s only one neutrosophic vertex s in S such that s joint-dominates
n, then the set of neutrosophic vertices, S = {n1}, {n2}, {n3} and {n4}.
is called joint-dominating set where for every two vertices in S, there’s
no need to have a path in S amid them or we could refer this case holds
by Proposition (2.5.103). The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted by
J (CMTσ) = 1;

(iv) there are four joint-dominating sets {n1}, {n2}, {n3} and {n4} as if it’s
possible to have one of them as a set corresponded to neutrosophic joint-
dominating number so as neutrosophic cardinality is characteristic;
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Figure 1.38: A Neutrosophic Graph in the Viewpoint of its joint-dominating
number and its neutrosophic joint-dominating number. 81NTG2

(v) there are four joint-dominating sets {n1}, {n2}, {n3} and {n4} correspon-
ded to joint-dominating number as if there are one joint-dominating set
corresponded to neutrosophic joint-dominating number so as neutrosophic
cardinality is the determiner;

(vi) there’s only one joint-dominating set corresponded to joint-dominating
number is {n4}. For given vertex n, sn ∈ E, thus by Proposition (2.5.103),
s joint-dominates n. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] like
{n1}, {n2}, {n3} and {n4}. For every neutrosophic vertex n in V \ S,
there’s only one neutrosophic vertex s in S such that s joint-dominates
n, then the set of neutrosophic vertices, S = {n1}, {n2}, {n3} and {n4}.
is called joint-dominating set where for every two vertices in S, there’s no
need to have a path in S amid them or we could refer this case holds by
Proposition (2.5.103). The minimum neutrosophic cardinality between all
joint-dominating sets is called joint-dominating number and it’s denoted
by Jn(CMTσ) = 0.9.

Definition 1.5.112. (joint-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices n and n′, if d(s, n) 6= d(s, n′), then s joint-resolves
n and n′ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic
vertices [a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V \ S, there’s at least one
neutrosophic vertex s in S such that s joint-resolves n and n′, then the set
of neutrosophic vertices, S is called joint-resolving set where for every
two vertices in S, there’s a path in S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by J (NTG);

(ii) for given two vertices n and n′, if d(s, n) 6= d(s, n′), then s joint-resolves
n and n′ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n′ in V \ S, there’s at least
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one neutrosophic vertex s in S such that s joint-resolves n and n′,
then the set of neutrosophic vertices, S is called joint-resolving set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-resolving sets is called
neutrosophic joint-resolving number and it’s denoted by Jn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

82prp9 Proposition 1.5.113. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it joint-resolves.

Proposition 1.5.114. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is corresponded to joint-resolving number if and only if for all s in S, either
there are vertices n and n′ in V \S, such that {s′ | d(s′, n) 6= d(s′, n′)}∩S = {s}
or there’s vertex s′ in S, such that are s and s′ twin vertices.

Proposition 1.5.115. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

J (CMTσ) = O(CMTσ)− 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. All joint-resolving sets
corresponded to joint-resolving number are

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1},

For given two vertices n and n′, d(s, n) = 1 = 1 = d(s, n′), then s doesn’t
joint-resolve n and n′ where d is the minimum number of edges amid all paths
from the vertex and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.] like

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1}.

For every neutrosophic vertices n and n′ in V \S, there’s at least one neutrosophic
vertex s in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1}
is called joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum cardinality between all joint-resolving sets is called
joint-resolving number and it’s denoted by J (CMTσ) = O(CMTσ)− 1. Thus

J (CMTσ) = O(CMTσ)− 1.

�

Proposition 1.5.116. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then joint-resolving number is equal to dominating number.

Proposition 1.5.117. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of joint-resolving number corresponded to joint-resolving
number is equal to O(CMTσ) choose O(CMTσ)− 1. Thus the number of joint-
resolving number corresponded to joint-resolving number is equal to O(CMTσ).
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Proposition 1.5.118. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of joint-resolving number corresponded to joint-resolving
number is equal to O(CMTσ) choose O(CMTσ) − 1 then minus one. Thus
the number of joint-resolving number corresponded to joint-resolving number is
equal to O(CMTσ)− 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.119. In Figure (2.38), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) Every given two vertices are twin since for all given two vertices, every
of them has one edge from every given vertex thus minimum number of
edges amid all paths from a vertex to another vertex is forever one;

(iii) all joint-resolving sets corresponded to joint-resolving number are
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. For given two vertices n and
n′, if d(s, n) 6= d(s, n′), then s joint-resolves n and n′ where d is the
minimum number of edges amid all paths from the vertex and the
another vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] like either
of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If for every neutrosophic
vertices n and n′ in V \ S, there’s at least one neutrosophic vertex s
in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4} is called
joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum cardinality between all joint-resolving sets is
called joint-resolving number and it’s denoted by J (CMTσ) = 3;

(iv) there are four joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
and {n1, n2, n3, n4} as if it’s possible to have one of them as a set
corresponded to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

(v) there are three joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, and
{n1, n3, n4} corresponded to joint-resolving number as if there’s one joint-
resolving set corresponded to neutrosophic joint-resolving number so as
neutrosophic cardinality is the determiner;

(vi) all joint-resolving sets corresponded to neutrosophic joint-resolving number
are {n1, n3, n4}. For given two vertices n and n′, if d(s, n) 6= d(s, n′),
then s joint-resolves n and n′ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of {n1, n2, n3}, {n1, n2, n4}, and
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Figure 1.39: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number. 82NTG2

{n1, n3, n4}. If for every neutrosophic vertices n and n′ in V \S, there’s at
least one neutrosophic vertex s in S such that s joint-resolves n and n′, then
the set of neutrosophic vertices, S is either of {n1, n2, n3}, {n1, n2, n4},
and {n1, n3, n4} is called joint-resolving set where for every two vertices in
S, there’s a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called neutrosophic joint-resolving
number and it’s denoted by Jn(CMTσ) = 3.9.

Definition 1.5.120. (perfect-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V \S, there’s only one neutrosophic vertex s
in S such that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum cardinality between
all perfect-dominating sets is called perfect-dominating number and
it’s denoted by P(NTG);

(ii) for given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V \S, there’s only one neutrosophic vertex s in S
such that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum neutrosophic cardinality
between all perfect-dominating sets is called neutrosophic perfect-
dominating number and it’s denoted by Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

83prp9 Proposition 1.5.121. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S has
one member. Then a vertex of S dominates if and only if it perfect-dominates.

Proposition 1.5.122. Let NTG : (V,E, σ, µ) be a neutrosophic graph and
dominating set has one member. Then a vertex of dominating set corresponded
to dominating number dominates if and only if it perfect-dominates.
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Proposition 1.5.123. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
S is corresponded to perfect-dominating number if and only if for all s in S,
there’s a vertex n in V \ S, such that {s′ | s′n ∈ E} ∩ S = {s}.

Proposition 1.5.124. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

P(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. All perfect-dominating
sets corresponded to perfect-dominating number are

{n1}, {n2}, {n3}, . . . {nO(CMTσ−1)}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s perfect-dominates n where s is the unique
vertex. Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s only one neutrosophic vertex s in S such that s perfect-
dominates n, then the set of neutrosophic vertices, S is called perfect-dominating
set. The minimum cardinality between all perfect-dominating sets is called
perfect-dominating number and it’s denoted by P(CMTσ) = 1. Thus

P(CMTσ) = 1.

�

Proposition 1.5.125. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then perfect-dominating number is equal to dominating number.

Proposition 1.5.126. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-dominating sets corresponded to perfect-dominating
number is equal to O(CMTσ).

Proposition 1.5.127. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-dominating sets is equal to 2O(CMTσ) − 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.128. In Figure (2.39), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it perfect-dominates, by
Proposition (2.5.118) and S has one member;
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(iii) all perfect-dominating sets corresponded to perfect-dominating number
are {n1}, {n2}, {n3}, and {n4}. For given vertex n, if sn ∈ E, then s
perfect-dominates n where s is the unique vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
only one neutrosophic vertex s in S such that s perfect-dominates n, then
the set of neutrosophic vertices, S is called perfect-dominating set. The
minimum cardinality between all perfect-dominating sets is called perfect-
dominating number and it’s denoted by P(CMTσ) = 1 and corresponded
to perfect-dominating sets are {n1}, {n2}, {n3}, and {n4};

(iv) there are five perfect-dominating sets

{n1}, {n2}, {n3},
{n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
perfect-dominating number so as neutrosophic cardinality is characteristic;

(v) there are five perfect-dominating sets

{n1}, {n2}, {n3},
{n4}, {n1, n2, n3, n4},

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all perfect-dominating sets corresponded to perfect-dominating number
are

{n1}, {n2}, {n3},
{n4},

For given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V \S, there’s only one neutrosophic vertex
s in S such that s perfect-dominates n, then the set of neutrosophic
vertices, S is called perfect-dominating set. The minimum neutrosophic
cardinality between all perfect-dominating sets is called neutrosophic
perfect-dominating number and it’s denoted by Pn(CMTσ) = 0.9 and
corresponded to perfect-dominating sets {n4}.

Definition 1.5.129. (perfect-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves
n and n′ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′ in V \S, there’s only one neutrosophic vertex
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Figure 1.40: A Neutrosophic Graph in the Viewpoint of its perfect-dominating
number and its neutrosophic perfect-dominating number. 83NTG2

s in S such that s perfect-resolves n and n′, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number
and it’s denoted by P(NTG);

(ii) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves
n and n′ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n′ in V \ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n′, then
the set of neutrosophic vertices, S is called perfect-resolving set. The
minimum neutrosophic cardinality between all perfect-resolving sets is
called neutrosophic perfect-resolving number and it’s denoted by
Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

84prp9 Proposition 1.5.130. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it perfect-resolves.

Proposition 1.5.131. Let NTG : (V,E, σ, µ) be a neutrosophic graph and
resolving set has one member. Then a vertex of resolving set corresponded
to resolving number resolves if and only if it perfect-resolves.

Proposition 1.5.132. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
S is corresponded to perfect-resolving number if and only if for all s in S,
there are neutrosophic vertices n and n′ in V \ S, such that {s′ | d(s′, n) 6=
d(s′, n′)} ∩ S = {s} and for all neutrosophic vertices n and n′ in V \ S, there’s
only one neutrosophic vertex s in S, such that {s′ | d(s′, n) 6= d(s′, n′)}∩S = {s}.

84prp12 Proposition 1.5.133. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
and V \ {x} are S.

Proposition 1.5.134. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

P(CMTσ) = O(CMTσ)− 1.
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Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
if and only if it perfect-resolves, by no vertices could be resolved in both
settings of resolving and perfect-resolving. Thus, by Proposition (2.5.130), S
has either O(CMTσ)− 1 or O(CMTσ). All perfect-resolving sets corresponded
to perfect-resolving number are

{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},
. . .

{n2, n3, n4, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and
n′ where s is the unique vertex and d is minimum number of edges amid two
vertices. Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n′ in V \ S, there’s only one neutrosophic vertex s in S such that s
perfect-resolves n and n′, then the set of neutrosophic vertices, S is called
perfect-resolving set. The minimum cardinality between all perfect-resolving
sets is called perfect-resolving number and it’s denoted by

P(CMTσ) = O(CMTσ)− 1

and corresponded to perfect-resolving sets are

{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},
. . .

{n2, n3, n4, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)}.

Thus
P(CMTσ) = O(CMTσ)− 1.

�

Proposition 1.5.135. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then perfect-resolving number is equal to resolving number.

Proposition 1.5.136. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-resolving sets corresponded to perfect-resolving
number is equal to O(CMTσ).

Proposition 1.5.137. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-resolving sets is equal to O(CMTσ) + 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the

81



1. Neutrosophic Notions

definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.138. In Figure (2.40), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves if and only if it perfect-resolves, by no vertices
could be resolved in both settings of resolving and perfect-resolving. Thus,
by Proposition (2.5.130), S has either O(CMTσ)− 1 or O(CMTσ);

(iii) all perfect-resolving sets corresponded to perfect-resolving number are
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4}. For given vertices
n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and n′ where s is
the unique vertex and d is minimum number of edges amid two vertices.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V \ S, there’s only one neutrosophic vertex s in
S such that s perfect-resolves n and n′, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number and
it’s denoted by P(CMTσ) = 3 and corresponded to perfect-resolving sets
are {n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4};

(iv) there are five perfect-resolving sets

{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
perfect-resolving number so as neutrosophic cardinality is characteristic;

(v) there are four perfect-resolving sets

{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4},

corresponded to perfect-resolving number as if there’s one perfect-
resolving set corresponded to neutrosophic perfect-resolving number so as
neutrosophic cardinality is the determiner;

(vi) all perfect-resolving sets corresponded to perfect-resolving number are
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4}. For given vertices
n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and n′ where s is
the unique vertex and d is minimum number of edges amid two vertices.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n′ in V \ S, there’s only one neutrosophic vertex s in S such that s
perfect-resolves n and n′, then the set of neutrosophic vertices, S is called
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Figure 1.41: A Neutrosophic Graph in the Viewpoint of its perfect-resolving
number and its neutrosophic perfect-resolving number. 84NTG2

perfect-resolving set. The minimum neutrosophic cardinality between all
perfect-resolving sets is called neutrosophic perfect-resolving number and
it’s denoted by Pn(CMTσ) = 3.9 and corresponded to perfect-resolving
sets are {n1, n3, n4}.

Definition 1.5.139. (total-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
set. The minimum cardinality between all total-dominating sets is called
total-dominating number and it’s denoted by T (NTG);

(ii) for given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum neutrosophic cardinality between all total-dominating sets is
called neutrosophic total-dominating number and it’s denoted by
Tn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.140. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
|S| ≥ 2.

Proposition 1.5.141. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

T (CMTσ) = 2.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
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to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates as if it doesn’t total-dominate since a vertex couldn’t dominate itself.
All total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4}, . . . , {n1, nO(CMTσ)−2}, {n1, nO(CMTσ)−1}, {n1, nO(CMTσ)}
{n2, n3}, {n2, n4}, {n2, n5}, . . . , {n2, nO(CMTσ)−2}, {n2, nO(CMTσ)−1}, {n2, nO(CMTσ)}
{n3, n4}, {n3, n5}, {n3, n6}, . . . , {n3, nO(CMTσ)−2}, {n3, nO(CMTσ)−1}, {n3, nO(CMTσ)}

. . .

{nO(CMTσ)−3, nO(CMTσ)−2}, {nO(CMTσ)−3, nO(CMTσ)−1}, {nO(CMTσ)−3, nO(CMTσ)}
{nO(CMTσ)−2, nO(CMTσ)−1}, {nO(CMTσ)−2, nO(CMTσ)}

{nO(CMTσ)−1, nO(CMTσ)}

For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at least
a neutrosophic vertex s in S such that s total-dominates n, then the set of
neutrosophic vertices, S is called total-dominating set. The minimum cardinality
between all total-dominating sets is called total-dominating number and it’s
denoted by

T (NTG) = 2

and corresponded to total-dominating sets are

{n1, n2}, {n1, n3}, {n1, n4}, . . . , {n1, nO(CMTσ)−2}, {n1, nO(CMTσ)−1}, {n1, nO(CMTσ)}
{n2, n3}, {n2, n4}, {n2, n5}, . . . , {n2, nO(CMTσ)−2}, {n2, nO(CMTσ)−1}, {n2, nO(CMTσ)}
{n3, n4}, {n3, n5}, {n3, n6}, . . . , {n3, nO(CMTσ)−2}, {n3, nO(CMTσ)−1}, {n3, nO(CMTσ)}

. . .

{nO(CMTσ)−3, nO(CMTσ)−2}, {nO(CMTσ)−3, nO(CMTσ)−1}, {nO(CMTσ)−3, nO(CMTσ)}
{nO(CMTσ)−2, nO(CMTσ)−1}, {nO(CMTσ)−2, nO(CMTσ)}

{nO(CMTσ)−1, nO(CMTσ)}

Thus
T (CMTσ) = 2.

�

Proposition 1.5.142. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then total-dominating number isn’t equal to dominating number.

Proposition 1.5.143. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-dominating sets corresponded to total-dominating
number is equal to O(CMTσ) choose two.

Proposition 1.5.144. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-dominating sets is equal to O(CMTσ) choose two plus
O(CMTσ) choose three plus one.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
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1.5. Setting of neutrosophic notion number

apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.145. In Figure (2.41), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself;

(iii) all total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4}.

For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum cardinality between all total-dominating sets is called total-
dominating number and it’s denoted by T (CMTσ) = 2 and corresponded
to total-dominating sets are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4};

(iv) there are eleven total-dominating sets

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4},
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
total-dominating number so as neutrosophic cardinality is characteristic;

(v) there are six total-dominating sets

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4},

corresponded to total-dominating number as if there’s one total-
dominating set corresponded to neutrosophic total-dominating number so
as neutrosophic cardinality is the determiner;

(vi) all total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4}.
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1. Neutrosophic Notions

Figure 1.42: A Neutrosophic Graph in the Viewpoint of its total-dominating
number and its neutrosophic total-dominating number. 85NTG2

For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
set. The minimum neutrosophic cardinality between all total-dominating
sets is called neutrosophic total-dominating number and it’s denoted by
Tn(CMTσ) = 2.3 and corresponded to neutrosophic total-dominating sets
are

{n3, n4}.

Definition 1.5.146. (total-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices, d ≥ 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d ≥ 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n′, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum cardinality between all
total-resolving sets is called total-resolving number and it’s denoted
by T (NTG);

(ii) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices, d ≥ 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d ≥ 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n′, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum neutrosophic cardinality

86



1.5. Setting of neutrosophic notion number

between all total-resolving sets is called neutrosophic total-resolving
number and it’s denoted by Tn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 1.5.147. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
|S| ≥ 2.

86prp10 Proposition 1.5.148. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then if
there are twin vertices then total-resolving set and total-resolving number are
Not Existed.

Proposition 1.5.149. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

T (CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t total-resolve so as resolving is different from total-resolving and
by Proposition (2.5.145), total-resolving set and total-resolving number are
Not Existed. All total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in V, there’s
at least a neutrosophic vertex s in S such that s total-resolves n and n′, then
the set of neutrosophic vertices, S is called total-resolving set. The minimum
cardinality between all total-resolving sets is called total-resolving number and
it’s denoted by

T (CMTσ) = Not Existed;
and corresponded to total-resolving sets are

Not Existed.

Thus
T (CMTσ) = Not Existed.

�

Proposition 1.5.150. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then total-resolving number isn’t equal to resolving number.

Proposition 1.5.151. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-resolving sets corresponded to total-resolving number
is Not Existed.

Proposition 1.5.152. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-resolving sets is Not Existed.
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The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.153. In Figure (2.42), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve so as resolving is
different from total-resolving and by Proposition (2.5.145), total-resolving
set and total-resolving number are Not Existed;

(iii) all total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n
and n′ where d is minimum number of edges amid two vertices. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in
V, there’s at least a neutrosophic vertex s in S such that s total-resolves
n and n′, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is called
total-resolving number and it’s denoted by T (CMTσ) = Not Existed;
and corresponded to total-resolving sets are

Not Existed;

(iv) there’s no total-resolving set

Not Existed,

as if it’s possible to have one of them as a set corresponded to neutrosophic
total-resolving number so as neutrosophic cardinality is characteristic;

(v) there’s no total-resolving set

Not Existed,

corresponded to total-resolving number as if there’s one total-resolving set
corresponded to neutrosophic total-resolving number so as neutrosophic
cardinality is the determiner;

(vi) all total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n
and n′ where d is minimum number of edges amid two vertices. Let S be
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1.5. Setting of neutrosophic notion number

Figure 1.43: A Neutrosophic Graph in the Viewpoint of its total-resolving
number and its neutrosophic total-resolving number. 86NTG2

a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in
V, there’s at least a neutrosophic vertex s in S such that s total-resolves
n and n′, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted by
Tn(CMTσ) = Not Existed; and corresponded to total-resolving sets are

Not Existed.

Definition 1.5.154. (stable-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(NTG);

(ii) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The
minimum neutrosophic cardinality between all stable-dominating sets is
called neutrosophic stable-dominating number and it’s denoted by
Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

86prp9 Proposition 1.5.155. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then
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(i) a vertex dominates if and only if it stable-dominates;

(ii) S is dominating set if and only if it’s stable-dominating set;

(iii) a number is dominating number if and only if it’s stable-dominating
number.

Proposition 1.5.156. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is stable-dominating set corresponded to stable-dominating number if and only
if for every neutrosophic vertex s in S, there’s at least a neutrosophic vertex n
in V \ S such that {s′ ∈ S | s′n ∈ E} = {s}.

Proposition 1.5.157. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

Proposition 1.5.158. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and O(NTG)− 1.

Proposition 1.5.159. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and On(NTG)−minx∈V

∑3
i=1 σi(x).

Proposition 1.5.160. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

S(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates if and only if it stable-dominates so as dominating is the same
with stable-dominating, by Proposition (2.5.152), and S has one member. All
stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(CMTσ) = 1;

and corresponded to stable-dominating sets are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

Thus
S(CMTσ) = 1.

�
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Proposition 1.5.161. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 1.5.162. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets corresponded to stable-dominating
number is O(CMTσ).

Proposition 1.5.163. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets is O(CMTσ).

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.164. In Figure (2.43), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (2.5.152),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-dominating set. The
minimum cardinality between all stable-dominating sets is called stable-
dominating number and it’s denoted by S(CMTσ) = 1; and corresponded
to stable-dominating sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;
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Figure 1.44: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG2

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMTσ) = 0.9; and corresponded to stable-dominating sets are

{n4}.

Definition 1.5.165. (stable-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted
by S(NTG);
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(ii) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in S,
there’s no edge between them, then the set of neutrosophic vertices, S is
called neutrosophic stable-resolving set. The minimum neutrosophic
cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

88prp9 Proposition 1.5.166. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then

(i) a vertex resolves if and only if it stable-resolves;

(ii) S is resolving set if and only if it’s stable-resolving set;

(iii) a number is resolving number if and only if it’s stable-resolving number.

Proposition 1.5.167. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is stable-resolving set corresponded to stable-resolving number if and only if for
every neutrosophic vertex s in S, there are at least neutrosophic vertices n and
n′ in V \ S such that {s′ ∈ S | d(s′, n) 6= d(s′, n′)} = {s}.

Proposition 1.5.168. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

Proposition 1.5.169. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

S(CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t stable-resolve so as resolving is different from stable-resolving.
Stable-resolving set and stable-resolving number are Not Existed. All stable-
resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(CMTσ) = Not Existed
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and corresponded to stable-resolving sets are

Not Existed.

Thus
S(CMTσ) = Not Existed.

�

Proposition 1.5.170. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 1.5.171. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets corresponded to stable-resolving number
is Not Existed.

Proposition 1.5.172. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets is Not Existed.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.173. In Figure (2.44), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is
different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMTσ) = Not Existed; and corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;
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Figure 1.45: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG2

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(CMTσ) = Not Existed; and corresponded
to stable-resolving sets are

Not Existed.

1.6 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
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Figure 1.46: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number 88NTG20

1.7 Modelling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1), clarifies about the
assigned numbers to these situations.

Table 1.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 88tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

1.8 Case 1: Complete-Model

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with some subjects.
Thus the connection is applied as possible and the model demonstrates
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quasi-full connections as quasi-possible. Using the notion of strong on
the connection amid subjects, causes the importance of subject goes in
the highest level such that the value amid two consecutive subjects, is
determined by those subjects. If the configuration is star, the number
is different. Also, it holds for other types such that complete, wheel,
path, and cycle. The collection of situations is another application of
its stable-resolving number and its neutrosophic stable-resolving number
when the notion of family is applied in the way that all members of family
are from same classes of neutrosophic graphs. As follows, there are five
subjects which are represented as Figure (2.45). This model is strong
and even more it’s quasi-complete. And the study proposes using specific
number which is called its stable-resolving number and its neutrosophic
stable-resolving number. There are also some analyses on other numbers
in the way that, the clarification is gained about being special number or
not. Also, in the last part, there is one neutrosophic number to assign
to this model and situation to compare them with same situations to
get more precise. Consider Figure (2.45). In Figure (2.45), an complete-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) Every given two vertices are twin since for all given two vertices,
every of them has one edge from every given vertex thus minimum
number of edges amid all paths from a vertex to another vertex is
forever one;

(iii) all joint-resolving sets corresponded to joint-resolving number are
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. For given two vertices n
and n′, if d(s, n) 6= d(s, n′), then s joint-resolves n and n′ where d
is the minimum number of edges amid all paths from the vertex
and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.] like either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If
for every neutrosophic vertices n and n′ in V \ S, there’s at least
one neutrosophic vertex s in S such that s joint-resolves n and n′,
then the set of neutrosophic vertices, S is either of {n1, n2, n3},
{n1, n2, n4}, and {n1, n3, n4} is called joint-resolving set where for
every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by J (CMTσ) = 3;

(iv) there are four joint-resolving sets {n1, n2, n3}, {n1, n2, n4},
{n1, n3, n4}, and {n1, n2, n3, n4} as if it’s possible to have one
of them as a set corresponded to neutrosophic joint-resolving number
so as neutrosophic cardinality is characteristic;

(v) there are three joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, and
{n1, n3, n4} corresponded to joint-resolving number as if there’s
one joint-resolving set corresponded to neutrosophic joint-resolving
number so as neutrosophic cardinality is the determiner;

97



1. Neutrosophic Notions

Figure 1.47: A Neutrosophic Graph 88NTG21

(vi) all joint-resolving sets corresponded to neutrosophic joint-resolving
number are {n1, n3, n4}. For given two vertices n and n′, if d(s, n) 6=
d(s, n′), then s joint-resolves n and n′ where d is the minimum
number of edges amid all paths from the vertex and the another
vertex. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] like either of
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If for every neutrosophic
vertices n and n′ in V \ S, there’s at least one neutrosophic vertex s
in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4} is
called joint-resolving set where for every two vertices in S, there’s
a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called neutrosophic joint-resolving
number and it’s denoted by Jn(CMTσ) = 3.9.

1.9 Case 2: Complete Model alongside its
Neutrosophic Graph

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with every given
subject in deemed way. Thus the connection applied as possible and
the model demonstrates full connections as possible between parts but
with different view where symmetry amid vertices and edges are the
matters. Using the notion of strong on the connection amid subjects,
causes the importance of subject goes in the highest level such that the
value amid two consecutive subjects, is determined by those subjects. If
the configuration is complete multipartite, the number is different. Also, it
holds for other types such that star, wheel, path, and cycle. The collection
of situations is another application of its stable-resolving number and its
neutrosophic stable-resolving number when the notion of family is applied
in the way that all members of family are from same classes of neutrosophic
graphs. As follows, there are four subjects which are represented in the
formation of one model as Figure (2.46). This model is neutrosophic
strong as individual and even more it’s complete. And the study proposes
using specific number which is called its stable-resolving number and its
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neutrosophic stable-resolving number for this model. There are also some
analyses on other numbers in the way that, the clarification is gained
about being special number or not. Also, in the last part, there is one
neutrosophic number to assign to these models as individual. A model
as a collection of situations to compare them with another model as a
collection of situations to get more precise. Consider Figure (2.46). There
is one section for clarifications.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there aren’t
two weakest edges which imply there is no neutrosophic cycle. So
this crisp cycle isn’t a neutrosophic cycle but it’s crisp cycle. The
crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this
crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);
(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious

that there’s two crisp cycles with length two and three. It’s also a
path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1, n3, n4,
and with length four, n1, n2, n3, n4. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic
cycles since if the length of a sequence of consecutive vertices is at
most 4 and it’s crisp complete, then it’s possible to have some crisp
cycles and two neutrosophic cycles with two different length three
and four. So this neutrosophic path forms some neutrosophic cycles
and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there
are two weakest edges, n3n4 and n1n4, which imply there is one
neutrosophic cycle. So this crisp cycle is a neutrosophic cycle and
it’s crisp cycle. The crisp length of this neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);
(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

1.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable, are defined in complete-neutrosophic graphs. Thus,

Question 1.10.1. Is it possible to use other types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable?

Question 1.10.2. Are existed some connections amid different types of neut-
rosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in complete-neutrosophic graphs?

Question 1.10.3. Is it possible to construct some classes of complete-
neutrosophic graphs which have “nice” behavior?

Question 1.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 1.10.5. Which parameters are related to this parameter?
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Problem 1.10.6. Which approaches do work to construct applications to create
independent study?

Problem 1.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

1.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses some definitions concerning different types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs. Further studies

Table 1.2: A Brief Overview about Advantages and Limitations of this Study 88tbl

Advantages Limitations
1. Neutrosophic Numbers of Model 1. Connections amid Classes

2. Acting on All Edges

3. Minimal Sets 2. Study on Families

4. Maximal Sets

5. Acting on All Vertices 3. Same Models in Family

could be about changes in the settings to compare these notions amid different
settings of complete-neutrosophic graphs. One way is finding some relations
amid all definitions of notions to make sensible definitions. In Table (2.2), some
limitations and advantages of this study are pointed out.
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CHAPTER 2

Neutrosophic Tools

2.1 Abstract

New setting is introduced to study different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs. Minimum
number and maximum number of different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, is a number
which is representative based on those vertices or edges. Minimum or max-
imum neutrosophic number or polynomial of different types of neutrosophic
zero-forcing, neutrosophic independence, neutrosophic clique, neutrosophic
matching, neutrosophic girth, neutrosophic cycles, neutrosophic connectivity,
neutrosophic density, neutrosophic path-coloring, neutrosophic duality, neut-
rosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
are called neutrosophic different types of neutrosophic zero-forcing, neutro-
sophic independence, neutrosophic clique, neutrosophic matching, neutrosophic
girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic density,
neutrosophic path-coloring, neutrosophic duality, neutrosophic join, neutro-
sophic perfect, neutrosophic total, neutrosophic stable number or polynomial.
Forming sets from different types of neutrosophic zero-forcing, neutrosophic
independence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable to figure out different types of
number of vertices in the sets from different types of neutrosophic zero-forcing,
neutrosophic independence, neutrosophic clique, neutrosophic matching, neut-
rosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable sets in the terms of
minimum (maximum) number of vertices to get minimum (maximum) number
to assign in complete-neutrosophic graphs assigned to complete-neutrosophic
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graphs, is key type of approach to have these notions namely different types
of neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique,
neutrosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic
connectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic du-
ality, neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic
stable, in complete-neutrosophic graphs assigned to complete-neutrosophic
graphs. Two numbers and one set are assigned to a neutrosophic graph, are
obtained but now both settings lead to approach is on demand which is to com-
pute and to find representatives of sets. As concluding results, there are some
statements, remarks, examples and clarifications about complete-neutrosophic
graphs. The clarifications are also presented in both sections “Setting of neut-
rosophic notion number,” and “ Setting of notion neutrosophic-number,” for
introduced results and used classes. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.
Keywords: different types of neutrosophic zero-forcing, neutrosophic in-

dependence, neutrosophic clique, neutrosophic matching, neutrosophic girth,
neutrosophic cycles, neutrosophic connectivity, neutrosophic density, neutro-
sophic path-coloring, neutrosophic duality, neutrosophic join, neutrosophic
perfect, neutrosophic total, neutrosophic stable
AMS Subject Classification: 05C17, 05C22, 05E45

2.2 Background

Different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic
total, neutrosophic stable are addressed in Bibliography. Specially, properties
of SuperHyperGraph and neutrosophic SuperHyperGraph by Henry Garrett
(2022), is studied. Also, some studies and researches about neutrosophic graphs,
are proposed as a book by Henry Garrett (2022).
In this section, I use two sections to illustrate a perspective about the background
of this study.

2.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.3.1. Is it possible to use mixed versions of ideas concerning “differ-
ent types of neutrosophic zero-forcing, neutrosophic independence, neutrosophic
clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles, neut-
rosophic connectivity, neutrosophic density, neutrosophic path-coloring, neut-
rosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial”, “neutrosophic different types of
neutrosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable
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number and polynomial” and “complete-neutrosophic graphs” to define some
notions which are applied to complete-neutrosophic graphs?

It’s motivation to find notions to use in complete-neutrosophic graphs. Real-
world applications about time table and scheduling are another thoughts which
lead to be considered as motivation. In both settings, corresponded numbers or
polynomials conclude the discussion. Also, there are some avenues to extend
these notions.
The framework of this study is as follows. In the beginning, I introduce basic
definitions to clarify about preliminaries. In section “Preliminaries”, new notions
of different types of neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable number and polynomial’ in complete-neutrosophic graphs
assigned to complete-neutrosophic graphs, are highlighted, are introduced and
are clarified as individuals. As concluding results, there are some statements,
remarks, examples and clarifications about complete-neutrosophic graphs. The
clarifications are also presented in both sections ‘Setting of neutrosophic notion
number,” and “ Setting of notion neutrosophic-number,” for introduced results
and used classes. In section “Applications in Time Table and Scheduling”,
two applications are posed for complete notions, namely complete-neutrosophic
graphs concerning time table and scheduling when the suspicions are about
choosing some subjects and the mentioned models are considered as individual.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

2.4 Preliminaries

In this section, basic material which is used in this article, is presented. Also,
new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 2.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 2.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).
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(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V

∑3
i=1 σi(v) is called neutrosophic order of NTG and it’s denoted

by On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 2.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path
where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG)− 1;

(ii) : strength of path P : x0, x1, · · · , xO(NTG) is
∧
i=0,··· ,O(NTG)−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called
cycle where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG) − 1, xO(NTG)x0 ∈ E
and there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and
the edge xy implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt where σi is σ on V sii instead V which
mean x 6∈ Vi induces σi(x) = 0. Also, |V sij | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

To make them concrete, I bring preliminaries of this article in two upcoming
definitions in other ways.
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Definition 2.4.4. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

|V | is called order of NTG and it’s denoted by O(NTG). Σv∈V σ(v) is called
neutrosophic order of NTG and it’s denoted by On(NTG).

Definition 2.4.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then it’s
complete and denoted by CMTσ if ∀x, y ∈ V,xy ∈ E and µ(xy) = σ(x)∧σ(y);
a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path and
it’s denoted by PTH where xixi+1 ∈ E, i = 0, 1, · · · , n − 1; a sequence of
consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called cycle and denoted by
CY C where xixi+1 ∈ E, i = 0, 1, · · · , n − 1, xO(NTG)x0 ∈ E and there are
two edges xy and uv such that µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1); it’s

t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and the edge xy
implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete, then it’s denoted
by CMTσ1,σ2,··· ,σt where σi is σ on V sii instead V which mean x 6∈ Vi induces
σi(x) = 0. Also, |V sij | = si; t-partite is complete bipartite if t = 2, and it’s
denoted by CMTσ1,σ2 ; complete bipartite is star if |V1| = 1, and it’s denoted
by STR1,σ2 ; a vertex in V is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1,σ2 .

Remark 2.4.6. Using notations which is mixed with literatures, are reviewed.

2.4.6.1. NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)), O(NTG), and
On(NTG);

2.4.6.2. CMTσ, PTH,CY C, STR1,σ2 , CMT σ1,σ2 , CMT σ1,σ2,··· ,σt , and
WHL1,σ2 .

2.5 Setting of notion neutrosophic-number

In this section, I provide some results in the setting of neutrosophic number.

Definition 2.5.1. (Zero Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Zero forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(ii) Zero forcing neutrosophic-number Zn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V (G)\S are colored white) such that
V (G) is turned black after finitely many applications of “the color-change
rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex.
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In next result, a complete-neutrosophic graph is considered in the way that,
its neutrosophic zero forcing number and its zero forcing neutrosophic-number
this model are computed. A complete-neutrosophic graph has specific attribute
which implies every vertex is neighbor to all other vertices in the way that, two
given vertices have edge is incident to these endpoints.

Proposition 2.5.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Zn(NTG) = On(NTG)−max{Σ3
i=1σi(x)}x∈V .

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of
black vertices and S < O(NTG)− 1, then there are x and y such that they’ve
more than one neighbor in S. Thus the color-change rule doesn’t imply these
vertices are black vertices. Hence V (G) isn’t turned black after finitely many
applications of “the color-change rule”. So

Zn(NTG) = On(NTG)−max{Σ3
i=1σi(x)}x∈V .

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.3. In Figure (2.1), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n3, n4} is a set of black vertices, then n2 is white neighbor of n3
and n4. Thus the color-change rule doesn’t imply n2 is black vertex. n1 is
white neighbor of n3 and n4. Thus the color-change rule doesn’t imply n1
is black vertex. Thus n1 and n2 aren’t black vertices. Hence V (G) isn’t
turned black after finitely many applications of “the color-change rule”;

(ii) if S = {n2, n3, n4} is a set of black vertices, then n1 is only white neighbor
of n2. Thus the color-change rule implies n1 is black vertex. Thus n1 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iii) if S = {n1, n2, n4} is a set of black vertices, then n3 is only white neighbor
of n1. Thus the color-change rule implies n3 is black vertex. Thus n3 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iv) if S = {n1, n3, n4} is a set of black vertices, then n2 is only white neighbor
of n1. Thus the color-change rule implies n2 is black vertex. Thus n2 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(v) 3 is zero forcing number and its corresponded sets are {n1, n2, n3}, {n1, n2, n4},
{n1, n3, n4}, and {n2, n3, n4};

112



2.5. Setting of notion neutrosophic-number

Figure 2.1: A Neutrosophic Graph in the Viewpoint of its Zero Forcing Number. 47NTG2

(vi) 3.9 is zero forcing neutrosophic-number and its corresponded set is
{n1, n3, n4}.

The main definition is presented in next section. The notions of failed
zero-forcing number and failed zero-forcing neutrosophic-number facilitate the
ground to introduce new results. These notions will be applied on some classes
of neutrosophic graphs in upcoming sections and they separate the results in
two different sections based on introduced types. New setting is introduced to
study failed zero-forcing number and failed zero-forcing neutrosophic-number.
Leaf-like is a key term to have these notions. Forcing a vertex to change its
color is a type of approach to force that vertex to be zero-like. Forcing a vertex
which is only neighbor for zero-like vertex to be zero-like vertex but now reverse
approach is on demand which is finding biggest set which doesn’t force.

Definition 2.5.4. (Failed Zero-Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Failed zero-forcing number Z ′(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) isn’t turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex.

(ii) Failed zero-forcing neutrosophic-number Z ′n(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of
a set S of black vertices (whereas vertices in V (G) \ S are colored white)
such that V (G) isn’t turned black after finitely many applications of “the
color-change rule”: a white vertex is converted to a black vertex if it is
the only white neighbor of a black vertex.

In next result, a complete-neutrosophic graph is considered in the way
that, its neutrosophic failed zero-forcing number and its failed zero-forcing
neutrosophic-number this model are computed. A complete-neutrosophic graph
has specific attribute which implies every vertex is neighbor to all other vertices
in the way that, two given vertices have edge is incident to these endpoints.
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Proposition 2.5.5. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Z ′n(NTG) = On(NTG)−min{Σ3
i=1σi(x) + Σ3

i=1σi(y)}x,y∈V .

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of
black vertices and S < O(NTG)− 1, then there are x and y such that they’ve
more than one neighbor in S. Thus the color-change rule doesn’t imply these
vertices are black vertices. Hence V (G) isn’t turned black after finitely many
applications of “the color-change rule”. So

Z ′n(NTG) = On(NTG)−min{Σ3
i=1σi(x) + Σ3

i=1σi(y)}x,y∈V .

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.6. In Figure (2.2), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n3, n4} is a set of black vertices, then n2 is white neighbor of n3
and n4. Thus the color-change rule doesn’t imply n2 is black vertex. n1 is
white neighbor of n3 and n4. Thus the color-change rule doesn’t imply n1
is black vertex. Thus n1 and n2 aren’t black vertices. Hence V (G) isn’t
turned black after finitely many applications of “the color-change rule”.
Thus S = {n3, n4} could form failed zero-forcing number;

(ii) if S = {n2, n3, n4} is a set of black vertices, then n1 is only white neighbor
of n2. Thus the color-change rule implies n1 is black vertex. Thus n1 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iii) if S = {n1, n2, n4} is a set of black vertices, then n3 is only white neighbor
of n1. Thus the color-change rule implies n3 is black vertex. Thus n3 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(iv) if S = {n1, n3, n4} is a set of black vertices, then n2 is only white neighbor
of n1. Thus the color-change rule implies n2 is black vertex. Thus n2 is
black vertex. Hence V (G) is turned black after finitely many applications
of “the color-change rule”;

(v) 2 is failed zero-forcing number and its corresponded sets are
{n1, n2}, {n1, n3},
{n1, n4}, {n2, n3},{n2, n4}, and {n3, n4};

(vi) 3.6 is failed zero-forcing neutrosophic-number and its corresponded set is
{n1, n2}.
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Figure 2.2: A Neutrosophic Graph in the Viewpoint of its Failed Zero-Forcing
Number and its Failed Zero-Forcing Neutrosophic-Number. 48NTG2

The main definition is presented in next section. The notions of 1-zero-
forcing number and 1-zero-forcing neutrosophic-number facilitate the ground
to introduce new results. These notions will be applied on some classes of
neutrosophic graphs in upcoming sections and they separate the results in two
different sections based on introduced types. New setting is introduced to study
1-zero-forcing number and 1-zero-forcing neutrosophic-number. Leaf-like is a
key term to have these notions. Forcing a vertex to change its color is a type of
approach to force that vertex to be zero-like. Forcing a vertex which is only
neighbor for zero-like vertex to be zero-like vertex and now approach is on
demand which is finding smallest set which forces.

Definition 2.5.7. (1-Zero-Forcing Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-zero-forcing number Z(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of black vertices (whereas
vertices in V (G) \ S are colored white) such that V (G) is turned black
after finitely many applications of “the color-change rule”: a white vertex
is converted to a black vertex if it is the only white neighbor of a black
vertex. The last condition is as follows. For one time, black can change
any vertex from white to black.

(ii) 1-zero-forcing neutrosophic-number Zn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of black vertices (whereas vertices in V (G)\S are colored white) such that
V (G) is turned black after finitely many applications of “the color-change
rule”: a white vertex is converted to a black vertex if it is the only white
neighbor of a black vertex. The last condition is as follows. For one time,
black can change any vertex from white to black.

In next result, a complete-neutrosophic graph is considered in the way
that, its neutrosophic 1-zero-forcing number and its 1-zero-forcing neutrosophic-
number these models are computed. A complete-neutrosophic graph has specific
attribute which implies every vertex is neighbor to all other vertices in the way
that, two given vertices have edge is incident to these endpoints.
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Proposition 2.5.8. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Zn(NTG) = On(NTG)−max{Σ3
i=1σi(x) + Σ3

i=1σi(y)}x,y∈V .

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. If S is a set of black
vertices and |S| < O(NTG)− 1, then there are x and y such that they’ve more
than one neighbor in S. Thus the color-change rule doesn’t imply these vertices
are black vertices but extra condition implies where |S| = O(NTG)− 2. Hence
V (G) is turned black after finitely many applications of “the color-change rule”
and extra condition. So

Zn(NTG) = On(NTG)−max{Σ3
i=1σi(x) + Σ3

i=1σi(y)}x,y∈V .

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.9. In Figure (2.3), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) if S = {n1, n4} is a set of black vertices, then n2 and n3 are white
neighbors of n1 and n4. Thus the color-change rule doesn’t imply n2 is
black vertex but extra condition implies. n2 is white neighbor of n1 and
n4. Thus the color-change rule implies n3 is black vertex. Thus n2 and
n3 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;

(ii) if S = {n2, n4} is a set of black vertices, then n1 and n3 are white
neighbors of n3 and n4. Thus the color-change rule doesn’t imply n1 is
black vertex but extra condition implies. n1 is white neighbor of n3 and
n4. Thus the color-change rule implies n3 is black vertex. Thus n1 and
n3 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;

(iii) if S = {n1} is a set of black vertices, then n2, n3 and n4 are white neighbors
of n2. Thus the color-change rule doesn’t imply neither of n2, n3 and n4
are black vertices and extra condition doesn’t imply, too. Hence V (G)
isn’t turned black after finitely many applications of “the color-change
rule” and extra condition;

(iv) if S = {n3, n4} is a set of black vertices, then n1 and n2 are white
neighbors of n3 and n4. Thus the color-change rule doesn’t imply n1 is
black vertex but extra condition implies. n1 is white neighbor of n3 and
n4. Thus the color-change rule implies n2 is black vertex. Thus n1 and
n2 are black vertices. Hence V (G) is turned black after finitely many
applications of “the color-change rule” and extra condition;
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Figure 2.3: A Neutrosophic Graph in the Viewpoint of its 1-Zero-Forcing
Number. 49NTG2

(v) 3 is 1-zero-forcing number and its corresponded sets are {n1, n2}, {n1, n3},
{n1, n4}, {n2, n3}, {n2, n4}, and {n3, n4};

(vi) 2.3 is 1-zero-forcing neutrosophic-number and its corresponded set is
{n3, n4}.

Definition 2.5.10. (Independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously;

(ii) independent neutrosophic-number In(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously.

Proposition 2.5.11. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

In(NTG) = max{
3∑
i=1

σi(x)}x∈V .

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x and
y in S such that they’re endpoints of an edge, simultaneously. If S = {n1, n2}
is a set of vertices, then there’s no vertex in S but n1 and n2. In other side, for
having an edge, there’s a need to have two vertices. So by using the members
of S, it’s possible to have endpoints of an edge. Furthermore, There’s one edge
to have exclusive endpoints from S. It implies that S = {n1} isn’t corresponded
to independent number I(NTG). It induces if S = {n} is a set of vertices, then
there’s no vertex in S but n. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s impossible to have
endpoints of an edge. There’s no edge to have exclusive endpoints from S. It
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implies that S = {n} is corresponded to independent number. Thus

In(NTG) = max{
3∑
i=1

σi(x)}x∈V .

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.12. In Figure (2.4), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. It implies that S = {n1}
is corresponded to independent number I(NTG) but not independent
neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. It implies that S = {n2}
is corresponded to independent number I(NTG) but not independent
neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
Furthermore, There’s one edge to have exclusive endpoints from S. It
implies that S = {n1} isn’t corresponded to both independent number
I(NTG) and independent neutrosophic-number In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. There’s no edge to have exclusive endpoints from S. It implies
that S = {n4} is corresponded to independent number I(NTG) and
independent neutrosophic-number In(NTG);

(v) 1 is independent number and its corresponded sets are {n1}, {n2}, {n3},
and {n4};

(vi) 0.9 is independent neutrosophic-number and its corresponded set is {n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”
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Figure 2.4: A Neutrosophic Graph in the Viewpoint of its Independent Number. 50NTG2

Definition 2.5.13. (Failed independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that every
two vertices of S are endpoints for an edge, simultaneously;

(ii) failed independent neutrosophic-number In(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a
set S of vertices such that every two vertices of S are endpoints for an
edge, simultaneously.

Example 2.5.14. In Figure (2.5), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n1, n2} is corresponded to failed independent number I(NTG)
but not failed independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n2, n4} is corresponded to failed independent number I(NTG)
but not failed independent neutrosophic-number In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both failed independent
number I(NTG) and failed independent neutrosophic-number In(NTG);

(iv) if S = {n3, n4} is a set of vertices, then there’s no vertex in S but n3
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
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Figure 2.5: A Neutrosophic Graph in the Viewpoint of its Failed independent
Number and its Failed Independent Neutrosophic-Number. 51NTG1

an edge. There’s one edge to have exclusive endpoints from S. It implies
that S = {n2, n4} is corresponded to both failed independent number
I(NTG) and failed independent neutrosophic-number In(NTG);

(v) 2 is failed independent number and its corresponded sets are
{n1, n2}, {n1, n3}, {n1, n4}, {n2, n3}, {n2, n4}, and {n3n4};

(vi) 2.3 is failed independent neutrosophic-number and its corresponded set is
{n3, n4}.

Proposition 2.5.15. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

In(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to failed independent number. Thus

In(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.16. In Figure (2.6), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.
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Figure 2.6: A Neutrosophic Graph in the Viewpoint of its Failed Independent
Number. 51NTG2

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but
n1 and n2. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. There’s one edge to have exclusive endpoints
from S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1, n2} isn’t
corresponded to both of failed independent number I(NTG) and failed
independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither failed
independent number I(NTG) nor failed independent neutrosophic-number
In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. Furthermore, There’s no edge to have exclusive endpoints from
S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1} is corresponded
to neither failed independent number I(NTG) nor failed independent
neutrosophic-number In(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4}
is corresponded to both failed independent number I(NTG) and failed
independent neutrosophic-number In(NTG);

(v) 4 is failed independent number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is failed independent neutrosophic-number and its
corresponded set is {n3, n4}.
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Definition 2.5.17. (1-independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-independent number I(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of vertices such that every
two vertices of S aren’t endpoints for an edge, simultaneously For one
time, one vertex is allowed to be endpoint;

(ii) 1-independent neutrosophic-number In(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
of vertices such that every two vertices of S aren’t endpoints for an edge,
simultaneously. For one time, one vertex is allowed to be endpoint.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.18. In Figure (2.8), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. Extra condition implies that
S = {n1} is corresponded to neither 1-independent number I(NTG) nor
1-independent neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s impossible to have endpoints of an edge. There’s
no edge to have exclusive endpoints from S. Extra condition implies that
S = {n2} is corresponded to neither 1-independent number I(NTG) nor
1-independent neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of
an edge. Furthermore, There’s one edge to have exclusive endpoints from
S but extra condition implies that S = {n1, n2} is corresponded to both
1-independent number I(NTG) and 1-independent neutrosophic-number
In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S but extra condition
implies that S = {n4} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(v) 2 is 1-independent number and its corresponded sets are {n1, n2},{n1, n3},{n1, n4},{n2, n3},{n2, n4},
and {n3, n4};
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Figure 2.7: A Neutrosophic Graph in the Viewpoint of its 1-Independent Number
and its 1-Independent Neutrosophic-Number. 52NTG1

(vi) 3.6 is 1-independent neutrosophic-number and its corresponded set is
{n1, n2}.

Definition 2.5.19. (Failed 1-independent Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed 1-independent number I(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum cardinality of a set S of vertices such that
every two vertices of S are endpoints for an edge, simultaneously. For one
time, one vertex is allowed not to be endpoint;

(ii) failed 1-independent neutrosophic-number In(NTG) for a neutro-
sophic graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of
a set S of vertices such that every two vertices of S are endpoints for
an edge, simultaneously. For one time, one vertex is allowed not to be
endpoint.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.20. In Figure (2.8), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n1, n2} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
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Figure 2.8: A Neutrosophic Graph in the Viewpoint of its Failed 1-Independent
Number and its Failed 1-Independent Neutrosophic-Number. 52NTG1

S = {n2, n4} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using the
members of S, it’s impossible to have endpoints of an edge. Furthermore,
There’s no edge to have exclusive endpoints from S. But it implies that
S = {n1} isn’t corresponded to both of failed 1-independent number
I(NTG) and failed 1-independent neutrosophic-number In(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S
but n1, n2, n3, and n4. In other side, for having an edge, there’s a need
to have two vertices. So by using the members of S, it’s possible to
have endpoints of an edge. There are twelve edges to have exclusive
endpoints from S. It implies that S = {n1, n2, n3, n4} is corresponded
to both failed 1-independent number I(NTG) and failed 1-independent
neutrosophic-number In(NTG);

(v) 4 is failed 1-independent number and its corresponded sets is
{n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is failed 1-independent neutrosophic-number and its
corresponded set is {n3, n4}.

Proposition 2.5.21. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

In(NTG) = max{
3∑
i=1

σi(x) + σi(y)}x,y∈V .

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there
are x and y in S such that they’re endpoints of an edge, simultaneously. If
S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and n2. In
other side, for having an edge, there’s a need to have two vertices. So by using
the members of S, it’s possible to have endpoints of an edge. Furthermore,
There’s one edge to have exclusive endpoints from S. It implies that S = {n1}
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isn’t corresponded to 1-independent number I(NTG). It induces if S = {n} is
a set of vertices, then there’s no vertex in S but n. In other side, for having
an edge, there’s a need to have two vertices. So by using the members of S,
it’s impossible to have endpoints of an edge. There’s no edge to have exclusive
endpoints from S. It implies that S = {n} is corresponded to 1-independent
number. But extra condition implies

In(NTG) = max{
3∑
i=1

σi(x) + σi(y)}x,y∈V .

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.22. In Figure (2.9), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n1} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(ii) if S = {n2} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n2} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(iii) if S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
Furthermore, There’s one edge to have exclusive endpoints from S. But
extra condition implies that S = {n1, n2} is corresponded to both of
1-independent number I(NTG) and 1-independent neutrosophic-number
In(NTG);

(iv) if S = {n4} is a set of vertices, then there’s no vertex in S but n4. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
There’s no edge to have exclusive endpoints from S. But extra condition
implies that S = {n4} is corresponded to neither 1-independent number
I(NTG) nor 1-independent neutrosophic-number In(NTG);

(v) 2 is 1-independent number and its corresponded sets are {n1, n2}, {n1, n3},
{n1, n4}, {n2, n3}, {n2, n4}, and {n3, n4};
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Figure 2.9: A Neutrosophic Graph in the Viewpoint of its 1-Independent
Number. 52NTG2

(vi) 3.6 is 1-independent neutrosophic-number and its corresponded set is
{n1, n2}.

The natural way proposes us to use the restriction “maximum” instead of
“minimum.”

Definition 2.5.23. (Clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) clique number C(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is
maximum cardinality of a set S of vertices such that every two vertices of
S are endpoints for an edge, simultaneously;

(ii) clique neutrosophic-number Cn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously.

Proposition 2.5.24. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Cn(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to clique number. Thus

Cn(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
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about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.25. In Figure (2.10), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1, n2} isn’t corresponded to both of clique
number C(NTG) and clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number Cn(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In other
side, for having an edge, there’s a need to have two vertices. So by using the
members of S, it’s impossible to have endpoints of an edge. Furthermore,
There’s no edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1} is corresponded to neither clique number
C(NTG) nor clique neutrosophic-number Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4}
is corresponded to both clique number C(NTG) and clique neutrosophic-
number Cn(NTG);

(v) 4 is clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is clique neutrosophic-number and its corresponded set
is {n1, n2, n3, n4}.

The natural way proposes us to use the restriction “minimum” instead of
“maximum.”

Definition 2.5.26. (Failed Clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed clique number CF (NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously;

(ii) failed clique neutrosophic-number CFn (NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously.
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Figure 2.10: A Neutrosophic Graph in the Viewpoint of its clique Number. 53NTG2

Proposition 2.5.27. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

CFn (NTG) = 0.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=0 is corresponded to clique number. Thus

CFn (NTG) = 0.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.28. In Figure (2.11), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=0. Thus
it implies that S = {n1, n2} isn’t corresponded to both of failed clique
number CF (NTG) and failed clique neutrosophic-number CFn (NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=0.
Thus it implies that S = {n2, n4} is corresponded to neither failed clique
number CF (NTG) nor failed clique neutrosophic-number CFn (NTG);
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Figure 2.11: A Neutrosophic Graph in the Viewpoint of its Failed Clique
Number. 54NTG2

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. Furthermore, There’s no edge to have exclusive endpoints from S.
S = {ni}|S|6=0. Thus it implies that S = {n1} is corresponded to neither
failed clique number CF (NTG) nor failed clique neutrosophic-number
CFn (NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|6=0. Thus there are twelve edges to
have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4} isn’t
corresponded to both failed clique number CF (NTG) and failed clique
neutrosophic-number CFn (NTG);

(v) 0 is failed clique number and its corresponded sets is {};

(vi) On(NTG) = 0 is failed clique neutrosophic-number and its corresponded
set is {}.

Definition 2.5.29. (1-clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) 1-clique number C(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is maximum cardinality of a set S of vertices such that every two vertices
of S are endpoints for an edge, simultaneously. It holds extra condition
which is as follows: two vertices have no edge in common are considered
as exception but only for one time;

(ii) 1-clique neutrosophic-number Cn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
vertices such that every two vertices of S are endpoints for an edge,
simultaneously. It holds extra condition which is as follows: two vertices
have no edge in common are considered as exception but only for one
time.
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For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.30. In Figure (2.13), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n1, n2} isn’t corresponded to both of 1-clique number C(NTG) and
1-clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. But it implies that
S = {n2, n4} isn’t corresponded to both of 1-clique number C(NTG) and
1-clique neutrosophic-number Cn(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both of 1-clique number
C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to have
two vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There are twelve edges to have exclusive endpoints from S. It
implies that S = {n1, n2, n3, n4} is corresponded to both 1-clique number
C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(v) 4 is 1-clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is 1-clique neutrosophic-number and its corresponded
set is {n1, n2, n3, n4}.

Definition 2.5.31. (Failed 1-clique Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) failed 1-clique number CF (NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum cardinality of a set S of vertices such that there
are two vertices in S aren’t endpoints for an edge, simultaneously. It
holds extra condition which is as follows: two vertices have no edge in
common are considered as exception but only for one time;
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Figure 2.12: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number
and its 1-Clique Neutrosophic-Number. 55NTG1

(ii) failed 1-clique neutrosophic-number CFn (NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is minimum neutrosophic cardinality of a set S
of vertices such that there are two vertices in S aren’t endpoints for an
edge, simultaneously. It holds extra condition which is as follows: two
vertices have no edge in common are considered as exception but only for
one time.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.32. In Figure (2.13), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1
and n2. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S. But it
implies that S = {n1, n2} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2
and n4. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints
of an edge. There’s one edge to have exclusive endpoints from S. But it
implies that S = {n2, n4} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1. In
other side, for having an edge, there’s a need to have two vertices. So
by using the members of S, it’s impossible to have endpoints of an edge.
Furthermore, There’s no edge to have exclusive endpoints from S. But
it implies that S = {n1} isn’t corresponded to both of failed 1-clique
number CF (NTG) and failed 1-clique neutrosophic-number CFn (NTG);
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Figure 2.13: A Neutrosophic Graph in the Viewpoint of its Failed 1-Clique
number and its Failed 1-Clique neutrosophic-number. 55NTG1

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. There are twelve edges to have exclusive endpoints
from S. It implies that S = {n1, n2, n3, n4} isn’t corresponded to both
failed 1-clique number CF (NTG) and failed 1-clique neutrosophic-number
CFn (NTG);

(v) 0 is failed 1-clique number and its corresponded sets is {};

(vi) On(NTG) = 0 is failed 1-clique neutrosophic-number and its corresponded
set is {}.

Proposition 2.5.33. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Cn(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. Assume |S| > 2. Then there are x, y
and z in S such that they’re endpoints of an edge, simultaneously, and they
form a triangle. In other side, for having an edge, there’s a need to have two
vertices. So by using the members of S, it’s possible to have endpoints of an
edge. There are all possible edges to have exclusive endpoints from S. It implies
that S = {ni}|S|=O(NTG) is corresponded to 1-clique number. Thus

Cn(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Figure 2.14: A Neutrosophic Graph in the Viewpoint of its 1-Clique Number. 55NTG2

Example 2.5.34. In Figure (2.14), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then there’s no vertex in S but n1 and
n2. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n1, n2} isn’t corresponded to both of 1-clique
number C(NTG) and 1-clique neutrosophic-number Cn(NTG);

(ii) if S = {n2, n4} is a set of vertices, then there’s no vertex in S but n2 and
n4. In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s possible to have endpoints of an edge.
There’s one edge to have exclusive endpoints from S. S = {ni}|S|6=O(NTG).
Thus it implies that S = {n2, n4} is corresponded to neither 1-clique
number C(NTG) nor 1-clique neutrosophic-number Cn(NTG);

(iii) if S = {n1} is a set of vertices, then there’s no vertex in S but n1.
In other side, for having an edge, there’s a need to have two vertices.
So by using the members of S, it’s impossible to have endpoints of an
edge. Furthermore, There’s no edge to have exclusive endpoints from
S. S = {ni}|S|6=O(NTG). Thus it implies that S = {n1} is corresponded
to neither 1-clique number C(NTG) nor 1-clique neutrosophic-number
Cn(NTG);

(iv) if S = {n1, n2, n3, n4} is a set of vertices, then there’s no vertex in S but
n1, n2, n3, and n4. In other side, for having an edge, there’s a need to
have two vertices. So by using the members of S, it’s possible to have
endpoints of an edge. S = {ni}|S|=O(NTG). Thus there are twelve edges
to have exclusive endpoints from S. It implies that S = {n1, n2, n3, n4} is
corresponded to both 1-clique number C(NTG) and 1-clique neutrosophic-
number Cn(NTG);

(v) 4 is 1-clique number and its corresponded sets is {n1, n2, n3, n4};

(vi) On(NTG) = 5.9 is 1-clique neutrosophic-number and its corresponded
set is {n1, n2, n3, n4}.
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Definition 2.5.35. (Matching Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) matching number M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S of edges such that every
two edges of S don’t have any vertex in common;

(ii) matching neutrosophic-numberMn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S of
edges such that every two edges of S don’t have any vertex in common.

Proposition 2.5.36. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Mn(NTG) = max{
3∑
i=1

µi(x0x1) +
3∑
i=1

µi(x1x2) + · · ·+
3∑
i=1

µi(xj−1xj)}j=bn2 c.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

Mn(NTG) = max{
3∑
i=1

µi(x0x1) +
3∑
i=1

µi(x1x2) + · · ·+
3∑
i=1

µi(xj−1xj)}j=bn2 c.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.37. In Figure (2.15), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3
and n2n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n3, n2n4} is
corresponded to matching numberM(NTG) but neutrosophic cardinality,
1.7, of S implies S = {n1n3, n2n4} isn’t corresponded to matching
neutrosophic-numberMn(NTG);

(ii) if S = {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have one
vertex as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n2n3, n1n4} is corresponded to
matching numberM(NTG) but neutrosophic cardinality, 1.7, of S implies
S = {n2n3, n1n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);
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Figure 2.15: A Neutrosophic Graph in the Viewpoint of its matching Number. 58NTG2

(iii) if S = {n1n4} is a set of edges, then there’s no edge in S but n1n4. In
other side, for having a common vertex, there’s a need to have one vertex
as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n4} isn’t corresponded
to matching number M(NTG) and neutrosophic cardinality, 0.9, of S
implies S = {n1n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have one
vertex as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n2, n3n4} is corresponded to
matching numberM(NTG) and neutrosophic cardinality, 2.2, of S implies
S = {n1n2, n3n4} isn’t corresponded to matching neutrosophic-number
Mn(NTG);

(v) 2 is matching number and its corresponded sets are {n1n2, n3n4},
{n2n3, n1n4}, and {n1n3, n2n4};

(vi) 2.2 is matching neutrosophic-number and its corresponded set is
{n1n2, n3n4}.

Definition 2.5.38. (Matching Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is a polynomial where the coefficients of the terms of the
matching polynomial represent the number of sets of independent edges
of various cardinalities in G.

(ii) matching polynomial neutrosophic-numberMn(NTG) for a neut-
rosophic graph NTG : (V,E, σ, µ) is a polynomial where the coefficients
of the terms of the matching polynomial represent the number of sets of
independent edges of various neutrosophic cardinalities in G.

Proposition 2.5.39. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then
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Mn(NTG) = cx
max{

∑
s∈S

∑3
i=1

µi(s)}}
|S|=b O(NTG)

2 c+· · ·+c′xmin{
∑

s∈E

∑3
i=1

µi(s)}.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

Mn(NTG) = cx
max{

∑
s∈S

∑3
i=1

µi(s)}}
|S|=b O(NTG)

2 c+· · ·+c′xmin{
∑

s∈E

∑3
i=1

µi(s)}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.40. In Figure (2.16), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3
and n2n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n3, n2n4}
is corresponded to matching polynomial M(NTG) but neutrosophic
cardinality, 1.7, of S implies S = {n1n3, n2n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(ii) if S = {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3
and n1n4. In other side, for having a common vertex, there’s a need to
have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n2n3, n1n4}
is corresponded to matching polynomial M(NTG) but neutrosophic
cardinality, 1.7, of S implies S = {n2n3, n1n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(iii) if S = {n1n4} is a set of edges, then there’s no edge in S but n1n4. In
other side, for having a common vertex, there’s a need to have one vertex
as endpoint of an edge which is impossible. So by using the members
of S, it’s impossible to have endpoints of an edge. There are two edges
from S. Cardinality of S implies that S = {n1n4} isn’t corresponded
to matching polynomial M(NTG) and neutrosophic cardinality, 0.9,
of S implies S = {n1n4} isn’t corresponded to matching polynomial
neutrosophic-numberMn(NTG);

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2
and n3n4. In other side, for having a common vertex, there’s a need to
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Figure 2.16: A Neutrosophic Graph in the Viewpoint of its Matching Polynomial. 60NTG2

have one vertex as endpoint of an edge which is impossible. So by using
the members of S, it’s impossible to have endpoints of an edge. There
are two edges from S. Cardinality of S implies that S = {n1n2, n3n4}
is corresponded to matching polynomial M(NTG) and neutrosophic
cardinality, 2.2, of S implies S = {n1n2, n3n4} isn’t corresponded to
matching polynomial neutrosophic-numberMn(NTG);

(v) 3x2 + 6x + 1 is matching polynomial and its corresponded sets are
{n1n2, n3n4}, {n2n3, n1n4}, and {n1n3, n2n4} for coefficient of biggest
term;

(vi) x2.2 + x1.1 is matching polynomial neutrosophic-number and its corres-
ponded set is {n1n2, n3n4} for coefficient of biggest term.

Definition 2.5.41. (e-Matching Number).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) e-matching number M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is maximum cardinality of a set S containing endpoints of
edges such that every two edges of S don’t have any vertex in common;

(ii) e-matching neutrosophic-number Mn(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is maximum neutrosophic cardinality of a set S
containing endpoints of edges such that every two edges of S don’t have
any vertex in common.

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.42. In Figure (2.17), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
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members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);

(iv) if {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two edges which is impossible. So by using the
members of S, it’s impossible to have endpoints of two edges. There are
two edges from S. Cardinality of S implies that S = {n1, n2, n3, n4} = V
is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 5.9, of S implies {n1, n2, n3, n4} is corresponded to e-matching
neutrosophic-numberMn(NTG);

(v) 4 = O(NTG) is e-matching number and its corresponded set is S =
{n1, n2, n3, n4} = V ;

(vi) 5.9 = On(NTG) is e-matching neutrosophic-number and its corresponded
set is S = {n1, n2, n3, n4} = V.

Definition 2.5.43. (e-Matching Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) e-matching polynomial M(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is a polynomial where the coefficients of the terms of the
e-matching polynomial represent the number of sets of endpoints of
independent edges of various cardinalities in G.

(ii) e-matching polynomial neutrosophic-number Mn(NTG) for a
neutrosophic graph NTG : (V,E, σ, µ) is a polynomial where the
coefficients of the terms of the e-matching polynomial represent the
number of sets of endpoints of independent edges of various neutrosophic
cardinalities in G.
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Figure 2.17: A Neutrosophic Graph in the Viewpoint of its e-Matching Number
and its e-Matching Neutrosophic-Number. 61NTG1

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.
In next part, clarifications about main definition are given. To avoid confusion
and for convenient usages, examples are usually used after every part and names
are used in the way that, abbreviation, simplicity, and summarization are the
matters of mind.

Example 2.5.44. In Figure (2.18), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);
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Figure 2.18: A Neutrosophic Graph in the Viewpoint of its e-Matching
Polynomial and its e-Matching Polynomial Neutrosophic-Number. 61NTG2

(iv) if S = {n1n2, n3n4} is a set of edges, then there’s no edge in S but
n1n2 and n3n4. In other side, for having a common vertex, there’s a
need to have one vertex as endpoint of two edges which is impossible.
So by using the members of S, it’s impossible to have endpoints of
two edges. There are two edges from S. Cardinality of S implies that
S = {n1, n2, n3, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n2, n3, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(v) x4 + 3x2 is e-matching polynomial and its corresponded sets are
{n1n2, n3n4}, {n2n3, n1n4}, and {n1n3, n2n4} for coefficient of biggest
term; also S = {n1, n2, n3, n4};

(vi) x5.9 + x3.4 is e-matching polynomial neutrosophic-number and its
corresponded set is {n1n2, n3n4} for coefficient of biggest term; also
S = {n1, n2, n3, n4}.

Proposition 2.5.45. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Mn(NTG) = On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. Every
vertex is a neighbor for every given vertex. For every given vertex, there’s
one option to choose an edge. Thus a set S, referred to a set of edges with a
maximal cardinality, has the cardinality bn2 c. This number is maximum so

Mn(NTG) = On(NTG).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Example 2.5.46. In Figure (2.19), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If {n1n3, n2n4} is a set of edges, then there’s no edge in S but n1n3 and
n2n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of an edge which is impossible. So by using the
members of S, it’s impossible to have endpoints of an edge more than
one time. There are two edges from S. Cardinality of S implies that
S = {n1, n3, n2, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n1, n3, n2, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(ii) if {n2n3, n1n4} is a set of edges, then there’s no edge in S but n2n3 and
n1n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two distinct edges which is impossible. So by
using the members of S, it’s impossible to have endpoints of an edge more
than one time. There are two edges from S. Cardinality of S implies that
S = {n2, n3, n1, n4} is corresponded to e-matching number M(NTG)
and neutrosophic cardinality, 5.9, of S implies S = {n2, n3, n1, n4} is
corresponded to e-matching neutrosophic-numberMn(NTG);

(iii) if {n1n4} is a set of edges, then there’s no edge in S but n1n4. In other side,
for having a common vertex, there’s a need to have one vertex as endpoint
of at least two edges which is impossible. So by using the members of
S, it’s impossible to have endpoints of two edges. There are two edges
from S. Cardinality of S implies that S = {n1, n4} isn’t corresponded
to e-matching number M(NTG) but neutrosophic cardinality, 2.5, of
S implies S = {n1, n4} isn’t corresponded to e-matching neutrosophic-
numberMn(NTG);

(iv) if {n1n2, n3n4} is a set of edges, then there’s no edge in S but n1n2 and
n3n4. In other side, for having a common vertex, there’s a need to have
one vertex as endpoint of two edges which is impossible. So by using the
members of S, it’s impossible to have endpoints of two edges. There are
two edges from S. Cardinality of S implies that S = {n1, n2, n3, n4} = V
is corresponded to e-matching number M(NTG) and neutrosophic
cardinality, 5.9, of S implies {n1, n2, n3, n4} is corresponded to e-matching
neutrosophic-numberMn(NTG);

(v) 4 = O(NTG) is e-matching number and its corresponded set is S =
{n1, n2, n3, n4} = V ;

(vi) 5.9 = On(NTG) is e-matching neutrosophic-number and its corresponded
set is S = {n1, n2, n3, n4} = V.

Definition 2.5.47. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest cycle. If there isn’t, then
girth is ∞;
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Figure 2.19: A Neutrosophic Graph in the Viewpoint of its e-Matching Number. 61NTG3

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest cycle. If there isn’t, then girth is ∞.

Proposition 2.5.48. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.49. In Figure (2.20), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);
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(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.
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Figure 2.20: A Neutrosophic Graph in the Viewpoint of its Girth. 62NTG2

Definition 2.5.50. (Girth and Neutrosophic Girth).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Girth G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ) is minimum
crisp cardinality of vertices forming shortest neutrosophic cycle. If there
isn’t, then girth is ∞;

(ii) neutrosophic girth Gn(NTG) for a neutrosophic graph NTG :
(V,E, σ, µ) is minimum neutrosophic cardinality of vertices forming
shortest neutrosophic cycle. If there isn’t, then girth is ∞.

63thm Theorem 2.5.51. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 2.5.52. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth is three.
Thus

Gn(NTG) = min{Σ3
i=1(σi(x) + σi(y) + σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Example 2.5.53. In Figure (2.21), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this crisp
cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
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Figure 2.21: A Neutrosophic Graph in the Viewpoint of its Girth. 63NTG2

cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);

(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

Definition 2.5.54. (Girth Polynomial and Neutrosophic Girth Polynomial).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) girth polynomial G(NTG) for a neutrosophic graph NTG : (V,E, σ, µ)
is n1x

m1 + n2x
m2 + · · ·+ nsx

3 where ni is the number of cycle with mi

as its crisp cardinality of the set of vertices of cycle;

(ii) neutrosophic girth polynomial Gn(NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is n1x

m1 +n2x
m2 + · · ·+nsxms where ni is the number

of cycle with mi as its neutrosophic cardinality of the set of vertices of
cycle.

63thm Theorem 2.5.55. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 2.5.56. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Gn(NTG) = xOn(NTG) +O(NTG)xO(NTG)−
∑3

i=1
σi(x)+

· · ·+
(
O(NTG)

3

)
xmin{Σ3

i=1(σi(x)+σi(y)+σi(z))}.
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Proof. Suppose NTG : (V,E, σ, µ) is a complete-neutrosophic graph. The
length of longest cycle is O(NTG). In other hand, there’s a cycle if and only if
O(NTG) ≥ 3. It’s complete. So there’s at least one neutrosophic cycle which
its length is O(NTG) = 3. By shortest cycle is on demand, the girth polynomial
is three. Thus

Gn(NTG) = xOn(NTG) +O(NTG)xO(NTG)−
∑3

i=1
σi(x)+

· · ·+
(
O(NTG)

3

)
xmin{Σ3

i=1(σi(x)+σi(y)+σi(z))}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.57. In Figure (2.22), a complete neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth polynomial G(NTG) but neutrosophic length of
this crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth polynomial Gn(NTG);

(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s two crisp cycles with length two and three. It’s also a path and
there are three edges but there are some crisp cycles but there are only
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Figure 2.22: A Neutrosophic Graph in the Viewpoint of its girth polynomial. 64NTG2

two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth polynomial G(NTG) nor neutrosophic
girth polynomial Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but
it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to girth polynomial G(NTG) and neutrosophic length of
this neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth polynomial Gn(NTG);

(v) x4 + 3x3 is girth polynomial and its corresponded sets, for coefficient of
smallest term, are {n1, n2, n3}, {n1, n2, n4}, and {n2, n3, n4};

(vi) x5.9 + x5 + x4.5 + x4.3 + x3.9 is neutrosophic girth polynomial and its
corresponded set, for coefficient of smallest term, is {n1, n3, n4}.

Definition 2.5.58. (Hamiltonian Neutrosophic Cycle).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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(i) hamiltonian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is a sequence of consecutive vertices
x1, x2, · · · , xO(NTG), x1 which is neutrosophic cycle;

(ii) n-hamiltonian neutrosophic cycleN (HNC) for a neutrosophic graph
NTG : (V,E, σ, µ) is the number of sequences of consecutive vertices
x1, x2, · · · , xO(NTG), x1 which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

66thm Theorem 2.5.59. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 2.5.60. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

N (CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. In other
hand, there’s a cycle if and only if O(CMTσ) ≥ 3. It’s complete. So there’s
at least one neutrosophic cycle which its length is O(CMTσ) = 3. By longest
cycle is on demand, the n-hamiltonian neutrosophic cycle is four. The length of
longest cycle is O(CMTσ). Thus it’s hamiltonian neutrosophic cycle. Thus

N (CMTσ) = 1.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.61. In Figure (2.23), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that there’s
no crisp cycle. It’s only a path and it’s only one edge but it is neither
crisp cycle nor neutrosophic cycle. The length of this path implies there’s
no cycle since if the length of a sequence of consecutive vertices is at most
2, then it’s impossible to have cycle. So this neutrosophic path is neither
a neutrosophic cycle nor crisp cycle. The length of this path implies

n1, n2

149



2. Neutrosophic Tools

is corresponded to neither hamiltonian neutrosophic cycle M(CMTσ)
nor n-hamiltonian neutrosophic cycle N (CMTσ);

(ii) if n1, n2, n3, n1 is a sequence of consecutive vertices, then it’s obvious that
there’s one crisp cycle. It’s also a path and there are three edges but it
isn’t neutrosophic cycle. The length of crisp cycle implies there’s one cycle
since if the length of a sequence of consecutive vertices is at most 3, then
it’s possible to have cycle but there aren’t two weakest edges which imply
there is no neutrosophic cycle. So this crisp cycle isn’t a neutrosophic
cycle but it’s crisp cycle. The crisp length of this crisp cycle implies

n1, n2, n3, n1

isn’t corresponded to hamiltonian neutrosophic cycleM(CMTσ) and as
its consequences, length of this crisp cycle implies

n1, n2, n3, n1

isn’t corresponded to n-hamiltonian neutrosophic cycle N (CMTσ);

(iii) if n1, n2, n3, n4, n1 is a sequence of consecutive vertices, then it’s obvious
that there’s two crisp cycles with length two and three. It’s also a path
and there are three edges but there are some crisp cycles but there are
only two neutrosophic cycles with length three, n1, n3, n4, and with length
four, n1, n2, n3, n4. The length of this sequence implies there are some
crisp cycles and there are two neutrosophic cycles since if the length of a
sequence of consecutive vertices is at most 4 and it’s crisp complete, then
it’s possible to have some crisp cycles and two neutrosophic cycles with
two different length three and four. So this neutrosophic path forms some
neutrosophic cycles and some crisp cycles. The length of this path, four,
implies

n1, n2, n3, n4, n1

is corresponded to hamiltonian neutrosophic cycleM(CMTσ) and it’s
effective to construct n-hamiltonian neutrosophic cycle N (CMTσ);

(iv) if n1, n3, n4, n1 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive vertices is at
most 3, then it’s possible to have cycle but there are two weakest edges,
n3n4 and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle, three, implies

n1, n3, n4, n1

isn’t corresponded to hamiltonian neutrosophic cycle M(CMTσ). The
vertex, n2, isn’t in sequence related to this neutrosophic cycle. Thus it
implies

n1, n3, n4, n1

isn’t corresponded to n-hamiltonian neutrosophic cycle N (CMTσ);
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Figure 2.23: A Neutrosophic Graph in the Viewpoint of its hamiltonian
neutrosophic cycle. 66NTG2

(v) M(CMTσ) : n1, n2, n3, n4, n1 is hamiltonian neutrosophic cycle and its
corresponded sets. are the sequences which have both the edges n1n4
and n3n4. Since these edges are two weakest edges in this complete-
neutrosophic graph. Other sequences even if they’re cycles having all
vertices, once, are hamiltonian cycles and not hamiltonian neutrosophic
cycles;

(vi) N (CMTσ) = 1 is n-hamiltonian neutrosophic cycle.

Definition 2.5.62. (Eulerian Neutrosophic Cycle).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Eulerian neutrosophic cycle M(NTG) for a neutrosophic
graph NTG : (V,E, σ, µ) is a sequence of consecutive edges
x1, x2, · · · , xS(NTG), x1 which is neutrosophic cycle;

(ii) n-Eulerian neutrosophic cycle N (NTG) for a neutrosophic graph
NTG : (V,E, σ, µ) is the number of sequences of consecutive edges
x1, x2, · · · , xS(NTG), x1 which are neutrosophic cycles.

If we use the notion of neutrosophic cardinality in strong type of neutrosophic
graphs, then the next result holds. If not, the situation is complicated since it’s
possible to have all edges in the way that, there’s no value of a vertex for an
edge.

66thm Theorem 2.5.63. Let NTG : (V,E, σ, µ) be a neutrosophic graph. If NTG :
(V,E, σ, µ) is strong, then its crisp cycle is its neutrosophic cycle.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider u as a
vertex of crisp cycle CY C, such that σ(u) = min σ(x)x∈V (CY C). u has two
neighbors y, z in CY C. Since NTG is strong, µ(uy) = µ(uz) = σ(u). It implies
there are two weakest edges in CY C. It means CY C is neutrosophic cycle. �

Proposition 2.5.64. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

N (CMTσ) = 0.

151



2. Neutrosophic Tools

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. So
there’s a cycle if and only if O(CMTσ) ≥ 3. It’s complete. Hence there’s only
one neutrosophic cycle which its length is S(CMTσ) = 3 where O(CMTσ) = 3.
By longest cycle is on demand in the way that all edges are used and there’s no
repetition of edges, the n-Eulerian neutrosophic cycle doesn’t exist. The length
of longest cycle isn’t S(CMTσ). Thus it isn’t an Eulerian neutrosophic cycle.
Thus

N (CMTσ) = 0.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.65. In Figure (2.24), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1n2, n2n3 is a sequence of consecutive edges, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only two edges but it is
neither crisp cycle nor neutrosophic cycle. The length of this path implies
there’s no cycle since if the length of a sequence of consecutive edges is
at most 2, then it’s impossible to have cycle. So this neutrosophic path
is neither a neutrosophic cycle nor crisp cycle. The length of this path
implies

n1n2, n2n3

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);

(ii) if n1n2, n2n3, n3n1 is a sequence of consecutive edges, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive edges is at most
3, then it’s possible to have cycle but there aren’t two weakest edges
which imply there is no neutrosophic cycle. So this crisp cycle isn’t a
neutrosophic cycle but it’s crisp cycle. The crisp length of this crisp cycle
implies

n1n2, n2n3, n3n1

isn’t corresponded to Eulerian neutrosophic cycleM(CMTσ) and as its
consequences, length of this crisp cycle implies

n1n2, n2n3, n3n1

isn’t corresponded to n-Eulerian neutrosophic cycle N (CMTσ);

(iii) if n1n2, n2n3, n3n4, n4n1 is a sequence of consecutive edges, then it’s
obvious that there are two crisp cycles with length three and four. It’s
also a path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1n3, n3n4, n4n1,
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Figure 2.24: A Neutrosophic Graph in the Viewpoint of its Eulerian neutrosophic
cycle. 67NTG2

and with length four, n1n2, n2n3, n3n4, n4n1. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic cycles
since if the length of a sequence of consecutive edges is at most 4 and
it’s crisp complete, then it’s possible to have some crisp cycles and two
neutrosophic cycles with two different lengths three and four. So this
neutrosophic path forms some neutrosophic cycles and some crisp cycles.
Lack of having all edges, for instance n1n3, implies

n1n2, n2n3, n3n4, n4n1

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);

(iv) if n1n3, n3n4, n4n1 is a sequence of consecutive edges, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies there’s
one cycle since if the length of a sequence of consecutive edges is at most
3, then it’s possible to have cycle but there are two weakest edges, n3n4
and n1n4, which imply there is one neutrosophic cycle. So this crisp
cycle is a neutrosophic cycle and it’s crisp cycle. The crisp length of this
neutrosophic cycle, three, and lack of having all edges, for instance n1n2,
implies

n1n3, n3n4, n4n1

is corresponded to neither Eulerian neutrosophic cycleM(CMTσ) nor
n-Eulerian neutrosophic cycle N (CMTσ);

(v) M(CMTσ) : Not Existed. There is no Eulerian neutrosophic cycle and
there are no corresponded sets and sequences;

(vi) N (CMTσ) = 0 is n-Eulerian neutrosophic cycle and there are no
corresponded sets and sequences.

Definition 2.5.66. (Eulerian(Hamiltonian) Neutrosophic Path).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) Eulerian(Hamiltonian) neutrosophic pathMe(NTG)(Mh(NTG))
for a neutrosophic graph NTG : (V,E, σ, µ) is a sequence of consec-
utive edges(vertices) x1, x2, · · · , xS(NTG)(x1, x2, · · · , xO(NTG)) which is
neutrosophic path;
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(ii) n-Eulerian(Hamiltonian) neutrosophic path Ne(NTG)(Nh(NTG))
for a neutrosophic graph NTG : (V,E, σ, µ) is the number of sequences
of consecutive edges(vertices) x1, x2, · · · , xS(NTG)(x1, x2, · · · , xO(NTG))
which is neutrosophic path.

Proposition 2.5.67. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph
with two weakest edges. Then

Ne(CMTσ) = 0;
Nh(CMTσ) = O(CMTσ)!.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
longest path is on demand in the way that all edges are used and there’s no
repetition of edges, the Eulerian neutrosophic path doesn’t exist. The length of
longest path isn’t S(CMTσ). Thus it isn’t an Eulerian neutrosophic path. By
longest path is on demand in the way that all vertices are used and there’s no
repetition of vertices, the Hamiltonian neutrosophic path doesn’t exist. The
length of longest path isn’t O(CMTσ). Thus it isn’t a Hamiltonian neutrosophic
path. Thus

Ne(CMTσ) = 0;
Nh(CMTσ) = O(CMTσ)!.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.68. In Figure (2.25), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1n2, n2n3 is a sequence of consecutive edges, then it’s neutrosophic
path since µ(n1n2) > 0 and µ(n2n3) > 0. But the number of edges
isn’t S(CMTσ) and the number of vertices isn’t O(CMTσ). Thus
Eulerian(Hamiltonian) neutrosophic path Me(CMTσ)(Mh(CMTσ))
doesn’t exist. Also, n-Eulerian(Hamiltonian) neutrosophic path
Ne(CMTσ)(Nh(CMTσ)) isn’t corresponded to these sequences n1, n2, n3
and n1n2, n2n3;

(ii) if n1n2, n2n3, n3n4 is a sequence of consecutive edges, then it’s neutro-
sophic path since µ(n1n2) > 0, µ(n2n3) > 0 and µ(n3n4) > 0. But the
number of edges isn’t S(CMTσ). The number of vertices isn’t O(CMTσ).
Thus Eulerian neutrosophic pathMe(CMTσ) doesn’t exist but Hamilto-
nian neutrosophic path Mh(CMTσ) is n1, n2, n3, n4. Also, n-Eulerian
neutrosophic path Ne(CMTσ) equals to zero and n-Hamiltonian neutro-
sophic path Nh(CMTσ)) is greater than six.

Definition 2.5.69. (Neutrosophic Path Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 2.25: A Neutrosophic Graph in the Viewpoint of its Eu-
lerian(Hamiltonian) neutrosophic path. 68NTG2

(i) a path from x to y is called weakest path if its length is maximum. This
length is called weakest number amid x and y. The maximum number
amid all vertices is called weakest number of NTG : (V,E, σ, µ) and
it’s denoted by W(NTG);

(ii) a path from x to y is called neutrosophic weakest path if its strength
is µ(uv) which is less than all strengths of all paths from x to y
where x, · · · , u, v, · · · , y is a path. This strength is called neutrosophic
weakest number amid x and y. The maximum number amid all vertices
is called neutrosophic weakest number of NTG : (V,E, σ, µ) and it’s
denoted by Wn(NTG).

Proposition 2.5.70. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Wn(CMTσ) = max{µ(xy) | µ(xy) =
∧

i=1,2,··· ,s−1
µ(vivi+1), P : v1, v2, · · · , vs}.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Longest
path is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph,
all vertices are connected to each other. So there’s a path containing all vertices.
The number of vertices is O(CMTσ). But the length of the path forms weakest
number. Thus

Wn(CMTσ) = max{µ(xy) | µ(xy) =
∧

i=1,2,··· ,s−1
µ(vivi+1), P : v1, v2, · · · , vs}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.71. In Figure (2.26), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.
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Figure 2.26: A Neutrosophic Graph in the Viewpoint of its Weakest Number
and its Neutrosophic Weakest Number. 70NTG2

(i) If n1, n2, n3, n4 is a path from n1 to n4, then it’s weakest path and weakest
number amid n1 and n4 is three. Also, W(CMTσ) = 3;

(ii) if n1, n2, n3 is a path from n1 to n3, then it isn’t weakest path and weakest
number amid n1 and n3 isn’t two. Also, W(CMTσ) 6= 2;

(iii) if n1, n2, n3 is a path from n1 to n3, then it isn’t weakest path and weakest
number amid n1 and n3 isn’t two. Also, W(CMTσ) 6= 2. For every given
couple of vertices x and y, weakest path is existed, weakest number is
three and W(CMTσ) = 3;

(iv) if n1, n2, n3, n4 is a path from n1 to n4, then it isn’t a neutrosophic weakest
path since neutrosophic weakest number amid n1 and n4 is (0.3, 0.2, 0.1).
Also, Wn(CMTσ) = (0.3, 0.2, 0.1);

(v) if n1, n2, n4 is a path from n1 to n4, then it’s a neutrosophic weakest path
and neutrosophic weakest number amid n1 and n4 is (0.3, 0.2, 0.1). Also,
Wn(CMTσ) = (0.3, 0.2, 0.1);

(vi) for every given couple of vertices x and y, neutrosophic weakest path is
existed, neutrosophic weakest number is (0.3, 0.2, 0.1) and Wn(CMTσ) =
(0.3, 0.2, 0.1).

Definition 2.5.72. (Neutrosophic Path Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a path from x to y is called strongest path if its length is minimum. This
length is called strongest number amid x and y. The maximum number
amid all vertices is called strongest number of NTG : (V,E, σ, µ) and
it’s denoted by S(NTG);

(ii) a path from x to y is called neutrosophic strongest path if its strength
is µ(uv) which is greater than all strengths of all paths from x to y
where x, · · · , u, v, · · · , y is a path. This strength is called neutrosophic
strongest number amid x and y. The minimum number amid all vertices
is called neutrosophic strongest number of NTG : (V,E, σ, µ) and
it’s denoted by Sn(NTG).
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Proposition 2.5.73. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Sn(CMTσ) = min
v∈V

σ(v).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Min-
imum path is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic
graph, all vertices are connected to each other. So there’s a path containing
all vertices and there’s one edge between two vertices. The number of vertices
is O(CMTσ). But the length of the path forms strongest number. Consider
s ∈ S such that σ(s) = minv∈V σ(v). All paths involving s has the strength
σ(s) = minv∈V σ(v). So the maximum strengths of path from s to a given vertex
is σ(s) = minv∈V σ(v). Consider the maximum number assigning to couple of
vertices arising from their paths as the start and the end. Thus the maximum
strengths of paths from s to a given vertex is σ(s) = minv∈V σ(v). It implies the
minimum number amid these intended numbers is σ(s) = minv∈V σ(v). Thus

Sn(CMTσ) = min
v∈V

σ(v).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.74. In Figure (2.27), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2, n3, n4 is a path from n1 to n4, then it isn’t strongest path and
strongest number amid n1 and n4 is one. Also, S(CMTσ) = 1;

(ii) if n1, n2, n3 is a path from n1 to n3, then it isn’t strongest path and
strongest number amid n1 and n3 isn’t two. Also, S(CMTσ) 6= 2;

(iii) if n1, n2, n3 is a path from n1 to n3, then it isn’t strongest path and
strongest number amid n1 and n3 isn’t two. Also, S(CMTσ) 6= 2. For
every given couple of vertices x and y, strongest path is existed, strongest
number is one and S(CMTσ) = 1;

(iv) if n1, n4, n3, n2 is a path from n1 to n2, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n1 and n2 is
(0.3, 0.8, 0.2) where there are four paths as follows.

P1 : n1, n4, n3, n2 ⇒ (0.3, 0.3, 0.2)
P2 : n1, n4, n2 ⇒ (0.3, 0.2, 0.1)
P3 : n1, n3, n2 ⇒ (0.3, 0.3, 0.2)

P4 : n1, n2 ⇒ (0.3, 0.8, 0.2)
Maximum is (0.3, 0.8, 0.2)
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Figure 2.27: A Neutrosophic Graph in the Viewpoint of its strongest Number
and its Neutrosophic strongest Number. 71NTG2

Also, Sn(CMTσ) = (0.6, 0.2, 0.1);

(v) if n2, n1, n4, n3 is a path from n2 to n3, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n1 and n2 is
(0.6, 0.3, 0.2) where there are four paths as follows.

P1 : n2, n1, n4, n3 ⇒ (0.6, 0.2, 0.1)
P2 : n2, n4, n3 ⇒ (0.3, 0.2, 0.1)
P3 : n2, n1, n3 ⇒ (0.6, 0.3, 0.2)

P4 : n2, n3 ⇒ (0.3, 0.3, 0.2)
Maximum is (0.6, 0.3, 0.2)

Also, Sn(CMTσ) = (0.6, 0.2, 0.1);

(vi) if n3, n2, n1, n4 is a path from n3 to n4, then it isn’t a neutrosophic
strongest path since neutrosophic strongest number amid n3 and n4 is
(0.3, 0.8, 0.2) where there are four paths as follows.

P1 : n3, n2, n1, n4 ⇒ (0.3, 0.3, 0.2)
P2 : n3, n1, n4 ⇒ (0.6, 0.2, 0.1)
P3 : n3, n2, n4 ⇒ (0.3, 0.2, 0.1)

P4 : n3, n4 ⇒ (0.6, 0.2, 0.1)
Maximum is (0.6, 0.2, 0.1)

Also, Sn(CMTσ) = (0.6, 0.2, 0.1).

Definition 2.5.75. (Neutrosophic Cycle Connectivity).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a cycle based on x is called cyclic connectivity if its length is minimum.
This length is called connectivity number based on x. The maximum
number amid all vertices is called connectivity number of NTG :
(V,E, σ, µ) and it’s denoted by C(NTG);
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(ii) a cycle based on x is called neutrosophic cyclic connectivity if its
strength is is greater than all strengths of all cycles based on x. This
strength is called neutrosophic connectivity number based on x. The
minimum number amid all vertices is called neutrosophic connectivity
number of NTG : (V,E, σ, µ) and it’s denoted by Cn(NTG).

Proposition 2.5.76. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Cn(CMTσ) = min
v∈V

σ(v).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. Min-
imum cycle is on demand. By CMTσ : (V,E, σ, µ) is a complete-neutrosophic
graph, all vertices are connected to each other. Consider s ∈ S such that
σ(s) = minv∈V σ(v). All cycles based on s has the strength σ(s) = minv∈V σ(v).
So the maximum strengths of all cycles based on s is σ(s) = minv∈V σ(v) which
is representative strength based on s. It implies the minimum number amid all
representative numbers is σ(s) = minv∈V σ(v), too. Thus

Cn(CMTσ) = min
v∈V

σ(v).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.77. In Figure (2.28), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If n1, n2, n3, n4, n1 is a cycle based on n1, then it isn’t cyclic connectivity
and connectivity number based on n1 is three. Also, C(CMTσ) = 3;

(ii) if n1, n2, n3, n1 is a cycle based on n1, then it’s cyclic connectivity and
connectivity number based on n1 is three. Also, C(CMTσ) = 3;

(iii) Consider n1, n2, n1. Then it isn’t a cycle based on n1, since the length
of consecutive vertices has to be at least three. Then it isn’t cyclic
connectivity and connectivity number based on n1 isn’t two. Also,
C(CMTσ) 6= 2. For every given vertex x, cyclic connectivity is existed,
connectivity number is three and C(CMTσ) = 3;

(iv) if n1, n4, n3, n2, n1 is a cycle based on n1, then it isn’t a neutrosophic
cyclic connectivity since neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.
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P1 : n1, n4, n3, n1 ⇒ (0.6, 0.2, 0.1)
P2 : n1, n2, n3, n1 ⇒ (0.3, 0.3, 0.2)
P3 : n1, n2, n4, n1 ⇒ (0.3, 0.2, 0.1)

P4 : n1, n4, n3, n2, n1 ⇒ (0.3, 0.3, 0.2)
P5 : n1, n3, n4, n2, n1 ⇒ (0.3, 0.2, 0.1)
P6 : n1, n4, n2, n3, n1 ⇒ (0.3, 0.2, 0.1)

Maximum is (0.6, 0.2, 0.1)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2;

(v) if n2, n1, n4, n3, n2 is a cycle based on n2, then it isn’t a neutrosophic
cyclic connectivity since neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.

P1 : n2, n4, n3, n2 ⇒ (0.3, 0.2, 0.1)
P2 : n2, n1, n3, n2 ⇒ (0.3, 0.3, 0.2)
P3 : n2, n1, n4, n2 ⇒ (0.3, 0.2, 0.1)

P4 : n2, n4, n3, n1, n2 ⇒ (0.3, 0.2, 0.1)
P5 : n2, n3, n4, n1, n2 ⇒ (0.3, 0.3, 0.2)
P6 : n2, n4, n1, n3, n2 ⇒ (0.3, 0.2, 0.1)

Maximum is (0.3, 0.3, 0.2)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2;

(vi) if n3, n2, n1, n4, n3 is a cycle based on n3, then it’s a neutrosophic
cyclic connectivity and neutrosophic connectivity number based on n2 is
(0.3, 0.3, 0.2) where there are six paths as follows.

P1 : n3, n4, n2, n3 ⇒ (0.3, 0.2, 0.1)
P2 : n3, n1, n2, n3 ⇒ (0.3, 0.3, 0.2)
P3 : n3, n1, n4, n3 ⇒ (0.6, 0.2, 0.1)

P4 : n3, n4, n2, n1, n3 ⇒ (0.3, 0.2, 0.1)
P5 : n3, n2, n4, n1, n3 ⇒ (0.3, 0.2, 0.1)
P6 : n3, n4, n1, n2, n3 ⇒ (0.3, 0.3, 0.2)

Maximum is (0.6, 0.2, 0.1)

Also, Cn(CMTσ) = (0.3, 0.3, 0.2) corresponded to cycle n2, n1, n3, n2
based on n2.

Definition 2.5.78. (Dense Numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
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Figure 2.28: A Neutrosophic Graph in the Viewpoint of its connectivity number
and its neutrosophic connectivity number. 72NTG2

(i) a set of vertices is called dense set if for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints xy ∈ E and the
number of neighbors of x is greater than the number of neighbors of y.
The minimum cardinality between all dense sets is called dense number
and it’s denoted by D(NTG);

(ii) a set of vertices S is called dense set if for every vertex y outside, there’s
at least one vertex x inside such that they’re endpoints xy ∈ E and the
number of neighbors of x is greater than the number of neighbors of
y. The minimum neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all

dense sets is called neutrosophic dense number and it’s denoted by
Dn(NTG).

Proposition 2.5.79. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Dn(CMTσ) = min{
bO(CMTσ)

2 c+1∑
i=1

σ(xi)}.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). Sets of vertices with cardinality bO(CMTσ)

2 c+ 1 are dense sets
since every vertex inside has bO(CMTσ)

2 c neighbors inside and bO(CMTσ)
2 c − 1

neighbors outside. Hence the number of neighbors inside is greater than the
number of neighbors outside. The minimum cardinality between all dense sets
is bO(CMTσ)

2 c+ 1. Thus

Dn(CMTσ) = min{
bO(CMTσ)

2 c+1∑
i=1

σ(xi)}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
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apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.80. In Figure (2.29), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1, n2} is a set of vertices, then it isn’t dense set since every
vertex inside has one neighbor inside and two neighbors outside. Hence
the number of neighbors inside isn’t greater than the number of neighbors
outside;

(ii) if S = {n1} is a set of vertices, then it isn’t dense set since every vertex
inside has no neighbor inside and three neighbors outside. Hence the
number of neighbors inside isn’t greater than the number of neighbors
outside;

(iii) if S1 = {n1, n2, n3}, S2 = {n1, n2, n4}, S3 = {n2, n3, n4} are sets of
vertices, then they’re dense sets since every vertex inside has two neighbors
inside and one neighbor outside. Hence the number of neighbors inside is
greater than the number of neighbors outside. The minimum cardinality
between all dense sets is 3. Thus D(CMTσ) = 3;

(iv) if S = {n1, n2} is a set of vertices, then it isn’t dense set since every
vertex inside has one neighbor inside and two neighbors outside. Hence
the number of neighbors inside isn’t greater than the number of neighbors
outside;

(v) if S = {n1} is a set of vertices, then it isn’t dense set since every vertex
inside has no neighbor inside and three neighbors outside. Hence the
number of neighbors inside isn’t greater than the number of neighbors
outside;

(vi) if S1 = {n1, n2, n3}, S2 = {n1, n2, n4}, S3 = {n2, n3, n4} are sets of
vertices, then they’re dense sets since every vertex inside has two
neighbors inside and one neighbor outside. Hence the number of neighbors
inside is greater than the number of neighbors outside. The minimum
neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all dense sets is 3.9.

Thus Dn(CMTσ) = 3.9.

Definition 2.5.81. (bulky numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set of edges S is called bulky set if for every edge e′ outside, there’s
at least one edge e inside such that they’ve common vertex and the
number of edges such that they’ve common vertex with e is greater
than the number of edges such that they’ve common vertex with e′. The
minimum cardinality between all bulky sets is called bulky number and
it’s denoted by B(NTG);

(ii) a set of edges S is called bulky set if for every edge e′ outside, there’s at
least one edge e inside such that they’ve common vertex and the number
of edges such that they’ve common vertex with e is greater than the
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Figure 2.29: A Neutrosophic Graph in the Viewpoint of its dense number and
its neutrosophic dense number. 73NTG2

number of edges such that they’ve common vertex with e′. The minimum
neutrosophic cardinality

∑
e∈S

∑3
i=1 µi(s) between all bulky sets is called

neutrosophic bulky number and it’s denoted by Bn(NTG).

Proposition 2.5.82. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Bn(CMTσ) = min{
bO(CMTσ)

2 c∑
i=1

µ(ei)}.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). If S = {e1, e2, · · · , ebO(CMTσ)

2 c} is a set of edges, then it’s a bulky
set since for every edge e′j , outside, there’s at least one edge ei inside such that
they’ve common vertex and the number of edges such that they’ve common
vertex with ei is O(CMTσ)− 2 which is equal to [greater than] O(CMTσ)− 2
which is the number of edges such that they’ve common vertex with e′j . Hence
the number of neighbors inside is greater than the number of neighbors outside.
The minimum cardinality between all bulky sets is bO(CMTσ)

2 c. Thus

Bn(CMTσ) = min{
bO(CMTσ)

2 c∑
i=1

µ(ei)}.

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.83. In Figure (2.30), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.
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(i) If S = {n2n4, n3n1} is a set of edges, then it’s a bulky set since for every
edge ninj , outside, there’s at least one edge n2n4 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n2n4 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(ii) if S = {n1n2, n2n3} is a set of edges, then it’s bulky set since for every
edge ninj , outside, there’s at least one edge n1n2 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n1n2 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(iii) All sets [2-sets] of edges containing two edges are bulky sets. Since for
every edge ninj , outside, there’s at least one edge ntns inside such that
they’ve common vertex and the number of edges such that they’ve common
vertex with ntns is three which is equal to [greater than] three which is
the number of edges such that they’ve common vertex with ninj . Thus
B(CMTσ) = 2;

(iv) if S = {n2n4, n3n1} is a set of edges, then it’s a bulky set since for every
edge ninj , outside, there’s at least one edge n2n4 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n2n4 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(v) if S = {n1n2, n2n3} is a set of edges, then it’s bulky set since for every
edge ninj , outside, there’s at least one edge n1n2 inside such that they’ve
common vertex and the number of edges such that they’ve common vertex
with n1n2 is three which is equal to [greater than] three which is the
number of edges such that they’ve common vertex with ninj ;

(vi) if S = {n2n3, n2n4} is set of edges, then they’re bulky sets since for every
edge ninj , outside, there’s at least one edge n2n3 inside such that they’ve
common vertex and the number of edges such that they’ve common
vertex with n2n3 is three which is equal to [greater than] three which is
the number of edges such that they’ve common vertex with ninj . The
minimum neutrosophic cardinality

∑
s∈S

∑3
i=1 σi(s) between all bulky

sets is 3.9. Thus Bn(CMTσ) = 1.4.

Definition 2.5.84. (collapsed numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints xy ∈ E
and the number of neighbors of x is less than [equal to] the number of
neighbors of y. The minimum cardinality between all collapsed sets is
called collapsed number and it’s denoted by P(NTG);

(ii) a set of vertices S is called collapsed set if for every vertex y outside,
there’s at least one vertex x inside such that they’re endpoints xy ∈ E
and the number of neighbors of x is less than [equal to] the number of
neighbors of y. The minimum neutrosophic cardinality

∑
x∈S

∑3
i=1 σi(x)
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Figure 2.30: A Neutrosophic Graph in the Viewpoint of its bulky number and
its neutrosophic bulky number. 74NTG2

between all collapsed sets is called neutrosophic collapsed number
and it’s denoted by Pn(NTG).

Proposition 2.5.85. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Pn(CMTσ) = min
x∈V

σ(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). All sets [1-set] of vertices containing one vertex {x}, are called
collapsed sets since for every vertex y outside, there’s [at least] only one vertex
x inside such that they’re endpoints xy ∈ E and the number of neighbors of x
is [less than] equal to the number of neighbors of y. The minimum neutrosophic
cardinality,

∑
x∈S

∑3
i=1 σi(x), minx∈V σ(x), between all collapsed sets is called

neutrosophic collapsed number and it’s denoted by Pn(CMTσ) = minx∈V σ(x).
Thus

Pn(CMTσ) = min
x∈V

σ(x).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.86. In Figure (2.31), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) If S = {n1} is a set of vertices, then a set of vertices S is called collapsed
set since for every vertex ni outside, there’s only one vertex n1 inside
such that they’re endpoints n1ni ∈ E and the number of neighbors of n1
is [less than] equal to the number of neighbors of ni;

(ii) if S = {n1, n2} is a set of vertices, then a set of vertices S is called
collapsed set since for every vertex ni outside, there are two vertices n1

165



2. Neutrosophic Tools

Figure 2.31: A Neutrosophic Graph in the Viewpoint of its collapsed number
and its neutrosophic collapsed number. 75NTG2

and n2 inside such that they’re endpoints n1ni, n2ni ∈ E and the number
of neighbors of n1 and n2 is [less than] equal to the number of neighbors
of ni;

(iii) all sets [1-set] of vertices containing one vertex, are called collapsed sets
since for every vertex y outside, there’s at least one vertex x inside such
that they’re endpoints xy ∈ E and the number of neighbors of x is [less
than] equal to the number of neighbors of y. The minimum cardinality
|S|, 1, between all collapsed sets is called collapsed number and it’s
denoted by P(CMTσ) = 1;

(iv) if S = {n1} is a set of vertices, then a set of vertices S is called collapsed
set since for every vertex ni outside, there’s only one vertex n1 inside
such that they’re endpoints n1ni ∈ E and the number of neighbors of n1
is [less than] equal to the number of neighbors of ni;

(v) if S = {n1, n2} is a set of vertices, then a set of vertices S is called
collapsed set since for every vertex ni outside, there are two vertices n1
and n2 inside such that they’re endpoints n1ni, n2ni ∈ E and the number
of neighbors of n1 and n2 is [less than] equal to the number of neighbors
of ni;

(vi) all sets [1-set] of vertices containing one vertex, are called collapsed sets
since for every vertex y outside, there’s at least one vertex x inside such
that they’re endpoints xy ∈ E and the number of neighbors of x is [less
than] equal to the number of neighbors of y. The minimum neutrosophic
cardinality,

∑
x∈S

∑3
i=1 σi(x), 0.9, between all collapsed sets is called

neutrosophic collapsed number and it’s denoted by Pn(CMTσ) = 0.9.

Definition 2.5.87. (path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set of colors in this process is called path-coloring set from x to y.
The minimum cardinality between all path-coloring sets from two given
vertices is called path-coloring number and it’s denoted by L(NTG);
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(ii) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share one edge, then they’re assigned to different colors.
The set S of shared edges in this process is called path-coloring set
from x to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e),

between all path-coloring sets, Ss, is called neutrosophic path-coloring
number and it’s denoted by Ln(NTG).

Proposition 2.5.88. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Ln(CMTσ) = min
S

∑
e∈S

3∑
i=1

µi(e).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). For given two vertices, x and y, there are some paths from x to
y. If two paths from x to y share one edge, then they’re assigned to different
colors. The set S of shared edges in this process is called path-coloring set
from x to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between

all path-coloring sets, Ss, is called neutrosophic path-coloring number and it’s
denoted by Ln(CMTσ).Thus

Ln(CMTσ) = min
S

∑
e∈S

3∑
i=1

µi(e).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.89. In Figure (2.32), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.

(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → red
P3 : n1, n4, n2 → red

P4 : n1, n3, n4, n2 → blue
P5 : n1, n4, n3, n2 → yellow

The paths P1, P2 and P3 has no shared edge so they’ve been colored
the same as red. The path P4 has shared edge n1n3 with P2 and shared
edge n4n2 with P3 thus it’s been colored the different color as blue in
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comparison to them. The path P5 has shared edge n1n4 with P3 and
shared edge n3n4 with P4 thus it’s been colored the different color as
yellow in comparison to different paths in the terms of different colors.
Thus S = {red,blue, yellow} is path-coloring set and its cardinality, 3, is
path-coloring number. To sum them up, for given two vertices, x and
y, there are some paths from x to y. If two paths from x to y share
one edge, then they’re assigned to different colors. The set of colors,
S = {red,blue, yellow}, in this process is called path-coloring set from
x to y. The minimum cardinality between all path-coloring sets from
two given vertices, 3, is called path-coloring number and it’s denoted by
L(CMTσ) = 3;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are three different paths which have no shared edges. So they’ve
been assigned to same color;

(iv) shared edges form a set of representatives of colors. Each color is
corresponded to an edge which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to an edge has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way but
other way is to use all shared edges to form S and after that minimum
neutrosophic cardinality is optimal;

(vi) two edges n1n3 and n4n2 are shared with P4 by P3 and P2. The minimum
neutrosophic cardinality is 0.6 corresponded to n4n2. Other corresponded
color has only one shared edge n3n4 and minimum neutrosophic cardinality
is 0.9. Thus minimum neutrosophic cardinality is 1.5. And corresponded
set is S = {n4n2, n3n4}. To sum them up, for given two vertices, x and
y, there are some paths from x to y. If two paths from x to y share one
edge, then they’re assigned to different colors. The set S = {n4n2, n3n4}
of shared edges in this process is called path-coloring set from x to y.
The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between all

path-coloring sets, Ss, is called neutrosophic path-coloring number and
it’s denoted by Ln(CMTσ) = 1.5.

Definition 2.5.90. (dominating path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If
two paths from x to y share one edge, then they’re assigned to different
colors. The set of different colors, S, in this process is called dominating
path-coloring set from x to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum cardinality
between all dominating path-coloring sets from two given vertices is called
dominating path-coloring number and it’s denoted by Q(NTG);

(ii) for given two vertices, x and y, there are some paths from x to y. If
two paths from x to y share one edge, then they’re assigned to different
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Figure 2.32: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number. 76NTG2

colors. The set S of different colors in this process is called dominating
path-coloring set from x to y if for every edge outside there’s at least
one edge inside which they’ve common vertex. The minimum neutrosophic
cardinality,

∑
e∈S

∑3
i=1 µi(e), between all dominating path-coloring sets,

Ss, is called neutrosophic dominating path-coloring number and
it’s denoted by Qn(NTG).

Proposition 2.5.91. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Qn(CMTσ) = min
S

∑
e∈S

3∑
i=1

µi(e).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. The number of vertices
is O(CMTσ). For given two vertices, x and y, there are some paths from x to y.
If two paths from x to y share one edge, then they’re assigned to different colors.
The set S of shared edges in this process is called dominating path-coloring set
from x to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between

all dominating path-coloring sets, Ss, is called neutrosophic dominating path-
coloring number and it’s denoted by Qn(CMTσ).Thus

Qn(CMTσ) = min
S

∑
e∈S

3∑
i=1

µi(e).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.92. In Figure (2.33), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.
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(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → red
P3 : n1, n4, n2 → red

P4 : n1, n3, n4, n2 → blue
P5 : n1, n4, n3, n2 → yellow

The paths P1, P2 and P3 has no shared edge so they’ve been colored
the same as red. The path P4 has shared edge n1n3 with P2 and shared
edge n4n2 with P3 thus it’s been colored the different color as blue in
comparison to them. The path P5 has shared edge n1n4 with P3 and
shared edge n3n4 with P4 thus it’s been colored the different color as yellow
in comparison to different paths in the terms of different colors. Thus
S = {red,blue, yellow} is dominating path-coloring set and its cardinality,
3, is dominating path-coloring number. To sum them up, for given two
vertices, x and y, there are some paths from x to y. If two paths from x to y
share one edge, then they’re assigned to different colors. The set of colors,
S = {red,blue, yellow}, in this process is called dominating path-coloring
set from x to y. The minimum cardinality between all dominating path-
coloring sets from two given vertices, 3, is called dominating path-coloring
number and it’s denoted by Q(CMTσ) = 3;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are three different paths which have no shared edges. So they’ve
been assigned to same color;

(iv) shared edges form a set of representatives of colors. Each color is
corresponded to an edge which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to an edge has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way but
other way is to use all shared edges to form S and after that minimum
neutrosophic cardinality is optimal;

(vi) two edges n1n3 and n4n2 are shared with P4 by P3 and P2. The minimum
neutrosophic cardinality is 0.6 corresponded to n4n2. Other corresponded
color has only one shared edge n3n4 and minimum neutrosophic cardinality
is 0.9. Thus minimum neutrosophic cardinality is 1.5. And corresponded
set is S = {n4n2, n3n4}. To sum them up, for given two vertices, x and y,
there are some paths from x to y. If two paths from x to y share one edge,
then they’re assigned to different colors. The set S = {n4n2, n3n4} of
shared edges in this process is called dominating path-coloring set from x
to y. The minimum neutrosophic cardinality,

∑
e∈S

∑3
i=1 µi(e), between

all dominating path-coloring sets, Ss, is called neutrosophic dominating
path-coloring number and it’s denoted by Qn(CMTσ) = 1.5.
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Figure 2.33: A Neutrosophic Graph in the Viewpoint of its dominating path-
coloring number and its neutrosophic dominating path-coloring number. 77NTG2

Definition 2.5.93. (path-coloring numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share an endpoint, then they’re assigned to different
colors. The set of different colors, S, in this process is called path-
coloring set from x to y. The minimum cardinality between all path-
coloring sets from two given vertices is called path-coloring number
and it’s denoted by V(NTG);

(ii) for given two vertices, x and y, there are some paths from x to y. If two
paths from x to y share an endpoint, then they’re assigned to different
colors. The set S of different colors in this process is called path-coloring
set from x to y. The minimum neutrosophic cardinality,

∑
x∈Z

∑3
i=1 σi(x),

between all sets Zs including the latter endpoints corresponded to path-
coloring set Ss, is called neutrosophic path-coloring number and it’s
denoted by Vn(NTG).

Proposition 2.5.94. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Vn(CMTσ) = On(CMTσ)−max
x∈S

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are
connected to each other. So there’s one edge between two vertices. If
P : vi, vs, vs+1, · · · , vs+z, vj is a path from vi to vj , then all permutations
of internal vertices, it means all vertices on the path excluding vi and vj , is
a path from vi to vj , too. Furthermore, all permutations of vertices make
a new path. The number of vertices is O(CMTσ). For given two vertices,
x and y, there are some paths from x to y. If two paths from x to y share
an endpoint, then they’re assigned to different colors. The set S of different
colors in this process is called path-coloring set from x to y. The minimum
neutrosophic cardinality,

∑
x∈Z

∑3
i=1 σi(x), between all sets Zs including the

latter endpoints corresponded to path-coloring set Ss, is called neutrosophic
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path-coloring number and it’s denoted by Vn(CMTσ). Thus

Vn(CMTσ) = On(CMTσ)−max
x∈S

3∑
i=1

σi(x).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.95. In Figure (2.34), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows. New viewpoint
implies different kinds of definitions to get more scrutiny and more discernment.

(i) Consider two vertices n1 and n2. All paths are as follow:

P1 : n1, n2 → red
P2 : n1, n3, n2 → blue

P3 : n1, n4, n2 → yellow
P4 : n1, n3, n4, n2 → white
P5 : n1, n4, n3, n2 → black

Thus ∪3
i=1Si = {redi,bluei, yellowi,whitei,blacki}, is path-coloring set

and its cardinality, 15, is path-coloring number. To sum them up, for
given two vertices, x and y, there are some paths from x to y. If two paths
from x to y share an endpoint, then they’re assigned to different colors.
The set of different colors, ∪3

i=1Si = {redi,bluei, yellowi,whitei,blacki},
in this process is called path-coloring set from x to y. The minimum
cardinality, 15, between all path-coloring sets from two given vertices is
called path-coloring number and it’s denoted by V(CMTσ) = 15;

(ii) all vertices have same positions in the matter of creating paths. So for
every two given vertices, the number and the behaviors of paths are the
same;

(iii) there are some different paths which have no shared endpoints. So they
could been assigned to same color;

(iv) shared endpoints form a set of representatives of colors. Each color is
corresponded to a vertex which has minimum neutrosophic cardinality;

(v) every color in S is corresponded to a vertex has minimum neutrosophic
cardinality. Minimum neutrosophic cardinality is obtained in this way
but other way is to use all shared endpoints to form S and after that
minimum neutrosophic cardinality is optimal;

(vi) for given two vertices, x and y, there are some paths from x to
y. If two paths from x to y share an endpoint, then they’re as-
signed to different colors. The set of different colors, ∪3

i=1Si =
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Figure 2.34: A Neutrosophic Graph in the Viewpoint of its path-coloring number
and its neutrosophic path-coloring number. 78NTG2

{redi,bluei, yellowi,whitei,blacki}, in this process is called path-
coloring set from x to y. The minimum neutrosophic cardinality,∑
x∈S

∑3
i=1 σi(x) = On(CMTσ) −

∑3
i=1 σi(n2) = 3.9, between all

path-coloring sets, Ss, is called neutrosophic path-coloring number and
it’s denoted by

Vn(CMTσ) = On(CMTσ)−
3∑
i=1

σi(n2) = 3.9.

Definition 2.5.96. (Dual-Dominating Numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, s and n, if µ(ns) = σ(n) ∧ σ(s), then s dominates
n and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex s in S, there’s at least one neutrosophic vertex
n in V \ S such that n dominates s, then the set of neutrosophic vertices,
S is called dual-dominating set. The maximum cardinality between
all dual-dominating sets is called dual-dominating number and it’s
denoted by D(NTG);

(ii) for given two vertices, s and n, if µ(ns) = σ(n)∧σ(s), then s dominates n
and n dominates s. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertex s in S, there’s at least one neutrosophic
vertex n in V \ S such that n dominates s, then the set of neutrosophic
vertices, S is called dual-dominating set. The maximum neutrosophic
cardinality between all dual-dominating sets is called neutrosophic dual-
dominating number and it’s denoted by Dn(NTG).

Proposition 2.5.97. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Dn(CMTσ) = On(CMTσ)−min
x∈V

3∑
i=1

σi(x).
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Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. For given two vertices,
s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates n and n dominates s. Let
S = V \ {n} be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.] For every neutrosophic vertex s in S,
there’s only one neutrosophic vertex n in V \(S = V \{n}) such that n dominates
s, then the set of neutrosophic vertices, S = V \ {n} is called dual-dominating
set. The maximum neutrosophic cardinality between all dual-dominating sets is
called dual-dominating number and it’s denoted by D(NTG) = O(NTG)− 1.
Thus

Dn(CMTσ) = On(CMTσ)−min
x∈V

3∑
i=1

σi(x).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.98. In Figure (2.35), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two vertices, s and n, µ(ns) = σ(n)∧ σ(s). Thus s dominates n
and n dominates s;

(ii) the existence of one vertex to do this function, dominating, is obvious
thus this vertex form a set which is necessary and sufficient in the term
of minimum dominating set and minimal dominating set;

(iii) for given two vertices, s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates n
and n dominates s. Let S = V \ {n} be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.] If
for every neutrosophic vertex s in S, there’s only one neutrosophic vertex n
in V \ (S = V \{n}) such that n dominates s, then the set of neutrosophic
vertices, S = V \ {n} is called dual-dominating set. The maximum
cardinality between all dual-dominating sets is called dual-dominating
number and it’s denoted by D(CMTσ) = O(CMTσ)− 1;

(iv) the corresponded set doesn’t have to be dominated by the set;

(v) V is exception when the set is considered in this notion;

(vi) for given two vertices, s and n, µ(ns) = σ(n) ∧ σ(s), then s dominates
n and n dominates s. Let S = V \ {n} be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.]
If for every neutrosophic vertex s in S, there’s only one neutrosophic
vertex n in V \ (S = V \ {n}) such that n dominates s, then the set
of neutrosophic vertices, S = V \ {n} is called dual-dominating set.
The maximum neutrosophic cardinality between all dual-dominating
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Figure 2.35: A Neutrosophic Graph in the Viewpoint of its dual-dominating
number and its neutrosophic dual-dominating number. 79NTG2

sets is called neutrosophic dual-dominating number and it’s denoted
by Dn(CMTσ) = On(CMTσ)−

∑3
i=1 σi(n4) = 5.

Definition 2.5.99. (dual-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given two vertices, s and s′ if d(s, n) 6= d(s′, n), then n resolves s and
s′ where d is the minimum number of edges amid all paths from s to s′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s′ in S, there’s at least one neutrosophic vertex n in V \ S such
that n resolves s, s′, then the set of neutrosophic vertices, S is called dual-
resolving set. The maximum cardinality between all dual-resolving sets
is called dual-resolving number and it’s denoted by R(NTG);

(ii) for given two vertices, s and s′ if d(s, n) 6= d(s′, n), then n resolves s and
s′ where d is the minimum number of edges amid all paths from s to s′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every two neutrosophic
vertices s, s′ in S, there’s at least one neutrosophic vertex n in V \ S
such that n resolves s, s′, then the set of neutrosophic vertices, S is called
dual-resolving set. The maximum neutrosophic cardinality between all
dual-resolving sets is called dual-resolving number and it’s denoted by
Rn(NTG).

Proposition 2.5.100. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Rn(CMTσ) = max
x∈V

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. For given two vertices,
s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t resolve s and s′ where d is
the minimum number of edges amid all paths from s to s′. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
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neutrosophic vertex.]. For every two neutrosophic vertices s, s′ in S, there’s
no neutrosophic vertex n in V \ S such that n resolves s, s′, then the set of
neutrosophic vertices, S = {s} is called dual-resolving set. The maximum
neutrosophic cardinality between all dual-resolving sets is called dual-resolving
number and it’s denoted by

Rn(CMTσ) = max
x∈V

3∑
i=1

σi(x).

Thus

Rn(CMTσ) = max
x∈V

3∑
i=1

σi(x).

�

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.101. In Figure (2.36), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s, s′, d(s, n) = 1 = d(s′, n). Thus n
doesn’t resolve s and s′;

(ii) the existence of one neutrosophic vertex to do this function, resolving,
is obvious thus this vertex form a set which is necessary and sufficient
in the term of minimum resolving set and minimal resolving set as if it
seems there’s no neutrosophic vertex to resolve so as to choose one vertex
outside resolving set so as the function of resolving is impossible;

(iii) for given two vertices, s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t
resolve s and s′ where d is the minimum number of edges amid all
paths from s to s′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. For every
two neutrosophic vertices s, s′ in S, there’s no neutrosophic vertex n in
V \ S such that n resolves s, s′, then the set of neutrosophic vertices,
S = {s} is called dual-resolving set. The maximum cardinality between
all dual-resolving sets is called dual-resolving number and it’s denoted by
R(NTG) = 1;

(iv) the corresponded set doesn’t have to be resolved by the set;

(v) V isn’t used when the set is considered in this notion since V \ {v} always
works;

(vi) for given two vertices, s and s′ if d(s, n) = 1 = d(s′, n), then n doesn’t
resolve s and s′ where d is the minimum number of edges amid all paths
from s to s′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. For every two
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Figure 2.36: A Neutrosophic Graph in the Viewpoint of its dual-resolving
number and its neutrosophic dual-resolving number. 80NTG2

neutrosophic vertices s, s′ in S, there’s no neutrosophic vertex n in V \ S
such that n resolves s, s′, then the set of neutrosophic vertices, S = {s} is
called dual-resolving set. The maximum neutrosophic cardinality between
all dual-resolving sets is called dual-resolving number and it’s denoted by
Rn(NTG) = 2;

Definition 2.5.102. (joint-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n if sn ∈ E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n, then
the set of neutrosophic vertices, S is called joint-dominating set where
for every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-dominating sets is called joint-dominating
number and it’s denoted by J (NTG);

(ii) for given vertex n if sn ∈ E, then s joint-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least one neutrosophic vertex s in S such that s joint-dominates n,
then the set of neutrosophic vertices, S is called joint-dominating set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-dominating sets is
called neutrosophic joint-dominating number and it’s denoted by
Jn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

81prp9 Proposition 2.5.103. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S dominates if and only if it joint-dominates.

Proposition 2.5.104. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S is
corresponded to joint-dominating number. Then V \D is S-like.
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Proposition 2.5.105. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is corresponded to joint-dominating number if and only if for all s in S, there’s
a vertex n in V \ S, such that {n′ | n′n ∈ E} ∩ S = {s}.

Proposition 2.5.106. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Jn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. For given vertex n,
sn ∈ E, then s joint-dominates n. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.]. For
every neutrosophic vertex n in V \S, there’s only one neutrosophic vertex s in S
such that s joint-dominates n, then the set of neutrosophic vertices, S is called
joint-dominating set where for every two vertices in S, there’s a path in S amid
them. The minimum neutrosophic cardinality between all joint-dominating sets
is called joint-dominating number and it’s denoted by

Jn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

Thus

Jn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

�

Proposition 2.5.107. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then joint-dominating number is equal to dominating number.

Proof. S has one member thus by Proposition (2.5.103), the result holds. �

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.108. In Figure (2.37), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) one vertex dominates all other vertices thus by there’s only one member
for S and Proposition (2.5.103), this vertex joint-dominates other vertices;
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Figure 2.37: A Neutrosophic Graph in the Viewpoint of its joint-dominating
number and its neutrosophic joint-dominating number. 81NTG2

(iii) all joint-dominating sets corresponded to joint-dominating number are
{n1}, {n2}, {n3} and {n4} For given vertex n, sn ∈ E, thus by Proposition
(2.5.103), s joint-dominates n. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.]
like {n1}, {n2}, {n3} and {n4}. For every neutrosophic vertex n in V \ S,
there’s only one neutrosophic vertex s in S such that s joint-dominates
n, then the set of neutrosophic vertices, S = {n1}, {n2}, {n3} and {n4}.
is called joint-dominating set where for every two vertices in S, there’s
no need to have a path in S amid them or we could refer this case holds
by Proposition (2.5.103). The minimum cardinality between all joint-
dominating sets is called joint-dominating number and it’s denoted by
J (CMTσ) = 1;

(iv) there are four joint-dominating sets {n1}, {n2}, {n3} and {n4} as if it’s
possible to have one of them as a set corresponded to neutrosophic joint-
dominating number so as neutrosophic cardinality is characteristic;

(v) there are four joint-dominating sets {n1}, {n2}, {n3} and {n4} correspon-
ded to joint-dominating number as if there are one joint-dominating set
corresponded to neutrosophic joint-dominating number so as neutrosophic
cardinality is the determiner;

(vi) there’s only one joint-dominating set corresponded to joint-dominating
number is {n4}. For given vertex n, sn ∈ E, thus by Proposition (2.5.103),
s joint-dominates n. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.] like
{n1}, {n2}, {n3} and {n4}. For every neutrosophic vertex n in V \ S,
there’s only one neutrosophic vertex s in S such that s joint-dominates
n, then the set of neutrosophic vertices, S = {n1}, {n2}, {n3} and {n4}.
is called joint-dominating set where for every two vertices in S, there’s no
need to have a path in S amid them or we could refer this case holds by
Proposition (2.5.103). The minimum neutrosophic cardinality between all
joint-dominating sets is called joint-dominating number and it’s denoted
by Jn(CMTσ) = 0.9.

Definition 2.5.109. (joint-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

179



2. Neutrosophic Tools

(i) for given two vertices n and n′, if d(s, n) 6= d(s, n′), then s joint-resolves
n and n′ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic
vertices [a vertex alongside triple pair of its values is called neutrosophic
vertex.]. If for every neutrosophic vertex n in V \ S, there’s at least one
neutrosophic vertex s in S such that s joint-resolves n and n′, then the set
of neutrosophic vertices, S is called joint-resolving set where for every
two vertices in S, there’s a path in S amid them. The minimum cardinality
between all joint-resolving sets is called joint-resolving number and
it’s denoted by J (NTG);

(ii) for given two vertices n and n′, if d(s, n) 6= d(s, n′), then s joint-resolves
n and n′ where d is the minimum number of edges amid all paths from
the vertex and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n′ in V \ S, there’s at least
one neutrosophic vertex s in S such that s joint-resolves n and n′,
then the set of neutrosophic vertices, S is called joint-resolving set
where for every two vertices in S, there’s a path in S amid them. The
minimum neutrosophic cardinality between all joint-resolving sets is called
neutrosophic joint-resolving number and it’s denoted by Jn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

82prp9 Proposition 2.5.110. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it joint-resolves.

Proposition 2.5.111. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is corresponded to joint-resolving number if and only if for all s in S, either
there are vertices n and n′ in V \S, such that {s′ | d(s′, n) 6= d(s′, n′)}∩S = {s}
or there’s vertex s′ in S, such that are s and s′ twin vertices.

Proposition 2.5.112. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Jn(CMTσ) = On(CMTσ)−max{
3∑
i=1

σi(x)}x∈V .

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. All joint-resolving sets
corresponded to joint-resolving number are

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1},

For given two vertices n and n′, d(s, n) = 1 = 1 = d(s, n′), then s doesn’t
joint-resolve n and n′ where d is the minimum number of edges amid all paths
from the vertex and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic vertex.] like

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1}.
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For every neutrosophic vertices n and n′ in V \S, there’s at least one neutrosophic
vertex s in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is

{n1, n2, n3, . . . , nO(CMTσ)−2, nO(CMTσ)−1}

is called joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum neutrosophic cardinality between all joint-resolving
sets is called joint-resolving number and it’s denoted by

Jn(CMTσ) = On(CMTσ)−max{
3∑
i=1

σi(x)}x∈V .

Thus

Jn(CMTσ) = On(CMTσ)−max{
3∑
i=1

σi(x)}x∈V .

�

Proposition 2.5.113. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then joint-resolving number is equal to dominating number.

Proposition 2.5.114. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of joint-resolving number corresponded to joint-resolving
number is equal to O(CMTσ) choose O(CMTσ)− 1. Thus the number of joint-
resolving number corresponded to joint-resolving number is equal to O(CMTσ).

Proposition 2.5.115. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of joint-resolving number corresponded to joint-resolving
number is equal to O(CMTσ) choose O(CMTσ) − 1 then minus one. Thus
the number of joint-resolving number corresponded to joint-resolving number is
equal to O(CMTσ)− 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.116. In Figure (2.38), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) Every given two vertices are twin since for all given two vertices, every
of them has one edge from every given vertex thus minimum number of
edges amid all paths from a vertex to another vertex is forever one;

(iii) all joint-resolving sets corresponded to joint-resolving number are
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. For given two vertices n and
n′, if d(s, n) 6= d(s, n′), then s joint-resolves n and n′ where d is the
minimum number of edges amid all paths from the vertex and the
another vertex. Let S be a set of neutrosophic vertices [a vertex
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Figure 2.38: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number. 82NTG2

alongside triple pair of its values is called neutrosophic vertex.] like either
of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If for every neutrosophic
vertices n and n′ in V \ S, there’s at least one neutrosophic vertex s
in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4} is called
joint-resolving set where for every two vertices in S, there’s a path in S
amid them. The minimum cardinality between all joint-resolving sets is
called joint-resolving number and it’s denoted by J (CMTσ) = 3;

(iv) there are four joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
and {n1, n2, n3, n4} as if it’s possible to have one of them as a set
corresponded to neutrosophic joint-resolving number so as neutrosophic
cardinality is characteristic;

(v) there are three joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, and
{n1, n3, n4} corresponded to joint-resolving number as if there’s one joint-
resolving set corresponded to neutrosophic joint-resolving number so as
neutrosophic cardinality is the determiner;

(vi) all joint-resolving sets corresponded to neutrosophic joint-resolving number
are {n1, n3, n4}. For given two vertices n and n′, if d(s, n) 6= d(s, n′),
then s joint-resolves n and n′ where d is the minimum number of edges
amid all paths from the vertex and the another vertex. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.] like either of {n1, n2, n3}, {n1, n2, n4}, and
{n1, n3, n4}. If for every neutrosophic vertices n and n′ in V \S, there’s at
least one neutrosophic vertex s in S such that s joint-resolves n and n′, then
the set of neutrosophic vertices, S is either of {n1, n2, n3}, {n1, n2, n4},
and {n1, n3, n4} is called joint-resolving set where for every two vertices in
S, there’s a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called neutrosophic joint-resolving
number and it’s denoted by Jn(CMTσ) = 3.9.

Definition 2.5.117. (perfect-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
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alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V \S, there’s only one neutrosophic vertex s
in S such that s perfect-dominates n, then the set of neutrosophic vertices,
S is called perfect-dominating set. The minimum cardinality between
all perfect-dominating sets is called perfect-dominating number and
it’s denoted by P(NTG);

(ii) for given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertex n in V \S, there’s only one neutrosophic vertex s in S
such that s perfect-dominates n, then the set of neutrosophic vertices, S is
called perfect-dominating set. The minimum neutrosophic cardinality
between all perfect-dominating sets is called neutrosophic perfect-
dominating number and it’s denoted by Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

83prp9 Proposition 2.5.118. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S has
one member. Then a vertex of S dominates if and only if it perfect-dominates.

Proposition 2.5.119. Let NTG : (V,E, σ, µ) be a neutrosophic graph and
dominating set has one member. Then a vertex of dominating set corresponded
to dominating number dominates if and only if it perfect-dominates.

Proposition 2.5.120. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
S is corresponded to perfect-dominating number if and only if for all s in S,
there’s a vertex n in V \ S, such that {s′ | s′n ∈ E} ∩ S = {s}.

Proposition 2.5.121. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Pn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. All perfect-dominating
sets corresponded to perfect-dominating number are

{n1}, {n2}, {n3}, . . . {nO(CMTσ−1)}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s perfect-dominates n where s is the unique
vertex. Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s only one neutrosophic vertex s in S such that s perfect-dominates
n, then the set of neutrosophic vertices, S is called perfect-dominating set. The
minimum neutrosophic cardinality between all perfect-dominating sets is called
neutrosophic perfect-dominating number and it’s denoted by

Pn(CMTσ) = min
x∈V

3∑
i=1

σi(x).
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Thus

Pn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

�

Proposition 2.5.122. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then perfect-dominating number is equal to dominating number.

Proposition 2.5.123. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-dominating sets corresponded to perfect-dominating
number is equal to O(CMTσ).

Proposition 2.5.124. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-dominating sets is equal to 2O(CMTσ) − 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.125. In Figure (2.39), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it perfect-dominates, by
Proposition (2.5.118) and S has one member;

(iii) all perfect-dominating sets corresponded to perfect-dominating number
are {n1}, {n2}, {n3}, and {n4}. For given vertex n, if sn ∈ E, then s
perfect-dominates n where s is the unique vertex. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
only one neutrosophic vertex s in S such that s perfect-dominates n, then
the set of neutrosophic vertices, S is called perfect-dominating set. The
minimum cardinality between all perfect-dominating sets is called perfect-
dominating number and it’s denoted by P(CMTσ) = 1 and corresponded
to perfect-dominating sets are {n1}, {n2}, {n3}, and {n4};

(iv) there are five perfect-dominating sets

{n1}, {n2}, {n3},
{n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
perfect-dominating number so as neutrosophic cardinality is characteristic;

(v) there are five perfect-dominating sets

{n1}, {n2}, {n3},
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Figure 2.39: A Neutrosophic Graph in the Viewpoint of its perfect-dominating
number and its neutrosophic perfect-dominating number. 83NTG2

{n4}, {n1, n2, n3, n4},

corresponded to perfect-dominating number as if there’s one perfect-
dominating set corresponded to neutrosophic perfect-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all perfect-dominating sets corresponded to perfect-dominating number
are

{n1}, {n2}, {n3},
{n4},

For given vertex n, if sn ∈ E, then s perfect-dominates n where s is
the unique vertex. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for
every neutrosophic vertex n in V \S, there’s only one neutrosophic vertex
s in S such that s perfect-dominates n, then the set of neutrosophic
vertices, S is called perfect-dominating set. The minimum neutrosophic
cardinality between all perfect-dominating sets is called neutrosophic
perfect-dominating number and it’s denoted by Pn(CMTσ) = 0.9 and
corresponded to perfect-dominating sets {n4}.

Definition 2.5.126. (perfect-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves
n and n′ where s is the unique vertex and d is minimum number of
edges amid two vertices. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′ in V \S, there’s only one neutrosophic vertex
s in S such that s perfect-resolves n and n′, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number
and it’s denoted by P(NTG);

(ii) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves
n and n′ where s is the unique vertex and d is minimum number of
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edges amid two vertices. Let S be a set of neutrosophic vertices [a
vertex alongside triple pair of its values is called neutrosophic vertex.].
If for every neutrosophic vertices n and n′ in V \ S, there’s only one
neutrosophic vertex s in S such that s perfect-resolves n and n′, then
the set of neutrosophic vertices, S is called perfect-resolving set. The
minimum neutrosophic cardinality between all perfect-resolving sets is
called neutrosophic perfect-resolving number and it’s denoted by
Pn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

84prp9 Proposition 2.5.127. Let NTG : (V,E, σ, µ) be a neutrosophic graph and S
has one member. Then a vertex of S resolves if and only if it perfect-resolves.

Proposition 2.5.128. Let NTG : (V,E, σ, µ) be a neutrosophic graph and
resolving set has one member. Then a vertex of resolving set corresponded
to resolving number resolves if and only if it perfect-resolves.

Proposition 2.5.129. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
S is corresponded to perfect-resolving number if and only if for all s in S,
there are neutrosophic vertices n and n′ in V \ S, such that {s′ | d(s′, n) 6=
d(s′, n′)} ∩ S = {s} and for all neutrosophic vertices n and n′ in V \ S, there’s
only one neutrosophic vertex s in S, such that {s′ | d(s′, n) 6= d(s′, n′)}∩S = {s}.

84prp12 Proposition 2.5.130. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
and V \ {x} are S.

Proposition 2.5.131. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Pn(CMTσ) = On(CMTσ)−max
x∈V

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
if and only if it perfect-resolves, by no vertices could be resolved in both
settings of resolving and perfect-resolving. Thus, by Proposition (2.5.130), S
has either O(CMTσ)− 1 or O(CMTσ). All perfect-resolving sets corresponded
to perfect-resolving number are

{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},
. . .

{n2, n3, n4, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and
n′ where s is the unique vertex and d is minimum number of edges amid two
vertices. Let S be a set of neutrosophic vertices [a vertex alongside triple
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pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V \ S, there’s only one neutrosophic vertex s in S such
that s perfect-resolves n and n′, then the set of neutrosophic vertices, S is
called perfect-resolving set. The minimum neutrosophic cardinality between all
perfect-resolving sets is called neutrosophic perfect-resolving number and it’s
denoted by

Pn(CMTσ) = On(CMTσ)−max
x∈V

3∑
i=1

σi(x)

and corresponded to perfect-resolving sets are

{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)},
{n1, n2, n3, . . . , nO(CMTσ)−4, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)},
. . .

{n2, n3, n4, . . . , nO(CMTσ)−4, nO(CMTσ)−3, nO(CMTσ)−2, nO(CMTσ)−1, nO(CMTσ)}.

Thus

Pn(CMTσ) = On(CMTσ)−max
x∈V

3∑
i=1

σi(x).

�

Proposition 2.5.132. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then perfect-resolving number is equal to resolving number.

Proposition 2.5.133. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-resolving sets corresponded to perfect-resolving
number is equal to O(CMTσ).

Proposition 2.5.134. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of perfect-resolving sets is equal to O(CMTσ) + 1.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.135. In Figure (2.40), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves if and only if it perfect-resolves, by no vertices
could be resolved in both settings of resolving and perfect-resolving. Thus,
by Proposition (2.5.130), S has either O(CMTσ)− 1 or O(CMTσ);

(iii) all perfect-resolving sets corresponded to perfect-resolving number are
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4}. For given vertices
n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and n′ where s is
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the unique vertex and d is minimum number of edges amid two vertices.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair
of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V \ S, there’s only one neutrosophic vertex s in
S such that s perfect-resolves n and n′, then the set of neutrosophic
vertices, S is called perfect-resolving set. The minimum cardinality
between all perfect-resolving sets is called perfect-resolving number and
it’s denoted by P(CMTσ) = 3 and corresponded to perfect-resolving sets
are {n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4};

(iv) there are five perfect-resolving sets

{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
perfect-resolving number so as neutrosophic cardinality is characteristic;

(v) there are four perfect-resolving sets

{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4},

corresponded to perfect-resolving number as if there’s one perfect-
resolving set corresponded to neutrosophic perfect-resolving number so as
neutrosophic cardinality is the determiner;

(vi) all perfect-resolving sets corresponded to perfect-resolving number are
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4}, and {n2, n3, n4}. For given vertices
n and n′ if d(s, n) 6= d(s, n′), then s perfect-resolves n and n′ where s is
the unique vertex and d is minimum number of edges amid two vertices.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n′ in V \ S, there’s only one neutrosophic vertex s in S such that s
perfect-resolves n and n′, then the set of neutrosophic vertices, S is called
perfect-resolving set. The minimum neutrosophic cardinality between all
perfect-resolving sets is called neutrosophic perfect-resolving number and
it’s denoted by Pn(CMTσ) = 3.9 and corresponded to perfect-resolving
sets are {n1, n3, n4}.

Definition 2.5.136. (total-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
set. The minimum cardinality between all total-dominating sets is called
total-dominating number and it’s denoted by T (NTG);
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Figure 2.40: A Neutrosophic Graph in the Viewpoint of its perfect-resolving
number and its neutrosophic perfect-resolving number. 84NTG2

(ii) for given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum neutrosophic cardinality between all total-dominating sets is
called neutrosophic total-dominating number and it’s denoted by
Tn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.137. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
|S| ≥ 2.

Proposition 2.5.138. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Tn(CMTσ) = min
x,y∈V

3∑
i=1

(σi(x) + σi(y)).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates as if it doesn’t total-dominate since a vertex couldn’t dominate itself.
All total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4}, . . . , {n1, nO(CMTσ)−2}, {n1, nO(CMTσ)−1}, {n1, nO(CMTσ)}
{n2, n3}, {n2, n4}, {n2, n5}, . . . , {n2, nO(CMTσ)−2}, {n2, nO(CMTσ)−1}, {n2, nO(CMTσ)}
{n3, n4}, {n3, n5}, {n3, n6}, . . . , {n3, nO(CMTσ)−2}, {n3, nO(CMTσ)−1}, {n3, nO(CMTσ)}

. . .

{nO(CMTσ)−3, nO(CMTσ)−2}, {nO(CMTσ)−3, nO(CMTσ)−1}, {nO(CMTσ)−3, nO(CMTσ)}
{nO(CMTσ)−2, nO(CMTσ)−1}, {nO(CMTσ)−2, nO(CMTσ)}

{nO(CMTσ)−1, nO(CMTσ)}
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For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then the
set of neutrosophic vertices, S is called total-dominating set. The minimum
neutrosophic cardinality between all total-dominating sets is called neutrosophic
total-dominating number and it’s denoted by

Tn(CMTσ) = min
x,y∈V

3∑
i=1

(σi(x) + σi(y))

and corresponded to total-dominating sets are

{n1, n2}, {n1, n3}, {n1, n4}, . . . , {n1, nO(CMTσ)−2}, {n1, nO(CMTσ)−1}, {n1, nO(CMTσ)}
{n2, n3}, {n2, n4}, {n2, n5}, . . . , {n2, nO(CMTσ)−2}, {n2, nO(CMTσ)−1}, {n2, nO(CMTσ)}
{n3, n4}, {n3, n5}, {n3, n6}, . . . , {n3, nO(CMTσ)−2}, {n3, nO(CMTσ)−1}, {n3, nO(CMTσ)}

. . .

{nO(CMTσ)−3, nO(CMTσ)−2}, {nO(CMTσ)−3, nO(CMTσ)−1}, {nO(CMTσ)−3, nO(CMTσ)}
{nO(CMTσ)−2, nO(CMTσ)−1}, {nO(CMTσ)−2, nO(CMTσ)}

{nO(CMTσ)−1, nO(CMTσ)}

Thus

Tn(CMTσ) = min
x,y∈V

3∑
i=1

(σi(x) + σi(y)).

�

Proposition 2.5.139. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then total-dominating number isn’t equal to dominating number.

Proposition 2.5.140. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-dominating sets corresponded to total-dominating
number is equal to O(CMTσ) choose two.

Proposition 2.5.141. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-dominating sets is equal to O(CMTσ) choose two plus
O(CMTσ) choose three plus one.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.142. In Figure (2.41), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t total-dominate since a
vertex couldn’t dominate itself;
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(iii) all total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4}.

For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V, there’s at
least a neutrosophic vertex s in S such that s total-dominates n, then
the set of neutrosophic vertices, S is called total-dominating set. The
minimum cardinality between all total-dominating sets is called total-
dominating number and it’s denoted by T (CMTσ) = 2 and corresponded
to total-dominating sets are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4};

(iv) there are eleven total-dominating sets

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4},
{n1, n2, n3}, {n1, n2, n4}, {n1, n3, n4},
{n2, n3, n4}, {n1, n2, n3, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
total-dominating number so as neutrosophic cardinality is characteristic;

(v) there are six total-dominating sets

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4},

corresponded to total-dominating number as if there’s one total-
dominating set corresponded to neutrosophic total-dominating number so
as neutrosophic cardinality is the determiner;

(vi) all total-dominating sets corresponded to total-dominating number are

{n1, n2}, {n1, n3}, {n1, n4},
{n2, n3}, {n2, n4}, {n3, n4}.

For given vertex n, if sn ∈ E, then s total-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in V,
there’s at least a neutrosophic vertex s in S such that s total-dominates
n, then the set of neutrosophic vertices, S is called total-dominating
set. The minimum neutrosophic cardinality between all total-dominating
sets is called neutrosophic total-dominating number and it’s denoted by
Tn(CMTσ) = 2.3 and corresponded to neutrosophic total-dominating sets
are

{n3, n4}.
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2. Neutrosophic Tools

Figure 2.41: A Neutrosophic Graph in the Viewpoint of its total-dominating
number and its neutrosophic total-dominating number. 85NTG2

Definition 2.5.143. (total-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices, d ≥ 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d ≥ 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n′, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum cardinality between all
total-resolving sets is called total-resolving number and it’s denoted
by T (NTG);

(ii) for given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices, d ≥ 1 and all
vertices have to be total-resolved otherwise it will be mentioned which
is about d ≥ 0 in some cases but all vertices have to be total-resolved
forever. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′ in V, there’s at least a neutrosophic vertex s in S such
that s total-resolves n and n′, then the set of neutrosophic vertices, S
is called total-resolving set. The minimum neutrosophic cardinality
between all total-resolving sets is called neutrosophic total-resolving
number and it’s denoted by Tn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

Proposition 2.5.144. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
|S| ≥ 2.

86prp10 Proposition 2.5.145. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then if
there are twin vertices then total-resolving set and total-resolving number are
Not Existed.

Proposition 2.5.146. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then
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Tn(CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t total-resolve so as resolving is different from total-resolving and
by Proposition (2.5.145), total-resolving set and total-resolving number are
Not Existed. All total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n and
n′ where d is minimum number of edges amid two vertices. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in V, there’s
at least a neutrosophic vertex s in S such that s total-resolves n and n′, then
the set of neutrosophic vertices, S is called total-resolving set. The minimum
neutrosophic cardinality between all total-resolving sets is called neutrosophic
total-resolving number and it’s denoted by

Tn(CMTσ) = Not Existed.

and corresponded to total-resolving sets are

Not Existed.

Thus
Tn(CMTσ) = Not Existed.

�

Proposition 2.5.147. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then total-resolving number isn’t equal to resolving number.

Proposition 2.5.148. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-resolving sets corresponded to total-resolving number
is Not Existed.

Proposition 2.5.149. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of total-resolving sets is Not Existed.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.150. In Figure (2.42), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;
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(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t total-resolve so as resolving is
different from total-resolving and by Proposition (2.5.145), total-resolving
set and total-resolving number are Not Existed;

(iii) all total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n
and n′ where d is minimum number of edges amid two vertices. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in
V, there’s at least a neutrosophic vertex s in S such that s total-resolves
n and n′, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum cardinality between all total-resolving sets is called
total-resolving number and it’s denoted by T (CMTσ) = Not Existed;
and corresponded to total-resolving sets are

Not Existed;

(iv) there’s no total-resolving set

Not Existed,

as if it’s possible to have one of them as a set corresponded to neutrosophic
total-resolving number so as neutrosophic cardinality is characteristic;

(v) there’s no total-resolving set

Not Existed,

corresponded to total-resolving number as if there’s one total-resolving set
corresponded to neutrosophic total-resolving number so as neutrosophic
cardinality is the determiner;

(vi) all total-resolving sets corresponded to total-resolving number are

Not Existed.

For given vertices n and n′ if d(s, n) 6= d(s, n′), then s total-resolves n
and n′ where d is minimum number of edges amid two vertices. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertices n and n′ in
V, there’s at least a neutrosophic vertex s in S such that s total-resolves
n and n′, then the set of neutrosophic vertices, S is called total-resolving
set. The minimum neutrosophic cardinality between all total-resolving
sets is called neutrosophic total-resolving number and it’s denoted by
Tn(CMTσ) = Not Existed; and corresponded to total-resolving sets are

Not Existed.
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Figure 2.42: A Neutrosophic Graph in the Viewpoint of its total-resolving
number and its neutrosophic total-resolving number. 86NTG2

Definition 2.5.151. (stable-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(NTG);

(ii) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The
minimum neutrosophic cardinality between all stable-dominating sets is
called neutrosophic stable-dominating number and it’s denoted by
Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

86prp9 Proposition 2.5.152. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then

(i) a vertex dominates if and only if it stable-dominates;

(ii) S is dominating set if and only if it’s stable-dominating set;

(iii) a number is dominating number if and only if it’s stable-dominating
number.

Proposition 2.5.153. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is stable-dominating set corresponded to stable-dominating number if and only
if for every neutrosophic vertex s in S, there’s at least a neutrosophic vertex n
in V \ S such that {s′ ∈ S | s′n ∈ E} = {s}.

195



2. Neutrosophic Tools

Proposition 2.5.154. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

Proposition 2.5.155. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and O(NTG)− 1.

Proposition 2.5.156. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and On(NTG)−minx∈V

∑3
i=1 σi(x).

Proposition 2.5.157. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates if and only if it stable-dominates so as dominating is the same
with stable-dominating, by Proposition (2.5.152), and S has one member. All
stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x)

and corresponded to stable-dominating sets are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

Thus

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

�

Proposition 2.5.158. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 2.5.159. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets corresponded to stable-dominating
number is O(CMTσ).
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Proposition 2.5.160. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets is O(CMTσ).

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.161. In Figure (2.43), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (2.5.152),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-dominating set. The
minimum cardinality between all stable-dominating sets is called stable-
dominating number and it’s denoted by S(CMTσ) = 1; and corresponded
to stable-dominating sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;
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Figure 2.43: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG2

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMTσ) = 0.9; and corresponded to stable-dominating sets are

{n4}.

Definition 2.5.162. (stable-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted
by S(NTG);

(ii) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in S,
there’s no edge between them, then the set of neutrosophic vertices, S is
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called neutrosophic stable-resolving set. The minimum neutrosophic
cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

88prp9 Proposition 2.5.163. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then

(i) a vertex resolves if and only if it stable-resolves;

(ii) S is resolving set if and only if it’s stable-resolving set;

(iii) a number is resolving number if and only if it’s stable-resolving number.

Proposition 2.5.164. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is stable-resolving set corresponded to stable-resolving number if and only if for
every neutrosophic vertex s in S, there are at least neutrosophic vertices n and
n′ in V \ S such that {s′ ∈ S | d(s′, n) 6= d(s′, n′)} = {s}.

Proposition 2.5.165. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

Proposition 2.5.166. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Sn(CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t stable-resolve so as resolving is different from stable-resolving.
Stable-resolving set and stable-resolving number are Not Existed. All stable-
resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(CMTσ) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
Sn(CMTσ) = Not Existed.

�
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Proposition 2.5.167. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 2.5.168. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets corresponded to stable-resolving number
is Not Existed.

Proposition 2.5.169. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets is Not Existed.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.5.170. In Figure (2.44), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is
different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMTσ) = Not Existed; and corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;
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Figure 2.44: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG2

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(CMTσ) = Not Existed; and corresponded
to stable-resolving sets are

Not Existed.

2.6 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.

2.7 Modelling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.
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Figure 2.45: A Neutrosophic Graph in the Viewpoint of its joint-resolving
number and its neutrosophic joint-resolving number 88NTG20

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1), clarifies about the
assigned numbers to these situations.

Table 2.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 88tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

2.8 Case 1: Complete-Model

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with some subjects.
Thus the connection is applied as possible and the model demonstrates
quasi-full connections as quasi-possible. Using the notion of strong on
the connection amid subjects, causes the importance of subject goes in
the highest level such that the value amid two consecutive subjects, is
determined by those subjects. If the configuration is star, the number
is different. Also, it holds for other types such that complete, wheel,
path, and cycle. The collection of situations is another application of
its stable-resolving number and its neutrosophic stable-resolving number
when the notion of family is applied in the way that all members of family
are from same classes of neutrosophic graphs. As follows, there are five
subjects which are represented as Figure (2.45). This model is strong
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and even more it’s quasi-complete. And the study proposes using specific
number which is called its stable-resolving number and its neutrosophic
stable-resolving number. There are also some analyses on other numbers
in the way that, the clarification is gained about being special number or
not. Also, in the last part, there is one neutrosophic number to assign
to this model and situation to compare them with same situations to
get more precise. Consider Figure (2.45). In Figure (2.45), an complete-
neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and s′, there’s an edge between
them;

(ii) Every given two vertices are twin since for all given two vertices,
every of them has one edge from every given vertex thus minimum
number of edges amid all paths from a vertex to another vertex is
forever one;

(iii) all joint-resolving sets corresponded to joint-resolving number are
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. For given two vertices n
and n′, if d(s, n) 6= d(s, n′), then s joint-resolves n and n′ where d
is the minimum number of edges amid all paths from the vertex
and the another vertex. Let S be a set of neutrosophic vertices
[a vertex alongside triple pair of its values is called neutrosophic
vertex.] like either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If
for every neutrosophic vertices n and n′ in V \ S, there’s at least
one neutrosophic vertex s in S such that s joint-resolves n and n′,
then the set of neutrosophic vertices, S is either of {n1, n2, n3},
{n1, n2, n4}, and {n1, n3, n4} is called joint-resolving set where for
every two vertices in S, there’s a path in S amid them. The minimum
cardinality between all joint-resolving sets is called joint-resolving
number and it’s denoted by J (CMTσ) = 3;

(iv) there are four joint-resolving sets {n1, n2, n3}, {n1, n2, n4},
{n1, n3, n4}, and {n1, n2, n3, n4} as if it’s possible to have one
of them as a set corresponded to neutrosophic joint-resolving number
so as neutrosophic cardinality is characteristic;

(v) there are three joint-resolving sets {n1, n2, n3}, {n1, n2, n4}, and
{n1, n3, n4} corresponded to joint-resolving number as if there’s
one joint-resolving set corresponded to neutrosophic joint-resolving
number so as neutrosophic cardinality is the determiner;

(vi) all joint-resolving sets corresponded to neutrosophic joint-resolving
number are {n1, n3, n4}. For given two vertices n and n′, if d(s, n) 6=
d(s, n′), then s joint-resolves n and n′ where d is the minimum
number of edges amid all paths from the vertex and the another
vertex. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.] like either of
{n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4}. If for every neutrosophic
vertices n and n′ in V \ S, there’s at least one neutrosophic vertex s
in S such that s joint-resolves n and n′, then the set of neutrosophic
vertices, S is either of {n1, n2, n3}, {n1, n2, n4}, and {n1, n3, n4} is
called joint-resolving set where for every two vertices in S, there’s
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Figure 2.46: A Neutrosophic Graph 88NTG21

a path in S amid them. The minimum neutrosophic cardinality
between all joint-resolving sets is called neutrosophic joint-resolving
number and it’s denoted by Jn(CMTσ) = 3.9.

2.9 Case 2: Complete Model alongside its
Neutrosophic Graph

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with every given
subject in deemed way. Thus the connection applied as possible and
the model demonstrates full connections as possible between parts but
with different view where symmetry amid vertices and edges are the
matters. Using the notion of strong on the connection amid subjects,
causes the importance of subject goes in the highest level such that the
value amid two consecutive subjects, is determined by those subjects. If
the configuration is complete multipartite, the number is different. Also, it
holds for other types such that star, wheel, path, and cycle. The collection
of situations is another application of its stable-resolving number and its
neutrosophic stable-resolving number when the notion of family is applied
in the way that all members of family are from same classes of neutrosophic
graphs. As follows, there are four subjects which are represented in the
formation of one model as Figure (2.46). This model is neutrosophic
strong as individual and even more it’s complete. And the study proposes
using specific number which is called its stable-resolving number and its
neutrosophic stable-resolving number for this model. There are also some
analyses on other numbers in the way that, the clarification is gained
about being special number or not. Also, in the last part, there is one
neutrosophic number to assign to these models as individual. A model
as a collection of situations to compare them with another model as a
collection of situations to get more precise. Consider Figure (2.46). There
is one section for clarifications.

(i) If n1, n2 is a sequence of consecutive vertices, then it’s obvious that
there’s no crisp cycle. It’s only a path and it’s only one edge but
it is neither crisp cycle nor neutrosophic cycle. The length of this
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path implies there’s no cycle since if the length of a sequence of
consecutive vertices is at most 2, then it’s impossible to have cycle.
So this neutrosophic path is neither a neutrosophic cycle nor crisp
cycle. The length of this path implies

n1, n2

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(ii) if n1, n2, n3 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it isn’t neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there aren’t
two weakest edges which imply there is no neutrosophic cycle. So
this crisp cycle isn’t a neutrosophic cycle but it’s crisp cycle. The
crisp length of this crisp cycle implies

n1, n2, n3

is corresponded to girth G(NTG) but neutrosophic length of this
crisp cycle implies

n1, n2, n3

isn’t corresponded to neutrosophic girth Gn(NTG);
(iii) if n1, n2, n3, n4 is a sequence of consecutive vertices, then it’s obvious

that there’s two crisp cycles with length two and three. It’s also a
path and there are three edges but there are some crisp cycles but
there are only two neutrosophic cycles with length three, n1, n3, n4,
and with length four, n1, n2, n3, n4. The length of this sequence
implies there are some crisp cycles and there are two neutrosophic
cycles since if the length of a sequence of consecutive vertices is at
most 4 and it’s crisp complete, then it’s possible to have some crisp
cycles and two neutrosophic cycles with two different length three
and four. So this neutrosophic path forms some neutrosophic cycles
and some crisp cycles. The length of this path implies

n1, n2, n3, n4

is corresponded to neither girth G(NTG) nor neutrosophic girth
Gn(NTG);

(iv) if n1, n3, n4 is a sequence of consecutive vertices, then it’s obvious
that there’s one crisp cycle. It’s also a path and there are three edges
but it is also neutrosophic cycle. The length of crisp cycle implies
there’s one cycle since if the length of a sequence of consecutive
vertices is at most 3, then it’s possible to have cycle but there
are two weakest edges, n3n4 and n1n4, which imply there is one
neutrosophic cycle. So this crisp cycle is a neutrosophic cycle and
it’s crisp cycle. The crisp length of this neutrosophic cycle implies

n1, n3, n4

205



2. Neutrosophic Tools

is corresponded to girth G(NTG) and neutrosophic length of this
neutrosophic cycle implies

n1, n3, n4

is corresponded to neutrosophic girth Gn(NTG);
(v) 3 is girth and its corresponded sets are {n1, n2, n3}, {n1, n2, n4}, and
{n2, n3, n4};

(vi) 3.9 is neutrosophic girth and its corresponded set is {n1, n3, n4}.

2.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning neutrosophic zero-forcing, neutrosophic independence, neut-
rosophic clique, neutrosophic matching, neutrosophic girth, neutrosophic cycles,
neutrosophic connectivity, neutrosophic density, neutrosophic path-coloring,
neutrosophic duality, neutrosophic join, neutrosophic perfect, neutrosophic total,
neutrosophic stable, are defined in complete-neutrosophic graphs. Thus,

Question 2.10.1. Is it possible to use other types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable?

Question 2.10.2. Are existed some connections amid different types of neut-
rosophic zero-forcing, neutrosophic independence, neutrosophic clique, neut-
rosophic matching, neutrosophic girth, neutrosophic cycles, neutrosophic con-
nectivity, neutrosophic density, neutrosophic path-coloring, neutrosophic duality,
neutrosophic join, neutrosophic perfect, neutrosophic total, neutrosophic stable,
in complete-neutrosophic graphs?

Question 2.10.3. Is it possible to construct some classes of complete-
neutrosophic graphs which have “nice” behavior?

Question 2.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 2.10.5. Which parameters are related to this parameter?

Problem 2.10.6. Which approaches do work to construct applications to create
independent study?

Problem 2.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

2.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
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study are highlighted.
This study uses some definitions concerning different types of neutrosophic zero-
forcing, neutrosophic independence, neutrosophic clique, neutrosophic matching,
neutrosophic girth, neutrosophic cycles, neutrosophic connectivity, neutrosophic
density, neutrosophic path-coloring, neutrosophic duality, neutrosophic join,
neutrosophic perfect, neutrosophic total, neutrosophic stable, in complete-
neutrosophic graphs assigned to complete-neutrosophic graphs. Further studies

Table 2.2: A Brief Overview about Advantages and Limitations of this Study 88tbl

Advantages Limitations
1. Neutrosophic Numbers of Model 1. Connections amid Classes

2. Acting on All Edges

3. Minimal Sets 2. Study on Families

4. Maximal Sets

5. Acting on All Vertices 3. Same Models in Family

could be about changes in the settings to compare these notions amid different
settings of complete-neutrosophic graphs. One way is finding some relations
amid all definitions of notions to make sensible definitions. In Table (2.2), some
limitations and advantages of this study are pointed out.
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