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Foreword 

Self-tuning control has traditionally developed in a 

discrete-time context. In contrast, industrial control sys-

tems (whether electronically analogue or digital) appear to 

the user to be continuous-time devices. This dichotomy has 

hindered the application of self-tuning controllers. 	This 

monograph attempts to bridge this gap by considering self-

tuning control in a continuous-time context. This reorien-

tation of self-tuning research is not merely cosmetic. 

There is a good reason for designing industrial control 

systems in a continuous-time setting: the real-world is 

made up of continuous-time objects. This fundamental 

advantage of continuous-time design will, I hope, become 

apparent on reading this monograph. 

There are a number of apparently competing approaches 

to self-tuning control to be found in the literature. An 

objective of this monograph is to provide a unified 

approach to the design and analysis of such algorithms. 

This volume concentrates on the design of continuous-

time self-tuning controllers; a companion volume will give 

details of digital implementation, including Pascal 
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algorithms. 

Any research monograph builds upon the work of many 

people too numerous to mention. However I must acknowledge 

the long and fruitful collaboration with Dr. David Clarke 

of the University of Oxford which led directly to many of 

the ideas to be found in this monograph. Also I must ack-

nowledge the influence of Dr. K.W. Lim of the University of 

Singapore who, as a research student, made many contribu-

tions to the robustness ideas to be found here. I wish to 

thank Chris Barclay, Ahmad Besharati-Rad, Mohamed Khar-

bouch, Xiaofeng Liu, Coorous Mohtadi, Markku Nihtila and 

Panos Nomikos who read though many badly written drafts, 

made helpful suggestions and eliminated some (but undoubt-

edly not all) of the errors. 

The University of Sussex 	 P.J. Gawthrop 

July 1986 



Notation 

Numbering 

The chapters are numbered from 0 to 10. The sections 

within each chapter are numbered sequentially using decimal 

notation; thus section 5 of chapter 2 is numbered as 2.5. 

Within each section, equations are numbered sequentially 

from 1. References to equations within a section just give 

the equation number. References to equations without a sec-

tion are prefixed by the full section number; thus equation 

3 of section 2 of chapter 1 is denoted by equation 1.2.3. 

Pages are numbered within each chapter; thus the 5th 

page of chapter 4 is denoted by 4-5. Left-hand pages also 

display the chapter number and title; right-hand pages also 

display the section number and title. It is hoped that the 

reader will find this system beneficial when searching the 

book. 

Each chapter is followed by a list of references in 

order of appearance in the chapter. An index to keywords 

is given at the end of the book. 
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Symbols 

In general, functions of time are written in lower case 

followed by the time argument (t); thus the system output 

is symbolised by y(t). The corresponding Laplace transforms 

are denoted by a 	and followed by the Laplace argument 

(s); thus the Laplace transformed system output is symbol-

ised by y(s). System transfer function polynomials are 

written in upper case followed by the Laplace argument (s); 

thus the system transfer function denominator is symbolised 

by A(s). 

Quantities associated with an emulator output are 

denoted by 	**; quantities associated with an approximate 

emulator output (ignoring initial conditions) are denoted 

A 
by 	. Estimated quantities are denoted by . 

An index to the more important symbols appears at the 

end of the book. 
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CHAPTER 0 

Continuous Time 
Self-Tuning Control 

0.1. INTRODUCTION 

Self-tuning control has largely developed within a 

discrete-time framework; presumably because of the digital 

technology necessary for the implementation of adaptive 

control. However, although technology dictates implementa-

tion, it need not dictate design. As the world outside the 

computer is essentially continuous-time, it seems appropri-

ate to design self-tuning controllers in a continuous-time 

setting although the implementation is digital. 

A continuous-time approach to self-tuning control was 

given by Young in 1965[1]; more recently, and with the 

benefit of the large amount of work in discrete-time self-

tuning, a continuous-time approach has been revived by 

Egardt[2,3]. 

In my own research, I tentatively discussed the idea of 

continuous-time self-tuning in my thesis[4]. Choosing 

discrete-time transfer functions for self-tuning control 

based on continuous-time models was explored in refer-

encel57, and a hybrid approach was discussed in refer-

ences[6,7]. An argument for a fully continuous-time design 

0-1 
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approach was given in reference[8]. 	This book brings 

together some thoughts on the subject of continuous-time 

self-tuning control arising from the ideas appearing in 

reference[8]. 

Of course, most work in model-reference adaptive con-

trol has been conducted in a continuous-time setting; but 

such algorithms are usually of a rather simple form due to 

the constraints of analogue implementation. However, 

model-reference adaptive controllers and self-tuning con-

trollers have been shown[2,3] to be closely related. 

There have also been a number of attempts to link 

continuous-time and discrete-time approaches, for exam-

pleC5,6,9,10]. 

Within the continuous-time context, Egardt was able to 

unify a number of apparently diverse algorithms[2,3]. More 

recently[8], a number of algorithms including model- 

reference, pole-placement and predictive have been con-

sidered within a unified continuous-time context. In this 

book, these ideas are extended and refined. The notion of 

an emulator is introduced and is used to unify a number of 

old algorithms and to generate some new ones. This is 

introduced by way of the celebrated Smith predictorCll]. 

The design approach presented in this book is more 

closely related to control engineering practice than is 

usual in this field; in particular, the method is motivated 

by Smith's predictorill]. It is to be expected that such 

an approach is likely to lead to robust control algorithms, 

and this has been proved in certain cases (see chapter 7). 

In short, three main ideas are explored in this book: 

❑ Design of self-tuning controllers in a continuous-time 

(as opposed to a discrete-time) context. 
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❑ The use of an emulator, an extension of Smith's predic-

tor, to unify and illuminate the design of self-tuning 

controllers. 

❑ The use of control weighting to give self-tuning con-

trollers which are robust in the face of neglected sys-

tem dynamics. 

These three ideas are introduced in the following sections. 

0.2. THE CONTINUOUS-TIME APPROACH 

Most systems of interest to the control engineer exist 

in a continuous-time setting - they are described by dif-

ferential equations. In contrast, most controllers which 

are sophisticated enough to have a self-tuning capability 

are implemented using digital microprocessor technology and 

as such exist in a discrete-time setting - they are 

described by difference equations. It follows that con-

trollers must often be designed by starting off with a 

continuous-time system and ending up with a discrete-time 

controller. 	We contrast two approaches to such design: 

continuous-time design as in Figure 1; and discrete-time  

design as in Figure 2. 

I 	 I 	i 	  
IContinuous-timel-->1Controller F—>-1Continuous-discretef--1  
Isystem 	 I 'Design 	I 'transformation 	I I 

I 	1 	  
0-IDiscrete-time I 
'controller 	I 

Figure 0.2.1 Continuous-time design 

Each design method starts with a continuous-time system and 



0-4 	CONTINUOUS-TIME SELF-TUNING CONTROL 	Chap. 0 

i 	 t 	i 	 i 	i 	 i 
1 Continuous-timel—>lContinuous-discretel—>-IController1--1 
'system 	 1 'transformation 	I 'design 	1 I 
I 	 1 	1 	 I 	I 	 I 	I 

1 
I 	1 	 1 
L>A Discrete-time I 
'controller 	1 

Figure 0.2.2 Discrete-time design 

ends with a discrete-time controller; but the design and 

continuous-discrete transformation steps are transposed 

between the two methods. 

Some advantages of the continuous-time, as opposed to 

the discrete-time approach are as follows: 

❑ The design method is matched to the actual system to be 

controlled. Thus system characteristics such as rela-

tive degree and zero location can be directly 

addressed. 

❑ Artefacts of sampling such as sampled minimum phase 

systems having zeros outside the unit discC12,13] are 

avoided. 

❑ The controller coefficients arising from the self-

tuning controller correspond to continuous-time 

(Laplace domain) transfer functions. Most control 

engineers find these easier to interpret than coeffi-

cients of discrete-time (z-domain) transfer functions. 

An example of this is that the self-tuning PI (propor-

tional plus integral) controller discussed in this book 

and elsewhereC14] directly estimates the integral 

time-constant of the controller. 
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❑ The controller sample interval is chosen after the 

design stage, not before. 

0.3. EMULATORS 

The control of systems with time-delay can be simpli-

fied by making use of a predictor. This idea was suggested 

by Smith in the late '50sC11,15]. 

Smith's predictor can be regarded as a method of 

realising the unrealisable transfer function esT. In par- 

ticular, itenerates the q 	 quantity yT(s) (Fig 1) given by 

-* yT ( s) = y(s) + C1 - e-sT ]Â( ~(s) 

w + 	1 	 I 	u 	I 	 I 	 I 	 1 
—0 {controllerl-->  , 	IDe1ayE--> 	!Plant' 	 

ACTUAL 

MODEL 
1 	 I 	1 	 * 
	I Plant F-->  , 	'Delay I----, - + y 
1 	1 	( 	1 	1 	0-0—T> T 

	

1 	> 	1+ + 1 

Figure 0.3.1 Smith's Predictor  

In the absence of disturbances, substitution of the system 

equation gives 

-* 	 - sT yT(s) = A(s)u(s) = e 	y(s) =T(s) (2) 

where yT(s) is the Laplace transform of yT(t)=y(t+T). That 



0-6 	CONTINUOUS-TIME SELF-TUNING CONTROL 
	

Chap. 0 

is, in the absence of disturbances, the effect of the Smith 

predictor is the same as including an inverse time delay 

(esT ) in series with the system output. 

The significant thing about this result is that the 

time delay (e 
sT ) is cancelled from the system loop-gain 

by the inverse delay (esT ). 	That is the closed-loop 

characteristic equation does not have a time delay factor. 

This is brought out by drawing the feedback loop as in Fig-

ure 2, where the explicit predictor equation 1 is replaced 

by equation 2. 

w + 	, 	 , 	u 	, 	i 	 I 	i 	Y 
	0---I Controller F—>--{ Delay l 	> 	 I Plant f 	, 

	

_1 	I 	 I 	I 	I 	 i 	1 	I 

	

! 	
1 

e 	
I 

	~Inversf--< 	 ~ 

1Delay I 
L 	, 

Figure 0.3.2 The equivalent feedback l000p 

The main points of this discussion are now summarised: 

1 	A nasty component of the system, a delay, can be 

removed from the loop gain using an unrealisable com-

ponent, an inverse delay. 

2 	An unrealisable component can be emulated using realis- 

able transfer functions operating on both the system 

input and the system output. 

3 	Such emulation is only possible if the system transfer 

function is known. 

A particular design method, based on Smith's predictor, 

can be used to overcome the effect of a nasty system com-

ponent, a time delay. The method can be interpreted as 
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using an emulator to emulate an unrealisable component (in 

this case eST ) which cancelled out the nasty component 

(in this case e-sT ) 

However, a time delay is not the only bothersome com-

ponent of a transfer function; there are at least three: 

1 	A time delay. 

2 	A high relative degree p (a lot more poles than zeros). 

3 	Zeros with positive real parts (unstable numerator 

B(s)). 

Why not cancel all these out? 

The corresponding unrealisable transfer function gen-

erates the quantity ~(s) from p(s) as 

~sT P(s)~ 
(s) = e 
	

(s) 
Z(s) 

(3) 

1 	esT cancels out the delay; the net delay is reduced to 

zero. 

2 	If degree(P(s))-degree(Z(s)) = p (the relative degree 

of the system), the net relative degree is reduced to 

zero. 

3 	If Z(s) contains all the unwanted factors of B(s) then 

such factors are cancelled; the net number of unstable 

zeros is reduced to zero. 

In this book, the design of such emulators, together 

with the corresponding fixed and self--tuning controllers, 

is discussed in some detail. 

As the seminal self-tuning regulator of Astrom and Wit-

tenmarkCl6] was based on a discrete-time predictor, it is 

not surprising that the emulator, as a generalisation of a 



0-8 	CONTINUOUS-TIME SELF-TUNING CONTROL 
	

Chap. 0 

predictor, also forms the basis of a self-tuning algorithm. 

Finally, we note that the concept of an emulator is not 

restricted to the continuous-time approach; a discrete-time 

development is given in reference[17]. However, the notion 

of an emulator is much more meaningful in a continuous-time 

setting as it relates directly to the actual continuous-

time system. 

0.4. ROBUSTNESS 

In this book, a controller is said to be robust if it 

remains stable in the presence of neglected system dynam-

ics. There are two categories of neglected dynamics con-

sidered here: 

o 	Neglected dynamics arising from underestimating the 

order of a single-input single-output system. 

❑ Neglected dynamics arising from neglecting the interac-

tion between loops in a two-input two-output system. 

These two situations can be generalisedClBi, but this gen-

eralisation is beyond the scope of this book. 

Robustness has received considerable attention in the 

past few years; see the references for chapter 7. Indeed a 

book on the subject has recently appeared[l91. 	Roughly 

speaking, robustness research can be divided into local  

robustness meaning stability for sufficiently small initial 

parameter error and sufficiently small estimation rate and 

global robustness meaning stability for any initial parame-

ter error and parameter update rate. It is the latter that 

is discussed in this book. 

Much theoretical research was stimulated by the work of 

RohrsC20] who showed, by means of simulation, that model 

reference adaptive control was not robust, in the sense 

that it could be rendered unstable by quite small neglected 
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dynamics. His two examples[20] have now become standard for 

illustrating robustness results, and we use his second 

example in chapters 4 and 7. 

The key idea used in this book to give robust control 

is control weighting. Roughly speaking, the reason why 

model-reference is not robust is that it tries to match a 

reference model at all frequencies. This is both unneces-

sary and dangerous: unnecessary because we are not 

interested in closed-loop setpoint response at high fre-

quencies; dangerous because it is not usually possible to 

match a reference model at high frequencies. In chapter 7 

it is shown that adaptive robustness is intimately con-

nected with a notional feedback loop which must be stable 

for robustness. It is found that the notional feedback loop 

has infinite gain in the absence of control weighting, and 

this leads to non-robust algorithms. 

The conclusion reached in this book is that control 

weighting at high frequencies is essential for robustness. 

This conclusion is in accord with my practical experience 

(for example[21,22] ) where control weighting (using the 

generalised minimum variance algorithm[23,24] has always 

been used to achieve satisfactory practical control. 

The approach used in this book is based on some earlier 

work on stability and convergence[25,26] utilising the 

input-output stability approach[27] and also some work on 

discrete-time robustness[28,297. 

0.5. ORGANISATION OF THE BOOK 

Apart from this chapter, the book contains a further 10 

chapters. 	The arrangement of material is such that the 

reader should not need to refer forward to understand a 

particular topic. The reader may, of course, wish to look 

forwards for the purposes of motivation. 	The index is 
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designed in such a way that any topics referred to in the 

index are underlined unless they actually form part of a 

section heading. 

The chapters in the book are as follows: 

1 	Continuous-time systems 

2 Emulators 

3 	Emulator-based control 

4 	Non-adaptive robustness 

5 	Least-squares identification 

6 	Self-tuning control 

7 	Robustness of self-tuning controllers 

S 	Non-adaptive and adaptive robustness 

9 	Cascade control 

10 Two-input two-output systems 

These chapters are outlined in the following subsections. 

Continuous-time systems  

The background required for this book is that of an 

undergraduate course in classical continuous-time control 

from the transfer-function point of view. 	The book by 

DorfC301 would exemplify the sort of material required. 

This chapter provides the basic ideas and notation used in 

the rest of the book and could be skimmed through on a 

first reading. A small amount of material on state-space 

filters is included as background to the implementation of 

the self-tuning algorithms. 
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Emulators 

This chapter provides design equations for a number of 

emulators; including those for reducing relative order, 

reducing the number of non-mimimum phase zeros and reducing 

time delay. Algorithms are given in detail. Some care is 

taken to incorporate system initial conditions into the 

emulator design, as it is known that these are important in 

parameter identification[31,32]. 

Emulator-based control  

A number of fixed parameter controllers arise from put-

ting an emulator into a feedback loop. These include: 

model-reference control, predictive control and pole-

placement control. All these controllers may have control  

weighting giving detuned versions, which, as shown in 

chapter 7, have desirable robustness properties. 

The ideal of a notional feedback system is introduced 

in this chapter. 

Non-adaptive robustness  

The robustness of fixed parameter, emulator-based con-

trollers to neglected dynamics is considered in this 

chapter. As well as being of interest in its own right, 

this provides a basis for the adaptive robustness proper-

ties considered in chapter 7. Rohrs second example[20] is 

used to illustrate the results. 

Least-squares identification 

As it is less well known than its discrete-time coun-

terpart, a continuous-time least-squares algorithm is 

derived in full. It is shown that the algorithm may be 

regarded as a single-input single-output system with gain 

in a special sense[27] ) of less than one. This result is 
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central to the robustness analysis of chapter 7. 

Discrete-time least-squares is outlined and compared 

with the continuous-time version. It is shown how 

continuous-time parameters can be estimated via this 

method. 

Self-tuning control  

Putting together emulators, feedback and least-squares 

identification gives self-tuning control. In particular, we 

regard a self-tuning controller as a self-tuning emulator 

within a feedback loop. We distinguish between implicit 

and explicit algorithms as well as between on and off-line 

emulator design. The algorithms include implicit versions 

of model-reference and pole-placement algorithms. 

A number of illustrative simulations are given. 

Robustness of self-tuning controllers  

An error feedback system for the self-tuning con-

troller, in the presence of neglected dynamics, is derived 

in this chapter and is shown to comprise a linear time-

invariant system M(s) in feedback with the single-input 

single-output system SZ representing the least-squares esti-

mator. It follows that the properties of M(s), in particu-

lar the M-locus M(jw), are crucial in determining robust- 

ness. 	Some results are proved for a particular version of 

the self-tuning controller. 

The results are illustrated by simulation based on 

Rohrs's exampleC20]. 

This chapter is based on an internal reportf_33]. 
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Non-adaptive and adaptive robustness 

When is adaptive control better than non--adaptive con-

trol? This is an unanswered question. This chapter attempts 

to illuminate this question and its possible answers by 

comparing the non-adaptive design method of Horowitz[34,35] 

with a particular self-tuning controller. It is suggested 

that the adaptive controller has an advantage for slowly 

varying systems in that an extra degree of design freedom 

may relieve the sensor noise problem associated with high-

gain two degree-of-freedom design. 

This chapter is based on a conference paper[36]. 

Cascade control  

Cascade control is a common multi-loop control confi-

guration. This chapter compares and contrasts a number of 

approaches to this problem in a self-tuning context. 

This chapter is based on a conference paper[37]. 

Two-input two-output systems  

The final chapter of the book considers another common 

control system configuration: an interacting two-loop sys-

tem. The single-loop self-tuning algorithm is extended to 

account for loop interaction and the robustness of the 

resulting scheme is analysed. 

This chapter is based on an internal report[38]. 
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CHAPTER 1 

Continuous Time Systems 

Aims. To review the system theory required as a 

background for the rest of the book. 

1.1. INTRODUCTION 

For most of this book, we shall be concerned with the 

control of single-input single-output linear time-invariant  

systems. Multivariable systems will also be considered, 

but will be built up from the single-input single-output 

systems examined in this chapter. The assumption of 

linearity is, as always, more for convenience than for 

realism. 

The assumption of time invariance is to simplify the 

the description of the systems and the analysis of the 

algorithms. In must be admitted that with this assumption 

the current of view of self-tuning methods is inconsistent: 

part of the motivation for using such methods is that prac-

tical systems change with time. Nevertheless, simulation 

results indicate that slowly time-varying systems can be 

successfully controlled by self-tuning algorithms. 

1-1 

We shall model systems using the differential equation 
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and Laplace transform transfer function approach. Of course 

computers see the world in terms of difference equations 

and z-transforms because they are blinkered by the 

analogue-digital interface; but it is argued in this book 

that this is no reason for us to take such a computercen -

tric view of systems. 

Systems in this book are formed from three components: 

1. The controlled system forced by the control signal. 

2. Transient disturbances modelled as the transient 

response of an input-free dynamic system. 

3. Forced disturbances modelled as the output of a dynamic 

system forced by a signal which cannot be controlled. A 

special case of a forced disturbance is a stochastic  

process where the system input is white noise. 

These components are treated in the following subsec- 

tions. 	They are combined into a standard form in section 

1.9. 

We shall only cover those topics from system theory 

which are relevant to this book. Those who are not fami-

liar with basic system and control theory are advised to 

consult a standard textbook such asC1,2,3]. 

1.2. TRANSFER FUNCTIONS 

The simplifying assumptions of linearity and time-

invariance allow dynamic systems to be written as linear 

differential equations with constant coefficients. 	The 

time variable is denoted by t and is assumed to start at 

t=0. We shall take the view that complex systems can be 

built up by interconnecting elementary subsystems of the 

form 
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n 	d
n-i 	 n 	do i 

E a: 	y'(t) _ Eb: 	u'(t) 

	

i=0 ldtn 1 	i=0 ldtn i 

y' is the system output, u' the system input and a and bí 

( 0 ( i < n) are system coefficients. 

We will assume without loss of generality that 

a'0#0 
	

( 2) 

and thus the system order is n. Let m be the highest value 

of j for which b
n-j 

#0. Then 

0 
p = n - m (3)  

is the relative order of the system. 

r 	 i 
D' (s ) 1 

I 	 F-> 
I A'(s) 1 

_ 	 1 B'(s) 1 	+ 	_ 
u' ( s ) >--{ 	 f—> 	0 	> y' ( s ) 

1 A'(s) 1 	+ 

Figure 1.2.1 Laplace transform of subsystem 

This equation may be rewritten in terms of Laplace 

transforms (see Figure 1.2.1) as 

B'(s)-, 	D'(s)  
y'(s) - A'(s)u 

(s) + A'(s) 

( 1) 

(4)  
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where 

A'(s) = aósn 
 + alsn 1  + . . + aR 	 (5) 

B'(s) = bósm  + bísm 1  + ... + bm 	 (6) 

y'(s) is the Laplace transform of y'(t), u'(s) 	is the 

Laplace transform of u'(t), and D'(s) is a n-lth order 

polynomial dependent on the n initial conditions  

d v'(0) 	i=0..n-1. 	 (7) 
dt 

The system transfer-function is the ratio of the two 

polynomials 

B'(s)  
H'(s)  A'(s) 

The transfer function is said to be strictly proper if the 

relative order p = n-m > 0, and proper if the relative 

order p = n-m)0. 

The n system poles are the n roots of A'(s)=0; the m 

(finite) system zeros are the m roots of B'(s)=0. If none 

of the poles has the same value as any of the zeros then 

the polynomials A'(s) and B'(s) are said to be relatively 

prime and the transfer function B'(s)/A'(s) is said to have 

no cancelling factors. 

The system frequency-response is defined as 

B'(iw)  
H'(jw)  A'(jw) 

(9) 

(8) 

this complex function of frequency can be interpreted as 

the ratio of the steady-state system output to the system 
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input when the system input is the unit exponential e jwt. 

1.3. MARKOV PARAMETERS AND IMPULSE RESPONSE 

Equation 1.2.4 reveals that the solution to the dif-

ferential equation 1.2.1 has two parts: a forced response  

with Laplace transform 

H'(s)u(s) - 
A'(s)

u(s) (1)  

and a transient response with Laplace transform 

D'(s)  
A'(s) 

(2)  

The forced component, involving the transfer function 

H'(s), determines the effect of the system input on the 

output and hence is of particular interest in the design of 

feedback control systems. 

A useful notion is the impulse response h'(t.) of a sys-

tem defined as the forced system response when the input is 

a dirac S function. As the Laplace transform of a S func-

tion is unity, it follows that 

Lapth'(t)} = B'(s) 
A'(s) 
	 (3) 

That is, the system transfer function H'(s) is the Laplace 

transform of the system impulse response h'(t). 

The system transfer function can be reexpressed in 

terms of s 1  and the relative order p as 

-i 	 -m 
B'(s) - s-p bo  + b 1 	

+ ... + bms 

A'(s) 	a
o 
+ a s-1 +... + a s-n  

i 	 n 

( 4) 

Using repeated algebraic long division, this transfer func-

tion can be expressed as a polynomial in s 1  as 



CONTINUOUS-TIME SYSTEMS 	 Chap. 1 

op 
H'(s) 	 -i 
~,

(s ) 
_ 

i
îOhis 

The coefficients hi are the system Markov parameters[3]. 

From equation 4 it follows that 

h. = 0 for i < p 	 (6) 

Multiplying by l/s (the Laplace transform of a unit 

step) and taking the inverse Laplace transform, the unit 

step response of a proper system is given by the Taylor 

series about t=0 

00 	ti 
h'(t) = h ~ h. 
	-! i o.  i=1 

Thus the Markov parameters hi i>0 are the ith derivatives 

of the unit step response at time t=0+. 

The Markov parameter representation is useful for 

dividing the Laplace transform of derivatives of the 

impulse response of the system into proper and improper  

parts. In particular, the transfer function H'(s) multi-

plied by sk can be decomposed into a strictly proper 

transfer function and the rest as 

F (s) 
skH'(s) = s

kB'(s) 
- Ek(s) + A'(s) 

(8) 

where 

deg(F) < deg(A) 	 (9' 

(It is shown in standard algebra textbooks, e.g.C4], that 

this decomposition is unique iff B'(s) and A'(s) are rela-

tively prime ). 

L - 6 

(5) 

(7) 

Equation B corresponds to the operation of long divi-

sion using integers where Ek(s) corresponds to the quotient 
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[sFk(s) - hk+1A'(s)] 
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and Ek(s) the remainder. 

The first term represents the non strictly proper part 

and is given by 

Ek(s) = E hisk-i = hsk-p  + ... + hk  
i=p 

and the second term represents the strictly proper part 

given by 

F (s) 	00 

  his 1 	hk+l.s 
i+ 	

(11) 
i=k+1 

Denoting the coefficient of sn 1  in Fk(s) by fk0, it fol-

lows that 

fk0  
hkfl = a0  (12) 

Those familiar with the discrete-time predictor of 

Astrom[5] will recognise this decomposition with z replac-

ing s. This is because Markov parameters in discrete-time 

are the coefficients of the weighting sequence expansion of 

a z-transfer function[3]. 

1.4. THE MARKOV RECURSION ALGORITHM 

A Markov recursion algorithm giving the Markov parame-

ters hk, together with the polynomials Ek(s) and Fk(s), can 

be derived as follows- LEA: 

Multiplying equation 1.3.8 by s 

	

k+18'(s) 	 Fk(s)  s 	A,(_s-) 	aEk(s ) + sA' (s) 

- 	(S) + h11 	+ 	A' ( 3i 

(10 ) 
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where the second equality is obtained by adding hk}1  to the 

first term and subtracting it from the second. Using equa-

tion 3.11, the second term of the second equality is 

proper. Together with equation 3.12 this yields the follow-

ing recursive algorithm: 

_ fk0  
hk+1 a0  

Ek+l
(s) = sEk(s) + hk+1  

Fk.}1(s) = sFk(s) - hk+lA'(s) 

The initial polynomials are 

Eo  = 0; Fo  = B'(s) 

Note that if k < p then 

Fk(s) = skB'(s) 

1.5. STABILITY AND GAIN 

Stability  

We list some standard stability results for linear time 

invariant systems described by the transfer function 

H'(s) = B'(s)/A'(s). These results are intuitively obvious; 

a deeper treatment is found , for example, in[7,87. 

1. The system is stable if the poles of H'(s) 	(roots of 

A'(s)) have negative real parts. 

2. The transient response decays to zero at least as fast 

as Ke 
at 
 for a finite constant K if the poles of H(s - 

(2)  

(3)  

(4)  
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a) have negative real parts. 

Gain 

The gain of a system can be defined in various 

ways[7,8]. 	For a linear time invariant system H'(s) the 

gain y may be defined as the maximum steady-state 

sinusoidal gain at any frequency w 

y = sup H'(jw) 	 (1) 
w 

The root mean square of the system output y(t) may be 

shown[7,8] to be bounded in terms of the system input u(t) 

by 

t 	 t 
JfyZ(T)dT < y JfuZ(T)dT + K for all t 
0 	 0 

where K is a finite positive constant. 

The scalar quantity 

t 
JfuZ(T)dT 
0 

Is also called the truncated L 

u(t)C7,8]. 

norm of the signal 

Exponential weighting 

The exponentially weighted function ya(t) corresponding 

to a signal y(t) is defined as 

y(t) = e
at 

 y(t) (4) 

Suppose that the impulse response of H'(s) is h'(t). Using 

the convolution integral, it follows that 

t 
y(t) = fh'(t-T)u(T)dT 

0 

(2)  

(3)  

(5) 
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Substituting for the exponentially multiplied variables 

t 
y(t) - fh'a(t-T)ua(T)dT 

0 

where 

h' (t) ~ eath(t) 
a 

The transfer function of this exponentially multiplied sys-

tem is then 

Go 
H' (s) = fe sth' (t)dt = fe

-(s-a)t
h'(t)dt = H'(s-a) 

a 	0 	a 	 0 

In other words, the exponentially multiplied signals are 

related by the same transfer function as the original sig-

nals except that 's' is replaced by 's-a' This corresponds 

to the well known 'shifting on the s axis' theorem of 

Laplace transforms[9]. 

1.6. CONTROLLABLE STATE-SPACE REPRESENTATION 

The differential equation for a strictly proper subsys-

tem may be written in controllable state-space form as: 

ddxc = Axc + Uu (1) 

y(t) = BTX(2(t) 	 (2) 

where the companion matrix A is given by 

- a'1 
	

-- a'2 	- a' 3 	- a'n 1 

1 	0 	0 	0 	0 
0 	1 	0 	0 	0 

0 	0 	0 	1 	0 

BT = Cb 	b l', 	Z 

(6)  

(7)  

(8)  

A = (3)  

(4)  
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= E1,0,0,...,0] 	 (5) 

If the subsystem is not strictly proper (bo#0) the sys-

tem has a direct feedthrough term. For the purposes of this 

book, we handle this in a rather unconventional way by 

using an extended state vector. The single nth order dif-

ferential equation 1.6.1 is recast as n first order dif-

ferential equations and an algebraic equation 

d ci 	xC i 1 	i=1..n 	 (6) 

aoxc o 
=u-axc l 	a Z xc Z  - . - anxcn 	 (7) 

The extended state vector is then defined as 

Xc  = Cxco,  xcl, "' xcn]T (8)  

(xcl  - xcn  forms the state; xco  is the extension) 

Taking Laplace transforms (with zero initial condi-

tions) of equations 6 and 7 gives 

-c 	_ - c 
sx 

i 	í (9)  -i  

n-  
aoxco = u(s) - E s lxco 	 (10) 

i=1 

and so 

-r 	g n 
x o 
	A'(s) 

It follows that (with zero initial conditions) the Laplace 

transform of the extended state vector is 

u(s) 	 (12) X (s) = A'(s) 

s  
n 

s
n-1 

1 
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In this formulation, the states are all derivatives of 

xcn. For this reason, xcn is sometimes called the partial  

state Ç of the system[3]. With zero initial conditions, 

the partial state Ç can be written in terms of the system 

input and output as 

~ -c 1  - 	 1 
= x n 	A'(s)u(s) - B'(s)y(s) 

=  

1.7. OBSERVABLE STATh-SPACE REPRESENTATION 

An alternative state-space representation is: 

ddX° = AX° + Hu 

y = UTX° = x° n 

where A and U are as before and 

HT = Chn' hn-l
' . ., hl] 

where h_ is the ith Markov parameter of the system. As in 

the controllable representation, this may be rewritten in 

terms of n first order differential equations and one alge-

braic equation as: 

x°O = hnu 	alx°1 	a`x°Z 	. - anx°n 	 (4) 

daxoi 	xoi i 	i
=1..n + n-1 i=1. .n 	 (5) 

The extended state vector is then defined as 

X° = Cx°o, x°1 , .., x
on]T (6) 

(13) 

(3) 

Taking the Laplace transforms (with zero initial condi-

tions) 
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x°n 	= 	y(s) 	- 	A'(s)u(s) 

hence, taking the Laplace transforms 

F' 	(s) 

the 

1-13 

(7)  

(8)  

(9)  

(10)  

Markov 

xOn 	i 	
Cs
A'(s) 	

- 	hl]u(s) 	- 	A'(s) 	
u(s) 

Proceeding in this fashion, 	it follows that 

F' 	(s) 	 F' 	(s) 
= 	Cs Ak(s) xOn k 

that is 

F' 
n
(s) 

F' 	(s) n.i 

B'(s) 

form 

hk]u(s) - 	A'ks) 	u(s) 

u( s) 

is closely related to 

X°(s) 	= 	A'(s) 

Thus the observable 

recursion algorithm of section 1.4. 

1.8. TIME DELAYS 

Many practical systems include a pure time delay. One 

class of subsystems with a pure input delay can be modelled 

as 

n 	dn-i 	 n 	dn-i 
E a' 	-y'(t = E b: 	u'(t-T) 

	

i=0 ldtn 1 	i=0 ldtn i 

where T is the duration of the delay. If the initial condi-

tions corresponding to the time delay are zero the 

corresponding Laplace transformed system is 

y'(s) = e-sT (s) + D'(s) 
A'(s) 	A'(s) 

(2) 

(1) 

The modelling of systems with non-zero initial conditions 

corresponding to the delay is more difficult[10,11]. We 
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shall not consider it in this book. 

1.9. THE SYSTEM EQUATION 

The systems considered in this book are composed of a 

number of subsystems representing the effect of the control 

signal and the disturbances affecting the process. These 

subsystems are considered in turn and then combined to form 

the overall system model of the form 

- 
y(s) = e

-sT B(s)
u(s) + C(s)

v(s) 
	
D(s) 

A(s) 	 A(s) 	 A(s) 
(1)  

The issues involved in modelling the disturbances are then 

considered. 

The controlled system equation 

The controlled system is modelled by the equations of 

section 1.2 with y' replaced by yc and with a time delay 

included 

y-(s) = e
-sT Bc(s)

~(s) + 
D
c
(s) 

Ac(s) 	 Ac(s) 

Transient disturbances 

Some disturbances may be modelled as the transient 

response of a dynamic system. In Laplace transform form 

such a disturbance yt(t) can be written in the form of 

(.2.4 with u' = 0 as 

yt(s) = 
Br(s) 

At(s) 

(2)  

( 3 
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Example: Constant 

The constant disturbance 

yt(t) = k 

can be modelled as 

yt(s) = 
k 
s 

(4)  

(5)  

Example: Sinusoid 

The sinusoidal disturbance 

yt(t) = cos w0t 

can be modelled as 

yt(s) 	
s 

Forced disturbances 

Practical disturbances are often too irregular to be 

modelled as transient disturbances but are nevertheless 

smooth enough to be predicted over a limited time horizon. 

Such disturbances can be usefully modelled as a high 

bandwidth random signal v(t) passed through a transfer 

function 

yf(s) 	B
f
f(s)~(s) 
A (s) 

(8) 

(6)  

(7)  
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Example: Random jumps  

A piecewise constant signal with jumps of random ampli-

tude at random times can be modelled as 

-f 	1- 
= s y 	 (s) 

00 	-sT. 
v(s) = E kie 	1  

i=0 

where k. is a sequence of random amplitudes and Ti  a 

sequence of random times. 

Example: Random process  

A stochastic process with rational spectral density 

Bf  (-s)Bf  (s)  

Af  (-s)Af  (s) 

may be modelled by passing white noise through a rational 

transfer function; see[5,12] for a detailed discussion. To 

avoid the mathematical details of stochastic process, we 

will consider a model of the form 

f 
yf(s) - B (s)v(s) 

Af(s) 

where v(s) is a finite variance, high bandwidth stochastic 

process. 

The system model  

The disturbed single-input single-output system (Figure 

1.9.1) considered here is of the form 

-sT B(s)- 	C(s)- 	D(s) 
Y(s) = e 	A(s)

u(s) + A(s)v(s) + A(s) 
(13) 

(9)  

(10)  

(12) 

This can arise from the three types of subsystems in 



Sec. 1.9. 	 THE SYSTEM EQUATION 	 L-17 

~ C(s) + + 
v(s)  

I A(s) I I 

u(s)1 	-sT B(s)I 	y(s) 
->-He 	-- f —0 	 > 

A(s)I 

Figure 1.9.1 The system model  

various ways. In particular, if 

y(t) = yc(t) + yt(t) + yf(t) 

then 

-sT B (s)- 	Dc(s) 	Bt(s) 	Bf(s)- y(s) = e 	u(s) + 	+ 	+ -f 	v(s) 
A
c
(s) 	A

c 
(s) 	A

t 
(s) 	A

f
(s) 

This is identical to equation 1.9.1 if 

A(s) = Ac(s) At(s) At(s) 	 (16) 

B(s) = Bc(s) At(s) Af(s) 	 (17) 

C(s) = Bf(s) Ac(s) Af(s) 

(14)  

(15)  

D(s) = Dc(s) At(s) At(s) + Bt(s) Ac(s) At(s) 	 (19) 
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This example makes it clear that systems written in the 

form of 1.9.1 will usually contain common factors in the 

numerator and denominator of the various terms. This 

implies that when each term is written in controllable 

state-space form it will be unobservable, and when written 

in observable state-space form it will be uncontrollable. 

See, for example[3]. 

Assumptions about the disturbance 

In many cases, the disturbance component of the system 

is such that we would not wish to differentiate it. Given 

that v(s) contains white noise or impulsive components, 

this can be modelled by making 

Disturbance assumption 1 

deg(C) = deg(A) - 1 

An even worse case would be when we would not wish even to 

use the system output directly. This can be modelled by 

making 

Disturbance assumption 2 

deg(C) = deg(A) 

Throughout this book we will assume that C(s) is known, 

or rather available as a controller design parameter for us 

to choose. 

Disturbance assumption 3 

C(s) known. 

This seems at first sight to be a rather sweeping 

assumption. But let us suppose for a moment that the system 

is "really" given by 



Fb 

Fb n-t 

B 

Fc n 

Fc n-i 

C 

v(s) (24) 
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-sT B(s)- 	C'(s)-, 	D(s)  y(s) = e 	
A(s)u(s) + A(s) v (s) + A(s) 	 (20) 

then this can be written in the form of 1.9.1 if 

C(s)v(s) = C'(s)v'(s); 	that is v(s) - ~(s~)v'(s) 	(21) 

As the precise details of the disturbance v(s) do not con-

cern us here, the fact that v(s) is different from v'(s) is 

not important. 

A state-space representation 

The system equation can be written in observable 

state-space form as 

d4X° = AX° + Hbu + Hcv 	 (22) 

y = UtX° =
n 
	 (23) 

Taking Laplace transforms 

Xe 	1  
— 	A(s) 

u(s) + 	1 
A(s) 

Recalling that Fbi = s1B for i<p it follows that 

Fc 

Xon k 	
skA(s)u(s) + A(s) for k<p (25) 
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CHAPTER 2 

Emulators 

Aims. To introduce the concept of an emulator as 

the generalisation of a predictor. To describe 

particular emulators providing emulation of 

improper transfer functions and derivatives, zero 

cancellation and prediction. To present design 

methods for a variety of emulators. 

2.1. INTRODUCTION 

In 1959, Smith introduced the idea of using a predictor  

to overcome the problems encountered in controlling a sys-

tem with dead-time[1]. The Kalman-Bucy filter was 

developed around the same time[2], followed by the state 

observer[3]. (SeeC4] for a tutorial account of such state 

space methods). 

These are all examples of using a model of the system, 

together with input and output measurements, to deduce sig-

nals which cannot be directly measured. The Smith predictor 

deduces future values of the system output; the Kalman 

filter and state observer deduce system states. 	The term 

inferential control has been used to describe control sys-

tems containing elements which infer unmeasured 

2-1 
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variables[S,b]. 

All these examples illustrate an _approach to control 

systems design where physically unrealisable operations 

such as prediction or taking derivatives can be emulated by 

making use of a parametric system model. We shall call the 

dynamic systems which emulate unrealisable operations emu-

lators. 

[The Concise Oxford Dictionary defines the verb 

'emulate' as "Try to equal or excel; rival; imi-

tate zealously". We use the last meaning in this 

book. 'Emulator' is the corresponding noun.] 

In this chapter we shall consider three classes of such 

unrealisable operations and their corresponding emulators; 

those corresponding to: 

1. Derivatives 

2. Zero cancellation 

and 

3. Prediction. 

Why are such emulators useful? Derivatives are useful 

to reduce the relative degree p of a system, zero cancella-

tion is useful to reduce the number of non--minimum phase 

system zeros, and predictors are useful to reduce system 

time delay. These aspects are considered further in chapter 

3, where the emulator is put into a feedback loop. 

`I'he difficulty with emulators (as with predictors) 	is 

that an accurate system model is required before the emula 

for can be designed. Self-tuning emulators, occ) the 

corresponding self-tuning controllers, are _ ,...coo.accd in 
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chapter b to overcome this problem. 

2.2. OUTPUT DERIVATIVES  

In the presence of noise, it is usually not feasible to 

take derivatives of the system output. This is reflected in 

our model by the disturbance assumptions 1 and 2 of section 

1.9 that the relative order of the disturbance transfer 

function C(s)/A(s) is either 0 or 1. The former case 

implies that we would not wish to use y directly without 

low-pass filtering, the latter that we could use y but 

could not take any derivatives. 

In this section we show that it is possible to emulate 

the operation of taking a derivative without introducing 

white noise and its derivative. 	The method is closely 

related to the state-space observable form of section 1.7, 

and hence to state observersC3,4]. 

As most of the development is in the Laplace domain, it 

is convenient to consider s-multiplied signals in the 

Laplace domain rather than signal derivatives in the time 

domain. The two approaches are the same if initial condi-

tions are zero; and in any case the resultant stability 

properties are the same. 

The sk  multiplied system output (equation 1.9.1) is 

k- 	kB(s)- 	kC(s)- 	kD(s)  yk(s) = s y(s) = s A(s) 	 A(s) 
+ s 

A(s)v(s) + s A(s) 

Using the Markov parameter expansion of section 1.4, the sk  

multiplied disturbance transfer function may be decomposed 

into two parts 

skC(s) = E 	(s) + F
ik(s) 

A(s) 	ik 	A(s) (2) 

(1) 

where 
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Elk(s) = hosk  + 
hlsk-1 + 	+ hk 	 (3) 

h. (i = 0..k) are the first k Markov parameters of 

C(s)/A(s) and 

deg(F) < deg(A) 	 (4)  

The transfer function F k(s)/A(s) represents the strictly 

proper part of skC(s
'  and E (s) the improper remainder. 

A(s) 	ik  
Such a decomposition is unique (if C(s) and A(s) have no 

common factors)C77. 

In a similar fashion, the sk  multiplied initial condi-

tion term can be decomposed as: 

skD(s)  - ED (s) + 
A(s) 	ik  

FDik(s) 

A(s) 
(5) 

The first term EDIk(s) is a polynomial in s; the 

corresponding time domain function contains impulse func-

tions and their derivatives; this term is thus not realis-

FD (s) 

able. On the other hand, the second term —P,(s) 
	- is a 

proper transfer function. 

Using this realisability decomposition, 

written as the sum of an emulated value 

corresponding error elk(s): 

yk ( s) = 
k
"(s) + elk(s) 

may be 

and the 

(6)  

where 

D 

**(s) = skB(
s)u(s) 	Flk(s) 	

F
v(s) + 	

1){(s) 

yk 	 A(s) 	A(s) 	 A(s) 
(7)  

and 
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(8)  

v(s) 

(9)  
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eik(s) = Eik(s)v(s) + EDik
(s)  

Equation 7 cannot be implemented as it stands as 

is unknown. But from the system equation 1.9.1 

v(s) = A(s)Y(s) - B(s)e  -sT u(s) - D(s) C(s) 	C(s) 	 C(s) 

Hence 

	

**(s) = CskB(s) 	
Flk(s)

B(s)]e sT ú(s) + Fik(
s)
y(s) 	(10) yk 	 A(s) 	A(s) C(s) 	 C(s) 

F 
D 

C lk(s) Flk(s)
D(s) 

+  

A(s) 	A(s) C(s) 

Using the decomposition identity 2 

F (s) 	E (s)B(s) 

	

EskB(s)_ 	ik_ 	 B(s) 	ik
- 

	

A(s) 	A(s) C(s) 	C(s) 

Using the decomposition identity 5 

FD
ik 

 (s) 	F
ik 	
(s)

D(s) 	E 	(s)D(s) - EDik (s)C(s) 	 - 	 _ - ik   
A(s) 	A(s) C(s) 	 C(s) 

Hence 

** 	Fik(s) 	Elk(s)B(s) -
sT - 	Iik

(s)-  yk 	(s) = 	C(s) 
	 Y(s) + 	C(s) 	

e 	u(s) + 	C(s) 

where 

Iik(s) = EDik(s)C(s) - Eik(s)D(s) 

Remarks  

1. 
Flk(s) 

C(s) 	is, by definition, proper. 

(12)  

(13)  

(14)  
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E (s)B(s) 
2. The relative degree of 	1kC(s) 	is p - k where p is 

the relative degree of the controlled system transfer 

function B(s) For this term to be realisable, we must 
A(s)' 

have k Ç p. 

3. The emulator is constructed in such a way that the ini-

tial condition term FDIk
(s)/A(s) is strictly proper. It 

follows that in its final form, the corresponding emu-

lator term Ilk(s)/C(s) is also strictly proper. 

As, by definition, C(s) is stable, the initial condi-

tion term D(s)/A(s) corresponds to a decaying transient 

term which becomes small after a time somewhat greater than 

the time constants associated with C(s). For this reason, 

the term may be omitted from the predictor to give the 

approximate predictor (see Figure 2.2.1): 

* 	Flk(s) 	Elk(s)B(s) -sT - 
yk  (s) = 	C(s) y(s) + 	C(s) 	

e 	u(s) 

with associated error 

(s) - 
eik(s) = eik(s) + 	 

C(s) 

The auxiliary output and the emulator 

Linear combinations of output derivatives can be 

readily emulated using such methods. In particular, if the 

auxiliary output $1(s) is defined as 

(1) 1(s) = P(s)y(s) 	 (17) 

= posny(s) + plsn  ly(s) + 

The corresponding emulated auxiliary output can be written 

(15)  

(16)  

as 
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	i 	y(s) 
1 k I 	 k 

y(s) > 	is  
1 	I 	 1 e(s)  

+1 k 

0—> 
*- 1 

y(s)1 
1 F 1 + k I 

y ( s ) —> 	1 	k 	 > 
I C I + 

r---~ 
1E B I 

k 	1 	 
1 C 1 

Figure 2.2.1 Emulating output derivatives  

-** 	
n 	

-- ** 
(s) = E pn-kyk (s) 

k=0 

with corresponding error 

n 
ei*(s) = E p

n-kelk
(s) 

k=0 

Using the explicit expression 2.2.13 for yk**(t), it fol-

lows that 

** 	F (s) 	E (s)B(s) 	 I (s)- 
(s) = C(s) y(s) + 	1C(s) 
	e sT u(s) + C(s) 

where 

I (s) = Ei(s)D(s) - ED (s)C(s) (21) 

(18)  

(19)  

(20)  
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1)(s) 

_ 	 I 	I 	 1 
y(s) > 	IP(s) I 	 >-T > 

I 	I 	 I _* 
L- 	 +1 e(s) 

0-> 
1_* 
I~(s) 

F 
	+ 	I 1 

y(s) 	 >--L> 

C I + 

u(s) > 

EB 

	

- I 	 
C 	I 
-~ 

Figure 2.2.2 Emulating the auxiliary output  

with associated error 

elk(s) = E1(s)v(s) + ED1(s) 

E1(s), E
D (s)and F (s) are obtained from 

n 
E (s) = E p  kEik

(s) 

k=0 

n 
E
D 
(s)= E pn-k

EDlk(s) 

k=0 

r, 
F(s) = E pn-kFik

(s) 

k=0 

(22)  

(23)  

(24)  

(25)  
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Alternatively, taking a weighted sum of the Markov 

decomposition 2, El(s) and F (s) may be obtained from 

C(s)  F (s) 
P(s)A(s)  = Ei(s) + A(s) (26) 

This is the algebraic (s replaces z) continuous-time analo-

gue of the discrete-time generalised minimum variance 

method inC8,9]. 

State Space Considerations 

Comparison with section 1.9 shows that (assuming zero 
A 

initial conditions) yk  (t) is the kth component of the 

observable state space form for all k < p. That is 

(13,*  1  ( S ) = -l'X°  

where 

p = [0,0,..,p , 	, p
o
] 

np 	o  

SeeC10] for further details. 

Example  

Consider the second order system described by 

A(s) = s(s+1); B(s) = 1+bs; T = 0 

C(s) = l+sc; D(s) = l+ds 

C(s) Applying the Markov recursion formula to A(s)  we have: 

Initial values 

(27)  

(28)  

(29)  
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E 	0 and F 	= l+sc 10 	 10 

First Markov parameter 

h = c 

Step 1 

E 	= h = c; 
11 	1 

F 	= sF 	- h h = s(1.+cs) - cs(l+s) = s(1-c) 
11 	10 	1 1. 

Defining an auxiliary output with P(s) = l+ps 

	

E1  = 1.E10 + p.Ell = pc 	 (30) 

F = 1.F 	+ p.Fll 

= l+cs + ps(1-c) = 1 + (p+c-pc)s 

In a similar fashion: 

ED1(s) = pd 

and so 

E(s)D(s) -- ED (s)C(s) = pc(l+ds) - pd(l+cs) = p(c-d) 	(33) 

Thus 

-  
41,* 
 (s) - pc(l+bs)u(s) + 1 + (p+c-pc) 

	
+ plc-d) 

 l+cs 	 l+cs 	 l+cs 

Note that all three transfer functions are proper. 

In the particular case that 

p=0.5; c=0.5; b=0.1; d = 0.1 

(31)  

(32)  

(34)  

(35)  
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it follows that 

-* 	0.25(1+O.ls)- 	1+0.75s- 	0.2  
~ 	

(s) 	 1+0.5s 	u(s) + 1+0.5s y(s) + 1+0.5s (36) 

a 

2.3. ZERO CANCELLING AND OTHER FILTERS 

The previous section considers an auxiliary output $ 

(s) which is a polynomial P(s) times the system output; 

the all zero filter P(s) is not physically realisable due 

to the implied derivative action. In this section we con-

sider the emulation of a different sort of non-realisable 

transfer function: multiple derivative action filtered by a 

possibly unstable polynomial Z(s). Such an emulator can be 

used to effectively cancel right half plane zeros. 

To include the derivative (or, more correctly, s multi-

plied) emulators of the previous section as a special case, 

we include derivatives in this section as well. 	Thus we 
define the signal -k(s) (Figure 2.3.1) by 

k 

k(s) - Z(s)y(s) 

I 	s 	I 

IZ(s)1 

 

> 	(s ) 

(1) 

   

      

Figure 2.3.1 Zero cancelling filter 

Using the system equation 1.9.1, 
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k 
sC  

k
(s) = skZ(s)A(s)e-sT u(s) + skZ(s)A(s)v(s) + Z(s)A(s) 

(2) 

As in section 2.2, skC/ZA and skD/ZA are divided into 

realisable and non-realisable parts. But first we divide 

1/Z into notionally realisable and non-realisable parts by 

defining the polynomials Z+(s) and Z (s) as two factors of 

Z(s): 

Z(s) = Z+(s)Z (s) 	 (3)  

This decomposition is not unique, and particular choices of 

Z+(s) and Z (s) will depend on the application. Z+(s) is 

regarded as the realisable part and Z (s) the 	non- 

realisable part. The following design rules are imposed: 

Z design rule 1 

Z+(s) contains no zeros with positive real part. 

Z design rule 2 

Z(s) contains no zero at s=0. 

Note that the first rule implies that Z (s) contains 

all the factors of Z having roots with positive real parts, 

but may also have roots with negative real part. 

With this notation, we can define the polynomials 

Ezk(s) and Fzk(s) by 

k  C(s) 	Ez
k(s) + Fzk(s) 	

(4) - s A(s)Z(s) 	Z (s) 	A(s)Z+(s) 

where 

deg(Fzk(s)) < deg(A(s)Z+(s)) 	 (5)  

In terms of polynomials, this equation becomes 
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skC(s) = E2k(s)Z+(s)A(s) + Fzk(s)Z (s) 	 (6) 

Note that when 	Z=1, 	we 	have 	Ezk(s) = Elk(s) 	and 

Fzk(s) = Flk(s). 

In a similar fashion, the initial condition term can be 

decomposed as 

k  D(s) 	~zk(s) 	FDzk(s) s 
A(s)Z(s) 	

Z (s) 	+ A(s)Z+(s) 

where 

deg(FDzk
(s)) < deg(A(s)Z(s)) 

We shall defer the solution of these equations for a 

moment and assume that 
Ezk(s), EDzk(s), Fzk(s) and FDzk(s) 

have been found. Substituting into equation 2 

kk(s) 	skZ(s)A(s)
e-sT 

u(s) 

	

F (s) 	E (s) 
+ 
	
2k(s) 

 + zk v(s) 
A(s)Z+(s) 	Z (s) 

	

+ FD2k(s) 	+ ED2k(s) 

A(s)Z+(s) 	Z (s) 

As in the previous section, this may be divided into 

realisable and unrealisable parts as 

k(s) _ k**(s) + elk(s) (10) 

and the system equation 1.9.1 used to eliminate v(s) to 

give 

'1/4* Fzk
(s) 	 E2k(s)B(s) 

-sT - 
k (s) = + + 	- y(s) + 	e 	u(s) 

Z (s)C(s) 	Z (s)C(s) 

(7)  

(8)  

(9)  
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I (s) 

+ C(s) 

where 

Iz(s) = 

and 

EDzk
(s)C(s) - Ezk(s)D(s) 

(12) 

  

 

Z ( s) 

 

-** 	Ezk(s)- 	
ED 2,(s) 

e 	(s) = 	v(s) + 	 
z 	Z (s) 	 Z (s) 

(13) 

This error signal is never actually generated, so the fact 

that it is not realisable is not a difficulty. 

A particularly important case is when 

B(s) = B+(S).B (s); Z (s) = B (s) 	 (14) 

and B (s) contains all zeros of B(s) with positive real 

part. Equation 11 then becomes 

+ 
A* 	Fzk(s) 	Ezk(s)B (s) -sT - 

F 	(s) = 	ii(S) + 	 e 	u(s) 
-k 	

C(s) C(s) 

I (s) z  
+ (As) 

The auxiliary output and the emulator 

Linear combinations of filtered output derivatives can 

be readily emulated using such methods. In particular, if 

auxiliary output (13 2(s) is defined as 

~ z(s) = 
Zís)

y(s) 	 (16) 

(15) 
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the corresponding emulated auxiliary output can be written 

as 

-** 	n 	- ** 
(1) Z(s) = E pn-kk (s) 

k=0 

Note that if Z(s) = 1 then $2(s) = (1)1(s). 

	i 	4)(s) 
_ 	IP(s)I 	2 
y(s) >—i 	I 	> 	> 

	

IZ(s)I 	 I 	* 
+I e 
0—> 
I_* 
I¢(s) 

I F I + 	1 2 
y ( s) 	 > 

I C I + 
~ J 

_ 	I EB 
u(s)  > --{ — 

1 C 1 

Figure 2.3.2 Emulating the auxiliary output  

Using the explicit expression for 
- 
 k**(s), it follows that 

** 	 F (s) 	 E (s)B(s) 	 I (s) 
2  (s) - 	 y(s) + 	 e sT 

u(s) + C(s) z 	
C(s)Z+(s) 	C(s)Z (s) 

(Figure 2.3.2 shows approximate version) with associated 

error 

E (s) 	ED (s) 
Z*(s) - 	2 	v(s) + 	Z e  

Z (s) 	Z (s) 

(17)  

(18)  

(19)  
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Ez(s), I2(s) and F2(s) are obtained from 

E2(S) = E pn- kEzk(s)  
k=0 

n 
Iz(s) = E pn-klzk(s) 

k=0 

n 
Fz(s) = E pn-kFzk

(s) 
k=0 

Alternatively, taking a weighted sum of the the Markov 

decomposition, E2(s)  and F (s) may be obtained from 
 z 

P(s)C(s) 	E2(s) + 	
F2(s) 

Z(s)A(s) 	Z (s) 	Z+(s)A(s) 

or in polynomial form 

P(s)C(s) = Ez(s)A(s)Z+(s) + Fz(s)Z (s) 

and I2(s) is obtained from 

D 	 D (s) 
P(s)D(s) 	

E 	 F z(s) + 	Z   

Z(s)A(s) 	Z (s) 	Z+(s)A(s) 

and 

E2(s)D(s) - EDz
(s)C(s) 

Iz(s) _ 

State Space Considerations  

(20)  

(21)  

(22)  

(23)  

(24)  

(25)  

(26)  
Z (s) 

If Z(s) = B(s), then Co  corresponds to the partial  

state of the system. 
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Thus, in this case, 

-*  
(1) 2(s) = pX (27)  

where 

p = CO,O,..,p 
np' po] (28)  

It follows that this special case is related to the 

controllable form of section 1.6. 

2.4. SOLVING DIOPHANTINE EQUATIONS 

The emulator of the previous section requires the solu-

tion of the polynomial equation 2.3.24 

P(s)C(s) = Ez(s)A(s)Z+(s) + Fz(s)Z (s) 

This equation is an example of a linear Diophantine equa--

tionC11,12,13,7]. This section is devoted to methods of 

solving such equations. 

This Diophantine equation has a solution if, and only 

if, 	the greatest common divisor (GCD) of Z (s) and 

(Z+(s)A(s)) is also a factor of C(s)C11,12,13,7]. 	However, 

we will avoid this problem by arguing as follows. Firstly, 

we will choose Z+(s) and Z (s) so that they have no common 

factors. 	Secondly, the purpose of the filter is to cancel 

zeros of B(s) using the polynomial Z(s). There is no point A(s) 
in cancelling zeros of B(s) which are already cancelled by 

A(s), so we choose Z(s) so that it has no factors in common 

with A(s). Hence we would never wish to choose Z(s), Z (s) 

and Z+(s) in such a way that Z (s) and (Z+(s)A(s)) had com-

mon factors. Nevertheless, we require a method of checking 

that this is so, preferably without needing to factorise 

the polynomials. 

(1) 
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This leads to the following three step algorithm for 

solving equation 1 (that is, equation 2.3.24) for E2(s) and 

F (s) (this approach is essentially that ofC7], page 159; 
z 

alternative approaches appear inC11,12,13]): 

A 

	

	Use Euclid's algorithm to calculate the GCD (g(s)) of 

Z (s) and (Z+(s)A(s)). Compute Z (s) - g(s)) 

B 	Use Euclid's algorithm to solve the polynomial equation 

e(s)a(s) + f(s)b(s) = 1 	 (2)  

where 

a(s) = A(s)Z+(s); b(s) = Z (s) 	 (3) 

C 	Use e(s) and f(s) to solve 

EZk(s)a(s) + FZk(s)b(s) = C(s) ( 4 ) 

The three steps A-C are considered in the following sub 

sections. 

A. Finding the GCD 

The classical Euclidian algorithmC7] for finding the 

GCD of two polynomials is to be found in many textbooks on 

algebra, for exampleC7]. Euclid applied the algorithm to 

integers; it also applies to polynomials, as integers and 

polynomials possess a similar algebraic structureC7,13]. 

The algorithm is as follows: 

1. Set ao  = a(s) = A(s)Z+(s) and set al  = b(s) = Z (s). 

2. Recursively compute the remainder  ri  and the quotient  

q. from 
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a. 	= g.a.. + r . 
i-1 	i i 	i 

and set 

ai+1 	ri 	 (6) 

3. The degree of a
i decreases as i increases, so eventu-

ally for some i=n+1, rn+1 
= 0, and so 

an gn+1n+1 	 (7)  

It follows that an+l = rn  is a factor of an. From equa-

tion 4 with i = n it follows that r 
n 
is also a factor of 

an-1. Repeating this argument, rn  is a factor of both ao  
and a . 

i 

Thus the GCD g(s) of a(s) and b(s) is the last non-zero 

remainder rn  of the above algorithm. That is, 

g(s) = rn  (8) 

B. Solving the Diophantine Equation 

Having found the GCD g(s), we are in a position to com- 

pute Z (s)  - Z (s)  
g(s) ' 

1. If degree(g(s))>0 then the previous algorithm is exe-

cuted but with Z (s) replaced by Z (s). 

2. Equation 4 with i=n can be rewritten as: 

S 
n 
a 

 n 

 

+-a
n-1 

= 1 (9) 

where 

Pn 
	qn: Yn  = 1 

(5) 
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Using equations 4&5 with i=n-1, it follows that 

an
= rn-1 = an-2 	qn-1an-1 

(10) 

Hence we can write 

13n-1an-1 + yn-lan-2 	
1 

where 

en-1 	yn 	13ngn-1' yn-1 	°n 

Proceeding in this way the following equations for 

and yi are recursively computed from the following: 

Recursive algorithm  

p
i-lai-1 + yi-tai-2 = 1 
	 (13) 

~i 1 	yi 	ii l yi 1 	°i 
	 (14) 

0 = f(s) and -y=e(s) then solve 

e(s)a(s) + f(s)b(s) = 1 
	 (15) 

C. Diophantine recursion 

From the previous equation, we have 

e(s) + f(s) 	1  
b(s) 	a(s) 	b(s)a(s) 

In other words 

e(s)  +  f(s) 	 1 	q(s)  

Z (s) A(s)Z+(s) Z (s)Z+
(s)A(s) A(s)Z(s) 

(12) 

(16)  

(17)  
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and multiplying by sk  

k e(s) _ 	k 	f(s)  
- k  q(s)  

s 7 (s) + s A(s)Z+(s) 	
s 

A(s)Z(s) 

Following the arguments in section 1.3, we can use the 

Diophantine recursion algorithm to divide the transfer 

function 

sk 	f(s)  

A(s)Z+(s) 
(19) 

into a realisable (derivative free) part, F'(s)/A(s)Z+(s), 

and unrealisable E'(s) parts as 

sk 	f(s)= E'(s) + 	F'(s)  

A(s)Z+(s) 	 A(s)Z+(s) 

Substituting into equation 1 (or 2.3.24) then gives 

k  q(s) 	E2k(s) 	Fzk(s) 

s A(s)Z(s) 	
Z (s) 	+ A(s)Z+(s) 

where 

EZk(s) = ske(s)g(s) + E'(s)Z (s) 

FZk(s) 4  F'(s) 

Finally, following the arguments of sections 2.2 & 2.3: 

F2k(s) 	E2k(s)B(s) s 
k
*(s) -   y(s) + 	 e 

C(s)Z+(s)  	C(s)Z (s) 
u(s) 	 (24) 

Remark 

(18) 

(20)  

(21)  

(22)  

(23)  

Common factors of B(s) and Z (s) should be cancelled 

before implementation of equation 23. 
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Example 

As in section 2.2, consider the second order system 

described by 

A(s) = s(s+l); B(s) = l+bs; T = 0 	 (25) 

C(s) = l+sc; D(s) = i+ds 

We wish to derive a zero-cancelling emulator for: 

$z(s) 	Z(s)
y(s) 

where Z(s) is given by: 

Z(s) = Z (s) = l+zs 

We shall not specify P(s) at the moment. 

As discussed in section 2.4, the corresponding Diophan-

tine equation may be solved in three steps as follows: 

A. Find the GCD of Z (s) and A(s) 

Using the algorithm of section 2.4, subsection A, the 

following equations result: 

ao  = A(s)Z
+
(s) = s(l+s); al  = Z (s) = l+zs 

Using the recursive formula 

ai
-1(s) = gi(s)ai(s) + ri(s) 

and setting 

ai
+l (s) = ri(s) 

the following sequence of polynomials results: 

(26)  

(27)  

(28)  

(29)  

(30)  
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1 L a
i-1  j  gi  1 ai  

1 	s(l+s) 	s/z 	1+zs 

2 	1+zs 	 z2/(z-1) ; s(z-1)/z 

3 	s(z-1)/z 	s(z-1)/z 	1 

  

  

    

B. Solving the Diophantine equation 

Following the algorithm in section 2.4, we have 

f3-2 
_  z  z 

q2 	z-1' YZ = 1 

Using the recursion equations 

°i-1 	Yi 	~ii l' Yi 1 

with i=2 gives 

f(s) _ p
1 

_ 
Y2 	2q1 

(33)  

e(s) 

= 1 	z S= 1 - 
ZS 

1-z z 	1-z 

z 
(34)  

It can be verified by partial fraction expansion that 

indeed 

e(s) + f(s) 	1 	z2 + 1-z-zs _ 	1  
- b(s) 	a(s) 	1-z 1+zs 	s(s+1) 	b(s)a(s) 

C. Diophantine recursion 

(31)  

(32)  

(35) 



Ezk(s) 

z2/(1-z) 

-z/(1-z) 

1/(1-z) 

3 i 	-1/(1-z) i 	s - 1/(1-z) 

Fzk(s) 

1 - sz/(1-z) 

s/(1-z) 

-s/(1-z) 

s/(1-z) 

      

 

k 

   

 

0 

1 

2 

   

      

L 
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Using the recursive equations of section 2.4, 

Ezk(s) = sEzk 1 + h
lkZ (s) 

Fzk(s) = sFzk-1 
- hlkA(s)Z+(s) 

where 

hlk  = first Markov parameter of 	
zk-1 

A(s)Z+(s) 

we get the following sequence of polynomials: 

In is now possible to compute emulators of various 

choices of P(s) and C(s) without having to recompute solu-

tions to Diophantine equations. For example 

P(s) = (1 + 0.55)2  = 1 + s + 0.25s2; C(s) = 1+0.5s 	(39) 

so 

P(s)C(s) = (1 + 0.5s)3  = 1 + 1.5s + 0.7552  + 0.125s3 	(40) 

Using equations 2.3.20&22 and the entries in the Table, 

E2(s) and Fz(s) are given by 

E2(S) = 
llzCzz  - 1.5z + 0.75 - 0.125] + 0.125s 

F 

(36) 

(37 ) 

(38) 

(41) 

= llzCzz  - 1.5z + 0.625) + 0.125s 
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F (s) = 1 + -z -z + 1.5 - 0.75 + 0.125] 	 (42) 

1 + 1+zC0.875 - z] 

Example: B(s) = 1+0.1s 

In this case 

E (s) = 0.125s + 0.539; F (s) = 0.861s + 1 	 (43) 
2 	 2 

giving 

h 	0.1255+0.539- 	0.861s+1- 
02 (s) 	

0.5s+1 --u(s) 	0.5s+1-Y(s) (44) 

Note that the factor 

Z (s) = B (s) = B(s) = 1+0.1s 	 (45) 

has been cancelled from the u(s) term of the emulator equa-

tion. 

This example can be compared with the example of sec-

tion 2.2. 

Example: B(s) = 1-5 

In this case 

E (s) = 0.125s + 1.562; F (s) = 0.938s + 1 

giving 

* 	0.125s+1.562- 	0.938s+1- 
~2(s) 	

0.5s+1 	
u(s) + 

0.5s+1 y(s) 

Note that the factor 

(46)  

(47)  

Z (s) = B (s) = B(s) = 1-s 	 (48) 
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has been cancelled from the u(s) term of the emulator equa-

tion. 

2.5. PREDICTORS 

We now turn to systems with pure time delay which can 

be written as equation 1.9.1, repeated here as 

y(s) = e
-sT B(s)u(s) + C(s)v(s) 

A(s) 	A(s) 
(1) 

The question of initial conditions becomes difficult in 

the presence of time delays; so, for simplicity, we will 

assume zero initial conditions (D(s)=0) in this case. 

As pointed out by SmithEl] one approach to designing 

feedback controllers for such systems is to incorporate a 

predictor into the feedback loop. This method has been dis-

cussed in detail by Marshall[14]. 

The use of predictors in discrete-time minimum variance 

c_onrrol was considered by Astrom in his book[l5]; in par-

ticular he pioneered the polynomial approach to designing 

predictors. The presentation in this book is a 

continuous-time analogue of this method. 

Prediction of random functions has a long history. The 

Weiner filter has a predictive version (see, for example, 

the book[16] by Kailath). Other relevant books 

are[17,15,18,19]. 	The statistical approach is not used in 

this book. 

The purpose of a predictor is to deduce the system out-

put a time T (the system delay) into the future. Putting 

this together with the previous section suggests an auxili-

ary function (133(s) of the form 
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sT P(s)  
413(s) = e 	

Z(s) (2) 

But firstly, we consider the predictor alone and consider 

yT(t) = y(t+T) 	 (3) 

or in Laplace transform terms 

- 
yT(s) = esT  y(s) 

Using equation 2.5.1 

sT  y (s) = e 	y(s) - B(s)u(s) + esT C(s)v(s) T 	 Â(s) 	 A() 

The first term of the right-hand side is known. This 

could, by itself, form a predictor giving 

-* 	B(s)- 
(s) - 

A(s)
u(s) 

é*(s) = esT C(s)v(s) 
A(s)  

Due to its open-loop nature this would not usually make a 

satisfactory predictor. 

To obtain a closed-loop predictor we must somehow 

include the disturbance term esT C(s)  in the predictor. 
A(s) 

But, due to the exponential factor, this term is not causal 

and hence not realisable. In the same way as in previous 

sections, this disturbance term is divided into realisable 

and non-realisable parts; but in this case realisability is 

associated with causality rather than with properness. 

Let the impulse response of e
sT C(s)   

A(s) be denoted by 

ho(t), that is 

Lap{ho(t)1 = Ho(s) = esT  A(s) 
	 (8) 

(4)  

(5)  

(6)  

(7)  
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C(s)  
As A(s) is causal 

h o
(t) = 0 	t<-T 
	

(9) 

It follows that h o
(t) can be written as the sum of two 

functions 

h (t) = h (t) + h (t) 
o 	 1 	2 

where 

h (t) = 0; t>0 and hz(t) = 0; t < 0 

Thus setting 

H1(s) ~ Lap{hl(t)1; HZ(s) 
	
Lap{h Z(t)1 

the disturbance transfer function can be decomposed as 

e
sT A(s) - Ho(s) = H

1(s) f HZ(s) 

Example (Unit integrator) 

Suppose that 

C (s) 	1 
A(s) 	s 

Then 

11 t > -T 
ho(t) = ÌO elsewhere 

11 -T < t < 0 

hi(t) 10 elsewhere 

11 t > T 
h(t) = Ì O elsewhere 

( 10) 

(12)  

(13)  

(14)  

(15)  
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These functions of time are displayed in Figure 2.5.1. 

h (t) 
0 

-T 0 	 t 

h (t) 
1 

-T 	 0 

h (t) 
2 

I 	> 
0 	 t 

Figure 2.5.1 Realisability decomposition - unit integrator 

The corresponding Laplace transforms are: 

t 

-T 
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H (s) = 
esT 1H (s) = R 

O S 1 

sT 
(s) 	 ( 16) 

  

Note that both transfer functions are proper. 

❑ 

Example (Rational transfer function) 

Suppose that 
Ç( —) is rational and A(s) has n distinct 
A(s) 

roots a.. Then a partial fraction decomposition is: 

H (s) = e
sT C(s) = E esT 	ri  

Â(s) 	
i 1 	

s - ai 

The corresponding impulse response is 

n 	a.t+T 
h
o
(t) = E rie 	; t>-T 

i=1 

Hence 

(s - a.)T 

n sT 1-e  
s 

and 

a.T 
1 

H (s) = E ri s` a. 
i.=1 	 1 

Continuous-time FIR Transfer Functions 

In each of the above examples, the realisability decom-

position is of the form 

C(s) 	 -sT 
F
T
(s) 

A(s) - ~'(s) + e 	
A(s) 

H (s) = E e 
i=1 

(17)  

(18)  

(19)  

(20)  

(21)  
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where 

sT 	 F
T(s) Hi(s) = e 	E,l 	z  (s); H(s) - A(s) 

Having performed the decomposition, the unrealisable 

quantity yT(s) can be rewritten as 

-A 	-* 
T
(s) = yT(s) + e (s) 

where 

* 	 F (s) - B(s)- yT(s) = 
A(s)

u(s) + A
T 
s) v(s) 

e

- *

(s) = H1(s)v(s) = esT E
T(s)v(s) 

Finally, substituting for v(s) in equation 24 and using the 

decomposition 21, the predictor can be written as 

F ,(s)B(s) 	F (s) - A 	'1 	F
T  
(s) 

 = 	
C(s) 	u(s) + C(s) y(s) (26) 

The transfer function ET(s) = e sT  H(s) has an impulse 

response which is zero for all time t>T. For this reason it 

will be called a CFIR or continuous-time finite impulse 

response system. CFIR transfer functions based on rational 

transfer functions with distinct poles have the following 

properties: 

1. The impulse response is zero for all time greater than 

a finite value T. 

2. The transfer function has no poles. 

3. The transfer function is not rational. 

Properties 1 and 3 are obvious; property 2 may be 

(22) 

(23)  

(24)  

(25)  
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derived as follows: 

Property 2 

ET(s) = e 
sT H1(s) comprises n terms of the form 

-(s-a.)T 

r. 
i 	s 	ai 
1 - e 	 (27) 

At first sight, this term has a pole at s=m.. But substi-

tuting s=mi into the numerator gives 1 - eò = O. Thus each 

of the n apparent poles has zero residue; that is, the 

function has no poles. 

Property 3 is important as it means that H (s) cannot 

be realised using a rational transfer function; however, 

H1(s) can be approximated by a rational transfer function. 

One way of doing this is described in a following section. 

The auxiliary output and the emulator  

Based on the results of the previous sections, we are 

in a position to define an auxiliary output cli3(s) as 

$3(s) = esT $Z(s) = esT Z(sTY(s) 
(28) 

From the results of section 2.3, it follows that in the 

presence of a pure time delay ( and zero initial condi-

tions): 

F * 	_ 	 P(s)B(s) -sT 
(s) - 	 v(s) + 	 e 	u(s) Z 	

A(s)Z+(s) 	A(s)Z (s) 

hence 

~ 	sT  F
z(s) 

$ 	
P(s)B(s)- 

(s) = e 	 v(s) + 	 u(s) 3 	
A(s)Z+ (s) 	 A(s)Z (s) 

(29)  

(30)  

The first term is unrealisable, so decompose it into 
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realisable and unrealisable parts as 

sI 	
Fz(s) 	 F (s) 

e 	= 
esT 	 3 

EF(s) + 	+ 
A(s)Z

+(s)  	 A(s)Z (s) 

* 
We can then define (03(s) as the realisable part of 

z 
s) 

~ 
 F (s) 

Q)3(3) = -- 
3
+ 	v(s) + 

P(S)B(S)u(s) 

A(s)Z (s) 	A(s)Z (s) 

Finally, combining the system equation 1.9.1 with the two 

identities 21 and 31 

F (s) 	 E (s)B(s) 
* 	

3  
(S) = 	

3 	
y(s) + ~  	U(S) 

C(s)Z+(s) 	C(s)Z (s) 
(33) 

where 

E3(s) = EF(s) + Z (s)E (s) 	 (34) 
2 

Alternatively, E3(s) and F3(s) can be directly 

expressed as: 

esT 
E3(s) + 	F3(s) 

	

- esT P(s)C(s) 
	

(35) 

	

Z(s)A(s) 	
Z (s) 	Z+(s)A(s) 

2.6. APPROXIMATE TIME DELAYS 

The problem with designing controllers for systems with 

a pure time delay is that the resultant controller is not 

rational and thus cannot be realised using rational 

transfer functions. One approach to this problem is to 

design a controller for a rational system which contains a 

rational approximation to a time delay. 

(31)  

(32)  
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Time-delay approximation 

One class of approximations to time delays have the 

all-pass transfer function 

sT 	T(-s) 	 (1)  
e 	Y T(s) 

where T(s) is a finite order polynomial in s. A particular 

choice of T(s) is the Pade polynomial of order nT  given by 

by 

n, 	n - 1 
T(s) = tos r

+ tls 
T 	+ 	+ tn  

T 
(2 ) 

where 

t ,r = 1 n  

and 

tn,-i 	i(nT-i+1)(2nT-i+1) tnT-i+1 

SeeCl4] for details. 

System approximation 

(3)  

(4)  

Using this approximation for the time delay, the system 

can be approximately written as 

Y(5' = 
T(-s) B(s)u(s) + C(s)v(s) 
T (s )  A(s) 	A(s) 

D_(s) 
+ A(s) 

(5) 

B (s) 	C

T 

(s) 	D (s) 
AT(s)u(s) + A (

s)v(s) + AT(s) 

where 

AT(s) = T(s)A(s); BT(s) = T(-s)B(s) 	 (6) 



(12) 
ZT(s) 
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CT(s) = T(s)C(s); DT(s) = T(s)D(s) 

The auxiliary output and the emulator  

In a similar fashion, we define the auxiliary function 

$4(s) by: 

PT(s) - 	sT P(s) -  ~4(s) 	
ZT(s) y(s) 	e 	Z(s) y(s) 

where 

PT(s) 0 T(s)P(s); ZT(s) = T(-s)Z(s) 

The rational system is now of the form considered in 

section 2.3. Noting that the Pade polynomial T(s) has all 

roots within the stability, the polynomial T(-s) has all 

roots without the stability region. Thus the polynomial 

ZT(s) is decomposed as: 

ZT(s) = ZT(s)ZT(s); ZT(s) = Z+(s); ZT(s) = T(-s)Z (s) (9) 

With the above approximations, the polynomial identity 

2.4.1 (or 2.3.24) becomes 

	

T(s)P(s)C(s) 	E4(s) 	+ 	F4(s) 

	

T(-s)Z(s)A(s) 	T(-s)Z (s) 	Z+(s)A(s) 

where deg(FT(s)) < deg(Z+(s)A(s)). The corresponding emu-

lator equation then becomes: 

** 	 F (s) 	 E (s)B(s) 	 I (s) 
4) 4(s) _ — 

4 
+ 	y(s) + 	4 	

u(s) + T(s)C(s) (11) 
C(s)Z (s) 	T(s)C(s)Z (s) 

where 

ED4(s)C(s) - E4(s)D(s) 
I ís) - 

4 

(7)  

(8)  

(10) 



-AA 
(s) = 

-AA 
11) 	3(s) 

according to context 	 (2) 

- 
~
AA 

z(s) 
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with corresponding error 

E (s) 	ED (s) 
** 	

4  
(s) - 

4 	
v(s) + e 

' 	Z (s) 	Z (s) 

2.7. LINEAR-IN-THE-PARAMETERS FORM 

One particular structure which can be used for realis-

ing the emulators of this section is the linear-in-the-

parameters form. In transfer function form, each emulator 

can be written as 

-AA 	G(s)- 	F(s)- 	I(s) 
~ (s) - 

CT(s)
uz(s) + C(s)yz

(s) + CT(s) 
(1 ) 

where 

(13) 

-AA 
(1) 	

4(S) 

and 

G(s) 	Q  E(s)B(s) 	 (3) 

C(s)Z
-+
(s) 	C(s)Z (s) 

with common factors of Z (s) and B(s) cancelled out. 	In 

the case of **4(s), using equations 2.6.6, 

CT(s) = T(s)C(s) 
	 (4) 

otherwise 

CT(s) = C(s) 
	 (5) 



(10) X (s) 
~ 

—e 
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The filtered signals Oz(s) and yz(s) are given, in the 

case of c 	1(s), by 

uz(s) ~ 
e 

sT u(s); yz- (s) ~ y(s) 

in the case of c Z(s) by 

-sT 

úZ(s) 0 e
+ 	

ú(s); ÿZ(s) ~ +l 	ÿ(s ) 

Z ( s) 	 Z (s) 

and in the case of m

- 

	(s) and cp 	(s) by 3 	 4 

u (s) 
~ 	

1 u(s); y (s) 0 
	

1 	y(s)- z 	Z-+(s) 	
z 
	Z+(s) 

This emulator equation may be rewritten as 

I)**(t) = XeT(t)E3 e 

where the data vector Xe(t) and the parameter vector ee are 

given, in Laplace transform terms, by 

(6)  

(7)  

(8)  

(9)  

Where 

X (s) = 	 
C(s) 

sn 

s
n-1 

s 

1 

uZ(s); Xy(s) = 
C(s) 

sn 

s
n-1 

1 

yZ (s) 

     

X.(s) = 	1 
-1 	C(s) 

n 
s 

sn-1 
(12) 
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(13) 

Laplace 

section 

computed may 	therefore 

from the differential equations 1.6.1. 

This particular form provides a convenient means for 

implementing an emulator. In particular, the data vector 

X (t) is clearly distinguished from the parameter vector 

6 . This form will used in chapter 6 when self-tuning emu-

lators are discussed. 
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CHAPTER 3 

Emulator-Based Control 

Aims. To introduce and illustrate the use of 

emulators in a feedback loop. To introduce the 

notional feedback loop and its use in investigat-

ing the closed--loop properties of the emulator-

based control. To show that well-known control 

strategies such as model-reference, pole-

placement and predictive control are limiting 

cases of particular emulators in a feedback loop. 

To discuss the choice of emulator-based control 

design parameters. 

3.1. INTRODUCTION 

Self-tuning controllers are based on many different 

non-adaptive control design techniques. The purpose of this 

chapter is to present a selection of such design approaches 

in a unified fashion. The unifying concept is the emulator  

considered in the previous chapter. We shall see that, by 

incorporating such an emulator in the feedback path of an 

otherwise classical control scheme, many types of algo-

rithms can be considered in a common framework. The classes 

of algorithms include: model-reference (pole/zero place-

ment), pole placement, steady-state linear-quadratic, and 

3-1 



Symbol 

u(s) 
_* 
$ (s) 

W(s) 

Q(s) 

LR(s) 

Quantity 

Control signal 

emulator output 

setpoint 

control weighting 

setpoint filter 

L 
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predictive control. 

An important concept to be covered is that of control 

weighting or detuninq of control algorithms. This will be 

shown in a later chapter to be crucial in giving a robust 

adaptive algorithm. 

3.2. THE CONTROL LAW 

The single-input single-output feedback controllers 

considered in this book can all be written in a common 

form; as classical feedback controllers but with an emula-

tor in the feedback path. The control law can be written 

in two equivalent forms: 

u(s) 
1 	 - *(s)7 (1)  - 	Q(s)CR(s)w(s) 	- 

and 

-* 
¢ 	(s) + 	Q(s)u(s) 	- 	Rw(s) = 	0 (2)  

where 

-- 
1/Q(s) and R(s) are proper transfer functions. (I) (s) is the 

emulator output corresponding to one of the emulators 
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described in chapter 2. That is 

 

-A 
0 1(s) 

 

-A 
(s) = according to context 	 (3) 

and can be written in transfer function form as in section 

2.7 as 

*(s) - C(s)uZ(s) + C(s)yZ(s) (4)  

This would typically be implemented in linear-in-the-

parameters form as in section 2.7. 

-AA 	 -A 
Alternatively, we could use 0 (s) in place of 0 (s). 

However, in this chapter, we shall ignore the effect of 

initial conditions; that is, we concentrate on the system 

setpoint response and the system disturbance response. This 

emulator-based control law is given in Fig 3.2.1. 

Limiting the control signal  

In many contexts, it is appropriate to limit the con-

trol action of a feedback controller, typically to avoid 

actuator saturation. This can readily be done here by 

interposing a suitable non-linearity between the 1/Q(s) 

transfer function and the control signal as follows: 

-A 	 -A 
(s) - Q(s)CR(s)w(s) - ~ u (s)] (5)  

A 
u(t) = SatCu (t)} 	 (6) 
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I 
w(s) 	I 	1 I B I y(s) 

> > 	o----I F– —1 h—> 

I 	Q I I 	I A I I 
1 1 

* 
f(s) 

I 
I 	I 
L–)___I 

EB 
, 
1 
Fn 

I 	I 
I 	I 
H 

1 
F 	I 

f--o->-i 

Cz C 	I 	I 	I I I 	I I I I 1 ----' 	I I 
) 	' I 

( 
~ I 

Figure 3.2.1 The Emulator in the Feedback Loop. 

where "Sat" indicates the appropriate non-linear saturation 

function. 

The crucial point here is that the emulator should 

operate on the signal u(t) reaching the plant, not the sig- 

nal u (s) before the saturation. See[l,2] for a discussion 

in the discrete-time context. 

3.3. THE NOTIONAL FEEDBACK LOOP 

To obtain the properties of emulator-based feedback 

control laws, the idea of a notional feedback loop is 

introduced in this section. To obtain general equations, 

we consider the emulator for ~3(s) which includes all the 

other emulators as special cases. Recall that: 

-A 	 _* 
4)3(S) = t1)3(S) + e3(s) 

and that 

$3(s) = e
sT P(s) 
 

Z(s) 

(1)  

(2)  
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In this chapter, the controller output is assumed to be 

the nominal system input: 

u(s) = u(s) 	 (3) 

The consequences of this assumption being false are exam-

ined in chapter 4. 

Combining these equations gives the block diagram of 

Figure 3.3.1. 	This notional feedback system provides an 

easier way of deriving system equations than using Figure 

3.2.1. 

C(s)I 
v(s)--H 	 F > 

I A(s)I 

	

_ i 	 i __ 	I 
w 	I 	I + 	I 	1 	I u(s) I 	-sT B(s)I 	 y(s) 

—> -----I R ( s ) F—O 	> ----I 	 1--->--I e 	-- }----0 	-> 

	

I 	 I - I 	 I 4(s) I 	 A(s)I 

	

l 	 I 	 I 	 1 	 I 

  

+sT P(s)11 

e   ~—<— 

Z(s)I 

  

    

Figure 3.3.1 The notional feedback system 

This block diagram is a correct representation of the 

preceding equations; and is useful for giving insight into 

the control laws and their relationships. However, it does 

not, by itself, give any information about sensitivity to 

modelling error, as the error equation 3.3.1 assumes no 
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modelling error. 	We will return to the study of sensi- 

tivity in the next chapter, but for the moment we assume no 

modelling error. 

As discussed by Horowitz[3,4], controllers for single-

input single-output systems have two degrees of freedom  

available to the designer: a transfer function multiplying 

the setpoint w and one multiplying the measured system out-

put y. The controllers considered in this chapter are no 

exception to this rule: Figure 3.3.1 is one of the many 

ways of representing such a controller. In later chapters, 

the non adaptive emulator generating ¢* (s) will be replaced 

by a self-tuning version. In such circumstances, the 

transfer function P(s) becomes a third degree of freedom 
Z(s) 

available to the designer. This idea is pursued further in 

chapter 8. 

Combining the equations displayed in Figure 3.3.1, the 

following expressions for closed-loop system quantities are 

obtained: 

Notional loop-gain 

L(s) 
A 
	

1  P(s)B(s)  
Q(s) Z(s)A(s) 

This is the product of all the transfer functions within 

the loop displayed in Figure 3.3.1. 

Closed-loop system output 

)  
y(s) 	1+Lss) e 

sT  p(s)CR(s)w(s)  +(s)]  - (5) 

+ 	1 	C(s)-  
1+L(s) A(s) 

(4) 
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sT 	B(s)Z(s) 	
CR(s)w(s) + e*(s)] 	(6) = e 

	
P(s)B(s) + Q(s)Z(s)A(s) 

Z(s)C(s)  
+ Q(s) P(s)B(s) + Q(s)Z(s)A(s)v(s) 

Closed-loop system input 

u(s) -  L(s)  Z(s)A(s) z(s) 1+L(s) P(s)B(s) 

where the equivalent setpoint z(s) is given by 

z(s) = R(s)w(s) - esT P(s)C(s)- 	+ e*(s) Z(s)A(s) 

	

= R(s)w(s) + C  E(s) 	esT P(s)C(s)]v(s) 

	

Z (s) 	Z(s)A(s) 

- = R(s)w(s) - F(s) v(s) 
AZ+(s) 

This equivalent setpoint may be regarded as the net influ-

ence of disturbances and setpoint on the control signal 

referred to the same point on the block diagram as the fil-

tered setpoint R(s)w(s). 

It will sometimes be convenient to decompose this 

equivalent setpoint into the part e* (s) due to the emula-

tion error and the rest as 

Z(S) = z(s) + é* (s) 	 (10) 

where 

z(s) = R(s)w(s) - esT P(s)C(s)~(s) 
Z(s)A(s) 

(7)  

(8)  

(9)  
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The closed-loop characteristic equation 

Before taking a detailed look at the various controller 

options available, these two equations can be used to give 

an overview of the aims and characteristics of the 

emulator-based control laws. The following commments can 

be made: 

1. As discussed in section 2.3, an important special case 

is to choose 

B(s) = B+(s)B (s); Z(s) = Z+(s)Z (s); Z (s) = B (s) 	(12) 

In this case, the nominal loop-gain L(s) is 

L(s) - 	
P(s)B+(s)  

Q(s)Z+(s)A(s) 

2. The stability of the closed-loop system is dependent on 

the zeros of the transfer function 1+L(s); thus the 

equation 

P(s)B+(s) + Q(s)A(s)Z+(s) = 0 
	

(14) 

must have no zeros with positive real parts. 

Parallel transfer functions 

An alternative viewpoint, based onC5], is to regard 

Q(s) as a transfer function in parallel with the system. 

Define 

~
Q
(s) 0 $(s) + Q(s)u(s) (15) 

as the auxiliary output corresponding to the system in Fig-

ure 3.3.2 comprising Q(s) in parallel with P(s) cascaded 

with the system. The transfer function of the augmented 

plant relating (TQ(s) to u(s) is 

(13) 
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+ 	 + 
P(s)B (s) + Q(s)A(s)Z (s)  

(16)  
A(s)Z+(s) 

The zeros of this augmented plant are precisely the roots 

of the characteristic equation (3.3.14). 

The control law 3.2.1 may be rewritten as: 

cp Q(s) = R(s)w(s) + e (s) (17)  

In the absence of any disturbance (e (s)=0), this control 

law sets the auxiliary output 0Q(s) exactly equal to the 

filtered setpoint R(s)W(s); this is only possible if the 

augmented plant is invertible. In particular, the augmented 

system must have stable zeros. 

Thus Q(s) may be reinterpreted as a means of moving 

plant zeros to give an invertible augmented plant. A dis-

cussion along these lines (but in the discrete-time con-

text) appears in[5,6] and[7]. 

_ 	I C(s )I 

I A(s)I 

	

i 	 t 	 i 	I 

	

u(s)I 	-sT B(s)I 	y(s) 	P(s)I  
–)T–He    	1-0 	{ 	1---Ii(s)     

	

I 	A(s)I 	 I Z(s) I 	I Q 

	

I 	 I 	 0–> 
I 	~ 	I 
I 	 I 	I 	I  

Q(s)1--) 

Figure 3.3.2 The auxiliary output  
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3.4. CHOOSING P(s) AND Z(s) 

Let us first of all consider the case with no time 

delay (T=0), no control weighting (Q(s)=0) and no setpoint 

filter R(s): 

Q(s) = 0; R(s) = 1; T = 0; B(s) = B+(s)B (s); 	 (1) 

In addition Z(s) is chosen as 

Z(s) = Z+(s)Z (s); Z (s) = B (s) 	 (2) 

The closed loop equations then become: 

Notional loop-gain 

L(s) = 00 	 (3) 

Closed-loop system output  

Z(s) -  
y(s) = P(s)Cw(s) + e (s)7 (4 ) 

The closed loop system output y(s) has two terms: the 

setpoint response Z( 	and the disturbance response P(s) 

Z(s)*(s). Both terms are of the form of a Z(s) multiplied 
P(s)e 	 P(s) 
by a signal. Thus the closed-loop system output is deter- 

Z(s) 
 by the reference-model  Z(s) 	The reference model  P(s)' 

zeros are the roots of Z(s); the reference model poles are 

the roots of P(s). 

The closed-loop transfer function generating the system 

output is stable iff P(s) has all zeros within the left-

half s-plane. 
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As we would usually require that there be no steady-

state offset due to the setpoint, we shall choose P(s) and 

Z(s) such that 

P(s) design rule 

P(0) = 1 	 (5) 

Z(s) design rule 

Z+(0) = Z (0) = 1 

Closed-loop system input  

u(s) - Z(s)A(s) z(s) - Z+(s)A(s)  z(s)  P(s)B(s) 	P(s)B+(s) 

where the equivalent setpoint z(s) is given by 

- z(s) = w(s) - 	F(s) 	v(s) 
A(s)Z+(s) 

The closed-loop transfer function generating the system 

input is stable iff P(s)B+(s) has all zeros within the 

left-half s-plane. 

Three special cases of this control strategy are 

❑ Model-reference control 

❑ Pole-placement control 

❑ Steady-state linear-quadratic control 

These will be treated in turn. 

(6)  

(7)  

(8)  
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Model-reference control  

Model-reference control is a special case of the above 

algorithm defined by 

B (s) = Z (s) = 1 	 (9) 

thus the closed-loop system model is not related to the 

open-loop system. It is clear that the control signal will 

only be stable if 

B(s) is stable 	 (10) 

Example  

Consider the example of section 2.2 where the system is 

given by 

A(s) = s(s+l);B(s) = 1+O.ls 	 (11) 

and the design polynomials by 

P(s) = 1+0.5s; Z(s) = 1; C(s) = 1+0.5s 	 (12) 

As in section 2.2, the corresponding emulator (without ini-

tial conditions) is: 

-A 	-A  _ ~ 	(s) * 	
0.25(1+0.1s)~(s) + 1+0.75sy(s) 

1+0.5s 	 1+0.5s 
(13) 

Combining this with the control law 3.2.1 with Q(s)=0 and 

R(s)=1, 

~*(s) = Rw(s) 	 (14) 

gives: 

- 4 1+0.ssy(s) + 
1+0'Ssw(s) 	 (15) 

1+0.1s 	1+07ls u(s) = 
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This is of the classical two degree of freedom formC3:] and 

the transfer function relating u(s) to y(s) is of the stan-

dard phase-advance form of classical control to be found in 

any elementary textbook, for exampleCB]. 

Note that the system zero at s=-10 is cancelled by the 

controller. This is an inevitable result of specifying a 

reference model with different zeros to those of the open 

loop system. 

Pole-placement control 

Pole-placement control is a special case of the above 

algorithm defined by 

B (s) = 2-(s) = B(s); Z+(s) = 1 	 (16) 

thus the closed-loop system model is related to the open-

loop system; the zeros of the open-loop system 

 
B(s) are 

Z(s) A(s) 
identical to those of the closed-loop system p(s). 	It is 

clear that the control signal will be stable even if B(s) 

is not. 

Example 

Consider the example of section 2.4 where the system is 

given by 

A(s) = s(s+l);B(s) = 1-s 	 (17) 

Note that the system has a zero at s=1 with positive real 

part. This can be regarded as an integrator in series with 

a time delay of 2 units represented by the (very crude) 

first order Pade approximation (section 2.6): 

e
-2s  1_s 
 - 

1+s (18) 
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The design polynomials in the second example of section 2.4 

are 

P(s) = 1+5+0.2552; Z(s) = Z (s) = 1-s; C(s) = 1+0.5s 	(19) 

Note that Z (s) = B(s) in this case to remove the offending 

zero. As in section 2.4, the corresponding emulator 

(without initial conditions) is: 

~ 
(s) 

 

-* 	0.125s+1.562- 	0.938s+1- 
 + 

0.938s+1~(s) 
0.5s+1 	 0.5s+1 

(20) 

Combining this with the control law 3.2.1 with Q(s)=0 and 

R(s)=1, 

4) (5) = w(s) 	 (21) 

gives: 

u(s) = - 0.6402 1+0.938s- 
	+ 1+0.5 (s) 

1+0.0800s 	1+O.ls 
(22 ) 

This is of the classical two degree of freedom form[3] and 

the transfer function relating u(s) to y(s) is of the stan-

dard phase-advance form of classical control to be found in 

any elementary textbook, for example[8]. 

Note that the system zero at s=1 is not cancelled by 

the controller. The controller has lower steady-state gain 

and larger phase advance than the model-reference con-

troller designed in section 2.2 for the system with a zero 

at -0.1. 

Steady-state linear-quadratic control  

This is not the place to go into a full discussion of 

linear quadratic control[9,10,11]. Roughly speaking, the 
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essential result is that linear quadratic control is a spe-

cial case of pole-placement control where P(s) is obtained 

as the stable spectral factor of 

P(s)P(-s) = B(s)B(-s) + aA(s)A(-s) 	 (23) 

with the restriction that B(s) and A(s) must have no common 

factors[l2,91. 

3.5. CHOOSING R(s) 

From equation 3.3.5 or 3.3.6 it follows that R(s) 

merely acts as a setpoint filter. Thus if R#1, we can 

replace w(s) by wR(s) in the previous section where 

wR(s) = R(s)w(s) 

R(s) has no effect on the feedback loop itself; it merely 

acts as another degree of freedom for manipulating the set-

point response without affecting the system loop-gain or 

response to disturbances. 

The importance of R(s) lies in the second degree of 

freedom it gives in manipulating closed-loop performance. 

Model-reference control  

If the model-reference controller of section 3.3 is 

extended so that R#1, then the resultant closed-loop set-

point response is determined by 

R(s)- 
y(s) - P(S a(s) (2)  

In this equation, R(s) and P(s) play identical roles, and 

as far as the setpoint response is concerned the following 

design choices are equivalent: 

1 	 - desired model; R(s) = 1 P(s) 

(1) 

(3)  
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and 

1  - 1; R(s) = desired model 

However, when disturbances and sensitivity to parameter 

variation are considered, these two approaches are very 

different. Indeed the latter approach leads to an infinite 

gain controller; thus choosing P(s) = 1 is not practical. 

(SeeC13] for a discussion of this point in a discrete-time 

context). 

In practice then, both P(s) and R(s) have their uses; 

in particular R(s) specifies the setpoint response, whereas 
P(s) 

P(s) alters the disturbance response and closed-loop sensi-

tivity. 

As we normally require a unity steady-state system gain 

from setpoint to output we impose the 

R(s) = 1 	 (5) 

3.6. CHOOSING Ds) 

It seems intuitively obvious (and we shall prove this 

later) that it is not a good idea to have a system with 

loop gain L(s) = co. Of course, this is only a notional loop 

gain and the system is not implemented in this form. But 

nevertheless, the implication of L(s) = co is that we ask 

for exact matching of our desired closed loop-system at all  

frequencies. It is clearly unnecessary to specify system 

performance precisely at high frequencies; we shall see 

later, in the self-tuning context, that it is also very 

unwise. 

We have already noted (equation 3.3.14) that the sta-

bility of the closed-loop control system is dependent on 

the roots of the characteristic equation: 

P(s) 
(4) 
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P(s)B+(s) + Q(s)A(s)Z+(s) = 0 	 (1) 

We emphasise that this equation does not necessarily give 

rise to a stable closed-loop system. It has been sug-

gested[5,14,2] in the discrete-time context and in the spe-

cial case where B+(s) = B(s) that Q(s)#0 can be used to 

give stability when B(s) is not stable. In this book, we 

do not regard this as being a very useful approach to sta-

bilise a nominal system with unstable zeros: the zero can-

celling (pole-placement) approach is more appropriate. We 

believe that the role of Q(s) is make a feedback controller 

more robust in the face of neglected dynamics. 

If the notional feedback system is stable, then for 

those frequencies w where L(jw) is large the ratio of the 

closed-loop output y to the set point w is: 

y(jw) x e-jwT Z(jw)R( w) 
(jw) 	

P(jw) 
w 	

~ 

Under such circumstances, the closed-loop setpoint fre-

quency response approximates that of the reference model: 

e-sT Z(s)
R(s) 

P(s) 
(3) 

In particular, if Q(s)=0 (for all s), exact model matching 

is achieved for all frequencies; and if Q(0)=0 this is 

achieved at zero frequency. 

To give zero weighting at zero frequency we impose the 

Q(s) design rule 

(2) 

Q(0) = 0 	 (4) 

Thus Q(s) will be regarded as a device for reducing the 

exact matching requirement at high frequency. The use of 
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Q(s)#0 leads to detuned or control-weighted versions of the 

control laws derived with Q(s) = O. In particular, we now 

have three control-weighted algorithms: 

❑ Control weighted model-reference control 

❑ Control weighted pole-placement control 

❑ Control weighted linear-quadratic control 

In practice, we would usually require exact model 

matching at zero frequency to avoid steady-state offset. In 

such circumstances we would choose Q(s) such that 

Q(0) = 0 	 (5) 

3.7. CHOOSING T 

In the above discussion, we have implicitly equated the 

"T" appearing in the emulator with "T" corresponding to the 

assumed system time-delay. This is in fact quite general as 

in a later chapter we shall discuss the effect of incorrect 

system modelling. 

The crucial result of the predictive (esT) component of 

the emulator is to eliminate the system time-delay from 

both the nominal loop-gain and the closed-loop characteris-

tic equation. This idea was proposed by SmithC157 and is 

discussed in detail in the following section. 	The purely 

predictive emulator of section 2.5 is in fact a generalised 

version of that proposed by Smith. 

3.8. SMITH'S PREDICTOR 

The idea that control of systems with time-delay can be 

simplified by making use of a predictor was suggested by 

Smith in the late '50sC15,167. 	His predictor can be 

described by the following Figure. 	Like the emulator 
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w + 	1 	
l 
u(s) r 	~ 	i 	 y(s) 

	 - 0- i Control ler ~->T-~ Delay f—>— 'Plant' 	    , 	> 

ACTUAL 

MODEL 
r 	1 	i 	i 	 * 

~Plantl-->~ IDelayF—~ 	+ y(s) 
1 	I t 	1 0 O—T->T 

I 

	 ~ 	  

Figure 3.8.1 Smith's Predictor 

discussed in the previous section, Smith's predictor can be 

regarded as a method of realising the unrealisable transfer 

function esT. In particular, it generates the quantity 

yT(s) given by 

-* 	 -sT B(s)  
y(s) = y(s) + C1 - e 	

]A(s)u(s) (1) 

In the absence of disturbances, substitution of the system 

equation gives 

_* 
yT(s) = A(s)u(s) = e 	y(s) = yT(s) 	 (2) 

where yT(s) is the Laplace transform of yT(t)=y(t+T). That 

is, in the absence of disturbances, the effect of the Smith 

predictor is the same as including an inverse time delay 

(esT ) in series with the system output. 

How does this relate to the emulators derived here? 

The purely predictive emulator of section 2.5 is in fact a 

generalised version of that proposed by Smith. To see this 

Sec. 3.8. 
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we take the special case 

P(s) = 1; Z(s) = 1; C(s) = A(s) 	 (3) 

and 

Q(s) = inverse cascade compensator 	 (4) 

The decomposition identity can be written as 

sT 
FT(s) 

1 = EZ(s) + e 	A(s) 	
(5) 

If, in addition, we break the rule that F(s) is strictly A(s) 
proper, this my be solved by 

ET(s) = 1 	e  sT ; FT(s) = A(s) (6) 

giving the Smith predictor. 

Smith's predictor has the advantage that it can be 

implemented with rational transfer functions and a pure 

delay; it has the disadvantage that the predictor poles are 

identical to the system poles, giving poor transient 

response unless the open-loop system poles have fast time 

constants. 

3.9. CHOOSING C(s) 

At first sight, the polynomial C(s) is part of the sys-

tem; but, as discussed in section 1.8, this is not so as V 

(s) is not specified in detail. To see this, set 

C'(s - v(s) - C(s))v'(s) 
	 (1) 

where C'(s) is a polynomial of the same degree as C(s). An 

alternative system equation to 1.9.1 is then given by 

replacing C(s) by C'(s) and v(s) by v'(s) to give 

B(s)- 	C'(s).-\-7,(s) 	D(s)  
y(s) = 

 
A(s) 	A(s) + A(s) 	+ A(s) 

(2) 
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Using this equation to deduce the closed-loop system equa-

tions gives 

Closed-loop system output 

y(s) - 
L(s)  	

Ce  sT Z(s)
(R(s)w(s) + C'(s)P*(s))7 1+L(s) 	P(s) 	 C(s) 

(3) 

1 	C'(s)-, 
+ 1+L(s) A(s) v (s) 

B(s)Z(s) 	
Ce -sT R(s)w(s) + C'(s) * e(s)7 	(4) P(s)B(s) + Q(s)Z(s)A(s) 	 C(s) 

Z(s)C'(s)  Q  
+ (S) P(s)B(s) + Q(s)Z(s)AT-S-71'(5) 

 

Closed-loop system input  

L(s) Z(s)A(s) - 
u(s) = 1+L(s) P(s)B(s) z(s) 

where the equivalent setpoint z(s) is given by 

- z(s) = R(s)w(s) - 	C'(s)F(s) 	v(s) 
C(s)A(s)Z+(s) 

It follows that the design polynomial C(s) affects the 

poles and zeros of the closed-loop response to distur-

bances, but has no effect on the setpoint response. It 

plays a similar role to the observer pole-polynomial in 

state-space theory[l7,9]. 

(5)  

(6)  

To give unique solutions to the emulator design, we 

usually impose the 
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C(s) design rule 

C ( 0) = 1 	 (7)  

3.10. INTEGRAL ACTION 

As stated inC18,19], the large number of PI (propor-

tional + integral) and PID (proportional + integral + 

derivative) controllers used routinely for process control 

applications may be regarded as experimental evidence for 

their usefulness. 

As PI and PID controllers are so common, there must be 

something about the dynamics of many systems which makes 

such control appropriate. It follows that it should not be 

necessary to force an adaptive controller to have a PI or 

FID structure, but rather this structure should arise 

naturally from reasonable assumptions about the dynamics of 

the controlled process. It is shown in this section that 

this is indeed so: suitable modelling of non-zero mean dis-

turbances leads to an algorithm with integral action, and 

the additional assumption of a first (second) order system 

gives rise to a PI (PID) controller. 

This approach of letting the integral action arise 

naturally from the specification of a suitable disturbance 

model rather than forcing integral action into the con- 

troller distinguishes the algorithms of this book from some 

previous methods. As will be shown, this approach automat-

ically removes offsets from both the controller and the 

estimator. 

An extensive discussion of the method (but resticted to 

the model-reference case) appears inC19]. Details of the 

self-tuning version appear in chapter 6. 
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Two common forms of disturbance in control systems are 

constants and piecewise constant signals with random jumps. 

As discussed in sections 1.8 and 1.9, each form of distur-

bance corresponds to a transfer function 

Bt(s) 	Bf(s) 	k 

At(s) 	Af(s) 	s 
( 1) 

the former corresponding to the initial condition response 

of an integrator, the latter to the forced response of an 

integrator to a random sequence of impulses. In either 

case, the results of section 1.9 indicate that A(s) and 

B(s) will have a common factor s; as C(s) is chosen, this 

common factor need not appear in C(s). This gives rise to 

the following design rule: 

PI design rule 1 

A(s) and B(s) have a common root at s=0: 

A(s) = Ao(s)s; B(s) = Bo(s)s 	 (2) 

In addition, we make the following design rule: 

PI design rule 2 

Z (s) has no root at s=0: Z-(0)#0. This implies that, 

in this case, B+(s) contains the factor s in B(s) = sBo(s). 

To see the implications of these design rules consider 

the defining identity leading to (1)3(s) (equation 2.5.33): 

	

sT P(s)C(s) 	si E3(s) 	F3(s) 
e- 

	

Z(s)A(s) 	e 	
Z(s) + Z+(s)A(s) 

(3) 

evaluated at s=0. As, by assumption, A(s) has a factor s 

and Z+(s) hasn't, it follows that: 
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P(0)C(0) 	P(0)C(0) 
F (0) = 
	1
- 

3 	
Z(0) 

Z (0) 
 

Where the last equality follows from the P(s), Z(s) and 

C(s) design rules. 	Hence, in this case, F3(s) can be 

rewritten as 

F3(S)  = 
l+sF 30(s) 

Turning to equation 3 (2.5.33), (1)3(5) 
can be written 

as 

1+sF (s) 	sE (s)B (s)
- 

* 	 30 	
3  

(S) - 	 y(s) + (1) 3(5)
° 	u(s) 

3 	
C(s)Z+(s) 	C(s)Z (s) 

PID control  

As discussed in detail elsewhere[19,18] certain forms 

of assumed system give rise to PI and PID controllers. We 

give two examples based on the model-reference and pole --

placement examples given in previous sections. 

Example (Model-reference PID) 

Consider the example of section 2.2 and section 3.4 but 

a cancelling s term is included to model offset. The aug-

mented system is given by 

A(s) = s2(s+l);B(s) = s(1+O.ls) (7) 

The design polynomials are as before except that C(s) is 

now second order: 

P(s) = 1+0.5s; Z(s) = 1; C(s) _ (1+0.5s)2 	 (8) 

(4)  

(5)  

(6)  

As in section 2.2, the corresponding emulator (without ini-

tial conditions) is: 
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- 
(4) (s) = ~*1(s) 	0.125s(1+0z1s )

u(s) + 1+1.5s+0.6225s2Y(s)(9) 
(1+0.55)2 	 (1+0.5s) 

Combining this with the control law 3.2.1 with Q(s)=0 and 

R(s)=1 

-* 
(s) = Rw(s) 	 (10) 

gives: 

u(s) = 	8 ~w(s)-y(s)  
1+0.1s 	s 

+ (w(s)--1.5y(s)) + s(0.25w(s)-0.625y(s))] 

This has the structure of a PID controller with filtering 

and modified proportional and derivative setpoint terms. 

Example (Pole-placement PID) 

Consider the example of section 2.4 and section 3.4 but 

a cancelling s term is included to model offset. The aug-

mented system is given by 

A(s) = s2(s+l);B(s) = s(1-s) 

The design polynomials are as before except that C(s) is 

now second order: 

P(s) _ (1+0.5s)2; Z(s) = 1-s; C(s) _ (1+0.55)2 

As in section 2.4, the corresponding emulator (without ini-

tial conditions) is: 

s(2.460+0.0625s) 	 2 
m*(s)=~*(s)= 	 u(s)+

1+3.Os+2.0313s
y(s) 

(1+0.53)2 	 (1+0.5s)2 
(14) 

(12)  

(13)  
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Combining this with the control law 3.2.1 with Q(s)=0 and 

R(s)=1 

~* (s) = Rw(s) 	 (15) 

gives: 

	

0.405 	w(s)-y(s) 
u(s) 	

1+0.0254s~ 	s 
(16) 

+ (w(s)-3.00y(s)) + s(0.250w(s)-2.033y(s))] 

This has the structure of a PID controller with filtering 

and modified proportional and derivative setpoint terms. 

Note that the proportional gain is lower, and the deriva-

tive gain much higher, than for the model-reference example 

- the system is much harder to control. 

3.11. A DETUNED MODEL-REFERENCE CONTROLLER 

In the sequel (chapters 7&8 in particular), we shall 

analyse a particular form of detuned model-reference con-

troller, introduced in[20]. 

This controller is defined by the Table: 



Parameter 

P(s)  
+
(s)  

ú ' s ) 

Q(s) 

C(s) 

T 

Value 

Desired closed loop pole polynomial 

1 

P(Es); O(E<l 
q(s) 

 deg(q) = deg(P) 
Z (s) 
Desired disturbance closed-loop poles 

0 
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Note that Z (s) is not used for zero cancellation here. 

This particular emulator based controller is unusual in 

that the notional feedback loop is realisable. At first 

sight, it would seem that there is no purpose to be served 

in implementing the emulator or its self-tuning version. 

However, as discussed in detail in chapter 8, the high- 

frequency gain of the transfer function 
P(s) 

 is: Z(s) 

	

P(m)  _  P(m) 	1 n = deg(P) 

	

- 
Z(m) 	P(Em) 	n' 

E 

(1) 

This may be excessive for small E and lead to amplification 

of unwanted high-frequency sensor noise. The replacement of 

the realisable transfer function by a suitable emulator can 

remove this undesirable effect - see chapter 8 for a 

detailed discussion of the relative merits of implementing 

the notional feedback loop and the self-tuning emulator. 

The corresponding closed-loop system is defined by: 

Notional loop-gain 

L(s) 	
P(s)B(s)  
q(s)A(s) 

(2) 
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Closed-loop system output 

L(s) 	 * 
y(s) 	1+L(s) 

 P(s))(R(s)w(s) + e (s))] 

+ 	1 	C(s) ----v(s)  
1+L(s) A(s) 

B(s)Z(s) 	 * CR(s)w(s) + e (s)] 
P(s)B(s) + q(s)A(s) 

C(s)  
+ q(s) P(s)B(s) + g(s)A(s)v(s) 

Closed-loop system input 

L(s)  Z(s)A(s)  
u(s) - 1+L(s) P(s)B(s) z(s) 

This controller can be thought of as an approximate 

model-reference controller in the sense that as Q(s)-0 the 

control law approaches that discussed in the model-

reference section. The importance of these particular algo-

rithms is that can be made into an implicit self-tuning 

controller with global robustness properties. It is a 

continuous-time generalisation of the discrete-time gen-

eralised minimum variance control law[2,5] 

Example 

Consider the example in section 2.4, where the system 

is given by 

A(s) = s(s+l);B(s) = 2s 	 (6) 

(3)  

(4)  

(5)  

Thus the system is now first order and has a constant 
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disturbance. 	This example is to be used later to investi- 

gate robustness. The example is that of Rohrs[21]. 	The 

corresponding design parameters (see chapter 7) are 

P(s) = 1+0.3s; C(s) = 1+0.3s ( 7 ) 

Choosing E = 0.1 then gives 

2(s) = Z (s) = 1+0.03s 	 (8) 

Using the results from the example of section 2.4 with 

P(s)C(s) = (1+0.3s)` = 1 + 0.6s + 0.0952; z = 0.03 	(9) 

lives 

E (s) = E 	+ 0.6E 	+ 0.09E 	 (10) 
= 	 20 	 21 	 22 

and 

1 
1-J(,. - 0.6z + 0.09) = 0.07515 

F (s) = F 	+ 0.6F 	+ 0.09F 
2 	 20 	 7_ 1 	 22 

= 1 + lsz(-z + 0.6-0.09) = 1 + 0.4948s 

The corresponding emulator is then 

-k 	 -* 
!fi 	's 1 	= !~~ ( s ) 	- 

E (s)B(s)_ 	F (s) 
	,_l( 5 ) 	+ 
3).7., (S) 	 F1(s),L,(S) 

(12) 

!i.1503s ui~> + 1+n.4948s~(si 
(1+0.3s)(1+0.03s) 	1+0.3s 

Combining this with the control law 3.2.1 

-* 	 -* 	 q(s)  
(s) + ;l(s)u(s) - PW(S) = $ (s) + w(s) = 0 	(13) 

(s) 
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1+0.4948s 	- 
sC(0.07515 + q) + 0.3gs77(5)  

3-30 

gives: 

u(s)  _ (14) 

+ 	(1+0.3s)(1+0.03s) 	w(s) 
sC(0.07515 + q) + 0.3gsJ 

Note that this controller has integral action, and its gain 

may be varied using the scalar weighting factor q. 
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CHAPTER 4 

Non-Adaptive Robustness 

Aims. To investigate the effect of neglected 

system dynamics on the stability of (non-

adaptive) emulator-based controllers. To relate a 

number of stability criteria. To provide the 

background for the robustness analysis of self-

tuning controllers. 

4.1. INTRODUCTION 

In the previous section, it was assumed that the nomi-

nal system exactly represented the actual system to be con-

trolled. This is an unrealistic assumption in practice. 

This chapter presents an analysis of the robustness of the 

controllers designed in the previous chapter to neglected 

system dynamics; that is, the extent to which the closed- 

loop system remains satisfactory in the presence of 

neglected system dynamics is investigated. 	The system 

dynamics are assumed to be linear, but it is possible to 

extend the results to non-linear systems[l]. The 

corresponding analysis for self-tuning control is presented 

in chapter 7, where it will be found that the adaptive and 

non-adaptive results are closely related. 	This relation- 

ship is explored further in chapter 8. 

4-1 
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Three approaches to the robustness problem are 

presented: 

1. A classical Nyquist approach. 

2. A method based on a discrete-time analysis of 

Astrom[2,3]. 

3. A method based on the discrete-time analysis of 

Gawthrop and Lim[l]. 

The advantage of 2 and 3 is that the results are expressed 

directly in terms of the controller design parameters and 

the neglected dynamics; the advantage of 3 is that the 

results are directly applicable to the analysis of certain 

self-tuning versions. We shall be concerned to relate these 

three methods as they all provide different insights into 

the robustness problem. 

4.2. NEGLECTED PLANT DYNAMICS 

A 	i 	i 	r 	 i 
u 	I 	1 	u 	1 -sT B(s)1 	y 

—>--I N( s ) F-->--1 e 	 I--> 
I 	I 	I 	A(s)I 

Figure 4.2.1 Neglected plant dynamics  

In the previous chapter, it was tacitly assumed that 

the system was exactly modelled. This assumption is not 

practically realistic. In this chapter we retain the 

linearity assumption but account for possible errors in 

plant modelling. Thus the system equation 1.9.1 is replaced 

by: 
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y(s) = H(s)u(s) + C(s)v(s)  
A(s) 

where H(s) is a proper transfer function representing a 
A 

linear time-invariant system and u(s) is the controller 

output. This true system equation may be rewritten in 

terms of the nominal system as (see Figure 4.2.1): 

u(s) = N(s)u(s) 	 (2) 

where the neglected dynamics N(s) are given by: 

N(s) = esT A(s)H(s) 
B(s)  

4.3. ROBUSTNESS  BLED UN THE  ACTUAL FEEDBACK SYSTEM 

The standard way of analysing the robustness properties 

of a feedback loop is in terms of the Nyquist diagram based 

on the actual system loop-gain (seeC4], for example). 

Although this method will not be used very much here, it is 

introduced to provide a link between such classical methods 

and the methods discussed later in this chapter. 

As an exampla, consider the emulator-based controller 

using the signal 43(s). The emulator is of the form (see 

chapter 2, section 5): 

* 	 F (s) 	 E (s)B(s) 
0 3 (3) - 	

3 
+ 	y(s) + 

3 	
U(s) 

C(s)Z(s) 	C( 3)Z ( s) 

The corresponding control law can, from section 3.2, be 

written as 

-* 	 n 
0 (s) + Q(s)u(s) - Rw(s) = 0 	 (2) 

hence 

F (s) 	E (s)B(s) 
3 	 - 	 - 

y(s)[ 	_ 	+ Q(s)]u(s) = R(s)w(s) 
C( s )Z+(s) 	C(s)Z (s) 

(3) 

(1) 

(3) 

(1) 
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We can ignore the setpoint when treating stability; the 

feedback transfer function relating u(s) to y(s) is then 

ú(s) 	
F3(s)Z (s) 

i(s) 	E3(s)B(s)Z+(s) + Q(s)C(s)Z (s) 

The actual system loop-gain is then given by the pro-

duct of this transfer function and the system loop-gain as 

F (s)Z (s) 
La(s) 0  N(s)e-

sT 
A(s) 	 +3  

E3(s)B(s)Z (s) + Q(s)C(s)Z (s) 
( 5) 

The well-known theorem of Nyquist (as extended by 

Desoer[5] to the time-delay case) 	gives the following 

robustness criterion: 

Non-adaptive criterion 1 

The (non-adaptive) closed-loop system is stable iff the 

Nyquist locus 

La(jw) 
	

(6) 

obeys Nyquist's criterion. 

4.4. THE ERROR FEEDBACK SYSTEM 

The analysis of both non-adaptive and adaptive control 

is simplified by rewriting the relevant equations to form 

an error feedback system which exhibits how errors, rather 

than actual signals, are propagated. 

The neglected dynamics give rise to two extra error 

signals in the notional feedback system, the first due to 

the system input not being the controller output, the 

second due to the emulator being no longer exact. These two 

(4) 
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error sources are considered in turn. 

The Control Signal Error  

The neglected dynamics can be represented by the 

equivalent expression 

,. 	 - 
u(s) = u(s) - u(s) 

where the control signal error u(s) is given by 

,., 
u(s) = [N(s) - 1]u(s) 	 (2) 

The Emulator Approximation Error 

The emulator based on the nominal system cannot be used 

directly in the presence of unmodelled dynamics as the 

input 6(s) to the nominal system is not available. An 

approximate emulator can, however, be easily obtained by 

replacing the unknown nominal system input ú(s) by the 

known controller output u(s). The resultant error depends 

on the deviation of the neglected dynamics N(s) from unity. 

The approximate emulator (with output $a(s)) is thus 

given by: 

- 
$a(s) = 	F(s) y(s) + E(s)B(s)u(s) 

C(s)Z+(s) 	C(s)Z (s) 

The emulator approximation error introduced by replacing u 
A 

(s) by u(s) is given by 

-a 	-A 
= m*  e 	(s) - $a(s) - E(s)B(s)u(s) 

C(s)Z (s) 
(4) 

(1) 

(3) 
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The modified notional feedback system 

These two errors arising from the neglected dynamics 

N(s) modify the properties of the notional feedback system 

of the previous chapter by forming two additional input 

signals as in Fig 4.4.1. 

I C ( s) I 

V --I - I---)i 
1 A(s)I 

u > 
I 

i 	i 	i " I _i 	 t 	- 
w 	l 	I+ 	I 	1 	lu 	+l ul 	-sT B(s)1 	Y 
->--1 R(s)  1 	0 	>—I 	 1-0-1 e 	F-0 ---T—> 

I 	I - I 	I Q(s) I + 	I 	A(s)I 	I 
I 	I 	1 	1 	 i 

I 

	

I 	_a 	_ 	 i 	 i 	I 

	

I 	o 	+ o 	 i 	+sT P(s)1 

	

' 	< 	0 	 l e 	— 1—<--I 

I - 	 I 	Z(s)I 
_*I _a  	 1 

e + e 

Figure 4.4.1 The modified notional feedback system 

From this block diagram, the control signal can be 

written in terms of the notional loop-gain as: 

u(s) = L(s) 	C 	u(s) + 
A(s)Z(s)(i(s) + éd(s)) 1+L(s) 	 B(s)P(s) 

where the equivalent setpoint i(s) is given by equation 

3.3.8 as 

z(s) = R(s)w(s) - e
sT P(s)C(s)v(s)  + e(s) 

Z(s)A(s) 
(6) 

= R(s)w(s) + 
C  E(s)  - esT P(s)C(s)7v(s)  
Z (s) 	

Z(s)A(s)  

(5) 
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The error feedback system 

The equations for u(s) and ea (s) are combined with 

those of the modified notional feedback system in Figure 

4.4.1 to give Figure 4.4.2. 

< 

r-~ I 1
A 
^ r~ 

z + 	IZ A I - I 	I 	L 	I 	u 1 	I 
>-0-1 	1 	0-1 	1-->--{ N-1 1 	 
I+ IF B 1+ 	I 1+L I 	I 	I 
I 	 ~ 	~ 	 i 	i 

I 
_al  
e 1 	 I EB I 
< 	' 	< 	 I 	I 	 < 	 

1 CZ 1 

Figure 4.4.2 The error feedback system 

This Figure shows a two-loop feedback system which can be 

transformed to a number of equivalent single-loop systems 

using standard techniques. Each such equivalent single loop 

leads to a stability criterion for the non-adaptive feed- 

back systems. Two such criteria are considered here. 	Both 

criteria have been given previously in a discrete-time con-

text: the first is due to Astrom[2] (see[3] section 10.6, 

Theorem 10.3), and the second is similar to that given by 

Gawthrop and LimEl]. The second criterion is important 

because, unlike the first, it extends to the adaptive case. 

4.5. ROBUSTNESS - ASTROM'S CRITERION 

_ 	Looking at the feedback system of Fig 4.4.2 in terms of 

u(s), it can be written as a single loop system in terms of 

the intermediate variable u as: 

u 
> 



u 
> 
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u(s) = CN(s) - 13Cu0(s) - 1+L(s) u] 	 (1) 

E(s)A(s)Z+(s)  - 	 (2) - =  (1 	P(s)C(s) 	)u(s) 

= 
 -sT F(s)Z (s)-  
e 	C(s)P(s) u(s) 

where u0(s) is the control signal corresponding to no 

neglected dynamics and is given by 

AL(s)  Z(s)A(s)z(s) 
u0(s) 	1+L(s) P(s)B(s) 

(3) 

This feedback system appears in Figure 4.5.1. 

A 

u 
o 	I 	I 
	0--1 N(s) - 1 F---> 	  
- 	I 	I 	 I  

I 	I 	I  
I 	 I 

I 	I 	L(s) 	II 	V 	I F Z- 	I 

	

L---I 	 1—(—I 	 I--_I 

	

1 	1+L(s) I 	I P C 	I 

	

i 	I 	: 	i 

Figure 4.5.1 The single loop error feedback system 

From Fig 4.5.1, Nyquist's theorem gives the following 

robustness criterion: 

Non-adaptive criterion 2 

The (non-adaptive) closed-loop system is stable iff the 

Nyquist locus 
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-sT 
M'(s) n 1+LeP(s)C~s)s)C1 
	N(s)] (4) 

obeys Nyquist's criterion. 

A more conservative criterion is that the modulus of 

the loop gain is less than unity at all frequencies. Noting 

that le-JWTI = 1, this gives the following robustness cri-

terion: 

Non-adaptive criterion 3 

The non-adaptive feedback system of Figure 4.5.1 is 

stable if: 

1. M'(s) is stable, and 

2. 1 M '(jw)I < 1 for all w. 

Astrom's formulation 

In the special case that the actual system is given by: 

-sToBo(s) 
H(s) = e 

then 

-s(To-T) Bo(s)A 
N(s) = e 	 A (s)B 

o 

The relevant Nyquist locus is then given by: 

L(s) 	F(s)A(s)Z (s) Ce 	-sT B(s)  

	

M'(s) - 1+L(s) P(s)B(s)C(s) Ce 	Ao(s) 	
e 	

A(s)] 	
(7) 

Part 2 of the conservative criterion then may be rearranged 

as: 

IsToBo(s) 
-sT B(s)I 	I1+L(s) 	B(s)P(s)C(s)  ~ le 
	

Ao(s) 	e 	A(s)
I 

< I L(s) 	 - 	 I 	(8) 
I 	A(s)Z (s)F(s)I 

Ao (s) (5)  

(6)  
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for all s = jw. 

In the particular case that L(s) = 00, and so 

L(s)  =1 
1+L(s) 

(9) 

and both the nominal and actual systems are stable, this 

reduces to the criterion derived by Astrom[2] Theorem 1, 

and reproduced in[3] section 10.6 as Theorem 10.3. 

4.6. ROBUSTNESS - THE M-LOCUS 

An alternative way of analysing the error feedback sys- 

tem of Fig. 4.4.2 is in terms of ea  (s). Solving for the 

upper feedback loop: 

ea(s) 	
Z+(s)A(s)E(s) L(s)CN(s)-1][Z(s) + ea(s)]  
P(s)C(s) 	1+L(s)N(s) 

Combining this with the rest of the block diagram: 

eaís) _ - M(s)Cz(s) + ea(s)] 	 (2) 

(see Figure 4.6.1) where the transfer function M(s) is 

M(s) - 
Z+(s)E(s)A(s) 	N 

1  (s)-1  
P(s)C(s) 	l+L -1 	-11(s) 

B(s)E( s) 	1-N(s) 

Z (s)Q(s)C(s) 1+L(s)N(s) 

This leads to an alternative robustness criterion: 

Non-adaptive criterion 4 

The (non-adaptive) closed-loop system is stable iff the 

Nyquist locus 

(1) 

(3) 

M(jw) 	 (4) 



The system 

H(s) 

Rohrs' system, in our notation, 

200 = 
(s+1)(s2 + 8s + 	100) 

is described by: 

(1) 
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r—~ e 

	

z + 	I 	I 	a 
-> 	 

- I 	I 	I 	I 

Figure 4.6.1 The single loop error feedback system 

obeys Nyquist's criterion. 

Once again, a more conservative criterion is: 

Non-adaptive criterion 5 

1. M(s) represents a stable system (all poles have nega-

tive real parts) 

2. Vi M(jw)1 < 1 for all w 

4.7. ROHRS EXAMPLE 

In a celebrated paper[6], Rohrs and his colleagues 

illustrated the poor robustness properties of a particular 

model-reference adaptive control algorithm by examining its 

performance on two particular example systems. In this sec-

tion, the second of these example systems is used to illus-

trate the non-adaptive robustness properties of the detuned 

model-reference adaptive controller of section 3.10. 



Actual loo• •ain Notional 100• •ain 

2 -1 0 1 2 
11' (jw ) locus 

2 

-2 -2 -1 0 1 2 

11(jw) locus 
2 

	

0 	 

	

-1 	 
~ 

~ 

-2 -2 -1 0 	1 	2 

4-12 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4 

Figure 4.7.1 Example 1 

One possible decomposition into nominal (B(s)/A(s)) and 

neglected dynamics (N(s)) is 

B(s) _ 2b N(s) 	1 	100  
A(s) 	l+s' 	b 

s2 + 8s + 100 
(2)  

Thus the actual system is third order; we are assuming for 

design purposes that it is first order. The neglected 

dynamics are second order with natural frequency lOrad 

sec-1 and damping ratio 0.4. There are clearly an infinite 

number of possible decompositions having the property that 

H(s) = N(s)B(S) 
A(s) (3)  
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2 

1 

0 

-1 

_ -t 

Actual 	loo • 	•ain 

2 

2 

i 

0 

-i 

-1 

Notional 	loo• 	•ain 

2 
1 

..-./ 	 

_1 
/ 

r 
-2 	-i 	0 	i -2 	-1 	0 	1 

2 

1 

0 

-1 

W,jw) 	locus 

2 

2 

1 

0 

-1 

-2 

M'(jw) 	locus 

2 

	 %~ 	 0 

-2 -2 -1 	0 	1 -2 	-1 	0 	1 

Figure 4.7.2 Example 2 

The design parameters  

Rohrs and colleagues attempt to match the reference 

model 

3   	1  
s+3 	1+0.3s (4) 

For consistency with this requirement, choose 

P(s) = 1 + 0.3s 	 (5) 

As, for practical reasons, we would like integral action, 

choose 

A(s) = s(l+s); B(s) = 2s 	 (6) 
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Actual 	loo. 	•ain Notional 	loo. 	•ain 

1 1 

0 
.-----s). 

0 
/■----■

\ 

-1 -1 

-2- -1 	0 	i 2 -2 -2 	-i 	e 	i 2 

2 
M(,jw) 	locus 2 M' (,jw) 	locus 

1 1 

0 ~- 	.̀ J 0 ~ 

-1'~---. 
~ ~  

-1 	 \'''---
..... ) 	 

\,_ 	-J: 

-2-2 -1 	0 	1 2 -2-2 -1 	0 	1 2 

Figure 4.7.3 Example 3 

This leaves C(s), Q(s) and Z(s) to choose. To achieve the 

right sort of disturbance response, choose 

C(s) = P(s) = 1 + 0.3s 	 (7) 

To make $(s) realisable, choose 1/Z(s) to be the first 

order low-pass filter: 

Z(s) = 1 + 0.03s 	 (8) 

Finally, make Q(s) zero at s=0 by choosing 

Q(s) _ —g— C15 C15
Z(s) 	1+0.03s (9) 

Note that q=0 would give exact model following; q>0 detunes 

the controller at high frequencies. 
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2 

1 

-2 

Actual 	100• 	•ain 

2 

2 

0 

-1 

-2 

Notional 	loo• •ain 

2 

0 	 ~ 

1 	 

-2 	-1 	0 	1 -2 	-1 	0 	1 

2 

0 

-1 

-2 

M(jw) 	locus 

2 

2 

0 

-1 

-2 

M'(,ju) 	locus 

2 

1 	 

	 0  

1 	 

-2 	-1 	0 	1 -2 	-1 	0 	1 

Figure 4.7.4 Example 4 

Robustness analysis  

To exemplify the use of the various criteria presented 

in this chapter, we will consider four examples (Figures 

4.7.1-4) based on that of Rohrs. 

The four examples have the following in common: 

1. Four frequency loci are plotted for values of w>0: 

a) The actual loop gain: La(jw) (equation 4.3.5) 

b) The notional loop gain (with neglected dynamics 

included): N(jw)L(jw) 

c) The M-locus M(jw) (equation 4.6.4) 



Example b q 

1 	1.0 	0.05 

2 	1.0 	0.2 

3 	0.5 	0.05 

4 	I 	0.51 	0.2 
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d) The M'-locus M'(ja) (equation 4.5.4) 

2. The actual system H(s) is as given in equation 4.7.1. 

3. The emulator and controller design parameters are as 

given in equations 4.7.4-9. 

The four examples are different in the following ways. 

The parameter b determining the decomposition of equation 

2, and the control weighting factor q of equation 9, are 

varied as in the following table (see Figures 4.7.1-4): 

Remarks  

1. As both the nominal and actual systems are stable, the 

loci corresponding to La(s) and M'(s) imply stability 

if there are no encirclements of the -1 point. Both 

these loci predict stability for examples 1,2&4 and 

instability for example 3. 

2. In this example, stability of the transfer function 

M(s) depends on the stability of 

L(s)N(s)  
1+L(s)N(s) 

In examples 1 and 3, the N(s)L(s) locus encircles the 

-1 point, indicating instability; in examples 2 and 4 

it does not, indicating stability. In examples 2 and 

4, the M-locus does not encircle the -1 point, indicat-

ing stability. In example 1, the M-locus encircles -1 
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the requisite number of times in an anti-clockwise 

sense, indicating stability; whereas in example 3 the 

M-locus does not encircle the -1 point, indicating ins-

tability. 

3. As criteria 1,2 and 3 are all necessary and sufficient, 

it is not surprising that they all give the same sta-

bility predictions. The conservative criteria, however, 

do not always agree. 

4. The N(s)L(s) locus is the same for examples 1 and 3, 

and for 2 and 4. This locus is not affected by the 

choice of the decomposition of H(s) into N(s) and B(s)  
A(s). 
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CHAPTER 5 

Least-Squares Identification 

Aims. To discuss linear-in-the-parameter system 

models. 	To introduce and derive the continuous- 

time least-squares method and to analyse its pro-

perties. To show that discrete-time least-squares 

methods can be used to identify continuous-time 

parameters. 

5.1. INTRODUCTION 

Least-squares parameter identification has been used in 

self-tuning control for a long time[1,2,3,4]. However this 

has usually been in a discrete-time context. 	A notable 

exception is the work of Young[5] who combined digital 

least-squares with analogue components to give estimates of 

continuous time transfer function parameters and hence to 

control a system. In a survey paper[6], Young points out 

that as well as discrete-time estimation of discrete-time 

system parameters, discrete-time and continuous-time esti-

mation of continuous-time system parameters is also possi-

ble. These two latter approaches to the identification of 

continuous-time 	parameters 	are 	considered 	here: 

continuous-time identification of continuous-time parame-

ters and discrete-time identification of continuous-time 

5-1 
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parameters. The former is of theoretical interest as a 

limiting case; the latter is more appropriate to practical 

application. In each case, we require a linear in the 

parameters system representation; so this is considered 

first. 

5.2. LINEAR IN THE PARAMETERS SYSTEMS  

The standard linear in the parameters model to be used 

in this book is 

T(t) = XT(t)e + e(t) 

where P(t) is the scalar system output, X(t) is a column 

vector of measured variables, a is a column vector of 

parameters and e(t) is the linear in the parameters error. 

Thus the scalar output of a linear in the parameters model 

is composed of two terms: the sum of products of measure-

ments and parameters, and an error term. Particular cases 

will be derived in detail in chapter 6; for the purposes of 

this chapter the linear in the parameters model is 

motivated with a simple example. 

Example: Linear in the parameters model  

Consider the first order system: 

- 
y- (s) - s-b~u(s) + sd+a + 5+a 

(s) (2) 

where d represents the effect of initial conditions. 

Choosing a polynomial Cs(s) = s+c (c>0), this may be 

rewritten as 

s+~y(s) - sbcu(s) + s+c + s+c (s) 

Rearranging gives 

p(s) = c-a 
s+c- ) + b s+c- ) + d s+c + s+~v(s) 

(1) 

(3)  

(4)  
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This is in the linear in the parameters form with 

`Y(s) = i(s); e(s) = s+cv(s) 	 (5) 

and 

I 	I 

Ic al 	 ly(s)I 
e = I b I; xT(s) = 

i l
u(s) I I d I 	 s+ci 1 

i 

The data vector X(t) is formed from the output of three 

low-pass filters with transfer function s+c,  one driven by 

y(t), one driven by u(t) and the other with no input. The 

first two filters have zero initial condition; the third 

has unit initial condition. See[7] for more details. 

Example: The effect of offset  

Consider the same first order system but with a unit 

constant added: 

- 
y(s) = sbau(s) + sd+a + s+â (s) + s (7) 

sb  - 	(sd+s+a) s - s(s+a)u(s) + s(s+a) + ss+â (s) 

Where d represents the effect of initial conditions and 1/s 

represents a constant. Choosing a polynomial C(s) = (s+c)2  

(c>0), this may be rewritten as 

s(s+a)-y(s) 	sb  u(s)  + s(l+d)+a + 	s  v(s) 
(s+c)z 	(s+c)2 	(s+c)z 	(s+c)z  

Rearranging gives 

Cl 	
cZ  ]y- (s) _ (2c-a) 	sy(s)  + b  su- (s)  

(s+c)Z 	 (s+c)Z 	(s+c)Z  

+ l+d 	s 	+ 	a  + ------v(s)   
(s+c)Z 	(s+c)Z 	(s+c)Z  

(6) 

(8)  

(9)  
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This is in the linear in the parameters form with 

z 	 2 
T(s) = C1 - 	c 	 ] y(s) - s+2cs Y(s) 

(s+c)Z 	 (s+c)z  

e(s) = + 	s v(s) 
(s+c)2  

and 

( 10) 

12c-al 

6 = I b 	1• XT(s) - 	1  
idâl I' _ 
	

(s+c)2 

si(s) 

su(s) 
s 
1 

(12) 

   

This model has the important property that the filtering of 

y(s) and u(s) removes constant components. 

5.3. CONTINUOUS-TIME LEAST-SQUARES CRITERION 

Suppose we have a linear-in-the parameters system as in 

equation 1 of the previous section, with output Y'(t), 

parameter vector 6 and data vector X: 

T(t) = X(t)6 + e(t) 	 (1)  

Assume that 'Y(t) and X can be measured but that the nominal 

parameter vector 6 is unknown. Suppose that we choose an 

estimate 6(t) of 6. Then we can deduce an estimate Ÿ'(T) of 

Ÿ'(T) at a time T (less that the current time t) based on 
A 

the current estimate 6(t) from the equation 

A 
T(T) = XT(T)6(t) (2) 

The resultant estimation error e(t,T) is then defined as 

e(t,T) = 'Y(T) - T(T) 	 (3) 
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For convenience, we shall write the estimation error based 

on the current parameter estimate as 

A 	A ^ 
e(t) = e(t,t) = `Y(t) - T(t) 

The aim of least-squares estimation is to choose the 

current estimate 0(t) to minimise a weighted average esti-

mation error over all measurements from time 0 to time t. 

The choice of the particular criterion leading to the 

weighted average is somewhat arbitrary. As is usual, a qua-

dratic form with exponential weighting ('least-squares') is 

used in this book. 	This method (particularly in its 

discrete-time version) has a long track record of success-

ful application. It will also be shown in the sequel that 

using the least-squares approach endows an self-tuning 

algorithm with desirable robustness properties. 

The exponentially weighted least-squares cost function 

which we will use here is 

J(g(t),t) = le-"(g(t) - 6o)TSo(0(t) - 00) (5) 

t 	 2  
+ lfe-0(t-T)

e(t,T) dT 20  

where 0  is a non-negative scalar: 

So  is a positive definite matrix: 

—So > 0 (7) 

( 4 ) 

The first term in the cost allows us to include a prior 

estimate in the algorithm; often we would wish to start a 
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self-tuning controller off with a known 'safe' set of coef-

ficients, and this feature allows this. The second term 

brings the measured data into the criterion; it is a 

weighted average of the square of past estimation errors 

based on the current parameter estimate. The exponential 

weighting coefficient a acts as a forgetting factor. As 

time t increases, the effect of old data at time T < t is 

discounted exponentially with the elapsed time t - T; the 
/.. 

initial parameter estimate 00  is discounted in a similar 

way. S(0) varies the weight given to the initial parameter 

estimate. 

Note that J is a function of two variables: time t and 

parameter estimate e(t). 

The least-squares estimate is that value of 0(t) which 

minimises this cost for each time t > 0. 	At such a 

minimum, the partial derivative of J(6(t),t) with respect 

A 

to 6(t) is zero: 

J1(6(t),t) Q aJ(e(t), t) = 0 

ae 

(8 ) 

Note that J(6(t),t) is a vector of the same dimension as e 1   

(t). 

5.4. MINIMISATION OF THE COST FUNCTION 

We consider the minimisation of the cost function in 

three stages: 

1. Existence and uniqueness of a minimum. 

2. A non-recursive (integral) form of the solution. 

3. A recursive (differential equation) form of the solu-

tion. 
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Existence of solutions  

Before performing the minimisation, it is important to 
A 

know if a minimum (with respect to O(t)) exists. The cost 
A 

function is quadratic in 0(t), so existence depends on the 

second derivative: 

z 

J (O(t),t) = a 	J(0(t),t) = S(t) z 	 382 

where 

t 
S(t) 

o 
e -Bt + fe

-~(t-T)X(T)XT(T)dT 
0 

So is, by definition, positive definite; hence so is 

e OtSo. The second term S(t) depends on the data but, 

because of its form, is non-negative definite. Thus 

A 

S(t) = J2(0(t),t) > 0 (3) 

This condition is sufficient to ensure existence and 

uniqueness of the solution of the minimisation problem. 

There is one global minimum and it occurs when the first 

derivative of J(0(t),t) with respect to 0(t) is zero. 

However, for practical purposes, this is not good 

enough, as J2(O(t),t) may become nearly singular. Not only 
/X 

must Jz(0(t),t) be non-singular, but it must be numerically 

non-singular. Also, for later theoretical reasons, we 

require that S(t) be uniformly positive definite (even when 

pO) in the sense that 

S(t) > E 	 (4) 

(1)  

(2)  

where E is a constant positive definite matrix. 
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In practice, then, the data-dependent persistent exci-

tation condition 

S(t) > E > 0 
	 (5) 

is often required. 

Non-recursive solution 

Taking the partial derivative of J(0(t),t) with respect 

to 9(t) 

J(8(t),t) = le 
p
tSo(6(t) - 8s) (6)  

+ fe 
0(t

-T)X(T)(XT(T)8(t) - T(T))dT 

0 

= Ze 
-pt 

So (A(t) - 0_0) 

+ Cfe 
13(t 

T)X(T)XT(T)dT]8(t) 

0 

-0(t-T) 
- Je 	X(T)Y'(T))dT 

0 

Setting J(n(t),t)=0, it follows that the value O (t) 

corresponding to the minimum of J(0(t),t) is given by 

t 
S(t)8(t) = e ptS~eo + 

fe-S(t T)
X(T)~`(T)dT 

0 
(7)  

This equation, together with that for S(t) (5.4.2), 

forms the non-recursive solution of the least-squares 
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estimation problem. This solution is unique at time t iff 

S(t) is non-singular, and is then given by 

0(t) = S 1(t) e 
-st 

e + Je-s(t-T)X(T)T(T)dT -o—o 0 

Recursive solution 

To get a recursive solution, we first convert the 

integral form of the cost (5.3.2) to a differential form by 

taking partial derivatives with respect to time. 	Taking 

partial derivatives with respect to time 

2 

atJ(0(t),t) + f J(0(t),t1 = ,lze(t) 

and then taking i partial derivatives with respect to 8(t) 

2 

at
Ji(e(t),t) + ~Ji(0(t),t) _ 	li 	

ai„ 
ie(t) 

30 

where 

J.(0(t),t) = —a J(0(t),t) ~ 	 aei -- 

The total derivative with respect to time is then given by 

the formula 

aaJi(0(t),t) = a Ji(0(t),t) + aJi(0(t),t).dd8(t) (12) 

ae 

(8)  

(9)  

(10)  

= atJi(0(t),t) + Ji+1(0(t),t).da0(t) 
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A formula for the optimum value  8(t) 

Recalling that our condition for the optimal value 8(t) 

is J1(O(t),t) = 0, it follows from 12 with 1=1 that 

J2(8(t),t)dd8(t) = 

2 

i ae(t) 
2 A 

ae 

( 13) 

= X(t)e(t) 

Noting from equation 5.4.1 that J2(8(t),t) = S(t), it fol-

lows that 

dd8(t) = S-1(t)X(t)e(t) 	 (14) 

A 

A formula for J2(8(t),t) 

As J is quadratic in 8(t), it follows that 

Ji(8(t),t)=0 for i>2. Thus J2(8(t),t)=S(t) is given by: 

dts(t) + pS(t) = X(t)XT(t) 
	

(15) 

(note that atS(t) = dtS(t) as S(t) is independent of 8(t). 

This formula can also be obtained by differentiating 

the non-recursive formula 5.4.2. 

Initial conditions  

A 

Considering J(0(t),t) at time t=0, it follows from the 
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non-recursive solution that 

(16) 

and also that 

JZ(0(t), 0) = So  (17) 

5.5. THE RECURSIVE LEAST-SQUARES ALGORITHM 

We are now in a position to state the continuous-time 

recursive-least-squares algorithm. 

Recursive least-squares - inversion 

The recursive least-squares algorithm is, from equa-

tions 14&15, defined by the pair of differential equations: 

S(t)16(t) = X(t)e(t) 	 (1) 

ddS(t) + pS(t) = X(t)XT(t) 	 (2) 

and the algebraic equation 

e(t) = `Y(t) - T(t) = T(t) - XT(t)0(t) 

with initial conditions: 

A 

0(0) = Oo; S(0) = So  

A disadvantage of this approach is that O(t) does not 

appear explicitly; essentially S(t) must be inverted to 

obtain a solution. This problem is removed by the follow-

ing reformulation. 

(3)  

(4)  
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Recursive least-squares - no inversion 

Assuming S(t) is non-singular, the equations can be 

expressed directly in terms of S-1(t) as 

dt6(t) = S 1(t)X(t)e(t) 	 (5) ^ 
	 A 

ddS 1 lt) + ~S-1(t) = s-1(t)X(t)XT(t)S 1(t) 	 (6) 

Note that, for numerical reasons, it is better to update 

the square root of S(t) rather than S(t) itself[8]. 

5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 

The continuous-time recursive least-squares algorithm 

has some important properties which lead to robust self-

tuning control. These properties are now derived. 

The 'ideal' cost  

For the purposes of this section, we shall define the 

ideal conditions for the estimator by having zero error 

e(t) and by having the correct initial estimate: 

e(t) = 0; A o = 0 (1) 

Such ideal conditions do not reflect a practical situation, 

but rather provide a basis for analysing the recursive 

least-squares algorithm operating under non-ideal condi- 

tions. 	With ideal conditions, the estimation error is 

given by: 

e(t,T) 	T(T) - `Y(T) = X(T)6(t) 	 (2) 

where the error in the parameters 6(t) is defined as 
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é(t) °= 0 - ê(t) 

Under these conditions, the ideal cost (which will be 

called J (6(t),t)) is given from 5.3.5 by 

*(6(t),t) = le -~t(6(t) - 6 )T 	 6 J 	 S (6(t) - 	) 
2 	 —o -o 	—o 

t 
+ 

z!e -
0(t-T)

(XT(T)6(t))2dT 
0 

= 16(t)TS(t)6(t) 

Under these conditions, the ideal cost J (6 (t),t) is 

given by the quadratic form 26(t)TS(t)6(t). Its minimum 

value is clearly zero, corresponding to 6(t) = 6. 

Guided by this result, we define the quadratic function 

V(t): 

V(t) 
~ z

6(t)TS(t)6(t) 

As we have shown, under ideal conditions J (6(t),t) = V(t). 

In the sequel, the behaviour of V(t) under non-ideal condi-

tions, but using the least-squares algorithm, will be found 

to be of interest. 

To obtain a differential equation for V(t), we first 

differentiate with respect to time to give: 

ddV(t) = 26(t)TddS(t)6(t) + 6(t)TS(t)dd6(t) (6) 

Using the least-squares algorithm 5.5.1&2 and noting that 

(3)  

(4)  

(5)  



5-14 	 LEAST-SQUARES IDENTIFICATION 	 Chap. 5 

- ddê(t) 	 (7) 

this becomes 

ddV(t) = 
1-  

-
d

+ X(t)XT(t)16(t) (8) 

- 6(t)TX(t)e(t) 

At this stage, it is convenient to define the parameter-

induced error  

e6(t) 0 6(t)TX(t) 	 (9) 

This gives 

dt 
(t) + eV(t) = ze6(t)z  - e6(t)e(t) 

Now 

e(t) _ T(t) - T(t) 	 (11) 

= (T(t) - XT(t)8) + (XT(t)6 - XT(t)6(t)) 

= e(t) + e6(t) 

So we can replace e6(t) by e(t) - e(t) to give 

ddV 
+ pV = -(e(t) - e(t))z  - (e(t) - e(t))e(t) 

z 

= 1Ce(t)
2 
 - e(t) ] 

z 

(10) 

(12) 



V( s ) 

> 

Sec. 5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 	 5-15 

This gives the following property of the ideal cost  

2 

ddV + SV = 2(e(t)2 - e(t) ) 

This is discussed in the following section. 

Properties  

The equation 

2 

daV + pV = Z(e(t)2 - e(t) ) 

can be interpreted as follows: the (positive) ideal cost V 

is the output of the low-pass filter FLP(s) (Figure 5.6.1) 

with transfer function 

A  1  
FLP(s) - s + 

p 

2 

with input ZCe(t)2 - e(t) ] and initial condition V(0). 

2 
e 	—>---1 	i 	i 

	

+ 1 	I 	I 
0-->--IF (s) I 

^ 2 	- 1 	1 LP 	I 
e 	—>____I 	t 	 ' 

Figure 5.6.1 The low-pass filter  

If the two signals e(t) and e(t) are exponentially multi-

plied (as in section 1.5) by eat to give ea(t) and ea(t): 

A 	
A 

ea(t) 
0 

e 	 a e(t); ea(t) 
~ e 
	e(t) (16) 

(13)  

(14)  

( 15 ) 
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then 

2 	 2 
A 	 A 

ea2(t) = ezat e(t)2 	 2a ; ea (t) = e 	e(t) 

Similarly define 

Va(t) = e2mt V(t) 

It follows from chapter 1, section 5, that the (positive) 

exponentially multiplied ideal cost Vm(t) is the output of 

the low-pass filter FLp(s - 2m) with transfer function 

1  
FLP(s - 2m) - s + 8-2m 

(19) 

2 

with input Z(ea2(t) - ea (t)) and initial condition V(0). 

In particular, if 

~ 
oc 	0= 2 

The low-pass filter becomes an integrator and 

t 	
2 

Va(t) = V(0) + Zf (ea2(T) - ea (T))dT 
0 

(20) 

(21) 

The small gain property 

The estimator can be regarded as a single input single 

output system R with input e(t) and output e(t) (Figure 

5.6.2). We now derive a simple property of this system. 

Noting that Vm(t) > 0, it follows that 

t„ 2 	 t 

Z a fe (T)dT < Zfe 2(T)dT + V(0) 
0 	 0 

a 
 

(17)  

(18)  

(22) 

Intuitively, this expresses the fact that the integral over 
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e 	t 	 e 
St 	 > 

Figure 5.6.2 The estimator 'system' 

time of the exponentially multiplied estimator squared 

'output' e(t) is less than, or equal to, the integral over 

time of the exponentially multiplied estimator squared 

'input' e(t) plus a constant. 

Noting that 

tt 	 t 
Ife p(T)dT+V(0) < Ife 

2 
	p(Y)dT.J2V(0) (23) 

20  a 	 20  a 	 0 a  

t 
= 

2[Jfem2(Y)d' + J2V(0)]2  0 

it follows that 

t„ 2 	 t 
JfOea  (T)dT < Jffeap(Y)dT + 42V(0) 	 (24) 

In this sense (see[9,10] for details) the gain of the esti-

mator system St is unity. 

Ideal behaviour - estimates 

Suppose that the external system is such that the sig-

nal e(t)=0, that is there are no neglected dynamics and no 
2 

disturbances. As e (t) > 0, it follows that 
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Vm(t) < V(0) 
	

( 25) 

hence 

V(t) < e zat V(0) ( 26) 

That is, the ideal cost V(t) is proportional to the initial 

cost V(0) and decays at least exponentially with time. 

Recalling that the quadratic function V(t) is 

V(t) ~ 16(t)TS(t)6(t) 

it follows that this result does not say much about the 

parameter estimate error 8(t) unless the matrix S(t) is 

non-singular. However, if we assume the data-dependent 

persistent excitation condition 

S(t) > E > 0 	 (28) 

it follows that 

1. 8(t) is bounded. 

2. 8(t) converges to zero exponentially. 

Ideal behaviour - estimation error  

If e(t) = 0, the sole input to the lowpass filter 
2 

FLP(s) is the signal 	- e(t) . Hence the filter output 

V(t) can be written in terms of the filtered signal e Lp(t) 

representing the contribution of e(t) to the filter out-

put: 

z. 

ddeLp(t) + aeLp(t) = e(t) ; eLp(0) = 0 	 (29) 

(27) 

2 

as 
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2 

V(t) = V(0) - eLP(t) 

As the output V(t) of the filter must remain positive, it 

follows that the low-pass filtered signal eLP(t) must be 

bounded by V(0): 

2 
A 

eLP(t) 	Ç V(0) 

This is not sufficient to ensure that e(t) is bounded (for 

example, passing a S function into a low-pass filter gives 

a bounded output). 

5.7. DISCRETE-TIME PARAMETER ESTIMATION 

Digital implementation of the continuous-time estimator 

implies a sample rate similar to that of the corresponding 

digital controller. In this section, it is shown that 

discrete-time estimation of continuous-time parameters is 

possible[5,6] without introducing any sampling error. This 

allows 	the estimation sample rate to be divorced from the 

controller sample rate. 

The-linear-in-the parameters model  

The linear-in-the parameters model 

T(t) = XT(t)e + e(t) (1) 

is non-dynamic; it is just an algebraic relation. It may 

thus be sampled at any time tm to give 

Y' = X 
T
O + e m 	Jm — 	in 

where 

T
m

~ Y'(tm); 
XmT n XT(tm); em = e(tm) 

(30)  

(31)  

(2)  

(3)  
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Note that this relation holds whether or not the samples tm 

are equispaced or indeed in the correct order. 

The Least-Squares Algorithm 

The discrete-time least-squares algorithm appropriate 

to the discrete-time linear in the parameters model is well 

known and will not be derived here. See any of the text-

books[11,12,13,14,15] for details. 

The parameter update algorithm is 

%+1- em 
+ Sd 

1 )mXmC`Ym - XTm6m] 

where the matrix Sd is given by 

T 
S _
dm 

p
d~m-1 + XmXm 

As discussed in the references ([8] in particular), the 

inverse, or the square-root of the inverse, of Sd is 

updated in practice. These exact discrete-time equations 

may be regarded as an approximation to the continuous-time 

equations. Assuming a constant sample interval A, the equa-

tions can be rewritten as 

A 

~ e«+lA Jm - (ASdm) 1XmC`Ym - XmT6m] 

where the matrix ASd is given by 

AS 
dm 	ASdm-1 - (Sd 	1) AS 	+ X X T 

A 	 A —dm-1 —m—m 

Regarding the left-hand side of each equation as an approx-

imate time derivative, and comparing with equations 

5.5.1&2, shows that: 

6m ~ 6(tm), Sdm s5 pS(tm) ; ~d ~ 1 	Ap (8) 

(4)  

(5)  

(6)  

(7)  
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CHAPTER 6 

Self-Tuning Control 

Aims. To introduce a class of self-tuning con-

trollers based on self-tuning emulators in a 

feedback loop. To distinguish between implicit 

and explicit methods. To distinguish between 

off-line and on-line emulator design. 	To show 

that some standard self-tuning methods, such as 

model-reference, generalised minimum variance, 

pole-placement and PID, are special cases of the 

more general class. 	To illustrate some self- 

tuning controllers using simulation. 

6.1. INTRODUCTION 

Self-tuning controllers (in the sense of this book) 

have two parts: a tunable feedback controller and a parame-

ter identification based tuning method. Emulator-based 

feedback control has been considered in chapter 3 and 

least-squares identification has been considered in chapter 

5. Putting these two ingredients together gives a self-

tuning controller. 

6-1 

In chapter 3, it was found that the notion of an emula-

tor embedded in a feedback loop unifies a number of 
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apparently diverse control laws; they are all examples of 

an emulator within a feedback loop. In the same way, the 

notion of a self-tuning emulator in a feedback loop unifies 

a number of self-tuning controllers. 

Astrom and WittenmarkCl] make the distinction between 

two types of self-tuning algorithm: 

1. Explicit algorithms which explicitly identify the sys-

tem parameters and then deduce the corresponding emula-

tor parameters. These have also been called indirect 

methods. 

2. Implicit algorithms which identify the emulator parame-

ters directly; system parameters are implicit in the 

identified emulator parameters. These have also been 

called direct methods. 

Implicit self-tuning control in a continuous-time setting 

has been considered by Egardt[2,3,43. In particular, he 

unifies a number of algorithms and gives relations between 

self-tuning control and the classical model-reference 

approaches[5]. This chapter deals with implicit methods in 

the same spirit as Egardt; in particular, the intention is 

to unify a number of methods. The difference is that a 

wider class of algorithms is considered here and the self- 

tuning is based on recursive least-squares. The approach 

extends and amplifies that given in[6]. 

This twofold division of algorithms is not sufficient 

for the purpose of this book. We make the further distinc-

tion between on-line and off-line emulator design: 

1. Off-line design. The emulator design parameters P(s), 

Z(s), C(s) and T, the control weighting Q(s) and the 

setpoint filter R(s) are chosen off-line, that is 

before the self-tuning algorithm starts. 



Sec. 6.1. 	 INTRODUCTION 	 6-3 

2. On-line design. Some, or all, of the emulator design 

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically 

varied during self-tuning. There is two-level tuning 

taking place: both emulator parameters (G(s), F(s) 

etc.) and emulator design parameters are automatically 

tuned. The adjectives 'implicit' and 'explicit' refer 

to the former tuning process. 

Examples of on-line emulator design in a discrete-time 

context are the algorithm of Allidina and Hughes[7] where 

P(s), Q(s) and R(s) are chosen on-line; and the discrete-

time LQ method of Grimble[8] where the continuous-time 

equivalent is to choose the polynomial P(s) on-line via a 

spectral factorisation of the form: 

P(s)P(-s) = B(s)B(-s) + xA(s)A(-s) 	 (1) 

where the system polynomials A(s) and B(s) are estimated 

on-line. 

Organisation of the chapter  

Section 2 considers feedback control in a self-tuning 

context and relates the algorithms to those of chapter 3. 

Section 3 considers system identification; that is a method 

of deriving system parameters using least-squares methods 

is given. Section 4 considers explicit self-tuning con-

trol; the system identification algorithms of section 3 are 

combined with the design methods of chapter 2. Section 5 

introduces implicit self-tuning methods where emulator 

parameters are identified without identifying system param-

eters or using the design methods of chapter 2. The section 

is subdivided into off-line approaches where the emulator 

design parameters P(s), Z(s) and T, and the controller 

parameters Q(s) and R(s), are chosen a-priori, and on-line 

design methods where the emulator design parameters P(s), 
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Z(s) and T, and the controller parameters Q(s) and R(s), 

are chosen on-line using an additional system identifica-

tion stage. Section 6 provides some simulations. 

6.2. FEEDBACK CONTROL 

In chapter three, a range of non-adaptive feedback con-

trol algorithms is described and discussed. The feature 

common to all these controllers is that they may be 

described as an emulator in a feedback loop. The disadvan-

tage of these non-adaptive controllers is that the system 

parameters (coefficients of A(s), B(s) and T) must be known 

if the desired performance is to be achieved. The aim of 

self-tuning control is to remove this restriction. In par-

ticular, the fixed emulator of chapter 3 is replaced by a 

self-tuning emulator. 

The self-

identical 

(equation 

replaced 

tuning controller is described 

to 	the 	non-adaptive 	controller 

1) except 	that 	the 	emulator 

by an estimated value 0(s): 

by an 	equation 

of 	section 3.2 

A 
output 	0 	(s) 	is 

u(s) 	= 	 

where 

Q(s)CR(s)w(s) - 	0(s)] (1) 

Symbol Quantity 

,. 
u(s) Control signal 
,. 
0(s) 

w(s) 

Q(s) 

R(s) 

self-tuning emulator output 

setpoint 

control weighting 

setpoint filter 

1/Q(s) and R(s) 	are proper transfer functions. 	4(s) 	is 	the 

self-tuning 	emulator 	output 	corresponding to one of the 
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emulators described in chapter 2. That is, 

(1)
1(s) 

(t) Z (s) 

Os) = 

(1) 3(s) 

(1)4 ( s ) 

A 

according to context 	 (2) 

where 	(s) is the Laplace-transformed output of the 

appropriate self-tuning emulator 

~ 
(I)(t) = Xe (t)6e(t) (3) 

and Xe(t) and 9e(t) are the appropriate emulator data vec_ 

for and parameter estimate vector respectively. 

6.3. SYSTEM IDENTIFICATION 

Explicit self-tuning methods require estimates of the 

system parameters. The approach taken here is to write the 

system as its own emulator; the coefficients arising from 

the corresponding self-tuning emulator give the required 

system parameters. Most systems are subject to disturbances 

containing a constant component. If not properly accounted 

for, such disturbances can give rise to very poor parameter 

estimation; so this subject is given a section of its own. 

This section is organised into the following subsec-

tions: 

1. An emulator for the system 

2. A self-tuning emulator 

3. Non-zero mean disturbances. 
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An emulator for the system 

Consider the particular case where the emulator is 

designed to emulate the system itself and that the delay T 

is zero; that is 

i)(s) = y(s) 	 (1) 

The identity 2.2.2 then becomes 

C(s)_ E(s) + F(s)  
A(s) 	 A(s) 

If we make the choice deg(C) = deg(A)-1, the identity gives 

E(s) = 0; F(s) = C(s) 	 (3) 

giving 

-* 
~ (s) = y(s) 	 (4) 

which is not useful. If, however, we choose 

C(s) = Cs(s) 

deg(Cs(s))=deg(A(s)) and, in addition, choose the highest-

order terms of A(s) and Cs(s) to be 1, 

c
o 

= a 0 
= 1 (6 ) 

(this may always be done by suitably rescaling the distur-

bance), then the identity gives 

E(s) = 1; F(s) = Cs(s) - A(s) 

and so 

B(s)- 	
Cs(s) - A(s) 	I(s) 

(1) (s) = Cs(s)
u(s) + 	Cs(s) 	-y

(s) + Cs(s) 

(2) 

(5) 

(7)  

(8)  
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-* 
Thus the system can be written as its own emulator; 0  (s) 

can be regarded as the system output p(s) minus the distur-

bance term T(s). 

An example appears in chapter 5, section 2. 

If the delay T is not zero but is known, the control 

signal u(s) can be replaced by a delayed version: 

UT(s) = e 
 sT 

 u(s) 

in the above equations. As in section 2.5, we assume that 

the time-delay initial conditions are zero. 

A self-tuning emulator  

The system, rewritten as an emulator and including ini-

tial conditions associated with the rational part, can be 

written in the linear-in-the-parameters form of chapter 5 

as 

y(t) = Xs(t)6s  + es(t) (10) 

where the data vector Xs(t) and the parameter vector 6s  are 

given, in Laplace-transform terms by 

(9) 

(s) —s 

  

where 

1  Xu(s) = Cs(s) 

s  
n-1 

s
n-2 

1 

e  sT ú(s); Xy(s) = Cs(s) 

s  
n-1 

s
n-2 

1 

i(s) 	(12) 

     



eu = 8y  

b 
i 

b2  

bn  

i 
i 
i 

2  
6i  = (14) • 

in  
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n-1 
s 

(s) = 	1  Cs(s) 

and 8s  is given by 

c - a 
i 	i 

cz  - a2  

cn  - an  

The vectors Xu(s), Xy(s) and Xi(s) are the Laplace 

transforms of vectors in controllable form (see section 

1.6). The time-domain versions may therefore be computed 

from the differential equations 1.6.1. 

This linear-in-the-parameters model is suitable for the 

least-squares estimation algorithms of chapter 5: 

'Y(t) = XT(t)8 + e(t) (15) 

if we set 

T(t) = y(t); X(t) = Xs(t); 8 = 8s; e(t) = es(t) 	(16) 

The coefficients bi  of B(s), and ii  of I(s) are identified 

directly; the coefficients ai  of A(s) are obtained by sub-

tracting the appropriate entries of 8 from the known coef-

ficients c
i 
of C 

s
(s). 

The advantages of including initial condition terms in 

parameter estimation is discussed in detail else-

whereC9,101. 

(13) s
n-2 

1 



SYSTEM IDENTIFICATION 	 6-9 Sec. 6.3. 

Non-zero mean disturbances  

As pointed out in chapters 1 and 3, the almost inevit-

able non-zero mean component of a disturbance can be 

included in the system model by assuming that 

A(s) = sAo(s); B(s) = sBo(s) 

With this assumption, the system emulator becomes 

sB (s) 	s(C (s) - A (s)) + c 

~*(s) - C(s) 
	 u(s) + 	o 	C(s) 	n y(s) 
s 	 s 

I(s) 
+ Cs(s) 

where 

Cs(s) = cn + sCo(s) 

This can be written in linear-in-the-parameters form as 

yo(t) = Xor(t)eso + eso(t) 

where yo(s) is the high-pass filtered system output 

C (s) 
yo(s) ~ sCo(s)y(s) 
	 (21) 

s 

the data vector Xo(s) and the parameter vector 6so are now 

given by 

X (s) -4). —o 

Xuo(s) 

Xyo(s) 

Xio(s) 

(22) 

    

where 

(17)  

(18)  

(19)  

(20)  

     

Suo(s) = Cs
1
(s) 

s
n-1 

sn-2 

s 

e 
sT ú(s); Xyo(s) - C (s) 

s 

s 
n-1 

sn-2 

s 

y(s)(23) 

     

     



s  
n-1 

s
n-2 

1 

c - al  

c2  - a2  

cn-i 	an-i 

8yo = (24) 

b i 
b2  

bn-i 

—U O 
8 = 
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(s) = 	l  —LO 	C s(s) 

and 8 is given by 

The vectors Xu(s), Xy(s) and X.(s) are the Laplace 

transforms of vectors in controllable form (see section 

1.6). The time-domain versions may therefore be computed 

from the differential equations 1.6.1. This linear-in-

the-parameters model is of the correct form for the least-

squares estimation algorithms of chapter 5: 

T(t) = XT(t)8 + e(t) 

if we set 

'Y(t) = yo(t); X(t) = Xso(t); 8 = 8so; e(t) = eso(t) 

where 

C (s)
- yo(s) = sCo(s)y(s) s  

Both sides of this equation comprise high-pass filtered 

quantities, but note that the same system parameters are to 

be found in 8 
 s as in O. The importance of using this 

zero-gain emulator in practice cannot be overstated. 

See[ll] for a discussion of this point from a discrete-time 

point of view andC12,6] for a discussion from the 

continuous-time point of view. 

(25)  

(26)  

(27)  
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It is also emphasised that the use of high-pass filter-

ing in this context, because it arises naturally from the 

system model, does not involve any approximation. 

An example appears in chapter 5, section 2. The simula-

tion examples 7 and 9 of section 6.6.2 illustrate the 

advantages of the zero-gain method. 

6.4. EXPLICIT SELF-TUNING CONTROL 

The adjective 'explicit' implies that the system param-

eters corresponding to A(s) and B(s) are estimated on-line, 

and these estimates (together with the polynomials P(s), 

Z(s) and C(s) are then used to design the emulator on-line. 

The self-tuning system emulator provides these system 

parameters. There are two types of explicit algorithm: 

1. Off-line design. The emulator design parameters P(s), 

Z(s), C(s) and T, the control weighting Q(s) and the 

setpoint filter R(s) are chosen off-line, that is 

before the self-tuning algorithm starts. 

2. On-line design. Some, or all, of the emulator design 

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically 

varied during self-tuning. 

These are considered in separate subsections. 	Each 

type of algorithm has two phases of operation: 

1. The off-line (a-priori) design phase. 	This occurs 

before tuning starts. 

2. The on-line tuning phase. 

6.4.1. Off-line design 
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The off-line (a-priori) design phase 

1. Choose the emulator polynomials P(s), Z+(s), Z (s), 

C(s) and the delay T. 

2. Choose the weighting filter Q(s). 

3. Choose the setpoint filter R(s). 

4. Choose the system order. 

The on-line tuning phase  

1. Update the system data vector X5(t) (or Xso(t)) as in 

section 6.3. 

2. Update the system parameter estimate vector 05(t) of Os  

(or O so (t) of 8 ) using either the continuous or 
discrete algorithms of chapter 5. 

3. Use an appropriate emulator design algorithm from 

chapter 2 to generate the parameters of the required 

emulator from the estimated system parameters. 	These 

are placed in the the vector 0e(t) as an approximation 

to the ideal emulator vector 0e. 

4. Generate the emulator data vector Xe(t) as in section 

2.7. If the same denominator polynomial is used for 

both the system emulator and the emulator 

(C(s) = Cs(s)) and so Xe(t) = Xs(t), this step may be 

omitted. 

5. Generate the emulated signal q(t) using (see equation 

2.7.9) 0(t) = XeT(t)0e(t). 

6. Generate the control signal as in section 6.2. 	In 

Laplace-transform terms, this is: 
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u( s ) = Q(s)CR(s)w(s) - Cs)] 

6.4.2. On-line design 

The off-line (a-priori) design phase 

1. Choose a design rule giving the emulator design polyno-

mials P(s), Z+(s), Z (s), C(s) and the delay T in terms 

of the system parameters. For example, a pole-placement 

design rule would be to choose 

Z(s) - B(s) B(0) (1) 

and to choose the other polynomials a-priori. 

2. Choose a design rule weighting filter Q(s) in terms of 

system parameters. 

3. Choose a design rule giving the setpoint filter R(s) in 

terms of system parameters. 

4. Choose the system order. 

In practice, some of these rules can be purely a-

priori. Thus, for example, Q(s) and R(s) could be chosen 

a-priori. If all the rules are, in fact, a-priori, then the 

on-line design reduces to the off-line design. 

The on-line tuning phase 

1. Update the system data vector X 
s 
(t) (or X

—so 
(t)) as in —  

section 6.3. 

A 

(1) 

2. Update the system parameter estimate vector 6s(t) of As 

(or 6~so(t) of Aso) using either the continuous or 
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discrete algorithms of chapter 5. 

3a. From the estimated system parameters, derive 	the 

corresponding emulator design parameters P(s), Z+(s), 

Z (s), C(s) and the delay T in terms of the estimated 

system parameters. 

3b. From the estimated system parameters, derive 	the 

corresponding control weighting transfer function Q(s) 

in terms of system parameters. 

3c. From the estimated system parameters, derive 	the 

corresponding setpoint filter transfer function R(s) in 

terms of system parameters. 

3d. Use an appropriate emulator design algorithm from 

chapter 2 to generate the parameters of the required 

emulator from the estimated system parameters. 	These 

are placed in the the vector 8e  (t)as an approximation 

to the ideal emulator vector 8e. 

4. Generate the emulator data vector Xe  (t) as in section 

2.7. If the same denominator polynomial is used for 

both the system emulator and the emulator 

(C(s) = Cs(s)) and so Xe(t) = X5(t), this step may be 

omitted. 

5. Generate the emulated signal 0(t) using (see equation 

2.7.9) 0(t) = XeT(t)8e(t). 

6. Generate the control signal as in section 6.2. 	In 

Laplace-transform terms, this is 

u(s) = Q(s)CR(s)w(s) - (1)(s)7 (2) 

This differs from the off-line design in that the addi-

tional on-line steps 3a-3c are added; 3d is as step 3 of 
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the off-line design. 

6.5. IMPLICIT SELF-TUNING CONTROL  

Implicit self-tuning control avoids the separate design 

phase by identifying the emulator parameters directly. 

Tuning the emulator  

As discussed in chapter 2, the emulator can be written 

in linear-in-the-parameters form as: 

0(t) = XeT(t)8e + e* (s) 

In many emulators, cp(t) is not a realisable quantity, but 

can be made so by appending a realisability filter A(s) to 

give a realisable signal cA(t): 

On(s) = A(s)(T)(s) 	 (2) 

such that 

esT P(s)
A(s) is realisable and proper Z(s) 
	

(3) 

As will be seen in chapter 7, we will also require that the 

inverse be proper: 

e 
sT 

P~s~A(s) 1 is realisable and proper 
	

(4) 

(As this filter is under our control, we may choose the 

initial conditions associated with A(s) to be zero; this 

will be assumed in the sequel). 

One possibility is to choose 

A(s) = e-sT Z(s)  
P(s) 

(5) 

(1) 

giving 
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( 6) 

The corresponding linear-in-the-parameters model is then 

0A(t) = XAT(t)8 + eA(t) 

where 

XA(s) 0 A(S)R(s); éA(s) 4  A(s)é(s) 

Note that RA 	can be generated in the same way as Xe(s) 

except that the signals u(s) and y(s) are prefiltered by 

A(s). 

Example 1 

If P(s) = Z(s) = 1, and equation 5 is used, then 

A(s) = e 
 sT

XA(s) = 
e-sT . 	 X(s) 

so 

XA(t) = X(t-T) 

This corresponds to many discrete-time algorithms, includ-

ing the self-tuning regulatorCl3]. 

Example 2 

If Z(s) = 1 and T=0, the filtering effect of A(s) 	is 

closely related to the filtering approach discussed by 

Egardt in chapter 3 of his book[2]. 

This linear-in-the-parameters model is suitable for the 

least-squares estimation algorithms of chapter 5: 

`Y(t) = X
T
(t)8 + e(t) 

(7)  

(8)  

(9)  

(10)  

if we set 
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¶(t) = mA(t); X(t) = XA(t); e(t) = eA(t) 	 (12) 

There are two types of implicit algorithm: 

1. Off-line design. The emulator design parameters P(s), 

Z(s), C(s) and T, the control weighting Q(s) and the 

setpoint filter R(s) are chosen off-line, that is 

before the self-tuning algorithm starts. 

2. On-line design. Some, or all, of the emulator design 

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically 

varied during self-tuning. 

These are considered in separate subsections. 	Each 

type of algorithm has two phases of operation: 

1. The off-line (a-priori) design phase. 	This occurs 

before tuning starts. 

2. The on-line tuning phase. 

6.5.1. Off-line design 

The off-line (a-priori) design phase 

1. Choose the emulator polynomials P(s), Z+(s), Z (s), 

C(s) and the delay T. 

2. Choose the weighting filter Q(s). 

3. Choose the setpoint filter R(s). 

4. Choose the system order. 

5. Choose the realisability filter A(s) according to equa-

tions 6.5.3&4. Typically we would use equation 6.5.5: 

A(s) = e-sT Z(s)  
P(s) (1) 
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Steps 1 and 5 may not always be possible. For example, 

if pole-placement is to be used and FO Z(s) = B(s), these 

steps are not possible unless B(s) is known a-priori. 

The on-line tuning phase  

1. Generate the quantity (1)A(t), where (pA(s) = A(s)$(s). 

2. Filter the control signal u(t) and the system output 

y(t) by A(s). 

3. Generate the emulator data vector XA(t) using the fil-

tered signals from step 2 together with differential  

equations 1.6.1. 

A 

4. Update the emulator parameter estimate vector 8 e(t) 

using either the continuous or discrete algorithms of 

chapter 5 and based on the linear-in-the-parameters 

model of equations 5.2.9&10. 

A 

5. Generate the emulated signal c(t) using (see equation 

2.7.9) cp(t) = XeT(t)8e(t). 

6. Generate the control signal as in section 6.2. 	In 

Laplace-transform terms, this is 

u(s) - Q(1)ER(s)w(s) - Os)] 
	

(2) 

6.5.2. On-line design  

The off-line (a-priori) design phase  

1. Choose a design rule giving the emulator design polyno-

mials P(s), Z+(s), Z (s), C(s) and the delay T in terms 

of the system parameters. For example, a pole-placement 
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design rule would be to choose 

Z(s) = B(s)  
B(0) (1) 

and to choose the other polynomials a-priori. 

2. Choose a design rule weighting filter Q(s) in terms of 

system parameters. 

3. Choose a design rule giving the setpoint filter R(s) in 

terms of system parameters. 

4. Choose the system order. 

5. Choose a design rule giving the realisability filter 

A(s) in terms of the system parameters and the emulator 

design parameters according to equations 6.5.3&4. Typi-

cally we would use equation 6.5.5: 

A(s) = e
-sT Z(s)  

P(s) 

In practice, some of these rules can be purely a-

priori. Thus, for example,Q(s) and R(s) could be chosen a-

priori. If all the rules are, in fact, a-priori, then the 

on-line design reduces to the off-line design. 

The on-line tuning phase  

1. Update the system data vector Xs(t) (or Xso(t)) as in 

section 6.3. 

2. Update the system parameter estimate vector 6s(t) of es  
A 

(or 6 
so 
	of  6

—so 
	using either the continuous or 

discrete algorithms of chapter 5. 

(2) 

3. From the estimated system parameters, derive the 

corresponding emulator design parameters P(s), Z+(s), 
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Z (s), C(s) and the delay T in terms of the estimated 

system parameters. 

4. From the estimated system parameters, derive the 

corresponding control weighting transfer function Q(s) 

in terms of system parameters. 

5. From the estimated system parameters, derive the 

corresponding setpoint filter transfer function R(s) in 

terms of system parameters. 

6. Deduce the realisability filter A(s) in terms of the 

estimated system parameters and the derived values of 

P(s) and Z(s). 

7. Generate the quantity 4A(t), where $A(s) = A(s)(-0(s). 

8. Filter the control signal u(t) and the system output 

y(t) by A(s). 

9. Generate the emulator data vector XA(t) using the fil-

tered signals from step 2 together with differential  

equations 1.6.1. 

10. Update the emulator parameter estimate vector 8 e(t) 

using either the continuous or discrete algorithms of 

chapter 5 and based on the linear-in-the-parameters 

model 5.2.6&7. 

11. Generate the emulated signal cp(t) using 

^ 	T ^ 
0(t) = Xe  (t)8e(t). 

12. Generate the control signal as in section 6.2. 	In 

Laplace-transform terms, this is 

u(s) = Q(s)CR(s)w(s) - 0(s)] (3) 
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This differs from the off-line design in that the addi-

tional on-line steps 1-6 are added. At first sight, this 

looks to be more complex than an explicit algorithms. But 

in fact it is simpler in that the emulator polynomials G(s) 

and F(s) are not deduced on line but are rather identified 

directly. 

6.6. SOME SIMULATED EXAMPLES  

In this section, a number of simulated illustrative 

examples are given. The simulations are divided into two 

sections: algorithms using the realisability filter A(s) 

and those which do not. 

6.6.1. Using realisability filter  

A number of versions of self-tuning algorithms using 

A(s) - Z(s) P(s) 

were simulated using the SIMNON 1anguaqe[14,15]. 	All the 

examples in this section have the following in common: 

1. Four emulator parameters are identified. 

2. The initial S 1(t) matrix is, in each case, given by: 

1100 	0 	0 	0 1 

S
-1(0) = 1 0 	100 	0 	0 1 

1 0 	0 	100 	0 1 
1 0 	0 	0 	1001 

(2) 

3. C(s) = 1+0.5s. 

4. All examples are detuned versions of the underlying 

algorithms with Q(s) = 0.01s  1+0.1s* 

5. A(s) = s(l+s). 

6. The realisability filter is given by A(s) - Z(s)  
P(s). 

(1) 
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Gvtput, etpoint, Model output. 
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Figure 6.6.1.1 Example 1 

7. The algorithms are simulated with a noise-free system 

having no neglected dynamics for 50 time units. 

8. The upper graphs in Figures 6.6.1.1-5 show the setpoint 

(a square wave between +1 and -1 with a period of 25 

units), the actual system output, and the model output. 

The model output ym(s) corresponds to 

Z(s)- 
ym(s) - p(s)w(s) 	 (3) 

9. The lower graph of Figures 6.6.1.1-5 shows the evolu-

tion of the four emulator parameters with respect to 

time. 
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_output, .etpoint, Model output. 

'~. 

    

Q , 

  

   

   

12.5 25. 37'. 5 50', 

Figure 6.6.1.2 Example 2 

10. In each case, the presence of the non-zero Q(s) control 

weighting prevents the system output following the 

model-output exactly. But note that the discrepancy is 

zero at zero frequency (constant setpoint) and only 

appears at high frequencies (changing setpoint). 

Figures 6.6.1.1-5 correspond to examples 1-5 of this 

section. 	The differences between the five examples are 

summarised in the following Table: 



-1.5 
12'. 5 sd. 37,.5 25. o. 
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Output, ,etpoint. Model output. 

Emvi,ator par3meter5 

p, 

Figure 6.6.1.3 Example 3 

SIMULATION SUMMARY 

No. Method P (s ) Z( s ) B(s) Design 
1 

1 Model reference 1+0.5s 1 1+0.1s Off-line 

2 Model reference 1+0.5s 1 l+s Off-line 

3 Pole placement (1+0.5s)2  B(s) 1+0.1s On-line 

4 Pole placement (1+0.5s)2  B(s) l+s On-line 

5 	Pole placement 	J 	(1+0.5s)2 	B(s) 	1-s 	I 	On-line 

See chapter 3 for a discussion of these examples in a 

non-adaptive context. 
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:? t p ' nt  

-4. 

E (;*':r  

Figure 6.6.1.4 Example 4 

Remarks  

1. Examples 1 and 2 can use off-line design, as P(s) and 

Z(s) are both chosen a-priori. Examples 3, 4 and 5 can-

not, as Z(s) = B(s) is not known a-priori. 

2. The systems in examples 1-4 are minimum phase and so 

either model-reference or pole-placement design is 

appropriate. The system in example 5 has a zero at 

s=1; model-reference control is not possible in this 

case, but pole-placement is. Note the characteristic 

non-minimum phase step response of the closed-loop sys-

tem in example 5. 
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Figure 6.6.1.5 Example 5 

3. The system in examples 2 and 4 is 

l+s 	i 
s(l+s) 	s 

(4)  

Thus the apparently second-order system is in fact 

first order. It can be represented as a second-order 

system with a first order cancelling factor of the 

form: 

a+s 
a+s 

(5)  

for any values of a. (Note that the coefficient of s 

is unity, as it is assumed that the coefficient of the 

highest-order s term is unity as in equation 6.2.6) 

Thus, in each case, the estimated parameters do not 
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have a unique "true" value. This is revealed in the 

estimated parameters. In example 4, the desired closed 

loop system is not unique, as Z(s) = B(s)/B(0) = l+s/a. 

In fact the estimator ends up with 

a = 0.55 	 (6) 

in this particular simulation. Note that the model out-

put in this case assumes that B(s) = Z(s) = l+s and so 

is different from what is actually achieved. 

6.6.2. Not using realisability filter 

_Uutp,;t; SétF: i rt; M:dé l v utput, 

Figure 6.6.2.1 Example 6 

A number of versions of self-tuning algorithms using 
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Figure 6.6.2.2 Example 7 

A(s) = 1 (1) 

were simulated using the SIMNON language[l4,15]. All exam-

ples have the following in common: 

1. Two emulator parameters are identified. 

2. The initial S 1(t) matrix is, in each case, given by: 

S 1(0) = 1100 	0 1 
1 0 	1001 

3. In each case, the emulator design parameters are: 

P(s) = 1+0.3s; Z(s) = Z (s) = 1+0.03s 	 (3) 

(2) 
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Figure 6.6.2.3 Example 8 

See section 3.11 for a discussion of the ideas behind 

this strategy. 	Note that P(s) is realisable and so Z(s) 
A(s) = 1 may be used here. 

4. All examples are detuned versions of the underlying 

model-reference algorithm with Q(s) -  +.2s  
1+O.ls' 

5. The algorithms are simulated using a system having no 

neglected dynamics for 50 time units. Examples 7 and 9 

have a unit output step disturbance occurring at 

time=15 units; that is, one is added to the system out-

put from time 15 onwards. 

6. The upper graph of Figures 6.6.2.1-4 shows the setpoint 

(a square wave between +1 and -1 with a period of 25 
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Figure 6.6.2.4 Example 9 

units), the actual system output, and the model output. 

The model output corresponds to 

Z(s)- 
ym(s) - p(s)w(s) (4) 

7. The lower graph of Figures 6.6.2.1-4 shows the evolu-

tion of the two emulator parameters with respect to 

time. 

Figures 6.6.2.1-4 correspond to examples 6-9 of this 

section. 	The differences between the four examples are 

summarised in the following Table: 
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SIMULATION SUMMARY 

No. A(s) B(s) C( s ) Disturbance 

6 s(l+s) 2s 1+0.3s No 

7 s(l+s) 2s 1+0.3s Yes 

8 l+s 2 1 No 

19 l+s 2 1 Yes 
1 

See chapter 3 for a discussion of these examples 	in 	a 

non-adaptive context. 

Remarks  

1. In each case, the presence of the non-zero Q(s) control 

weighting prevents the system output following the 

model-output exactly. But note that the discrepancy is 

zero at zero frequency (constant setpoint) and only 

appears at high frequencies (changing setpoint). 

2 The self-tuning emulators used in examples 6 and 7 are 

designed on the basis of a system with a cancelling s 

term - they have integral action. This does not make 

much difference between examples 6 and 8 which have no 

step disturbance. Example 7 illustrates the superior 

performance when non-zero mean disturbances are assumed 

a-priori as compared with example 9. A similar effect 

may be observed when using the realisability filter. 

3. Despite the different controller structure, examples 6 

and 8 end up with the same closed-loop setpoint 

response, though the disturbance response is different, 

as discussed in remark 2. 
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CHAPTER 7 

Robustness of 
Self Tuning Controllers 

Aims. To analyse the behaviour of continuous-

time self-tuning controllers in the presence of 

neglected system dynamics. To introduce the con-

cept of an error feedback system and its role in 

robustness analysis. To introduce the M-locus 

approach to analysis and design of robust self-

tuning controllers. To illustrate the results 

using simulation. 

7.1. INTRODUCTION 

The robustness of non-adaptive emulator based control 

systems was considered in chapter 4. The purpose of this 

chapter is to extend those results to include implicit 

off-line design self-tuning algorithms; that is, the non-

adaptive emulators are replaced by self-tuning emulators. 

The problem is analysed with the realisability filter A(s) 

included, but the the results are only complete for the 

case A(s) = 1. This chapter is based on an internal 

report[l]. 

7-1 

There is a considerable amount of literature concerned 

with the stability of adaptive controllers. A common thread 
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running through much of this work is the idea of an error  

feedback system[2]. This error feedback system is a 

single-loop feedback system composed of two blocks: one a 

linear transfer function, the other a time varying system 

representing the effect of the estimator. 	Although not 

specifically about adaptive control, many textbooks have 

been written about the stability of such feedback systems, 

includingC3,4,5,6]. 	This body of literature provides a 

valuable source of mathematical tools applicable to the 

adaptive robustness problem. In particular, Landau[2] 

applied the hyperstability techniques of Popov[3] to solve 

a number of adaptive control and estimation problems. 

More recently, attention has focused on the input-

output approach (as opposed to the state-space Liapunov and 

Hyperstability approaches). Early work is reported 

inC7,8,9,10]. Some methods are compared in a discrete-time 

context 	in[ll]. 	More 	recent 	work 	appears 

in[12,13,14,15,16]. 	An advantage of the input-output 

approach is that standard textbookC4,5,67 proofs are avail-

able for use. 

A simpler problem than that considered here arises from 

the analysis of adaptive algorithms where, unlike in this 

chapter, neglected dynamics are excluded (N(s)=1). 	Impor- 

tant results (in the discrete-time context) were obtained 

by Goodwin, Ramadge and CainesC17]. A compendium of 

results in this area appears in the book by Goodwin and 

Sin[18]. 

This chapter provides an analysis of implicit off-line 

design self-tuning controllers. Complete robust stability 

results are given when the realisability filter A(s)=1 and 
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partial results when A(s)#l. 

7.2. THE ERROR FEEDBACK SYSTEM 

In the same vein as chapter 4, an error feedback system 

describing the evolution of various errors associated with 

the self-tuning controller can be derived. This has two 

advantages: an intuitive idea as to what factors are impor-

tant in determining stability is given; and, in some cir-

cumstances, precise robustness criteria may be derived. 

The emulation error 

The self-tuning emulator gives an output 0(s) which is 

an approximation to the emulated value (0(s). Define the 

corresponding emulation error ee(t) by 

e

- e

(s) Q ~(s) - 0(s) 	 (1) 

As in chapter 4, this can be divided into a number of terms 

which can be written (in terms of Laplace transforms) as 

- e() = 0)-a(s)-0(s)] + COC~(s)-~a e 	 (s)] + Lift(s)-0 *(s)] (2) 

=t(S) + ea (s) + e* (s) 

where the approximation error ea (s) = 0
-A 
(s) - 0

A 
(s) has 

been introduced in chapter 4 and the error e* (s) in chapter 

2. The new term due to the tuning et (s) will be called the 

tuning error and is given by 

et(t) = 0a(t) - 0(t) = XT(t)6(t) 	 (3) 

where the error in the parameters 0(t) is given by 
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0(t) 	0 - 0(t) 	 (4) 

If initial conditions are included in the estimation and 

design, then equation 2 is replaced by 

ee(s) = 10
a 
(s)-(1)(s)] + CO**(s)-$a(s)] + C~(s)-0**(s)] 	(5) 

-t 	-a
+ ea 	 ** (s) + e = e 	 (s) 

The approximation error 

Following the same analysis as in chapter 4 (section 

4.6 in particular), and noting the effect of the additional 

error term due to tuning ét(s), it follows that 

-a 	 -a
= - M(s)[z(s) + e 
	-t 
(s) + e e 	 (s)] 

_ 	- M(s)Cz(s) + ée(s)] 

where, as in chapter 3, equation 3.3.11, 

z(s) = R(s)w(s) - e
sT P(s)C(s)

v(s) 
Z(s)A(s) 

The estimation error 

The emulation error ee(s) is closely related to the 

estimation error, which was defined in chapter 5 as 

e(s) 
o 

T(s) - T(s) (8) 

where 'F(s) is the scalar output of the linear-in-the- 
A 

(6)  

(7)  

parameters model and 'F(s) its estimate. In the particular 
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case of implicit off-line design algorithms, e(s) is given 

by 

e(s) = (1)A(s) - 0A(s) = A(s)0(s) - 0A(s) 	 (9) 

where A(s) is the realisability filter. At first glance, 

e(s) appears to be just a A(s) filtered version of ee(s); 
A 

but this is not so,as 0A(s)#A(s)0(s) (unless A(s) = 1 or 

0(t) is constant). So we define the filter-induced error  

e(s) by 

e(s) 0  A(s)0(s) - mA(s) (10) 

This error is zero in two cases: 

1. A(s) = 1 

2. e(t) is constant 

Combining these equations gives 

e(s) = A(s)-(13(s) - 0A(s) 	 (11) 

A 

= A(s)((ii(s) - 0(s)) - (A(s)0(s) - 0A(s)) 

= A(s)C(13(s) - 0(s)7 - e(s) 

= A(s)ée(s) - e(s) 

Rearranging the last equation gives the emulation error 

ee(s) in terms of the estimation error e(s) as: 

e(s) = A(s) e 	 Ce(s) + e(s)7 
	

(12) 



7-6 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 
	

Chap. 7 

e(s) = A(s) l  e 	 Ce(s) + e(s)] 	 (12) 

Example 

Suppose that A(s) = e sT  . Then 

e(t) = XT(t)C6(t) - 6(t-T)] 	 (13) 

and 

ee(t) = e(t+T) + XT(t)C6(t+T) - 6(t)] 	 (14) 

The filter induced error e(s) is zero if either T=0 or 6(t) 

is constant. 

The filter induced error e(t) is then closely related 

to the difference between the a-priori and a-posteriori 

errors discussed in a discrete-time context by Landau[2] 

and others. 

The estimator input 

In chapter 5, it was shown that the least-squares 

parameter estimator could be viewed as a single-input 

single-output system a with input e(t) and output e(t). In 

particular, the estimator input e(t) is given by (5.5.3): 

e(s) = A(s)ii(s) - XT  (s)6 	 (15) 

A 	 A 

= A(s)(iii(s) - (r(s)) = A(s)(e*(s) + ea(s)) 

Using equation 6 to replace the approximation error ea(s), 
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-A 
e(s) = A(s)e (s) 	 (16) 

- A(s)M(s)Cz(s) + ee(s)] 

And using equation 12 to replace the emulation error ee(a), 

e(s) = A(s)e*  (s) 	 (17) 

- A(s)M(s)Cz(s) + A(s)
-1 
 (e(s)+ e(s))] 

-* 	 ti 	 H 	 n 

= A(s)Ce (s) - M(s)z(s)] - M(s)e(s) - M(s)e(s) 	(18) 

Writing the disturbance and setpoint induced error ed  (s) as 

d(s) 
A  A(s)Ce  -A e 	 (s) - M(s)z(s)] 	 (19) 

the estimator input error e(s) is seen to contain three 

components, the disturbance and setpoint induced error 

ed(s), the filter induced error e(s) filtered by 	- M(s), 

and the estimator output error filtered by the transfer 

function - M(s). That is, 

e(s) = ed  (s) - M(s)e(s) - M(s)e(s) 	 (20) 

The error feedback system 

Equation 20 gives the estimator input e(s) in terms of 

the estimation error e(s), the filter-induced error e(s) 

and the disturbances induced error ed  (s). 	Combining this 

linear system with the time-varying estimator system a 

relating e(t) and e(t) gives the error feedback system 
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displayed in Figure 7.2.1. 

d 
e 	e I 	I 	e 
	0 	 
- 	I 	I 	I 	1 

	

I 	 I 

	

I 	r 	~ 	I 	- 

	

I 	I 	I 	l 	e 

	

<  ' 	I M(s) I 	0< 

Figure 7.2.1 The error feedback system 

The output error  

As well as being of interest in its own right, the 

effect of the emulation error ee(t) on the system output 

is of interest. This effect can be studied on the basis of 

the notional feedback system considered in chapters 3 and 

4. One difference here is that the difference between the 

emulator output and the emulated signal is now 

e 	 * (s) _ 	- e(s) + ea (s) + et 	 * (s) rather than 	- e e 	 (s) in 

chapter 3 and 	- e (s) + ea (s) in chapter 4. Another 

difference is that the neglected dynamics N(s) now appear 

explicitly. The corresponding block diagram appears in Fig-

ure 7.2.2. Define dr(t) to be the component of the system 

output due to the emulation error 

e 	 e y(s) -  L(s)  e
-sT Z(s) 

e(s) 1+L(s) 	P(s) (21) 

Using equation 12 this then gives the output error j(s) in 
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Figure 7.2.2 The notional feedback system 

terms of the estimation error e(s) and the filter-induced 

error e(s) as 

ey(s) -  
L(s) 	

e sT Z(s) A(s) lCe(s) + e(s)] 1+L(s) 	P(s) 
(22)  

Exponential weighting 

As in chapter 5, exponentially weighted signals are 

useful in deriving stability results. In chapter 5, it was 

shown that e(t) and e(t) could be replaced by exponentially 

weighted versions: 

~ 
ea(t) = ea e(t); ea(t) = eat e(t) 

and £) still has a gain of one as long as m < 0/2. 

y 
> 

L-< 0 

 

 

 

- 
I_e 
e 

(23)  
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Moreover, pre- and post- exponentially multiplying the 

linear transfer function M(s) gives M(s - a). The gain of 

this transfer function is called Ya  and, if M(s - a) is 

stable, is given by 

= sup l M( j 
a 	

w - a)I  
w  

This is considered further in the next section. 

7.3. THE M-LOCUS 

The error feedback system (Figure 7.2.1) for the adap-

tive case is similar to that in chapter 4 for the non-

adaptive case. In particular, the transfer function M(s) 

M(s) - Z+(s)E(s)A(s) 	N
-1  (s)-1 

P(s)C(s) 	1+L-1(s)N-1(s) 
(1) 

still appears in the feedback loop. The differences are: 

1. The unit feedback loop appearing in chapter 4 is 

replaced by the system a, which has a gain of one. 

2. The filter induced error e(s) appears as a disturbance. 

Not surprisingly, the transfer function M(s) is crucial in 

analysing the stability of the feedback system. Roughly 

speaking(details will appear in the next section), a stan-

dard Theorem applicable to this sort of feedback 

loop[4,5,61 says that the feedback loop will be stable if 

the loop-gain is less than one. As we have already decided 

that the gain of a with exponential weighting is less than 

one when making 

Assumption 1 

the exponential weighting coefficient a and the 

exponential forgetting factor p (section 5.3) are related 

by 

(24) 
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1~ , 
a = -2t3 

we get the rather simple result that stability of the feed- 

back loop follows from the gain of M(s - a) being less than 

one. 

There are two parts to this condition: 

1. M(s) must be stable. As P(s) and C(s) are chosen to be 

stable, this condition becomes that the transfer func-

tion: 

-1 
N (s)-1 	L(s)11-N(s)7  

1+L-1(s)N-1(s) - 1+L(s)N(s) 

be stable. This condition is satisfied if two assump-

tions are true: 

Assumption 2 

N(s - a) is stable. 

Assumption 3 

L(s - a) 	
is stable. 1+L(s - a)N(s - a) 

2. The gain of M(s - a) is less than 1. This can be writ-

ten as: 

Assumption 4 

Ya = sup ~ M(jw - a)~ 
W 

Note that assumptions 2 and 4 depend on the choice of 

N(s) in the decomposition of equation 4.2.3, repeated here 

as 

H(s) = e-sT B(s) N(s) 
A(s) (5) 

(2)  

(3)  

(4)  
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It is important to realise that, in the adaptive context, 

the nominal system B(s) and the resultant neglected dynam-A(s) 
ics N(s) are not chosen. Thus all that is required is that 

such a choice exists satisfying the above criteria. 

Finally, to deduce that the signals are bounded, we 

must also assume that the exogenous signals due to the set-

point and disturbance are bounded: 

Assumption 5 

edZ < K D 

where K
0 
is a constant. 

The importance of control weighting  

Typical neglected dynamics are low-pass. That is, 

Lt N(jw) = 0 

Hence, at high frequencies, 

~ Z+(s )E(s)A(s)  
M(s) 	

P(s)C(s) 	
L(s) 

Without control weighing, L(s) = co at all frequencies and 

thus the small gain condition cannot be satisfied. It fol-

lows that control weighting is essential when low-pass 

neglected dynamics are present. 

Although nothing has been proved so far in this 

chapter, it seems at this stage that M(s) is crucial in 

determining the stability of the self-tuning controller 

when neglected dynamics are present. As shown in the next 

section, stability can be shown (in terms of M(s)) for the 

case when e(s)=0, that is A(s)=1. Although not proved, 

simulations suggest that these results may be extended to 

(6)  

(7)  

(8)  
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include A(s)#1. 

7.4. ADAPTIVE ROBUSTNESS  

In this section, it is assumed that 

A(s)=1, that is e(s) = 0 	 (1) 

The error equations developed in the previous sections 

reveal that the robustness problem reduces to examining the 

single-loop feedback system of Figure 7.4.1. Note that as 

A(s) = 1 the filter induced error eA(s) is zero. 

    

   

e 

   

   

 

M(s) 

 

  

Figure 7.4.1 The exponentially multiplied system 

Outline of proof  

The proof proceeds as follows: 

1. In Lemma 7.1, the exponentially multiplied error 

This section involves some technical mathematics. It 
may be omitted on a first reading. 
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feedback system is shown to be L2 stable using the 

standard small-gain theorem[5] and the formula for the 

gain ya (7.2.24). 

2. In Lemma 7.2, it is shown how L. results about the 

error feedback system can be derived from the L2 

results about the exponentially multiplied error feed-

back system. 

3. Theorem 7.1 combines the two Lemmas to give input-

output stability results for the self-tuning controller 

in terms of the neglected dynamics N(s) and the emula-

tor design polynomials P(s), C(s) and Q(s). 

4. Theorem 7.2 (section 7.5) extends these results to 

include parameter boundedness and estimation error e(t) 

boundedness. This requires a persistent excitation con-

dition to be imposed on the signals affecting the sys-

tem. 

Lemma 7.1 (L2 stability of the exponentially weighted sys-

tem) 

If assumptions 1-4 of section 7.3 are true, that is 

M(s - a) is stable, m = 10 and ya<1. Then the exponen-

tially weighted system of equations displayed in Figure 

7.4.1 is L 2 stable in the sense that the estimation error e 

e(t) and the estimator input error e(t) are bounded by 

~ óe2aT
e2(T)dT < 1- l

a 4oe2aTed2
(T)dT + K1 

y 
(2) 

t 
J fe2aT

e2(T)dT < 1_
1,  4fe2mTed2(T)dT + K2 	 (3) 

0 	 ya 0 

where K1 and K2 are finite constants and ya is the gain of 

M(s - a) (see 7.2.24). 
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Proof  

This follows from the small gain theorem III.2.1 on 

page 41 ofC5] and the fact that the gain of £) < 1 (see 

chapter 5). o 

Remarks 

1. Setting a = 0, this theorem gives L2 stability of the 

system. This holds even with no forgetting (0 = 0). 

2. Using assumptions 2 and 3 and assuming that the distur- 

bance 	and the setpoint 	are uniformly bounded, the 

signal ed(t) is uniformly bounded. 

3. If the quantity ed(t) is exponentially decreasing fas-

ter than e-at, then so is e. 

Lemma 7.2 (Bounds on low-pass filtered signals) 

If the error system input ed(t) is bounded (assumption 

4), then the low-pass filtered estimation error: 

eF(t) ~ 4fe za(t 2)e (T)dT 
0 

is bounded by: 

n 	 K 

l eF(t) < 1 	y [J(2a) + e 
atKl] 

a 

Proof: From assumption 4, the integral in the righthand 

side of equation 2 of Lemma 7.1 is bounded by: 

4fe2aTed2
(T)dT < K 4fe2m2dT 

0 	 ° 0 

1  = 4( Z1Ce2mt-1] < 
4(2a)eat 

t 	 2 
(4)  

(5)  

(6)  



7-16 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7 

Substituting this into equation 2 of Lemma 7.1 and multi-

plying by e 
at gives the result. 

This Lemma gives conditions such that the signal 

„2 
obtained by passing the squared emulator error (e ) through 

the low-pass filter s +1
2a is bounded. Of course, this does 

not imply that the emulator error is bounded. A lemma due 

to Vidyasagar[6] (section 9.1) shows that this result does 

imply that the output signal obtained by passing the emula- 

tor error e into any low-pass system whose impulse response 

decays faster than e 
zat (in particular that generating 

ey(s) ) is in L~. 

This result is used to prove the main robustness 

theorem of this book. 

Theorem 7.1(Adaptive robustness) 

If assumptions 1-4 of section 7.3 are satisfied, then 

the output error ey(t) is bounded. 

Proof  

Let m(t) be the inverse Laplace transform (impulse 

response) of M(s). Then: 

t 
ey(t) = fm(t - T)e(T)dT 

0 

= jea(t T)
m(t - T)e 	m(t-T)e(T)dT 

0 

Using Schwartz's inequality: 

eyZ(t) Ç 
fe2a(t-T

)m
2
(t - T)dT.fe

-2m(t-T)e
2 
(T)dT 

O 	 O 

(7)  

(8)  
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Using assumptions 2 and 3 of section 7.3, it follows that: 

2a(t-T) 2 
Je 	m (t - T)dT < K ( 9) 
0 

where K is a constant. The result then follows from Lemmas 

7.1 and 7.2, and assumptions 1-4. 

Remarks. 

1. The adaptive and non-adaptive results are both based on 

the Nyquist locus of M(s). In the adaptive case, the 

locus must lie within the unit circle, and in the non-

adaptive case, must not encircle the -1 point. 

2. In the adaptive case, it is required only that there 

exist a nominal system 
	such that the condition on 

M(s) is satisfied. If the orders of B and A correspond 

to those of the numerator and denominator of the actual 

system G(s), then such a system always exists, namely 

= G(s) which gives N(s) = 1 and thus M(s) = O. A 

In the non-adaptive case, the condition on M(s) must be 

satisfied for the particular nominal system chosen by 

the designer. Even if the orders of B and A are 

correct, parametric error can give a non-zero M(s) for 

the chosen system. 

3. This result may be related to that of Kosut, Johnson 

and Friedlander[12,13] by 

M(jw - a) < 1 <_> Re{HeV(jw - a)} > 
z 

where 

1  H
ey 

= C1+M(s)]  
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4. The results differ from those of Kosut, Johnson and 

Friedlander[12,13] in that we consider an algorithm 

with control weighting which makes it possible to 

satisfy assumptions 3 and 4 of section 7.3. 

7.5. INTERNAL STABILITY 

Section 6 deals entirely with input-output stability; 

it does not directly give information about the properties 

of the parameter error 8 or about the data vector X. This 

section considers this problem, again for the special case 

of A(s)=1, that is cp(t) is realisable. 

This section shows that both the data vector X and the 

parameter error 6 are bounded. 	Not surprisingly, the 

latter result requires a persistent excitation condition on 

the data vector X. 

The properties of the data vector X are treated in the 

following Lemma: 

Lemma 7.3 (Boundedness of the data vector X) 

Under the same conditions as Theorem 7.1, all elements 

of the data vector X (equation 6.5.12) are uniformly 

bounded. 

Proof  

From Theorem 7.1, the system output y is uniformly 

bounded. 

The control signal is obtained from 

u(s) = Q(s)
LR(s)w(s) - c(s)7 	 (1) 

This section involves some technical mathematics. It 
may be omitted on a first reading. 
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Q(s)CR(s)w(s) - 
Z(s)

y(s) - e(s)] 

1/Q(s) and P(s)/Z(s) are proper in the case considered 

here. 	The corresponding components of the data vector X 

are obtained by filtering u (s) by the low-pass filter 

1/Z(s). 	This filtered signal has three components driven 

by w(s), y(s) and e(s). w(t) is, by assumption, bounded. y 

(s) has been shown to be bounded. The component due to 
A 	 A 

e(s) is also bounded,as we have shown that e(s) is bounded 

when passed though a low-pass filter. 

The elements of the X vector are obtained by passing y 

(s) or u(s)/Z(s) through proper transfer functions of the 

form sl/C(s); so these elements are also uniformly bounded. 

The boundedness result for the parameter error 6 is 

contained in the following Theorem: 

Theorem 7.2 (Bounded parameter error) 

If, in addition to the conditions of Theorem 7.1, the 

data vector X is persistently exciting in the sense that 

Assumption 6 

S(t) = Je 0(t T)X(T)XT(T)dT > E 	 (2) 
0 

where E is a positive definite matrix, then the parameter 

error 6 is uniformly bounded. 

Note that S(t) is the output of the low-pass filter 

used in the parameter estimator (equation 5.5.2). 
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Proof  

Equation 5.6.21 can be rearranged as 

V(t,a) = V(O,a) + fe
2aT

e2(T)dT - fe2ocTe2(T)dT 
0 	 0 

Multiplying each side of the equation by e zat gives: 

2 

TS6(t) = e 
2atV(0,a) + eF(t) A(t) 	 (t) - eF(t) 

where eF(t) and eF(t) are the filtered error signals 

defined as in equation 7.4.5 (Lemma 7.2). Lemma 7.2 then 

shows that the right-hand side of equation 4 is bounded and 

so: 

6(t)TS0(t) < K 3  ( 5) 

where K 3  is a constant. The result follows 	from assump- 

tion 6. 

o 

7.6. ROHRS EXAMPLE 

In a celebrated paperC19], Rohrs and his colleagues 

illustrated the poor robustness properties of a particular 

model-reference adaptive control algorithm by examining its 

performance on two particular example systems. In chapter 

4, the non-adaptive robustness properties were examined; in 

this section, the second of these example systems is used 

to illustrate the robustness results for the detuned 

model-reference adaptive controller analysed in the previ- 

ous section together with some related controllers. 	Simu- 

lations appear in the next section. 

(3)  

(4)  
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The system and the design parameters 

These have already been considered in the example con-

sidered in section 4.7. 

Robustness analysis  

As discussed in section 7.3, the basic requirement 

(assumption 2) is that the exponentially multiplied 

notional feedback loop (with neglected dynamics) should be 

stable. 

I 	 i" 	I 	i 	i 	 t 	I 
I 1+0.03s1 u 1 	l u 1 2s 	I+I 

0—i 	1-----1N ( s )1 	I 	 1-0 
I 	I 	qs 	I 	I 	I 	I s(l+s) I + 

          

          

 

0 	< 
1 
le 

   

1+0.3s 

1+0.03s 

  

      

        

Figure 7.6.1 The notional feedback system 

From Figure 7.6.1, the notional loop gain L(s) is 

L(s) = 2(1+0.3s)  qs(l+s) (1)  

We can get a rough estimate of the value of q required for 

stability as follows. At high frequencies: 

L(jw) 9'-- 0_6  
jwq 

w 

> 

(2)  
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and in particular the argument of L is about 	- 7/2 radi- 

ans. 	At a frequency of 10 radians sec-1, the argument of 

N(jw) is also - 7/2 radians and its gain is 100/80. 	Thus 

for the L(jw)N(jw) locus to pass though the -1 point: 

0.6 100 _ 1 
lOq'80 

that is 

6 ~ 0.1 q n 80 

To exemplify the use of the various criteria presented in 

this chapter, we will consider four examples based on that 

of Rohrs. These four examples are identical to those con-

sidered in chapter 4 except that we now consider adaptive  

control. 

The four examples have the following in common: 

1. Four frequency loci are plotted for values of w>0 in 

Figures 4.7.1-4: 

a) The actual loop gain: La(jw) (equation 4.3.5). 

b) The notional loop gain (with neglected dynamics 

included) N(jw)L(jw). 

c) The M-locus M(jw) (equation 4.6.3). 

d) The M'-locus M'(jw) (equation 4.5.4). 

2. The actual system H(s) is as given in equation 4.7.1. 

3. The emulator and controller design parameters are as 

given in equation 4.7.4-9. 

The four examples are different in the following ways: 

The parameter b determining the decomposition of equation 

4.7.2, and the control weighting factor q of equation 

4.7.9, are varied as in the following Table: 

(3)  

(4)  
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Example 	b 	q 

1 	1.0 	0.05 

2 	1.0 	0.2 

3 	0.5 	0.05 

4 	I 	0.5) 	0.2 

Remarks 

1. The loci for La and M'(s) are not relevant to adaptive 

control. 

2. In each case, N(s) is stable and so assumption 2 of 

section 7.3 is satisfied for sufficiently small a. 

3. In examples 1 and 3, the N(s)L(s) locus encircles the 

-1 point indicating instability; in examples 2 and 4 it 

does not, indicating stability. Thus examples 2 and 4 

satisfy assumption 3 of section 7.3 for sufficiently 

small a; examples 1 and 3 do not. 

4. In examples 2 and 4, the M(jw) locus has magnitude less 

than one at all frequencies. Thus assumption 4 of sec-

tion 7.3 is satisfied for sufficiently small values of 

a. 

5. The L(jw)N(jw) locus does not depend on b. Thus it is 

the same for examples 1 and 3 and for 2 and 4. 

6. In the adaptive context, all that is required is that a 

suitable nominal system  B(s) together with N(s), exist A(s)' 
satisfying 4.2.3: 

H(s) = e-sT B(s) N(s) 
A(s) (5) 

Thus in this context it is merely required that the 

criteria be satisfied for some value of b. In fact, the 
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criteria are satisfied for both of examples 2 and 4. 

To summarise, if q=0.2, the adaptive controller is 

stable, but if q=0.05 it has not been shown to be stable 

and may be unstable. 

7.7. SIMULATION RESULTS 

1.::%Qutput, .etpQ i nt, Mcd2l Qvtpvt, 
n 	 , 

r ~ ~ 

Emvi,.yt:r e3rim:tâ r c. 

0.4 

.r, 

 

50 

Figure 7.7.1 Example 1 

The simulation results of this section illustrate the 

results of this chapter and indicate that the results also 

seem to apply to a wider class of self-tuners than actually 

analysed. 	To enable comparisons to be made to the results 

of other workers, the example of Rohrs[l9] discussed in the 

previous section is considered. 
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~. E __; utGut 	:?t p: Int. M cd~l coutput. 

Figure 7.7.2 Example 2 

As in chapter 6, the self-tuning algorithms were simu-

lated using the SIMNON languaqeC2O,217 (Figures 7.7.1-6). 

All examples have the following in common: 

1. Two emulator parameters are identified. 

2. The initial S 1(t) matrix is, in each case, given by: 

S-1(0) = 1100 	0 1 
I 0 	1001 (1) 

3. The emulator design parameters are chosen according to 

the various strategies. 

4. All examples are detuned versions of the underlying 

algorithm. Q(s) is given in Tables 7.1 and 7.2 (pages 
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, ÌI V t.p,J t., 	_Pt.pc  i rt , 	 jiJ t.pt„I t.. 

C 

Q. ia'.5 

Q.$ 

1.1 .4 

Q. 

Figure 7.7.3 Example 3 

7-29&30). 

5. The algorithms are simulated using a system having the 

neglected dynamics 

N(s) - 
sZ  + Bs + 100 

dynamics for 50 time units. All examples have a unit 

output step disturbance occurring at time=l5 units; 

that is, one is added to the system output from time 15 

onwards. 

6. The upper graph of Figures 7.7.1-6 shows the setpoirit 

(a square wave between +1 and -1 with a period of 25 

units), the actual system output, and the model output. 

100 (2) 
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Qutput, :etpoint, Mode( outFut, 

Figure 7.7.4 Example 4 

The model output corresponds to: 

Z(s)- ym (s ) - P(s) (3) 

7. The lower graph of Figures 7.7.1-6 shows the evolution 

of the two emulator parameters with respect to time. 

The differences between the six examples are summarised 

in Tables 7.1 and 7.2 (pages 7-29&30). In Table 7.1, MR 

means model reference and PP pole placement. 

Remarks 

1. Despite the diversity of algorithms treated here, they 



7-28 	ROBUSTNESS OF SELF-TUNING CONTROLLERS Chap. 7 
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Figure 7.7.5 Example 5 

all have a common notional loop-gain: 

L(s) - 	
P(s)B(s) 	2(1+0.3s)  

Z(s)Q(s)A(s) 	qs(l+s) 
(4) 

Thus the L(s)N(s) locus of Figure 4.7.1 (for q=0.05) is 

appropriate to examples 2, 4 and 6; and Figure 4.7.2 

(for q=0.2) is appropriate to examples 1, 3 and 5. 

2. Examples 1 and 2 are as discussed in the previous sec-

tion. The self-tuning controller of example 1 is stable 

as predicted; that of example 2 was not predicted to be 

stable and is, in fact, unstable. Simulations starting 

off at the correct (that is, based on the correct nomi-

nal system) parameters and with a reduced initial vari-

ance did, however, give stability in both examples 1 
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Figure 7.7.6 Example 6 

5'. 

1.25. 

~ r -,~ 	• f 
 

~ •~ ~,~ 

ii 

LNo. Method A(s) B(s) 

1 MR s(l+s) 2s 

2 MR s(l+s) 2s 
3 MR s(l+s) 2s 

4 MR s(l+s) 2s 

5 PP (l+s)Z 2(1-s) 

16 PP (l+s)Z 2(1-s) 

SUMMARY 

P(s) Z(s) 
__L 

1+0.3s 1+0.03s 

1+0.3s 1+0.03s 
1+0.3s 1 

1+0.3s 1 

(1+0.3s)(1+s) 0.5B(s) 

(1+0.3s)(1+s) 0.5B(s)1 

Table 7.1 SIMULATION 
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qutput, (At F ,: i nt: M:,jo I, : ut put . 

' 

1.'25 2.5 

EmVl,3t.or pa r_3mèt?r5 

and 2. 

3. Examples 3-6 were not analysed in the previous section. 

But, as pointed out in remark 1, the L(s)N(s) loci are 



Table 7.2 SIMULATION SUMMARY 

Q(s) 
	

A(s) 

0.2/(1+0.03) 1 

0.05/(1+0.03) 1 

0.2 Z(s)/P(s) 

0.05 Z(s)/P(s) 

0.2 Z(s)/P(s) 

0.05 Z(s)/P(s) 

L 

1 

2 

3 

4 

5 

16 

No. 

	 L 

Design 

Off-line 

Off-line 

Off-line 

Off-line 

On-line 

On-line 
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appropriate. Thus M(s) is stable in examples 3 and 5 

and unstable in examples 4 and 6. It was suggested, but 

not proved, that stability of M(s) was essential for 

global stability of all the algorithms treated here. As 

shown in the appropriate Figures, this tentative pred-

iction is realised; the self-tuning controller in exam-

ples 3 and 5 is stable but unstable in examples 4 and 

6. 

4. The importance of the control weighting Q(s) was 

emphasised in section 7.3. In these simulations, 

Q(0)=0 in each case giving no low-frequency weighting. 

The weighting in examples 1, 3 and 5 is four times that 

in examples 2,4 and 6; as predicted, the robustness of 

the algorithms is improved by the control weighting. 
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CHAPTER 8 

Non-Adaptive and 
Adaptive Robustness 

Aims. To compare and contrast adaptive and non-

adaptive approaches to sensitivity reduction by 

feedback. To suggest a three degree of freedom 

approach to the design of self-tuning controll-

ers. 

8.1. INTRODUCTION 

It is now over 20 years since Horowitz[1,2] discussed 

the relationship between adaptive and non-adaptive feedback 

systems used for removing the effects of plant uncertainty. 

(Some readers may prefer the terms "passive-adaptive" 

or "ordinary feedback" to the term "non-adaptive" and the 

terms "active-adaptive", "plant adaptive" or "parameter-

adaptive" to the term "adaptive". Perhaps they could make 

the necessary translations themselves.) 

In his book[2] he gives a detailed discussion of some 

of 	the limitations of non-adaptive feedback and how these 

might be overcome using adaptive methods. In section 

8.21[1], he discusses the "inflexible relationship between 

sensitivity over system response bandwidth and sensitivity 

8-1 
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to rate of parameter variation". In particular, he says 

that 

suppose that in practice the parameter vari-

ations are slow. It therefore seems that the 

design is wasteful in its ability to cope with 

faster parameter variations than actually occur. 

It would be extremely desirable to exchange this 

unrequired benefit of feedback for something 

else, specifically for reduced system sensitivity 

to feedback transducer noise." 

He goes on to consider a particular example and con-

cludes that 

Some other kind of feedback data-processing 

is therefore required." 

In his book, however, no specific method of adaptive 

control is treated, and it is left as an open question 

whether an adaptive controller can, in fact, improve 

matters. 

Since 1963, there has been much work on adaptive con-

trol; but much of this work has been isolated from the fun- 

damental issues of feedback control theory. 	Indeed, all 

too often, adaptive control has been justified by the 

erroneous assumption that processes with uncertain dynamics 

require adaptive control. A recent critique of the field 

by Kidd[3] states: 

"Many researchers have jumped on the adaptive 

control bandwagon, but none seem to have publicly 

taken any trouble to to look deeply at the jus-

tifications for using adaptive control." 

Another crucial point raised by Kidd[3] is that, too 

often, adaptive control is used as an alternative to think-

ing about a control problem in terms of the fundamental 
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principles of feedback control. 

This chapter makes a start on bringing together the 

apparently opposing disciplines of adaptive and non-

adaptive control. In particular, we examine the suggestion 

of Horowitz, mentioned above, that adaptive control can 

provide a means of reducing the effect of sensor noise when 

controlling plants with large but slow parameter varia-

tions. We use the particular self-tuning controller (gen-

eralised minimum variance) for which robustness results 

have been found in chapter 7. 

Following[4], a plant with parameters which, though 

constant, are uncertain within a prescribed domain is con-

sidered. It is assumed that a two degree of freedom[2] high 

gain controller can be designed to satisfy performance cri-

teria in terms of the system response to setpoint changes, 

in the face of the plant uncertainty, using the methods of 

Horowitz and SidiE2,4], of Ashworth[5] or as simplified by 

East and Longdon[6,7,8]. It is assumed that these perfor-

mance criteria are of, or have been converted to[4], the 

form that the frequency response relating system output to 

setpoint changes lies between specified bounds for all fre-

quencies w < wc. Above wc, the loop gain is assumed to be 

reduced as fast as possible consistent with an adequate 

phase margin[2,4,6,7,8]. 	Based on this design, a self- 

tuning algorithm is presented which, by actively reducing 

uncertainty via parameter estimation, allows the high-

frequency loop gain to be reduced, thus reducing the effect 

of high-frequency sensor noise. Using the robustness 

results of chapter 6, the design implications of the self-

tuning approach are discussed and interpreted as a three  

degree of freedom design. 
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This chapter is based on a conference paper[9] 

8.2. TWO DEGREE OF FREEDOM DESIGN  

In chapter 6 of his book[2], Horowitz shows that, with 

non-adaptive control, any linear feedback controller for 

single input-single-output systems 

p(s) = H(s)u(s) 	 (1) 

based on only two measurements (the system output and the 

setpoint) is equivalent to the two degree of freedom con-

trol law: 

u(s) = H1(s)w(s) - HZ(s)y- (s) (2) 

displayed in Figure 8.2.1, 

- ;  
w 	I 	I 	+ 	u 

	

—>--1 H (s) I 	0 	> 	 
I 	1 	1 	-I 

I 
1 
1 

 

H(s) 

 

  

   

   

I 	 I 	1 
	< 	I H (s) 

2 	1 

Figure 8.2.1 A two degree of freedom controller 

where H(s) is the system to be controlled, H1(s) and H2(s) 

are the two controller transfer functions (giving the two 

degrees of freedom), u(s) is the control signal, y(s) is 

the system (plant) output, and w(s) is the setpoint. It is 

important to realise that any linear control system with 

these constraints (for example, conditional feedback) may 
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be written in this form[l]. 

With these two degrees of freedom, there are at least 

three objectives to be achieved by the control system: 

1. Desired response of the system to the setpoint. 

2. Insensitivity of the closed-loop system to plant param-

eter variation. 

3. Satisfactory response to plant disturbances and meas-

urement noise. 

Sometimes, it is possible to satisfy all three sets of 

requirements, sometimes it isn't. In particular, require-

ments 2 and 3 may be conflicting: 2 may require a feedback 

element H2(s) with high gain at high-frequencies which 

could give problems with high-frequency measurement noise, 

and so conflict with requirement 3. 

_ 	r 	r 	r 	r 	_ 	r 	r 	 _ 
w 	I R(s) I 	+ 	I Z(s)I u l 	I 	y 
—>—I 	 I 	o-1 	I—>---1 H( s) I 	, > 

	

I Z(s) I 	-I I g(s)I 	I 	I 	I 
1 	 1 	I 	1 	1 	I 	 1 	I 

I 
I 	 _ 	r 	r 
I 	 o 1 P(s) I 	I 
' 	 < 	1 	 I—J 

Z(s) 	I 

Figure 8.2.2 Another two degree of freedom controller  

The two degree of freedom controller can be rewritten 

(Figure 8.2.2) as: 

u(s) = q(s))C R(s)w(s) - cp(s)] 
Z (s)  

(3) 
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_ 	f 	I 	 _ 	I 	I 	_ 
w 	I R(s) I 	+ 	u 	I 	I 	Y 
—>H 	 I— O 	> 	I H ( s ) I 	, > 

1 q(s) I 	-I 	 I 	I 	I 
i 	1 	1 	 I 

1 
I  

	

I 	 I P(s) I 	I 

	

' 	 < 	 
I q(s) I 

Figure 8.2.3 A further two degree of freedom controller  

ii(s) - (4) P_(s)
Y(s) 

Z (s) 

where u(s) is the control signal P(s), q(s) and Z (s) are 

polynomials in the operator s; R(s) is a transfer function. 

This can be reorganised as in Figure 8.2.3, from which it 

follows that 

P(s)  q(s) = Hz 	R(s)  q(s) 	
H(s> (5) 

To avoid ambiguity, P(s) is chosen to have unit zero-

frequency gain: 

P(0) = 1 	 (6) 

P is thus the suitably normalised numerator of HZ(s) and Q 

the corresponding denominator. The polynomial Z (s) is, at 

this stage, redundant, but it will be used in the next sec-

tion. It is chosen to have unit zero-frequency gain and 

poles further away from the imaginary s-plane axis than 

those of the system. It follows that both P(s)/Z (s) and 

Z (s)/q(s) are proper: 

Z (0) = 1; degree(P) < degree(Z (s)) < degree(Q) 	(7) 



5(52  + 2Spwps + wp2) 
H(s) - 	 1250K 

(8) 
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This control scheme corresponds to the notional feed-

back loop associated with the detuned model-reference con-

trol of section 3.11. In this particular case, the notional 

feedback loop is realisable. 

Example (Horowitz) 

The example used in this chapter is drawn from chapter 

6 of[2]. The system is of the form: 

where K may vary from 1 to 4 and the two complex system 

poles can vary over a wide range with real parts between 0 

and -6 and with imaginary parts between j2 and j10. 

A design objective is that the closed-loop setpoint 

response has a dominant pole-pair within circles of radius 

1.2 centred at -10+j10. A number of design solutions are 

given by Horowitz[2]; one of these is 

H (s) = 6.2 109  s  + 18s + 167.5  
2 	

(s2 + 1040s + 5902)2  
(9) 

This corresponds to the alternative form where: 

P(s) = 1 + 1.07o + 0.59702 	 (10) 

q(s) = q(1 + 0.0299a + 0.0002870)2  

where 

q = 0.1167 
	

(12) 

and the definition 0 = s/10 has been made for clarity of 

presentation. 	P(s) has roots at about s=-9+j9.3, and q(s) 

has roots at about s=-520+j280. 	Roughly speaking, the 
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compensator H(s) is chosen as follows. The compensator 

zeros are near to the desired closed-loop poles. The com-

pensator has high enough gain to keep the two complex 

closed-loop poles close to the compensator zeros despite 

plant parameter variation, and to move the remaining plant 

pole far to the left. The compensator poles are chosen far 

enough away from the zeros to avoid stability problems with 

the far-off closed-loop poles. 

The feedback compensator has a gain of just under 20dB 

at low frequencies, rising to over 70dB. Horowitz comments 

(section 8.21[2] ) that: 

.. suppose that the system .. has exceedingly 

slow parameter variations, such that a year may 

elapse before the poles move from +j2 to -6+j10. 

The final design is very sensitive to high-

frequency feedback transducer noise .. but it 

seems ridiculous that it should be so, in view of 

the extremely slow parameter variations. Common 

sense tells us that the feedback data may be 

evaluated more slowly .. such that high-frequency 

noise has negligible effect. However .. slower 

evaluation by means of linear time-invariant net-

works cannot ensure the desired insensitivity." 

The purpose of this chapter is to suggest that the 

self-tuning emulator-based approach of this book is one 

possibility to implement the sort of control implied by 

Horowitz. 

8.3. THE EMULATOR 

A particular emulator was given in section 3.11 with 

Z (s) = P(es); Q(s) = q(s) 
	 (1) 

Z (s) 

and so -z(s) is realisable and given by: 
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P(s) 
4)z(s) - P( e s ) 

This choice corresponds to the two degree of freedom struc-

ture in equations 8.2.3&4. 

If the control law 

u(s ) = 	1 [W(s) 	
P(es)- 	 P(s)  

Q(s) 	
~(s)] = 

q(s) w(s) - P(es)y(s) 

is applied (corresponding to the notional feedback system), 

the disturbance v(s) together with a high gain 

H2(s) = P(s)/P(es) (as in the Example) can lead to unac-

ceptably large control signals when the high-gain control 

law of the previous section is used. 	To see this, the 

notional closed-loop system may be written as 

L(s) 	1 	- 	g(s)C(s)-  
Y - 1+L(s) EP(s)R(s)w(s) + P(s)B(s)v(s)] 	 (4) 

C- u(s) = 1+L(s) fBPR(s)w(s) - Bv(s)] 	 (5) 

where the nominal loop gain L(s) is 

L(s) = H
z
(s) 

A(s) = P(s)B(s)  
 B(s) 	q(s)A(s) (6) 

This approach corresponds to implementing the notional 

feedback system directly; in this particular case, this is 

possible as P(s) is realisable. Z(s) 

Over the range of frequencies for which L(s) is large, 

v(s) is amplified by the transfer function C(s)/B(s), 

which will be improper for a system with at least two more 

poles than zeros - this leads to large control signals. 

As a first step in solving this problem, the high gain 

design is converted into a low gain design via the emula-

tor. This low gain design no longer amplifies the high-

frequency noise, but is, of course, sensitive to plant 

(2)  

(3)  
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variation. As discussed in the following sections, the 

long-term sensitivity due to replacing P(s)/Z(s) by the 

emulator may be overcome by using a self-tuning emulator. 

Noting from chapter 2 that $(s) is the sum of the emu- 

-* 	 -* 
lator output 0 (s) and the error e (s): 

if)(s) = (T)*(s) + e*(s) 	 (7) 

u(s) - 
Z (s)C R(s

~a(s) - 0*(s)] 	 (8) 
q(s) Z (s) 

Of course, this only works if the nominal system parameters 

A and B and the nominal input u(s) are available to imple-

ment the emulator. In practice, this method is sensitive to 

parameter uncertainty and the unknown quantity u(s) has to 
A 

be replaced by the known control signal u(s), so the advan-

tage of the high gain control is lost. Effectively, another 

two degree of freedom structure has been created and, as 

such, has no particular advantages over that of equation 1. 

8.4. THREE DEGREE OF FREEDOM DESIGN 

The input-output predictor structure removes high-

frequency noise at the expense of sensitivity to parameter 

variation. If, however, plant parameters vary slowly, a 

self-tuning emulator can be used. 

This adaptive algorithm has two additional free polyno-

mials C and Z (s) in addition to the P(s), q(s) and R(s) 

already fixed by the two degree of freedom design. These 

appear in the identity 2.3.4 as a transfer function 

C(s)/Z (s) and thus give rise to one more transfer function 

degree of freedom, making three in all. 
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As discussed in section 3.11, one possible choice of 

2-(s) is: 

Z (s) = P(es) 	0 < e < 1 	 (1) 

e=l gives Z (s) = P(s) and i(s) = y, and thus the algorithm 

corresponds to the original two degree of freedom design. 

On the other hand, e 	0 gives the maximum noise reduction 

via the self-tuning emulator. Intermediate values allow a 

trade-off between the two extremes. 

Thus the self-tuning approach can be interpreted as a 

three degree of freedom design method. The additional 

degree of freedom allows an additional trade-off to be made 

in the design process. 

8.5. ROBUSTNESS  

To examine the robustness of controllers to plant 

uncertainty the uncertainty must be modelled. For simpli-

city, the disturbances will not be included in the analysis 

of this chapter. As in chapter 4, the plant is assumed to 

be linear, and thus can be represented as the nominal plant 

B(s)/A(s) in series with the neglected dynamics N(s): 

B(s)- 
= y 	A(s)u(s); u(s) = N(s)u(s) 

where N(s) (see chapter 4) is a transfer function given by 

	

N(s) =  actual system 	H(s)  A(s)  

	

nominal system 	B(s) 
	 (2) 

and u(s) is the control input. As in chapter 4, this sys- 

tem equation can be rewritten in terms of an additive dis-
turbance u(s) as 

y(s) = ÂCú(s) + u(s)] (3) 

where (in the absence of disturbances): 

(1) 
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u(s) = (1 - N(s) 1 )By 

Two degree of freedom design 

Using the two degree of freedom control law (either 2 

or 3&4 ), the closed-loop system response can be written 

as: 

y(s) = yo(s) + y(s) (5) 

where y(s) is the output error (compare with ey(s) in 

chapter 7). The nominal system output is 

L(s) 	1 
yo(s) 	1+L(s) P(s~ 

L is the nominal loop gain and y(s) is given by 

y(s) = A 1+L(s)u(s) = Z
o(s) y 

where 

1 - N(s)-1 _ Ao(s) 	1+L(s) 

The two degree of freedom design method[2] as simplified by 

East[6,7,8] is based on making 7s0(s) sufficiently small at 

each frequency w within a frequency band 0 < w < we to 

satisfy design specifications. 	For w > wc, the nominal  

loop gain is reduced as rapidly as possible. 

Alternatively, the output error can be expressed as 

y(s) = ii(s) o
(S) (9) 

where 

A(s) _ 	
(s) 	1 - N(s) 1 

1-Z 
0
(s) 	L(s) + N(s)-1 

(4) 

(6)  

(7)  

(8)  

(10) 
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Typically, the design will ensure that D0(s) is small for 

w < wc; in addition, if N(s) represents low-pass dynamics, 

N 1 will be large at high-frequencies and so 

L1(s) 	-1 for sufficiently large w > we 	 (11) 

Three degree of freedom design. 

There is an additional source of error when applying 
^ 	 ^ 

self-tuning control: e(s) = i(s) - 4(s)#0. It is shown in 

chapter 5 that 

e(s) = SZe(s) 	 (12) 

where SZ is a time-varying system representing the tuning 

algorithm. In addition , as discussed in chapters 4 and 7, 

the estimator input error is related to the estimation 

error, the setpoint and disturbances by 

e(s) = ed (s) - M(s)e(s) 

where 

M(s) _ 
E(s)A(s) 

L(s)~(s) - 
Z+(s)E(s)A(s)CN 1(s)-1]  

P(s)C(s) 	
p(s)C(s)C1+L -1 	-11(s)] 

These equations form a feedback system. It is shown in 

chapter 7 that a sufficient condition for stability is that 

the gain of the linear transfer function M(s) be less than 

one at all frequencies. 

The system output is given by 

L(s)  
y(s) = yo(s) 	y(s) + 1+L(s)e(s) (15) 

(13)  

(14)  

As well as requiring y(s) to be small, we require e (s) to 



8-14 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 
	

Chap. 8 

be small. This implies that M should be small at the 

relevant frequencies. 

8.6. COMPARATIVE ROBUSTNESS  

The aim of each design method is to make the system 

output y sufficiently close to the nominal system output y0 

to satisfy the design objectives within the frequency range 

0 < W 	W. 

It is important to distinguish between the methods used 

by the non-adaptive and adaptive controllers to reduce the 

effect of plant uncertainty. In the non-adaptive case, the 

nominal plant B(s)/As is chosen by the designer, and this 

implies the value of N(s) = H(s)A(s)/B(s). In the adaptive 

case, however, all that is required is that a suitable nom-

inal plant B/A exist so that, together with the correspond-

ing value of N, the robustness conditions are satisfied. 

If B/A had the same structure as H(s), such a nominal sys- 

tem 	would be B(s)/A(s) = H(s) and N=1 and so the robust- 

ness conditions would be satisfied. But, in practice, this 

would not normally be the case. Indeed, for the purposes of 

this discussion, it will be assumed that the neglected 

dynamics are low-pass: 

Lt N(jw) = 0 
W-■00 

( 1) 

and hence that 

Lt A(jW) = -1 	 (2) 
W-oco 

Two degree of freedom design 

The two basic design rules for two degree of freedom 

non-adaptive design are (roughly speaking)C4,5,6,7,87: 
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NA1. A (s)(jw) must be sufficiently small for w < we  to 

satisfy the design constraints. 

NA2. L(jw) must be reduced as fast as possible (consistent 

with adequate phase margin) for w > w . 
c 

The first rule gives insensitivity to plant variation; the 

second reduces the effect of high-frequency sensor noise as 

much as possible. 

Three degree of freedom design 

The self-tuning method also requires that the underly-

ing design method be insensitive to plant variations,so the 

first adaptive design rule is the same as the first non-

adaptive design rule: 

Al. NA1 

In addition, it is required that M(jw) be small at all fre- 

quencies. 	The two frequency ranges above and below we  are 

considered separately. 

w<wcHere L(s) is large, so LD(s) s' 1-N 1. The adaptive con-

troller must thus be capable of reducing the uncer-

tainty N(s) in this frequency range. Hence the second 

design rule is: 

A2. The structure of the adaptive emulator must be such 

as to capture all significant plant dynamics at fre-

quencies w < wc: 

w>wcdegree(EA) = degree(PC), so 	for 	high frequencies 

EA/PC-K, where K is a non-zero constant. In addition, 

s(s) 	land so M 	- KL. Hence, L(s) must be small 

at high frequencies and thus the third adaptive design 

rule is the same as the second non-adaptive design 
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rule: 

A3. NA2 

As pointed out by Horowitz and Sidi[4], minimum phase 

systems can, in principle, support a feedback control 

design with infinite loop-gain at all frequencies; but this 

is undesirable for reasons of sensor noise. Hence, design 

rule NA2 is used in practice. 	The arguments leading to 

design rule A3 show that, for the adaptive case, such an 

infinite notional-loop gain approach is not merely undesir-

able but leads to a design which cannot satisfy A3. Thus a 

pure model-reference approach with 1/P as the desired model 

and Q=0 is not feasible in practice. Although the algo-

rithms are different, this conclusion is in accordance with 

those of Rohrs and colleagues[l0] concerning the impracti-

cality of model-reference adaptive control. 

8.7. SUMMARY 

An initial attempt has been made to unite the non-

adaptive and adaptive approaches to feedback control for a 

particular, but important, case: a single-input single-

output system with constant but uncertain parameters where, 

although non-adaptive control can yield the desired insen-

sitivity, the resultant amplification of sensor noise is 

unacceptable. It is suggested that the non-adaptive design 

is a prerequisite to the adaptive design; this is in dis-

tinction to the commonly held view that the use of adaptive 

control avoids design. In particular, the pure model-

reference version of the algorithm in this chapter, which 

attempts to match the closed-loop system to the reference 

model 1/P at all frequencies,is not a practical algorithm. 

Much work remains to be done in this area. Detailed 

design examples are required to refine the broad outline 

presented in this chapter. It would seem that a similar 
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approach could be applied to the multivariable and cascade 

controller configurations of the following chapters. 

An interesting extension of these ideas would be to 

consider significantly non-minimum phase systems (with 

time-delay or right half-plane zeros) where these charac-

teristics are removed from the notional system by the emu-

lator. 
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CHAPTER 9 

Cascade Control 

Aims. To consider the cascade control of 

single-input single-output systems with a number 

of measurable signals available. To introduce a 

recursive emulator approach to cascade control. 

9.1. INTRODUCTION 

If self-tuning methods are to be widely used in real 

applications, it must be possible to use self tuning con-

trollers as components within a larger multi-loop control 

system. The current practice in the process control indus-

try is that a control scheme for a multi-loop process is 

built up out of a number of simple modules rather than from 

one complex multi-loop algorithm. The philosophy behind 

this chapter is to develop a similar approach for self-

tuning algorithms - they should be a simple component out 

of which complex control schemes may be created. 

As part of this process, simple standard multi-loop 

configurations are under investigation. This chapter con-

siders a standard configuration: cascade control; the next 

chapter considers decoupling control of two-input two- 

9-1 
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output systems. With the exception ofEll, cascade control 

has received little attention in the context of self-

tuning. Derivative generating (model-reference) type emu-

lators (section 2.2) in cascade control are discussed 

in[2]; this chapter extends the results to cover all of the 

emulators of this book. 

9.2. CASCADE SYSTEMS  

u 	 y =u 	y =u 	y 	u , 	i y 
1 113112181 2 31B 1 3 NIB I N 

—>—{ — I____>___I — f—>—__I — f—. . . >--I — i___> 
I A I 	I A I 	I A I 	I A I 
~ 	 1 	I 	1 	i  

Figure 9.2.1 Cascaded systems 

A class of systems to which cascade control is 

appropriate is given by the series connection of a number 

of systems of the form (Figure 9.2.1): 

-sT. B.(s) 
yi- (s) = e 	i A1(s)ui(s) + vi- (s) i 

(For simplicity, initial conditions will be ignored in this 

chapter). The series interconnection is specified by: 

ui- (s) = y
i 1

(s); i = 2..N (2) 

The (single) output to be controlled is yN; the (single) 

input available for control is ul(s). The disturbances are 

as described in section 1.9. 

It is common in the process industry to have a number 

of measurements pertaining to various stages of a given 

process; current self-tuning methods cannot use such 

(1) 
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information. The algorithm presented in this chapter goes 

some way to filling this gap. 

9.3. POSSIBLE CASCADE METHODS 

There are a number of ways of extending the single-loop 

methods of earlier chapters to control the cascade systems 

of equations 9.2.1&2. Some of these will now be con-

sidered. For simplicity, assume vi(s)=0 for the rest of 

this section. For each method, advantages are indicated by 

"(+)" and disadvantages by "(-)" 

Single-loop control  

One possible strategy is to ignore the intermediate 

signals ÿi(s) i = 1..N-1, and just have a single-loop 

self-tuning controller using yN  as output and y0  = u(s) as 

input. 

(+) This requires no special algorithm. 

(-) The single self-tuner must correspond to a system with 

order equal to the sum of the subsystem orders. This 

may be large. 

(-) When ignoring the additional information provided by 

the intermediate outputs, the system is more difficult 

to control in terms of both phase lag and disturbance 

rejection. 

Ignoring inner loops  

A common way to implement cascade control loops is to 

ignore the dynamics of loops inside the one being designed. 

That is, having closed i-1 cascaded loops to give a system: 

1-1(s ) = Si-1(s )w
1-1

( s) (1) 
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(where w. is the setpoint to the ith controller); the ith 

loop is designed as if Si_1(s) = 1. The approximation is 

thus that the input to the ith system (the output of the 

i-lth system) follows the i-lth setpoint exactly: 

wi-1

- 	

(s) `` yi-1

- 	

(s) 

(+) Each individual self-tuner has structure corresponding 

to the relevant subsystem. The order of the subsystem 

may be much less than that of the overall system. Thus 

control is easier and disturbance rejection improved. 

(+) By using the additional information provided by the 

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion. 

(-) The result will only be satisfactory if the individual 

subsystems are ordered 	in terms of increasing time 

constant. If the dynamics of the i-lth loop are not 

negligible with respect to the ith loop, poor perfor-

mance and even instability may result. 

Taking account of inner loops  

The problems encountered in the previous section may be 

overcome by including the dynamics of inner loops in the 

design of the outer loops. That is, using the notation of 

the previous section, the ith loop is designed on the basis 

of: 

B.(s) -  
yi(s) - A1(s)Si 

1(s)wi  1(s) 
i 

(3) 

(2) 

(+) Dynamics are not neglected; the dynamics of the inner 

loops do not affect the accuracy or stability of the 
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final design. 

(+) By using the additional information provided by the 

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion. 

(-) The compexity of the design increases with the loop 

index i. Indeed, the outer loop is of the same complex-

ity as that of single-loop control. 

The recursive emulator method 

In view of the above methods, there seems to be a need 

for a method which will handle cascaded systems with simi-

lar time-constants while retaining a simple structure based 

on N 	self-tuners operating on the N measured outputs. 

This algorithm is introduced in the next seccion; here its 

merits in with respect to the other methods are outlined: 

(+) Each self-tuning emulator operates on a subsystem and 

is thus simple. 

(+) The effect of inner loops is exactly allowed for. 

(+) By using the additional information provided by the 

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion. 

(-) The reference model for each loop must be identical. 

This implies that each subsystem have similar dynamics. 

(-) An additional level of coordination is required when 

compared to the cascade method ignoring inner loops. 

The method presented is not the only possible, but it 

is felt that it strikes a balance between complexity and 
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flexibility of use. 

9.4. THE RECURSIVE EMULATOR METHOD 

The aim of this method is to give a closed-loop system: 

-sNT 
pN(s) = e 	

ZN(s)-N(s) 
P (s) 

with the restrictions that: 

deg(P) = deg(Aj(s)) - deg(Bj(s)); T = Tj 

for all j = 1..N. 

To achieve this, define: 

= 
I sT P(s)li 

~i,j 	l e 	Z(s)I yj 

The emulator with i=1 corresponding to each individual sys- 

tem is given by:  

F.(s) 	G1(s) 

ml,j 	Cj(s) yj + C.
3
(s) yj-1 

where: 

P(s)C (s) 	 F.(s) 

Aj(s) - E
j(s) + A~ 

and: 

Gj(s) = Bj(s)E(s) 	 (6) 

Once again, Cj(s) is chosen for each subsystem. The 

corresponding error is then: 

A The subscripts refer to the loop index, not to the 
emulator version 

(1)  

(2)  

(3)  

(4)  

(5)  
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e1 j  = Ej(s)z 

A recursive expression for of  .may be obtained from these 

definitions as follows: 

(pi,j = P1(s)(1)1 j 	 (8) 

= P1(s)¢*
1,j + P

1(s)e
1,j  

Using the above definitions, this can be further expanded 

as: 

F.(s) 	 G.(s) 
_  1 	 1  

i,j 	Cj(s)i-1,j + Cj(s)0i-1,j-1 (9) 

+ Pie. . 
1,] 

There are many possible approximations to 0ij but to 
,  

be useful they must have the following properties: 

a) The approximation error must depend only on distur-

bances, not on the control signal. That is, the approx-

imation does not affect closed-loop stability. 

b) The approximation must be realisable; it must not con-

tain derivatives of disturbance terms. 

F.(s) 	G.(s) 
As both C1(s)  and C1(s)  are proper, a realisable emula- 

tor * 	> i,j may be defined as: 

F.
-I
(s) * 	 G1 (s) 

i,j 	C.(s)C  i-1,1 + C.(s)® i-1,j-1 	
(10) 

The corresponding error e. 	is defined as: 1,3 

* 
e. 
1,j - i,j   i ,j 

(7) 
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The recursive formula for the error is then: 

P
i 	

Fj(s) 

ei,j = 
P (s)e

l,j + Cj(s)e í-1,j 
(12 ) 

G.(s) 
1  

+ Cj(s)ei-1,j-1 

The recursive emulator for a 3-loop cascade system 

appears in Figure 9.4.1. 

9.5. SELF-TUNING CASCADE CONTROL 

To implement the recursive emulator for an N-loop cas-

cade control system, the N polynomial pairs {F1(s), G1(s)1 

are required. It is proposed that these be generated 

(together with estimates for m l 
j 
) using N self-tuning 

emulators of 	each operating on one of the N 

systems of equation 9.1.1. The control signal u(s) (=y0) 

may be generated in two stages: 

1. Compute the emulator outputs: 	which have no direct 

link to the control signal u, that is for i<j. This 

gives the N values 0
i-1'i for i=1..N. 

2. Letting ~N'N = w, compute cpl'1 for i = N-1..0 using 
A 

equation 9.4.9. The control signal is then u = 0
0,0 

9.6. EXAMPLES 

To illustrate the two non-adaptive cascade control 

methods, consider a double integrator system (see Figures 

9.6.1&2) where the output of each integrator can be 
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Figure 9.4.1 The recursive emulator 

measured. That is: 

Z(s) =
s   

l 	l 	1,1 (S) (1) 

For each control method, the objective is to give a 
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setpoint tracking response corresponding to a critically 

damped system given by: 

Z(s) 	1  
P(s) 	(l+ps)2 

i.e. 

Z(s) = 1; P(s) _ (l+ps)2 	 (3) 

Single-loop ccntrol 

w 

OH 	 F—>--i 	 I--->—I 	 F— r--> 

1 	 I Y 

- I 

	I 	Y 

- I 

	I 	Y 
1 1+cs 	1 	0 1 	1 	1 	11 	1 	I 	3 

1 p+2pc+pc I 	I 	s 	I 	I 	s 	I 
I 	 i 	1 	I 	I 	1 

1 
1 1+(2p+c)s 1 

	

<—~ 	  F< 

	

I 	l+cs 

	

1 	  

Figure 9.6.1 Single-loop control  

If the intermediate variable is not used, a filter 

polynomial C(s) = l+cs must be used to give a realisable 

control law (without derivatives). The left-hand side of 

identity 9.4.5 becomes: 

P(s)C(s)  
A(s) 

(4) 

1 + (2p+c)s + (2pc+p2)s2 + p2cs3  
2 

s 

(2) 
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This gives: 

E = (2pc+p2) + pZcs 	 (5) 

F = 1 + (2p+c)s 	 (6) 

The resultant feedback control law appears in 	Figure 

9.6.1, and may be written as: 

u (s) - 
1 	(2pc+pZ) + pZ Cs 

Cw(s) 	1 + (2p+c)s y(s)] 
l+cs 

Ignorinq inner loops 

w 	i 	1 	 r 	1 1 	1 Y 1 	1 	Y 

	

I 	1 	I 	Ill 	I 	1 	I 	ll 	1 	I 	2 

	

—>0---I 	 F-0--1 	F---i 	 I 	r I 	 I—r—> 

	

I 	P 	I 	I 	I 	PI 	 II 	I 	s 	l 

	

1 	1 	I 	L 	i 	1 	I 	1 	i 	I 
1 	  < 	 1 

Figure 9.6.2 Ignorinq inner loops  

Choose both the inner loop controller and the outer 

loop controller (ignoring inner loop) to give a setpoint 

response: 

   

(8) P(s) 	l+ps 

l+cs (7) 

In this case, a filter C is not required and the left-hand 

side of identity 9.4.5 becomes: 
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P(s)C(s) 	l+ps 	 (9) 
A(s) 	s 

This gives controller polynomials: 

E(s) = p; F(s) = 1 	 (10) 

If the dynamics of this inner loop are ignored, the 

outer loop dynamics are, in this case, identical to the 

open-loop inner loop dynamics. Thus the outer loop con-

troller is the same as the inner loop controller. This 

gives: 

u 	= ZCw(s) - yz(s)] - py(s) 
P 

This is shown in Figure 9.6.2. 	The closed-loop setpoint 

response is, of course, not correct. It is given by: 

y2(S) - 	1  z 	zw(s) 
l+ps+p s 

Taking account of inner loops 

The design of the inner loop is the same as in the pre-

vious section. 

The system response, with the inner loop closed, from 

the inner loop setpoint to Y2(s) is then: 

1  
s(l+ps) 

As in the previous section, the outer loop controller 

requires a filter C, again chosen as C(s) = l+cs. The 

left-hand side of identity 9.4.5 becomes: 

P(s)C(s) _ (l+ps)z(l+cs)  
A(s) 	(l+ps)s 

(14) 

(12)  

(13)  
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w Y i Y Y 	i 
1 	l+cs 1 01 1 	1 	I 1 	1 1 	1 	1 	1 	2 

H-7—> 
I 	p+c+pcs I 

F—> —i 
PI 

I 

F—> 
si list I 

I I 

1 1+P 	1 
I 	 I 	 
1 1+c 1 
	, 

Figure 9.6.3 Taking account of inner loops  

1 + (p+c)s + pcs  
s 

It follows that: 

E = (p+c) + pcs; F = l+ps 	 (15) 

The resultant feedback control law appears in Figure 9.6.3 

and may be written as: 

ul(s) = ~ p+cl+cpcsCw(s) - 
l+ps yz(s)] (16)  

The recursive emulator method 

As the two cascaded systems are identical, the 

corresponding polynomial identities are the same and given 

by: 

P(s)C(s) 	l+ps  
A(s) 	s (17)  
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Figure 9.6.4 The recursive emulator method 

This gives: 

E1  (s) = EZ  (s) = p; F1  (s) = FZ(s) = 1 

The three emulators are thus given by: 

A 
(I)  1,1 = 57 1 (s) + pul(s) 

A 
(0 

1,2 = y
Z(s) + 1:).r 1(s) 

ic 	 ,F 	 ic 
0 2,2 	(I)  1,2 + Pm  1,1 

The resultant control law appears in Figure 9.6.4 and may 

be written as: 

ul(s) = ZCw(s) - 2py1(s) - y Z(s)] 
P 

(22) 

This may be compared with the single-loop controller of 

Figure 9.6.2. 	In equation 22 (in the absence of distur- 

bances), yl(s) = sy2(s). This equation becomes the same as 

(18)  

(19)  

(20)  

(21)  
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7 if, in that equation, C=1. However, in practice, such 

differentiation is inadmissible. 

These examples illustrate that the recursive emulator 

method leads to the simplest control law giving the desired 

closed-loop system. Moreover, the two corresponding self-

tuning emulators operate on first-order systems; the first 

and third each require a self-tuning emulator operating on 

a second—order system. Finally, unlike the third example, 

the controller parameters for the outer loop do not depend 

on those for the inner loop. 
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CHAPTER 10 

Two-Input Two-Output Systems 

Aims. To consider the control of two-input two-

output systems using two self-tuning controllers 

with feedforward. To analyse the robustness of 

the self-tuning control in the presence of 

neglected loop-interaction dynamics. 

10.1. INTRODUCTION 

A typical process control system will involve many con-

trol loops. Often, some of these loops will involve mutu-

ally interacting systems. It follows that if self-tuning 

methods are to be of use in large process control systems, 

they must be able to perform satisfactorily in such an 

interactive environment. One approach to the control of a 

number of interacting loops forming an n-input n-output 

system is to use a single multivariable self-tuner. Such 

approaches have been reported in the literatureC1,2,3J. 

Of course, the distinction between the two approaches 

is vague. 	Borisson[l] has shown that a multi-loop self- 

tuning regulator may be viewed as a number of single-loop 

controllers with a shared database, Morris, Nazer and 

Wood[3] and Peel, Morris and Tham[4] also make this point. 

10-1 
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Nevertheless, an advantage of the one-loop philosophy is 

that from the start it implies that a multiloop process 

should be controlled using a number of autonomous (from 

both the hardware and software points of view) one-loop 

modules. This is in keeping with the current trend towards 

decentralised distributed control systems based on 

microprocessor units connected via a local area network. 

The particular algorithm used here is the detuned model-

reference controller of section 3.10; but it would seem 

that the results extend to other emulator-based self-tuning 

controllers. 	As noted in chapters 3 and 6, this algorithm 

has PI and PID versions[5,6]. 

This latter approach gives rise to two distinct prob-

lems addressed in this chapter: 

a) Do self-tuners, designed as if there were no loop 

interaction, behave satisfactorily if interaction is 

present? 

b) Can self-tuners be modified to account for interaction 

and, if so, do they then behave satisfactorily? 

This chapter is limited to a two-input, two-output sys-

tem. The extension to n-input n-output systems with 

neglected dynamics in the forward path is given else- 

where[7]. 	For such a system, this chapter provides a 

theoretical analysis of each question. 	Both design and 

analysis are based on methods introduced in earlier 

chapters of this book in the context of single-loop con-

trol. In this chapter the detuned model-reference con-

troller of section 3.10 is discussed; however, the main 

idea would seem to apply to other algorithms. The design 

follows a three-stage process: a notional feedback loop 

design, a corresponding emulator-based design and finally a 

self-tuning emulator design; the analysis uses the input-

output methods of chapter 7. This chapter concentrates on 

the additional design and analysis required in the two-loop 
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case. 	In the single-input single-output case (Chapter 7), 

the robustness problem arises from unmodelled dynamics in 

the transfer function relating input to output; here it 

arises from unmodelled, or partially modelled, interaction 

terms. 

The analysis of the two-input two-output adaptive and 

non-adaptive decoupling methods of this chapter is much 

simplified by the use of a representation whereby interac-

tion is modelled by system outputs being coupled to system 

inputs. This approach is found in certain works on the 

analysis of large-scale systems, for example[8,9]. This is 

in contrast to the usual transfer function matrix approach 

where interaction arises from coupling from inputs to out-

puts. In this chapter, the former representation is called 

the feedback interaction model, and the latter representa- 

tion is called the feedforward interaction model. 	In the 

the case of two-input, two-output systems, these models are 

related via the relative gain array of Bristo1110]. 	These 

two alternative models have been discussed in the chemical 

engineering literature: the feedforward model has been 

called the P-canonical structure and the feedback model the 

V-canonical structure[4,11,12,13]. 

Robustness results are derived for four cases: with and 

without decoupling and with and without adaptation. This 

chapter is based on an internal report[l4]. 

The chapter is organised as follows. Section 2 presents 

the feedback interaction model of two-input two-output sys-

tems and examines the relationship of this model to other 

representations. Three illustrative examples are given. 

Section 3 describes non-adaptive and self-tuning methods 

for the control of two-input two-output systems. As this 

self-tuning method has been discussed in earlier chapters, 

section 3 mainly considers the additional detail required 

for the two-loop case. In section 4, it is shown that the 
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two-loop self-tuning control method is associated with a 

single-loop error feedback system. Section 5 presents the 

non-adaptive robustness results, and section 6 the 

corresponding adaptive results. Section 7 concludes the 

chapter. 

10.2. THE SYSTEM 

The interactive two-input two-output system considered 

here is displayed in Figure 10.2.1, and is described by: 

yl(s) = S11(s)Cul(s) + S12(s)y2(s)] 	 (1) 

y2(s) = S22(s)Cu2(s) + S21(s)y1
(s)] 	 (2) 

u 	 r 	 r 	 Y 
1 	 I 	 I 	 1 

> 	0 	I S (s) I 	, 	> 

	

I 	I 	11 	I 	I 

	

I 	' 	 ' 	 i 

	

I 	 I 
r 	 ~ 	 ~

■
r 

I 	 I 	 I 	 I 

	

 

S (s) I 	 I S (s) I 
I 	12 	I 	 I 	21 	I 

	

~ 	~ 

_ 	 I 	 I 	_ 
Y 	I 	r 	 r 	 I 	u 
2 	I 	I 	 I 	I 	2 

< 	 I S (s) I - 	0 	< 
I 	22 	I 

Figure 10.2.1 The open-loop system 

Disturbances may be included in the algorithms and in 

the subsequent analysis, but for clarity and simplicity, 
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this aspect is ignored in this chapter. Similarly, initial 

conditions are not treated here. 

The two interacting systems have outputs y1(s) and 

y2

- 

(s). The interaction is a consequence of the transfer 

functions S (s) and S (s). 
21 	 12 

Equations 2.1 and 2.2 may be rewritten in matrix form 

as: 

y = S1(u + S2y) 	 (3) 

where 

IS 	(s) 	0 	I 	1 	0 

	

 
11 	

S 	(s)I 
 

sl = I 	0 	S(s)I; S2 - I S 	(s) 	
1 02 
	I 

	

22 	1 	 I 21 	 I 

and 

i
yl(s) I 	~ ul(s)i 

Y = l
y2(S)i , u 	i u 2 (s)i 

S1 is a diagonal transfer function matrix, S2 is an off-

diagonal transfer function matrix and y and u are vectors 

of outputs and inputs respectively. Equation 2.3 will be 

called the feedback interaction model in this chapter. 

This structure seems quite general (for a linear two-input 

two-output system), as other structures (such as coupling 

from input to input) can be incorporated by suitably rede-

fining the various transfer functions. 

For example, a common system model is: 

yl

- 

(s) = R11(s)u1- (s) + R12(s)u2- (s) 

y2- (s) = R22(s)u2- (s) + R21(s)ul- (s) 
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This may be written in the usual transfer-function 

matrix form as: 

y = Ru 	 (6) 

Equation 2.6 will be called the feedforward interaction 

model. 	In this two-input two-output case, R is given in 

terms of S by: 

R = Cl - S S12  ] 1 S-1 	 (7) —   

or, in terms of the individual elements, by: 

R11(s) = Cl-LI(s)] 1511(s) 	 (8) 

R12(s) = Cl-LI(s)] 1LI(s)S21(s) 
1 	

(9) 

where the interaction loop-gain L1(s) is given by: 

LI(s) = S11(s)S12(s)S22(s)S21(s) 	 (10) 

R22(s) and R21(s) are given by similar equations. 

Similarly, S is given in terms of R by: 

S (s) = R (s) - R (s)R (s)-1R (s) 	 (11) 
11 	—11 	—12 	—22 	—21 

S
12 
(S)= S11(s)-1R12(s)R22(s) 1 
	

(12) 

The former representation (using the S1  and 2  

matrices) gives the simplest results for the analysis given 

here. It also arises naturally in some physical systems as 

demonstrated by the following example. 
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Example 1: Output coupled tanks  

u 	 u 

	

1 	 2 
—>-1 	 r-<—  

II 	I 	I 	I I 
F--i y 	I 	I 
I 	I 1 	I 	I y 
I 	I 	I 	I 	2 

r<--i 	I--> -I 	f--> 7  
I 	' 	' 	' 	' 	I 

k y 	k(y -y ) 	k y 

	

1 1 	 1 2 	2 2 

Figure 10.2.2 Output coupled tanks 

The system of two coupled tanks displayed in Figure 

10.2.2 will be used for motivating and illustrating the 

results presented here. It has been used previously by 

Owens[l5]. 

Assuming each tank has unit cross-sectional area, and 

that the flow out of each tank is proportional to the 

heights and the flow between the tanks proportional to the 

difference in heights, it follows that: 

y1  = ul(s) - kly1(s) - k2(y1(s) - y2(s)) 

In terms of the feedback interaction model 10.2.3, this 

gives: 

S11(s) = S22(s) = s+a'  S12(s) = S21(s) = k 

where: a = k1  + k2  and k = k2. The interaction loop gain 

is: 

k2  

(s+a)2  
(15) 

(13)  

(14)  
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In terms of the feedforward interaction model: 

R (s) = R (s) = 	
s+a  

-11 	-22 	(s+a)2 - k2 

R 	(s) = R 	(s) - 
12 	 21 	(s+a)2 - k2 

o 

The feedback interaction model may, as shown by the 

following example, be used when a feedforward interaction 

model arises directly from the physical problem. 

Example 2: Input coupled tanks  

ku 	ku u u 
1 2 1 2 
—>-i r-<- ->-1 <— 

II II II II 
I 
I 

I  
I 	1 
 I 

I I, y 
I I I I 	2 

r<-i I  I i->~ 
I 	' 	' 	 ' 	1 

	

k y 	 k y 
1 1 	 2 2 

Figure 10.2.3 Input coupled tanks 

Consider the two-input coupled tanks in Fiçrure 10.2.3. 

The input to tank 1 is u (s) + ku (s) and vice versa. It 
1 	 2 

is readily shown that the dynamics of tank 1 are given by: 

yl(s) = s+a(ui- (s) + ku 2
- (s)) ( 18 ) 

k 

(16)  

(17)  

and similarly for tank 2. Thus in feedforward interaction 

form: 
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R (s) = R 	(s) = 	
1 	

(s) = R (s) = k  
-11 	-22 	Si-d;  12 	-21 	s+a 

Using equations 10.2.11&12, the feedback interaction model 

becomes: 

k
2 

S11(s) = S22(s) = 
l
s+ak  , S12(s) = S21(s) = 1(s+kz  

and the interaction loop-gain is k2. 

In this case, the feedback interaction model involves 

improper terms S12(s) and S21(s). 

Example 3: Postlethwaite & MacFarlane 

Example 5.6 of[16] uses the transfer function matrix 

(G(s) in their notation): 

R(s) = 	
1 	Is-1 	s I 

1.25(s+l)(s+2)I-6 	s-2I 

After some manipulation, the feedback interaction form is 

described by: 

1  S (s) - 11 	1.25(s-2) (22) 

S (s) = 1.25s 
12 

S (s) = -7.5 21 

1  S (s) 
22 	1.25(s-1) 

(19)  

(20)  

(21)  

This example illustrates a system in feedforward 

interaction form with stable diagonal elements having zeros 
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in the right half-plane. However, in feedback interaction 

form, the diagonal elements are unstable with no right 

half-plane zeros. A small perturbation to the 1212(s) term 

would, however, give S11(s) and S22(s) with right half-

plane zeros. More detailed analysis of the underlying phy-

sical system would be required to determine whether such a 

perturbation was physically possible. 

Relative gain array 

One measure of interaction found in the process control 

literature is the relative gain array of Bris-

tol[10,17,18,19]. This provides an interesting relation 
between the feedback and feedforward interaction forms. 

For a two-input two-output system, the relative gain array 

is: 

1 a 	1-a1 
11-a 	a 1 

Where 

y 
— with u2  constant 

a - 
 Y 
ul with y2  constant 
1 

Using the feedback interaction model of eqn. 10.2.3, and 

the feedforward interaction model of equation 10.2.6, it 

follows that: 

R11(0) 	1  

A 	S11(0) 	1 - L1(0) 
(25) 

(23)  

(24)  
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Example 

The output coupled tank has a relative gain array with 

~ - 	a  2 

a2 - k2 

and the output coupled tanks have 

A 
- 	1  

1 - k2 

o 

10.3. A SELF-TUNING ALGORITHM 

In previous chapters, a continuous-time self-tuning 

controller arose via the following three design methods: 

1. A method based on the notional feedback loop (Chapter 

3) with a possibly unrealisable element in the feedback 

loop to cancel out undesirable system characteristics. 

2. An emulator-based design method which replaces the 

unrealisable feedback element in 1. by the correspond-

ing emulator (chapter 3). 

3. A self-tuning design method based on 2. which attempts 

to reduce sensitivity to modelling error by replacing 

the emulator in 2. by a self-tuning emulator (chapter 

6). 

In this chapter, the additional details required to apply 

such methods to a two-loop system are discussed. 

In the single-loop design, the basic requirement was 

that the notional design method gave a stable closed-loop 

system; this required that significant system zeros 	were 

in the left half-plane. In the two-loop case, it will be 

(26)  

(27)  
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seen that the feedback interaction model provides a 

straightforward basis for the notional feedback loop 

design. In particular, the zeros of the two transfer func-

tions S11(s) and S22(s) will be found to be important. As 

example 3 (section 10.2) shows, these zeros may be quite 

different from those of the feedforward transfer functions 

R11(s) and R2 2(s). To emphasise the importance of S11(s) 

and S22(s), an analogy with the single-input single-output 

case is made by defining the polynomials A1(s) and B1(s) 

by: 

B (s) 1 	 * 
	 - 
A (s) 	

S11(s) 
1 

(1) 

Notional design 

The single-loop notional feedback loop design (chapter 

7) is applied directly to each loop ignoring the interac-

tion. Thus for loop 1: 

Z (s) 
ul(s) = Q 1(s)fZ(s)w

l(s) - $1(s)] 

where 

P (s) 	- 
$1(s) = Z1(s)

y(s) 

Note that the polynomial Z1(s) plays no role at this 

stage; it is merely included to provide compatibility with 

later sections. As in chapter 3 (3.11 in particular), the 

A Here and hereafter, repetition of similar equations 
is avoided by writing only the equation for the first 
loop. Equations for the second loop are found by 
changing subscript "1" to '2" and vice versa. 

(2)  

(3)  
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following design rules are used: 

Dl. degree (P1(s)) = degree (A1(s)) - degree (B1(s)) 

D2. Z (s) = P (es) 
1 	 1 

D3. P (0) = 1. 1 

Q1(s) is a proper stable 'compensator' with proper 

stable inverse, w(s) is the desired value of the output of 

loop one and P1(s) is the desired closed-loop system. 

The closed-loop output of loop 1 is 

y(s) = 
Sc11

(s)LZ 	
(s) 

w(s) + eQ(s)] 

where the closed-loop transfer function Sc11(s)  is given 
by: 

c 	L1(s) Z1(s) 
S 

1
(S) = 1 	1+L (s) P1(s) 

where 

P ( s ) 
L1(s) = S

11(s)Q(s)1  

and the detuninq error eQ(s) by: 

Q1(s) 	_ 
eQ(s) - 

The first assumption is that the two loops are stable when 

the interaction is zero. As in the earlier chapters, it is 

further assumed that the systems have sufficient stability 

margin for the exponentially multiplied systems to be 

stable. 

(4) 

Z1(s)S1zyZ(s)  

(5)  

(6)  

(7)  

Al. Scll(s  a) and 5c22(s-a) have no right half-plane poles. 
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Q1(s)=0 corresponds to model-reference control; in this 

case the usual model-reference condition that B1(s) be 

stable would replace condition Al. Al is thus a less 

stringent condition for the suggested detuned control where 

Q1(s)#0. 

The two closed loops are displayed in Figure 10.3.1. 

I 	P(s) I 
r-i < 1 
1 	I Z,( s) I 

y ' — 	I .— 
w 	I 	i iu 	 i i 

11 	I Z,(s) I 	1 	 I 1 1 
—>0-1 S 	( s ) 1--> > 1—>-0—>-1 

I , Q,(s) I 	1 	1 
I 	 I 

11 I 
1 I 

I 

	

S (s) I 	 I S (s) I 
12 	I 	 I 	21 

I 	 I 
i 	

u 	
w 

I 	21 Z~s) I 	2 

	

<-1 S ( s ) 1—<-0—<-1 	 1-0<— 
I 	22 	I 	 I Q (s) I I 
, 	 ~ 	 ~ 	- 	1 	1 

	, 	I 
P(s) I I 

	 >    I--3 
Z,(s) I 

y 
2 

< 	 

Figure 10.3.1 The notional feedback loop 

If Q1(s) is small, and the resulting system is stable, the 

loops are approximately decoupled and: 

1 	- 
y1(s) °` P (s) w1(s) 	 (8) 

1 
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Also, it is assumed that the coupling terms S (s) and 
12 

S21(5) have no right half-plane poles, and in addition: 

A2. S (s-m) and S (s-m) have no right half-plane poles. 
12 	 21 

Using Nyquist's theorem, this two-loop notional system 

will be stable if the Nyquist locus of: 

Q (s) 	Q (s) 
- S 11(S).S 22(S).Z1

(S)S12(5).Z2(3)S21(S) 

does not encircle the -1 point. If this underlying 

notional feedback loop is unstable, the adaptive system 

cannot be stable, so it is assumed that this notional feed-

back loop is stable: 

A3. The two-loop notional feedback loop system is stable. 

Example: Coupled tanks  

For both input and output coupled tanks: 

S11(s) = S22(s) = sba 

where b=1 for output coupled tanks and b=1-k2 	for input 

coupled tanks. If the design parameters P and Q are chosen 
as: 

P(s) = l+ps; Z(s) = Z (s) = l+zs; Q(s) = qs 	 (11) 

then the loop gains are given by: 

L1(s) = L2(s) - sba (1+ps)  
qs (12) 

The notional closed-loop transfer function Scii(s) is then 

Sc 
(s) 

 - 	l+zs  
11 	

1 + (p+b )s + bs2  

(9)  

(10)  

(13) 
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D 

The emulator  

As in the single-loop case (chapter 6), the self-tuning 

controller is based on a low-gain emulator-based version of 

the notional design of the previous section. 	In particu- 
P (s) 

lar, the notional feedback loop transfer function 	is Z1(s)  

replaced by an emulator-based version using state-variable 

filters. 	In the two-loop context, loop interaction must 

be accounted for in the emulator design; this section con-

centrates on this aspect of the emulator. 

`Phe first loop of the system may be rewritten as: 

B (s) 
yl(s) = A1(s)Cu1(s) + S12(s)p2

(s)] 
1 

where 

B (s) 1  
S11(s) - A

1(s) 

Following the analysis of chapter 2, and replacing u by u 

1(s) + S12(s)yz- (s), an emulator may be written as: 

F (s) 	 G (s) 
~1(S) 	C1(s)y l

(S) + 
C1(s)Z1(s)Cu

1- (S) + S12(s)yz(s)] * (16) 

where 

P1(s)C1(s) 	E1(s) 	F1(s) 

Z1(s)A1(s) 	Z1 (s) + A1(s) 

deg(E 1 
(s)) = deg(Z 1 

(s))-1; deg(F 1 (s)) = deg(A 1
(s))-1 

A The subscript 1 refers to the loop index, not to the 
emulator version. 

(14)  

(15)  

(17)  

(18)  
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S12(s) = 
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For practical reasons, it may not be possible to implement 

this emulator: the order of the various transfer functions 

may make it too complex or S12(s) may be improper. 	So 

three alternative design rules are proposed: 

D4a The emulator is fully implemented 

D4b The emulator is implemented with an approximate decou-

pling term B12(s)/A1(s): 

B (s) 	 B (s) 

A1 (s)S 12 (s) ,-̀ A1(s) 	 (19) 
i 	 i 

D4c The emulator is implemented with S12(s) replaced by 

zero. 

The latter cases give an approximate emulator which 

will be denoted by (I)a(s). The approximation error is given 

by: 

G (s) 
ea(s) 	

C (s)Z (S) 12
1 	1 

(20)  

(21)  

0 	 for D4a 

B (s) 
S12(s) - Blls) 	 for D4b 

1 

S12(s) for D4c 

In all cases, the control law is given by: 

Z (s) 
ul(s) = Q1(s)fS (s)wl(s) - ~a(s)] 

1 	 1 

The closed-loop system then becomes 

L (s) Z (s) 
1 	1 y(s) 	

1+L (s) P1(s) 
	 Z1(s)w(s) + eQ(s) + ea(s)] 

(22)  

(23)  
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Example: coupled tanks  

Continuing the example of the previous section: 

A = s+a; B = b; C(s) = 1 	 (24) 

Identity 17 becomes: 

(l+ps)  
(s+a)(l+zs) 	(l+zs) 	(s+a) 

where: 

E1(s) = E2(s) = e = lpad• F1(s) = F
2(s) = f = 1—aP 

Thus, ignoring the coupling terms, 

~a(s) = lb+ 	1(s) + fyl- (s) 

0-a 	be 
 - 1b+zsu2(s) + fy2- (s) 

The adaptive controller  

A continuous-time detuned model-reference self-tuning 

controller was considered in an earlier chapter. The sim-

plest approach is to use design rule D4c and thus ignore 

coupling. 	The two-loop self-tuning controller is then 

merely two single-loop self-tuning controllers, one for 

each loop. Although this approach is simple, the presence 

of coupling terms not accounted for in the algorithm leads 

to possibly poor performance and even instability. This 

will be analysed in section 10.6. 

(25)  

(26)  

(27)  

(28)  



Sec. 10.3. 	A SELF-TUNING ALGORITHM 	 10-19 

The self-tuning method considered here relies on a 

linear-in-the-parameters representation of the emulator 

equation. In general, the emulator equation cannot be 

easily put into such a form due to the unknown denominators 

of S12(s) and S21(s),so design rule D4a cannot be directly 

used in the adaptive context. This section concentrates on 

design rule D4b. 

Recalling the approximation in D4b, define the polyno- 

mial 

G (s) = B (s)E (s) 	 (29) 12 	12 	1 

The approximate emulator equation becomes: 

F (s) 	 G (s) 	 G (s) 
ma(S) -

C1(s)y1(S) + C1(s)Z1(S)ul- (s) + C1(S)Z1(3)y2(S) (30) 

This may be rewritten as: 

01
a 
 (s) = XT  (s)0 

where: 

XT(s) = C (s)Cul(s), su1- (s), . .; y1(s), sy l- (s), . 	; 	(32) 
1 

y2(s), sy
z(s), ...] 

and 

- - 
A
T 

= Cgo, g 1.  .. . fo, fl, ...; g'o, g'1, ...] (33) 

where gi  is the ith coefficient of Gi(s), fi  is the ith 

coefficient of F1(s) and g'i  is the ith coefficient of 

G12(s). 

(31) 
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A 
As in the single-input single-output case, 0 is 

replaced by the output of the emulator with estimated 

parameters: 

= XT (s)6 (34) 

The algorithm for generating 0 is identical to that given 

in chapter 5. 

The resultant error: 

-A 
e(s)  	 (35) e(s) = m (s) - ~ 

leads to the closed-loop system of equation 10.3.23 but 

with e replacing éa(s): 

yl(s) = S
c 

11
(s) C

Z 
(s)wl(s) + e4 (s) + e ] 

i 

(36 ) 

As in the single-input single-output case, the exponen- 

tially multiplied estimation error ente (s) can be con-

sidered to be the output of a system il with input 

at a e 
e (s). 

10.4. ERROR EQUATIONS 

In this section, the various equations describing the 

error equations resulting from the three design methods 

(notional, emulator-based, and self-tuning) are gathered 

together. These equations appear in Figure 10.4.1. 

The output of the first loop may be written as: 

1 
y(s) = Scil(s) Z (s) w(s) + y 

i 

(1) 

The first term represents the system output with no error 
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Figure 10.4.1 The error feedback system 

due to interaction or estimation; the second term will be 

called the output error and is given by: 

yl 	Scll(s)ei(s) (2)  

where the interaction error is the sum of the 	detuning 

error and estimation error: 

ei(s) = eQ(s) + e(s) (3)  

The aim is to find stability conditions such that yl (and 

y 2 ) are small relative to the setpoints w1 and w 2. 
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The detuning error, representing the effect of control 

weighting, is 

Q(s) = T11(s)y2(s) 

where 

Q1(s)  
T11(s) - Z (s)S12(s)  

1 

A 

The expression for e(s) depends on which of the three 

design methods is used. The three expressions are combined 

into one by defining: 

Ì O for the notional design 

Al = 11 for the emulator-based design 

Thus 

e = A "-a(s)
1 	1 1 

and 

ea(s) = T12(s)y2(s) 
1 

where 

E (s)B (s)„, 
1 	1  T12  
1 	1  

(s) - C(s)Z(s)S1z
(s) 

(4)  

(5)  

la
1  for the self-tuning design 

(6)  

(7)  

(8)  

(9)  

The equations of this section appear in block-diagram 
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form in Figure 10.4.1. 

10.5. NON-ADAPTIVE ROBUSTNESS  

The stability of the notional feedback loop design 

method has already been considered in section 3; so this 

section concentrates on the other non-adaptive method: that 

based on emulator-based control. Thus here: 

St = 1 (1)  

Hence the relation between the interaction error el  (s) and 

the system output p2(s) is given by: 

ei(s) = ea  (s)1  + eQ(s) = CT11(s) + T12(s)7y2(s) (2)  

The equations of section 10.4, and Figure 10.4.1, reveal 

that there is a single feedback loop describing the two-

loop system. This may be analysed using Nyquist's theorem 

as follows: 

Theorem 10.1 (non-adaptive robustness) 

The two-loop system (eqns. 10.2.1&2) controlled using 

the non-adaptive controller is stable if assumptions Al and 

A2 hold and if the shifted Nyquist locus of: 

Sc11(s)Sc12(s)Sc21(s)Sc22(s) where s = - m + jw 
	(3) 

where 

Sc12 = T11(s) + T12(s) 

does not encircle the -1 point. 

Proof  

(4) 
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From assumptions Al and A2, and the fact that Q(s) and 

Z(s) are stable polynomials, all transfer functions in eqn. 

10.5.3 are stable. The result then follows from Nyquists 

theorem. The use of m>0 gives a certain stability margin 

and is included here for comparison with the results of the 

next section. 

Remark 

In fact, as discussed in chapter 4, it is not necessary 

(in the case of non-adaptive control) that assumptions Al 

and A2 are true. But in such circumstances, the more gen-

eral version of Nyquist's criterion must be used. 

10.6. ADAPTIVE ROBUSTNESS 

In the self-tuning case, the same set of equations as 

in the non-adaptive case describes the evolution of the 

error, except that: 

al  = al 	 (1) 

As S), is not a linear time-invariant system, Nyquist's 

theorem cannot be used. However, from chapter 5, i? has a 

gain in the L 	sense of unity. Hence, the small gain 

theoremL20] may be applied. But first, the error equations 

must be written in a suitable form. 	Unlike the non- 

adaptive case, the presence of RI  means that the para-lel 

transfer functions cannot be amalgamated into one transfer 

function Sc12(s). Instead, the error ei(s) is rewritten as 

follows: 

e(s) = SZ ea(s) + 6Q(s) 1 	11  
(2) 

where: 
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eQ (s) 	
T

1 1(s)Sc 22(s)Ce i(s) + w2(s).] 
1 

and 

ea(s) = T 	(s)Sc 	(s)Cel(s) + w (s)] 1 	12 	22 	2 	 2 

Similar expressions give e 2(s) in terms of e(s) and w1  (s). 

This feedback system appears in Figure 10.4.1. 

As in the earlier chapter, the first step is to show 

that the exponentially multiplied feedback system with 

inputs w (s) and w (s) is L stable. As y is related to 
1 	 2 	 2 	 1 

e(s) by a low-pass transfer function, L. stability is 

shown for the system with w1(s) and w2(s) as inputs and y1  
and y2  as outputs. 

These ideas lead to the following theorem: 

Theorem 10.2 (Adaptive robustness) 

If the adaptive controller is designed according to 

design rules Dl-D3 and D4b, assumptions Al-A3 are true 

and: 

1. The forgetting factor of the self-tuning algorithm is 

positive: po 

2. For some a>0: 

(Y11(a) + Y12 (a.)).( Y22 (a.) + Y21(a)) < 1 

where: 

Y11(a) = suplTli(w  - a)Sc22(w - a)I w 

(3)  

(4)  

(5)  

(6)  

and 
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Y12(a) = suplTlz(w - a)SC22(w - a)I 
w 

then the resultant closed-loop system is stable in the 

same sense as described in chapter 7. 

Proof  

Firstly, each block in 	Figure 10.4.1 is premulti- 

plied by e - 
at  and postmultiplied by eat. As the gain of 

a1 
< 1, then the gain of l TLZ 	22 

(s)S
c 

(s) < the gain of 

T (s)SC  (s). As T (s)SC  (s) and T (s)Sc  (s) are 
12 	22 	 11 	22 	 12 	22 
linear transfer functions, then their gain (in the L2  

sense) is given by the expressions for N11 
 and y12. The 

same statement holds with 1 and 2 interchanged. 	As in 

chapter 7, the L2  stability of the exponentially multiplied 

system follows from the small gain theorem[20]. 

Using the results of chapter 7, the fact that the 

exponentially multiplied system with inputs w1(s) and w2(s) 

and outputs ei(s) and e12  is L2  stable, together with the 

fact that y1  and y2  are related to e2(s) and e12  via low-

pass transfer functions, give the required result. 

To illustrate these results, the transfer functions Tib  

are derived for the two coupled tank examples. 

Example: Output coupled tanks  

Using the same control parameters as in section 3, it 

follows that in the case of output coupled tanks b=1 and 

Q (s) 
T11(s)SC22(S) = T22(S)SC11(S) - Z(s)S12

(3)SC22(3) 1   
(8) 

(7) 
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kqs 

1 + (p+qa)s + qs2  

If the coupling term is estimated (as it can be here), then 

T12(5)5C22(s) = T21(s) = 0 (9) 

On the other hand, if no attempt is made to identify the 

coupling term, then S12(s) = S12(s) and: 

T12(s)SC22(s) = T21(s)Sc11(s) 	 (10) 

E (s)B (s)_ 

C1(s)Z1(s)S12(s)SC22(s)  
1 	1 

ek 

1 + (p+qa)s + qs2  

Example: Input coupled tanks 

Using the same control parameters as in section 3, it 

follows that in the case of input coupled tanks b=1-k2  and 

T (s)Sc 	(s) = T (s)Sc 	(s) 11 	22 	22 	11 

(s) 

1
S(s)SC (s) 

	

Z (s) 12 	22 1 

kgs(s+a) 

1 + (p(1-k2) + qa)s + qs2  

The coupling term cannot be estimated so that 

S12(5) = S12(s) and: 
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T (s)Sc 	(s) = T (s)Sc 	(s) 
12 	22 	 21 	11 

(12) 

E (s)B (s),,. 

C1(s)Z1(s)Siz(s)Sczz(s) 
1 	1 

ek(s+a) 

1 + Lip + qa/(1-k2)]s + Cq/(1+k2)]s2  

The robustness conditions are harder to satisfy for the 

input coupled tanks, as the improper interaction terms 

(S12(s) and S21(s)) lead to T11(s)Sc22(s) and T22(S)Sc11(s) 

having non-zero gain (k) at high frequencies, and this gain 

is independent of the weighting factor q if q#0. 

10.7. SUMMARY 

Using a particular representation for two-input two-

output systems, standard input-output methods have been 

used to derive frequency-domain conditions to ensure that a 

continuous-time least-squares based self-tuning algorithm 

is stable in the face of unmodelled 	interaction dynamics. 

Because of the particular structure chosen, the stability 

analysis is based on a single-loop feedback system. As in 

the single-input single-output case, both adaptive and 

non-adaptive stabilities are based on the frequency-domain 

properties of certain transfer functions. 

The n-input n-output case is discussed elsewhereC7]. 

However, as the error equations no longer form a single-

loop feedback system, this results in a more complex cri- 

terion. 	The two-input, two-output system considered in 

this chapter is thus an important special case which 

deserves separate analysis. 
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e

- l

*(s) 	 2-8 	 w(s) 	 3-2 
c 

**(s) 	 2-15 	
x 	 1-11 

e  

A2 	 x° 	 1-12 
e4 (s) 	 2-36 	 y%(s) 	 1-3 

e

- l

k(s) 	 2-6 	 yo(s) 	 b-10,8-12 

ee(s) 	 7-3 	
yl(s) 	 10-4 

e,(t) 	 7-15 	
2(s) 	 10-4 

e t 	
* 

 1-9 	 yT(s) 	 2-31 

ea(s) 	 4-5,7-4 	
yT(s) 	 2-27 

2 

ea(s) 	 10-22 	 y 
a
(s) 	 1-9 

ed(s) 	 7-7 	 ÿc (s) 	 1-14 

e(s) 	 7-5 	
pf(s) 	 1-14 

ei- (s) 	 10-21 	 yk(s) 	 2-3 

eA(s) 	 6-16 	 y(s) 	 1-14 

e4(s) 	 10-22 	 yt(s) 	 8-12 

ee(t) 	 5-14 	 z(s) 	 4-6 

e

- t

(s) 	 7-3 	
~o(s) 	 8-12 

A(s) 	 8-12 
ey(s) 	 7-8 	 A(s) 	 6-15 
h'(t) 	 1-5 	

SZ 	 5-16 
ho(t) 	 2-27 	

Y 	 7-10 
h (t) 	 2-27 	 a 
i 

h (t) 	 2-27 	 ~ (s) 	 2 36 
2 

q(s) 	 3-27 	 $** 1(s) 	 2-7 

tm 	 5-19 	
0,(s) 	 6-5 

y 
e(s) 	 5-5 	 - **(s) 	2-4 

k 



54 	 Symbol Index 

4)
i(s) 	 2-6 

-~~ 
Z (s) 	 2-15 

0 z (s) 	 6-5 

$
z (s) 	 2-14 

4)*
3 

( s) 	 2-32 

0 3 (s) 	 6-5 

(1) 3 (5) 	 2-32 

~*
*4

(s) 	 2-35 

(1)4(s) 	 6-5 

13
4 (s) 	 2-35 

(1) 4
(s) 3-8 

Ma (s) 	 4-5 

(1)(s) 	 6-5 

i
n (s) 	 6-15 

T(s) 	 5-4 

5-19 

ir(s) 	 5-2 

5-2 

0-o 	
6-10 

2-37 
—e 

0(t) 	 5-4 

2-37 

2-14 

2-12 

2-16 




