model{ # prior distributions p ~ dunif(0, 1) alpha ~ dunif(low_a, high_a) lambda ~ dunif(low_l, high_l) ### CALCULATING STABLE STAGE DISTRIBUTION w[1] <- 1 # proportion to stable stage g[1] <- p # survive to next stage class z[1] <- 0 # remain in current stage class for(s in 2:(S - 1)){ # loop through all stage classes g[s] <- p z[s] <- 0 w[s] <- g[s - 1] / (lambda - z[s]) * w[s - 1] } g[5] <- 0 z[5] <- p w[5] <- g[4] / (lambda - z[5]) * w[4] # stable stage distribution C <- w / sum(w) ### EXPECTED COUNT IN EACH STAGE CLASS ey[2] <- p * C[1] ey[3] <- p * C[2] ey[4] <- p * C[3] ey[5] <- p * (C[4] + C[5]) ey[1] <- alpha * (lambda - sum(ey[2:5])) ### LIKELIHOOD y ~ dmulti(ey, N) }