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Abstract—The presented paper proposes a novel, hybrid neu-
romorphic computational architecture for visual data classifi-
cation aimed at implementation in energy-efficient application-
specific,c, FPGA or ASIC-based edge computing devices. The
architecture combines a convolutional neural extractor that
produces comprehensive representations of input patterns with
a Hyperdimensional Computing (HDC) module that enables
complex data analyses, including vector and vector sequence
classification. As the biologically inspired HDC paradigm op-
erates on holistic representations of concepts, we accordingly
design a convolutional extractor to summarize various aspects
of objects’ appearance. As low energy consumption is the key
design constraint, we assume that input images are delivered
by energy-efficient dynamic vision sensors (event cameras). The
extractor is pretrained using a three-head Convolutional Neural
Network (CNN). The different CNN heads: classifier, decoder,
and clusterer implement optimization objectives essential for
the “holographic” concept representation. Feature vectors pro-
duced by the extractor are projected onto hyperdimensional
binary vectors using an encoding unit, and they are subject
to classification in the HDC module. The neural extractor is
trained in limited precision mode to account for ASIC/FPGA
hardware constraints. We apply the proposed architecture to
classify objects (pedestrians, cars, and cyclists) from two different
traffic datasets: VIRAT and KAIST. We show that the proposed
concept enables solving classification problems with an accuracy
that matches the performance of deep neural classifiers while
being feasible for implementation in energy-efficient application-
specific hardware.

Index Terms—neuromorphic architectures, convolutional neu-
ral networks, hyperdimensional computing, representation ex-
traction.

I. INTRODUCTION

Intelligent sensing devices, intended to locally solve com-
plex, real-world problems at the periphery of large computing
systems, are of growing importance [1]. There are multiple
reasons for striving to solve tasks autonomously. Local exe-
cution of tasks can be done in real-time without unexpected
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delays, which may be of critical importance. By processing
data locally, one can not only avoid generating heavy network
traffic and streaming large amounts of data but also operate
in environments where the network connection could break
or is not available. Among the essential requirements for
the usability of autonomous intelligent systems is the low
energy consumption, which determines the longevity of their
operation.

To enable intelligent analysis of visual data in compact,
energy-efficient hardware, one must adapt existing problem-
solving methodologies to severe complexity constraints im-
posed by target computational environments. Unfortunately,
the most successful visual scene analysis algorithms (visual
object classification [2] or detection [3], visual localization
[4], prediction [5], or action recognition [6]) are based on
deep convolutional neural networks. These algorithms require
significant computational resources to accommodate com-
plex architectures, making their implementation in compact,
energy-efficient edge computing devices (such as FPGAs
or custom, Application-Specific Integrated Circuits - ASICs)
infeasible. Therefore, simplifying existing data analysis ar-
chitectures while maintaining their high performance is an
important research direction that could enable intelligent edge
computing, increase processing efficiency, and ensure better
explainability of underlying Al algorithms [7], [8].

An attractive candidate for performing complex data anal-
yses, including data classification, prediction, or inference,
which recently gained popularity, is the concept of Hyperdi-
mensional Computing (HDC) [9]. HDC, inspired by findings
in neurophysiology, lays down a hardware-friendly framework
for performing high-level data analysis. HDC has proved suc-
cessful in a variety of complex tasks, including clustering and
recognizing the language of written texts [10], sensorimotor
control [11], visual localization [12] or speech recognition
[13]. The remarkable feature of all of these solutions is the
simplicity of data processing that is necessary to do the task:
the bulk of operations are carried out on binary variables
using simple, spatially local operations. Hyperdimensional
computing is, therefore, ideally suited to in-memory com-



puting, which outperforms the conventional microprocessor
architectures both in terms of energy efficiency (as no costly
data transfers to and from CPU/GPU are required) and speed
(due to computational locality) [14]-[16].

This paper proposes a novel computational architecture that
integrates these two powerful data processing paradigms to
enable energy-efficient implementation of intelligent data anal-
ysis in edge computing devices. The hybrid architecture, where
the bulk of the operations can be executed asynchronously,
combines the representation-extracting convolutional neural
network (henceforth referred to as Extractor) with a Hyper-
dimensional Computing processor (HDC Processor). We pro-
pose to train the Extractor offline in such a way that it produces
rich representations of the input data, thus complying with
the “holographic” nature of HDC. Three different objectives
drive Extractor’s weights learning via a three-head deep neural
network to accomplish this goal. The first training objective,
enforced by the classification head, injects Extractor-generated
latent vectors with information on interclass differences. The
second objective, imposed by the clustering head, seeks char-
acteristic structures in input patterns and encourages latent
space vector grouping (this would enable compositional ob-
ject representation, suggested to be an important attribute of
cognitive information processing by [17] and [18]). Finally,
the last objective, enforced by the decoding head (that together
with the Extractor forms an Autoencoder), attempts to preserve
all important information on objects’ appearance. The derived
composite latent space representations of input patterns are
mapped onto Hyperdimensional Binary Vectors (HBV) in the
encoding module (Encoder), which interfaces the Extractor
and HDC Processor.

To validate the proposed concept, we consider two visual
object classification problems: the simpler one is to discrimi-
nate between cars and pedestrians in the recordings provided
by the VIRAT dataset [19], whereas the more challenging
one is a three-category problem of discriminating among
cyclists, persons, and groups of persons in recordings from
KAIST database [20]. As our main objective is to develop
an energy-efficient computational framework, instead of con-
sidering standard visual sensors, we assume that input data
to be analyzed is produced by energy-efficient dynamic vision
sensors, a.k.a. event-cameras [21]. It follows that the Extractor
operates on differential information that corresponds to motion
patterns, which is typically encoded using ternary data (“+1”
or “-1” encode increments or decrements in pixels’ intensities
and “0” means no change). Although this encoding reduces
the amount of input information, it increases the robustness
of processing against noise. We show that using the proposed,
hardware-friendly approach, one can achieve high recognition
accuracy, which surpasses the performance of deep neural
networks of comparable complexity.

We begin the remaining presentation with a brief discussion
of the related work, which focuses on highlighting rele-
vant concepts of hyperdimensional computing. The proposed
computational architecture, along with an explanation of the
adopted data processing pipeline, is provided in Section III.

Description of the datasets used for experimental evaluations
of the proposed concept, together with details on data pre-
processing are presented in Section IV. Finally, the results of
the proposed hybrid architecture evaluation are summarized in
Section V.

II. RELATED WORK

Hyperdimensional computing, which is a high-level infor-
mation processing framework inspired by findings in neu-
rophysiology and formulated in the seminal work by Pentti
Kanerva [9], assumes that concepts are represented using
random, hyperdimensional binary vectors (HBVs). The two
simple operations at the core of HDC-based concept pro-
cessing are binding and bundling. Binding provides a means
for combining two hyperdimensional vectors, e.g., to form a
value - label pair, while bundling enables the combination of a
number of hyperdimensional values into a single aggregate that
resembles its constituents. It has been shown that supplement-
ing these operations with distance-based similarity assessment
of HBVs, enables executing a variety of complex data analysis
and sequence analysis tasks, including data retrieval, data
classification [22], as well as prediction and reasoning [23]. As
bundling and binding require only binary, local operators, the
HDC concept poses very low requirements on the underlying
computational hardware and is suitable for in-memory com-
puting [16], enabling development of intelligent, and energy-
efficient edge computing devices.

To perform HDC-based data analysis, one needs to map
the information extracted from the supplied raw data, such
as images or image sequences, onto HBVs. The procedure
involves two operations: the objective of the first one is to
encode the input data descriptors (features) using random
hyperdimensional binary vectors, whereas the second phase
is concerned with aggregating the obtained HBVs (h;) into
a single, composite HBV (Hj), thus providing a holistic
encoding of the input contents. The former operation can be
realized in a variety of ways - individual features can be bound
to corresponding HBVs using e.g. encoding scheme offered by
Sparse Distributed Memory (SDM) [24] or by other, simpler
approaches (e.g. by element-wise products of feature-specific
HBVs and feature values encoded using the thermometric code
[25]). In addition, high-dimensional feature vectors extracted
from input data (such as, for example, NetVLAD image
descriptor) have also been considered as hyperdimensional
representations, without any further encoding, as it was shown
in [12]. The two methods that are commonly used for pro-
ducing holistic concept-wise HBVs [23] are record-based
encoding and N-gram-based encoding. The former strategy
assumes a “role-filler” encoding scenario, where individual
HBVs that encode particular features are bundled together
via element-wise majority voting. The latter strategy applies
to sequence encoding, where HBVs derived for subsequent
sequence components, are accumulated using a rotate-and-bind
scheme [23].

HDC data analysis algorithm is set up by deriving concept-
wise HBVs that form “holographic” representations of target
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Fig. 1: The proposed hybrid architecture: the Extractor EXT (highlighted in blue), the Encoder comprising kPCA block and
HBYV selector SEL (in yellow) and the HDC Processor, composed of sequence accumulating module ACU and the classifier
HDC CLF (in green). Ni denotes the number of clusters (and also the size of of atomic HBVs vocabulary) , N, denotes the
number of classes, # - the number of model floating-point parameters, # 5 - number of binary parameters.

concepts (for example, categories considered in some particu-
lar recognition task). Once the algorithm has been “trained”,
the analysis begins with HBV-encoding of the information
extracted from the input data to be analyzed. Next, the derived
“challenge” HBV is confronted with all concept-wise HBVs.
A concept represented by a HBV which is the most similar
to the challenge HBV is considered to be an outcome of the
analysis, where hyperdimensional vector similarity is assessed
e.g. by the Hamming distance.

III. METHODS

The proposed architecture, depicted schematically in Fig.1,
comprises three different functional components: the convo-
Iutional Extractor, followed by the Encoder (a hypervector
encoding unit) and the HDC Processor (a hyperdimensional
processing module). The pretrained Extractor transforms im-
ages (X) produced by an event-camera onto latent vectors (1),
which are mapped onto hypervectors (h) by the Encoder. A
sequence of hypervectors corresponding to subsequent input
patterns are then appropriately combined and classified in the
HDC Processor, producing the predicted class labels (c¢).

A. Extractor derivation

The Extractor is trained to provide a multi-aspect, holistic
representation of the input image contents. We assume that
the images delivered by an event camera are of size 32-by-
32 pixels and each of Extractor’s four convolutional layers
comprises eight 3-by-3 filters. To train the Extractor we
simultaneously apply three different criteria that drive learning
by means of three different network’s heads, as shown in Fig.2.

The classification head is trained in a supervised manner
based on labeled dataset examples. A loss function component
that is associated with a classifier-generated output is a com-
monly used categorical cross-entropy: Lcocog(Ye,€), Where
¢ € RN denotes a label vector, N, is a number of classes
and y. € RN denotes a vector of actual classifier outputs.

The clustering head is based on the DeepCluster concept
[26] and it aims to arrange latent space samples into a set
of distinctive clusters that are expected to emphasize the
compositional structure of input patterns. To adapt the method
to our specific objectives, we introduced a few modifications
to the original DeepCluster concept. The most important
one is replacement of the linear PCA transformation, which
was used for reducing latent space dimensionality, with the

l6ax1) > CTR Kin w1
X[32x32x7] [Niex]

— CLF

iConv2d(1, 8, kernel_size=(3, 3), bias=False) C[chl]
iBatchNorm2d(8, eps=1e-05, momentum=0.1)
iReLU()

iConv2d(8, 8, kernel_size=(3, 3))
iBatchNorm2d(8, eps=1e-05, momentum=0.1)

‘ReLU() ]

iConv2d(8, 8, kernel size=(3, 3), stride=(2, 2)); L3
\Conv2d(8, 4, kernel_size=(3, 3), bias=False) | DEC ’
iBatchNorm2d(4, eps=1le-05, momentum=0.1) X

iTanh() [32)(32)(1]

iFlatten(start_dim=1, end_dim=-1)

Fig. 2: The neural architecture used for Extractor training (of
architecture summarized within the gray box) with clustering
(CTR), classification (CLF) and decoding (DEC) heads. Ny
and N, are the number of clusters and classes, respectively.

nonlinear kernel PCA [27], where we adopted the cosine
kernel function. Adoption of the more powerful, nonlinear
transformation enabled good clustering of input patterns in
a compact space (with as few as 8-dimensions, instead of 256
as reported in [26]. Additionally, as the chosen ternary input
patterns are much simpler than the originally considered real
image patterns, we significantly reduced the target number
of clusters (from ~ 10* to just ~ 10). The loss function
component that is associated with the clustering result is also
the categorical cross-entropy: Locr(Yk, k), where k € RNk
denotes a “pseudo-label” vector (see [26] for details) of length
corresponding to the assumed number of clusters N, and yy
denotes a vector of actual clusterer’s outputs.

The role of the last, decoding head is to enforce incorpo-
ration into the latent representation, all information useful in
reconstructing input concepts, i.e., information summarizing
the input patterns’ appearance. The loss function component
that is associated with the decoding head is the L1 norm:
L1(X, X") evaluated for input image X and the reconstruc-
tion result X”.

Training of the Extractor is therefore driven by a loss
function of the form:

L= MLy(1) + NoLoor(Yk k)
+ AsLoce(Ye, €) + ML (X, X')
where: Lecor(Ye,¢), Locr(Yk, k), L (X, X’) are  the

aforementioned loss components produced by the three con-
sidered heads and A € R* is the weight hyperparameter vector.

)



The fourth component of the loss function - L,(I) is
introduced to enforce “soft quantization” of the latent space.
The loss function component has the form:

Ly(1) =1+ cos((2™! — 1)) (2)

and its objective is to reduce the resolution of numbers that can
be produced at the Extractor’s output to m-bit signed values.
This way, we can reduce the data processing sensitivity to
reduced number precision of FPGA-based implementations or
inevitable inaccuracies of ASIC-based hardware realization.

To determine the impact of each head on the final system
performance, the model was trained and evaluated not only
in the considered three-head version but also in all possible
two-head and single-head configurations.

B. Latent vectors encoding

The objective of the Extractor training was to produce
a latent space that captures a holistic description of input
patterns and, additionally, arranges the samples into distin-
guishable clusters. Distinct locations in this space correspond
to different patterns, so they are likely to represent distinct
“concepts”. Therefore, the tessellation® of the space, induced
by a latent vector distribution, would produce concept-specific
regions and each of these regions could be bound to a separate
hypervector. The proposed method adopted for interfacing
the Extractor and the HDC Processor implements this idea
(see Fig.3). However, following the strategy used by the
clustering head during Extractor training, an intermediate step
of a kernel-PCA transformation is also applied. Kernel-PCA
transforms the latent space to a low-dimensional feature space
(we use the same architecture as during the training). This
space gets split into Ny regions determined by locations of
centers of N, clusters, formed by the projected training latent
vectors, and each region is assigned a unique random HBV.

Each input image is thus, converted by the Extractor to the
latent space and then to the feature space. The resulting feature
vector is matched to the closest of IV, cluster centers. The
Encoder outputs an HBV that is bound to the selected cluster
center. We assume that all hypervectors (h;...hy,) comprise
of 10* elements (the commonly adopted value).

C. Hyperdimensional computing module

The HDC Processor is composed of two functional blocks.
The first one (the ACU block in Fig.1) accumulates a sequence
of hypervectors (h;...hy,) corresponding to INg-subsequent
input patterns into a single, composite HBV (H) that repre-
sents the whole sequence. Encoding of the sequence of HBVs
onto the composite hypervector is accomplished using the
permute-and-sum approach [24]:

H] = HHJ‘71 + hj fOI'j € [1N5]7 HO = 0104><1 (3)

where II denotes the permutation operator, h; is a hypervector
assigned to a j-th input image, H; denotes accumulation result
at the step j, and N is the sequence length.

As the input HBVs are snapshots of some object’s motion
sequence, the resulting hypervector H summarizes the way

Fig. 3: Mapping of input patterns (X;, X, Xy) onto hyper-
vectors (h;,hj;, hy) assigned to different regions of feature
space.

this motion evolves. Object classification, which is performed
in the second block of the HDC Processor (HDC CLF), is
done by assessing proximity of the currently observed motion
pattern p, encoded by HP, to a set of HBVs that correspond to
the motion patterns derived for the considered classes. As the
hypervectors are binary, selection of the winning class can be
efficiently done by means of Hamming distance calculation.

Observe that the proposed method for image object clas-
sification fits the framework proposed in [9] for language
recognition by means of the HDC paradigm. Hypervectors that
are assigned to each cluster by the Encoder can be seen as an
N-element alphabet of symbols (letters) and motion pattern
identification can be seen as a detection of symbol sequences
that are language-specific.

We assume that the process of building composite vectors
that represent classes (class prototypes), as it was the case
for Extractor derivation, is done offline. Therefore, the trained
hybrid architecture is preset with both Extractor and Encoder
parameters, as well as with all necessary HBVs.

D. Reference architecture

To ensure the reference for performance comparison pur-
poses, a convolutional neural network, comprising both a
convolutional feature extractor and a set of fully connected
layers, has been used (Fig.4). We decided to use the same
convolutional part (the Extractor) and design the dense part
to have roughly the same number of parameters as has been
used for implementing the Encoder and the HDC Processor.
To provide information on complexity of the proposed archi-
tecture, all of its functional blocks in Fig.1 are assigned with
values that denote the number of their parameters. As can be
seen in Fig.1, a total of only 2144 floating-point parameters
are necessary to implement the Extractor and the Encoder. In



addition, one also needs to store two sets of hypervectors (the
first comprises alphabet symbols, whereas the other - HBVs
that correspond to class prototypes). Despite the considerable
length of hypervectors, they are binary, so they do not pose
severe storage requirements. For the alphabet length Nj, and
the number of classes N, that were considered throughout
the experiments, assuming two-byte representation of floating-
point values, Encoder and HDC Processor use approximately
the equivalent to 6250 parameters.

To enable a fair comparison, we assume that the reference
architecture operates not on a single latent vector but on
a set of Ny latent vectors that correspond to s subsequent
input images (as the proposed hybrid architecture analyses s-
element motion patterns). This means that the input to MLP
is a two-dimensional stack of s latent vectors. Exact count of
reference architecture parameters has been presented in Fig.4,
where different values for the MLP head correspond to two
exemplary sequence lengths (s = 3 and s = 8).

v 1
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Fig. 4: Reference architecture: EXT - convolutional extractor
module, CLF - neural classifier, # - number of model param-
eters.

E. Metrics

Performance of the considered classifiers was measured
using the adjusted balanced accuracy score [28], which elim-
inates class imbalance effects. The balanced accuracy score

Ap is defined as:
1 TP TN

Ap = — 4

B 2<TP+FN+TN+FP> @

where TP, TN, FP and F'N denote True Positive, True

Negative, False Positive and False negative, respectively. The
adjusted balanced accuracy score is given by:

Ap — =
Aap = # (5)
T 1=N,

The value of zero can be interpreted as a random performance,
while the value of one would describe a “perfect” classifier.
For a problem with only two classes, this measure can be
considered as equivalent to J statistics (also known as J score)
proposed by [29].

IV. DATASETS

As it has been pointed out, to maintain energy efficiency,
input images are assumed to be produced by event cameras,
rather than by commonly used synchronous visible-spectrum
cameras [30], [31]. This simplifies the image preprocessing

procedure: since stationary event cameras ignore static ob-
jects, region of interest detection can be done by simple
search for blobs, rather than by executing complex pattern
analysis procedures necessary for grayscale content analysis
[21]. Additionally, due to the extremely short response time
of asynchronous event cameras, even rapidly moving objects
can be observed without blurring or other artifacts caused by
undersampling.

Due to the relative novelty of dynamic vision sensors, there
exist only a few publicly available datasets acquired using
event cameras and the majority of these datasets were acquired
using a moving camera, such as e.g. Prophesee genl produced
by [32]. Unfortunately, moving cameras introduce the problem
of egomotion, which needs to be compensated using complex
algorithms, thus, eliminating the aforementioned object detec-
tion simplicity.

An alternative source of event-based data is to extract
them from conventional video datasets (this applies to both
visual and infrared recordings), using, for example, the method
proposed by [33]. This approach has been adopted to gather
the experimental material used in evaluation of the proposed
concept. The two datasets we use: VIRAT and KAIST are
concerned with traffic monitoring and provide material for the
detection of vehicles and vulnerable road users (VRUSs), such
as pedestrians or cyclists (note that the problem of pedestrian
detection has been the subject of extensive research for over
a decade [34]).

A. VIRAT

VIRAT Ground Video 2.0 dataset created by [19], consists
of 25 hours of HD video shot at 30 FPS by stationary
cameras in 11 different locations. It was intended to be used
in visual event recognition tasks and contains bounding box
annotations for the objects identified as “people”, “cars”,
“bikes”, “vehicles” or (other) “objects”.

Due to their high prevalence, only objects belonging to
“people” and “cars” classes were selected for our first set
of experiments. Video frames were transformed into event-
like frames by first converting them into greyscale images
and then by computing the differences using a four-frame
interval. The resulting differential images were subsequently
converted to ternary ones by thresholding (to indicate the
locations of strong “positive” and “negative” intensity changes
incurred by motion). For the purpose of region of interest
extraction, the ternary images are converted to the binary form
(by merging the “negative” and “positive” classes). Finally,
a set of morphological operations intended to clean up noise
was executed, followed by the blob detection procedure, which
indicated the target regions of interest. These regions were
subsequently rescaled to a fixed size (32x32) and labeled based
on the bounding box labels provided in the dataset.

B. KAIST

The dataset produced by [20] consists of 95 000 VGA video
frames acquired using a combination of RGB and thermal
cameras at 20 FPS. The dataset contains annotations for
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three classes: “person”, “people” and “cyclist” and covers 11
different scenarios filmed in different locations and at different
times of a day. The acquisition was carried out using two
cameras (one for each spectrum) mounted on a moving car.
A notable feature of this dataset is the severe class imbalance
as samples of the class “person” make up almost 85% of all
annotated objects.

Due to egomotion, KAIST dataset could not be converted
to event-camera form using the same method as in the case of
VIRAT, so the approach proposed by [33] was used instead
and regions of interest were identified based on the provided
bounding boxes.

V. RESULTS

The main objective of the experiments was to assess the
object classification performance offered by the proposed
hybrid computing concept and compare it with performance
of the adopted reference method. For both datasets, we ex-
perimentally selected the optimum number of feature space
clusters (to get a reasonable compromise between performance
and complexity): Nj = 8 for the VIRAT dataset and N;, = 16
for KAIST. For all experiments, performance of the reference
architecture is calculated as the best value achieved over 10
experiment runs.

A. VIRAT

When faced with the simpler problem of distinguishing
between “people” and “cars”, the reference algorithm managed
to achieve J-scores of 0.76 (for processing of three-element
sequences) and 0.80 (for eight-element sequences), with a
comparable number of type 1 (False Positive) and type 2
(False Negative) errors. Performance of the proposed method
has been summarized in table I and Fig.5.

TABLE I: Hybrid classifier performance on VIRAT

Model heads Ns AUC J score
CLF 3 0.87£ 0.03 | 0.58+ 0.03

8 0.92+ 0.03 | 0.68+ 0.03

CTR 9% 00z | 073 002
DEC |50 000 [ 0000
CLE+CTR |95 50T | 0775 001
CLE+DEC |55 5102 | 0795 002
CTR4DEC | —5—|5o%: g0 | 069£ 00T
CLF+CTR+DEC |5 ~565 001 | 0514 001

As it can be observed, the proposed approach achieves
the best performance when all three heads are applied dur-
ing training. Over the course of several runs, the proposed
method is capable of repeatedly reaching 0.81 J-score, with a

Sequence length ® 3 ™ &
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Fig. 5: Hybrid classifier performance on VIRAT

standard deviation of only 0.01. The HDC classifier performs
better when trained using longer sequences, which reveal
more object-specific information on its motion pattern. As
could be expected for a balanced dataset, classification in
the hyperdimensional space produces a comparable number
of type 1 and type 2 errors.

B. KAIST

When faced with the more complex problem of distinguish-
ing between highly imbalanced sets of “person”, “people” and
“cyclist”, the reference was not able to get any better than
random-guess performance neither on visible nor on thermal
spectra, severely overfitting to the most populous class. It
is noteworthy that feature space clustering produced evenly
sized clusters (each symbol contains 0.06+0.02 of the dataset
samples) with the average GINI cluster impurity of 0.34. This
implies that a single symbol could not be used to correctly
predict the label. Clusters formed in a feature space and
the distribution of class labels among a random 500-element
sample from the dataset have been shown in Fig.6.

The proposed hybrid classifier was capable of achieving
only slightly better than random performance on data from the
visible spectrum. However, in contrast to the visible spectrum,
the classifier trained on thermal images performed significantly
better - thermal data are more resilient to egomotion noise, as
inanimate objects typically exhibit very limited IR emission.

As it can be seen from Fig.7, which summarizes the classifi-
cation results for the proposed hybrid architecture, where the
Extractor was trained using different two-headed and three-
headed configurations, a few observations can be made. The
first one is a clear increase in label prediction accuracy for
longer sequences considered in the hyperdimensional analysis.
One needs to note that an increase in sequence length does
not imply any modification of the computational architecture,
so any hardware implementation of the algorithm can easily
be tuned to handle the analysis of variable-length sequences.
Comparing the classification accuracy for different extractor
training scenarios, there is no clear advantage offered by the
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Fig. 6: Symbol assignment in t-SNE space for a small subset of the dataset. Samples of each class are spread over all available
symbols. The drastic disproportion of samples between classes can be clearly seen.

three-headed configuration, although one of the reasons for this
to happen is the relatively small amount of training data, which
might cause problems with training of the most complex,
architecture.
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Fig. 7: Performance of the hybrid classifier on thermal images
from the KAIST Dataset

Predicted
people

Predicted

person cyclist person people cyclist

person
person

02 P
39 339
= (=
. Y
] o]
s} e
> >
Q (&)

(a) HDC classifier

(b) Reference model

Fig. 8: Confusion matrices for the proposed hybrid and refer-
ence models.

Confusion matrices for data classification results by means
of the proposed hybrid classifier and by means of the reference

neural network are presented in Fig.8. As it can be seen, the
neural classifier overfits in favor of the most populous class.
The proposed hybrid architecture produces no false negatives
for the “cyclist” class and mistakes “people” only with the
highly similar “person” class.

VI. CONCLUSION

The main contribution of the presented paper is the proposal
of a novel, hybrid computational architecture that combines
a convolutional neural representation extractor with a Hy-
perdimensional Computing module. The proposed mixture of
the state-of-the-art method for information extraction with a
versatile information analysis tool proved promising in solv-
ing hard real-world problems of visual object classification.
However, the most important aspect of the proposed concept
is that it offers a viable candidate for an intelligent information
computing framework for energy-efficient, resource-limited
devices.

As both a convolutional approach to information extraction
and hyperdimensional computing-based information analysis
utilize only local data processing patterns, the algorithm is
well-suited for its implementation in the form of either ASIC
or FPGA devices. Therefore, hardware implementation of the
proposed architecture will be the primary objective of our
future work.

Another planned direction of further research is concerned
with improving the learning performance of the presented
multiple-headed setup used for extractor derivation. Given the
high cost (in both time and labor) of labeling data, one might
consider a scheme in which the classification head is used
only sparingly, while the bulk of representation conditioning
is done through the other two heads. As unsupervised and
supervised approaches can yield very similar representations,
our scheme could enable successful learning even when faced
with a highly limited volume of labeled examples.
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