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Foreword

Self-tuning control has traditionally developed in a
discrete-time context. In contrast, industrial control sys-
tems (whether electronically analogue or digital) appear to
the user to be continuous-time devices. This dichotomy has
hindered the application of self-tuning controllers. This
monograph attempts to bridge this gap by considering self-
tuning control in a continuous-time context. This reorien-
tation of self-tuning research 1is not merely cosmetic.
There is a good reason for designing industrial control
systems in a continuous-time setting: the real-world 1is
made up of continuous-time objects. This fundamental
advantage of continuous-time design will, I hope, become

apparent on reading this monograph.

There are a number of apparently competing approaches
to self-tuning control to be found in the literature. An
objective of this monograph 1is to provide a wunified

approach to the design and analysis of such algorithms.

This volume concentrates on the design of continuous-
time self-tuning controllers; a companion volume will give

details of digital implementation, including Pascal
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algorithms.

Any research monograph builds upon the work of many
people too numerous to mention. However I must acknowledge
the long and fruitful collaboration with Dr. David Clarke
of the University of Oxford which led directly to many of
the ideas to be found in this monograph. Also I must ack-
nowledge the influence of Dr. K.W. Lim of the University of
Singapore who, as a research student, made many contribu-
tions to the robustness ideas to be found here. I wish to
thank Chris Barclay, Ahmad Besharati-Rad, Mohamed Khar-
bouch, Xiaofeng Liu, Coorous Mohtadi, Markku Nihtila and
Panos Nomikos who read though many badly written drafts,
made helpful suggestions and eliminated some (but undoubt-

edly not all) of the errors.

The University of Sussex P.J. Gawthrop
July 1986



Notation

Numbering

The chapters are numbered from 0 to 10. The sections
within each chapter are numbered sequentially using decimal
notation; thus section 5 of chapter 2 is numbered as 2.5.
Within each section, equations are numbered sequentially
from 1. References to equations within a section just give
the equation number. References to equations without a sec-
tion are prefixed by the full section number; thus equation
3 of section 2 of chapter 1 is denoted by equation 1.2.3.

Pages are numbered within each chapter; thus the 5th
page of chapter 4 is denoted by 4-5. Left-hand pages also
display the chapter number and title; right-hand pages also
display the section number and title. It is hoped that the
reader will find this system beneficial when searching the
book.

Each chapter is followed by a 1list of references in
order of appearance in the chapter. An index to keywords
is given at the end of the book.



Symbols

In general, functions of time are written in lower case
followed by the time argument (t); thus the system output
is symbolised by y(t). The corresponding Laplace transforms
are denoted by a " and followed by the Laplace argument
(s); thus the Laplace transformed system output is symbol-
ised by §(5). System transfer function polynomials are
written in upper case followed by the Laplace argument (s);
thus the system transfer function denominator is symbolised
by A(s).

Quantities associated with an emulator output are
Ak
denoted Dby ; quantities associated with an approximate

emulator output (ignoring initial conditions) are denoted

~

*
by ., Estimated quantities are denoted by

An index to the more important symbols appears at the
end of the book.
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CHAPTER 0

Continuous-Time
Self-Tuning Control

0.1. INTRODUCTION

Self-tuning control has largely developed within a
discrete-time framework; presumably because of the digital
technology necessary for the implementation of adaptive
control. However, although technology dictates implementa-
tion, it need not dictate design. As the world outside the
computer is essentially continuous-time, it seems appropri-
ate to design self-tuning controllers in a continuous-time

setting although the implementation is digital.

A continuous-time approach to self-tuning control was
given by Young in 1965L13; more recently, and with the
benefit of the large amount of work in discrete-time self-
tuning, a continuous-time approach has been revived by
EgardtC2,31.

In my own research, I tentatively discussed the idea of
continuous-time self-tuning in my thesisC43]. Choosing
discrete-time transfer functions for self-tuning control
based on continuous-time models was explored in refer-
encel5], and a hybrid approach was discussed in refer-

encesl6,71. An argument for a fully continuous-time design
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approach was given in referencel81. This book brings
together some thoughts on the subject of continuous-time
self-tuning control arising from the ideas appearing 1in

referencet81].

0f course, most work in model-reference adaptive con-
trol has been conducted in a continuous-time setting; but
such algorithms are usually of a rather simple form due to
the constraints of analogue 1implementation. However,
model-reference adaptive controllers and self -tuning con-

trollers have been shownf2,3] to be closely related.

There have also been a number of attempts to link
continuous-time and discrete-time approaches, for exam-
plef5,6,9,101.

Within the continuous-time context, Egardt was able to
unify a number of apparently diverse algorithmsC?2,31. More
recentlyE81, a number of algorithms including model -
reference, pole-placement and predictive have been con-
sidered within a unified continuous-time context. In this
book, these ideas are extended and refined. The notion of
an emulator is introduced and is used to unify a number of
old algorithms and to generate some new ones. This is

introduced by way of the celebrated Smith predictorfC11].

The design approach presented in this book 1s more
closely related to control engineering practice than 1is
usual in this field: in particular, the method is motivated
by Smith’s predictorfl111. It is to be expected that such
an approach is likely to lead to robust control algorithms,

and this has been proved in certain cases (see chapter 7).
In short, three main ideas are explored in this book:

a Design of self-tuning controllers in a continuous-time

(as opposed to a discrete-time) context.
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o The use of an emulator, an extension of Smith’'s predic-
tor, to unify and illuminate the design of self-tuning

controllers.

o The use of control weighting to give self-tuning con-

trollers which are yobust in the face of neglected Sys-—

tem dynamics.

These three ideas are introduced in the following sections.

0.2. THE CONTINUOUS-TIME APPROACH

Most systems of interest to the control engineer exist
in a continuous-time setting - they are described by dif-

ferential equations. In contrast, most controllers which

are sophisticated enough to have a self-tuning capability

are implemented using digital microprocessor technology and

as such exist in a discrete-time setting - they are
described by difference equations. It follows that con-

trollers must often be designed by starting off with a
continuous-time syvstem and ending up with a discrete-time
controller. We contrast two approaches to such design:

continuous-time design as in Figure 1; and discrete-time

design as in Figure 2.

I R I 1 { 1
|Continuous—timek—>{Controllerk—){Continuous~discrete}—1

|system | {Desiagn | ftransformation |
(- i t i L J I

f

b 1
L>4Discrete-time|
|controller |
| E— ]

Figure 0.2.1 Continuous-time design

Each design method starts with a continuous-time system and
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I ¥ ) 1 I 1
|Continuous-time |—~>4Continuous~discrete}—>{Controller}—
|system | jtransformation | |design |
L 4 | — i | |
|
]

I
l T 1
L>{Discrete-time|
|controller |
L 3

Fiqure 0.2.2 Discrete-time design

ends with a discrete-time controller; but the design and
continuous-discrete transformation steps are transposed
between the two methods.

Some advantages of the continuous-time, as opposed to

the discrete-time approach are as follows:

a The design method is matched to the actual system to be
controlled. Thus system characteristics such as rela-
tive degree and zero location can be directly

addressed.

a Artefacts of sampling such as sampled minimum phase
systems having zeros outside the unit discCl2,13]1 are
avoided.

o The controller coefficients arising from the self-
tuning controller correspond to continuous-time
(Laplace domain) transfer functions. Most control
engineers find these easier to interpret than coeffi-
cients of discrete-time (z-domain) transfer functions.
An example of this is that the self-tuning PI (propor-
tional plus integral) controller discussed in this book
and elsewherell4] directly estimates the integral
time-constant of the controller.
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a} The controller sample interval is chosen after the

design stage, not before.

0.3. EMULATOQRS

The control of systems with time-delay can be simpli-
fied by making use of a predictor. This idea was suggested
by Smith in the late ’'50s[C11,15].

Smith’'s predictor can be regarded as a method of

sT

realising the wunrealisable transfer function e In par-

—X
ticular, it generates the quantity yT(s) (Fig 1) given by

ntal = -sT LB(s)

yp(s) = y(s) + [1 - e ]m(s) (1)
w+ —— u  —— — y
—0—-Controller }—>—3——-Delay ——-> |Plant by
._] —— | | S | | S | |
| | |
| ACTUAL |
| e e e e |___
| MODEL |
|
I

!
I
!
|
I
I
I

Figure 0.3.1 Smith’'s Predictor

In the absence of disturbances, substitution of the system
equation gives

ok _ B(s)- _ .sT - _ =
yT(s) = A(s)UISI = e y(s) = yT(s) (2)

where §T(s) is the Laplace transform of yT(t)=y(t+T). That
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is, in the absence of disturbances, the effect of the Smith

predictor is the same as including an inverse time delay

(eST ) in series with the system output.

The significant thing about this result 1is that the
time delay (e—ST ) is cancelled from the system loop-gain
by the inverse delay (eST ). That 1is the closed-1loop
characteristic equation does not have a time delay factor.
This is brought out by drawing the feedback loop as in Fig-
ure 2, where the explicit predictor equation 1 is replaced

by equation 2.

w + — u 7 y
— 0——{Controller p—>——Delay p——>——| Plant b——7—>
- l S — | O} |
[ " !

! < {Inverse |—-< —
|Delay |
| UU— |

Fiqure 0.3.2 The equivalent feedback loop

The main points of this discussion are now summarised:

1 A nasty component of the system, a delay, can be

removed from the loop gain using an unrealisable com-

ponent, an inverse delay.

[y}

An unrealisable component can be emulated using realis-
able transfer functions operating on both the systen

input and the system output,

3 Such emulation is only possible if the system transfer

function is known.

A particular design method, based on Smith's predictor,
can be wused to overcome the effect of a nasty system com-

ponent, a time delay. The method can be interpreted as
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using an emulator to emulate an unrealisable component (in

this case eST ) which cancelled out the nasty component

(in this case e 5T ),

However, a time delay is not the only bothersome com-
ponent of a transfer function; there are at least three:

1 A time delay.
2 A high relative degree p (a lot more poles than zeros).

3 Zeros with positive real parts (unstable numerator
B(s)).

Why not cancel all these out?

The corresponding unrealisable transfer function gen-
erates the quantity ¢(s) from y(s) as

sT P(s)-

&(s) = e ETgTy(s) (3)

1 eST cancels out the delay; the net delay is reduced to
Zero.

2 If degree(P(s))-degree(Z(s)) = p (the vrelative degree
of the system), the net relative degree is reduced to
zZero.

3 If Z2(s) contains all the unwanted factors of B(s) then

such factors are cancelled; the net number of unstable

zeros is reduced to zero.

In this book, the design of such emulators, together
with the corresponding fixed and self-tuning controllers,

is discussed in some detail.

As the seminal self-tuning regulator of Astrom and Wit-
tenmark[161 was based on a discrete-time predictor, it is

not surprising that the emulator, as a generalisation of a
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predictor, also forms the basis of a self-tuning algorithm.

Finally, we note that the concept of an emulator is not
restricted to the continuous-time approach; a discrete-time
development is given in referenceCl7]. However, the notion
of an emulator is much more meaningful in a continuous-time
setting as it relates directly to the actual continuous-

time system.

0.4. ROBUSTNESS

In this book, a controller is said to be robust if it
remains stable 1in the presence of neglected system dynam-
ics. There are two categories of neglected dynamics con-

sidered here:

Q Neglected dynamics arising from underestimating the
order of a single-input single-output system.

o] Neglected dynamics arising from neglecting the interac-
tion between loops in a two-input two-output system.

These two situations can be generalisedC181, but this gen-
eralisation is beyond the scope of this book.

Robustness has received considerable attention in the
past few years; see the references for chapter 7. Indeed a
book on the subject has recently appearedC19]. Roughly
speaking, robustness research can be divided into local
robustness meaning stability for sufficiently small initial
parameter error and sufficiently small estimation rate and
global robustness meaning stability for any initial parame-

ter error and parameter update rate. It is the latter that

is discussed in this book.

Much theoretical research was stimulated by the work of
RohrsC201 who showed, by means of simulation, that model
reference adaptive control was not robust, 1in the sense

that it could be rendered unstable by quite small neglected
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dynamics. His two examples[20] have now become standard for
illustrating robustness results, and we wuse his second

example in chapters 4 and 7.

The key idea used in this book to give robust control

is control weighting. Roughly speaking, the reason why

model-reference is not robust is that it tries to match a
reference model at all frequencies. This is both unneces-
sary and dangerous: unnecessary because we are not
interested 1in closed-loop setpoint response at high fre-
quencies; dangerous because it is not usually possible to
match a reference model at high frequencies. In chapter 7
it is shown that adaptive robustness 1is 1intimately con-

nected with a notional feedback loop which must be stable

for robustness. It is found that the notional feedback loop
has infinite gain in the absence of control weighting, and
this leads to non-robust algorithms.

The conclusion reached in this book 1is that control
weighting at high frequencies is essential for robustness.
This conclusion is in accord with my practical experience
(for examplel21,221 ) where control weighting (using the
generalised minimum variance algorithmC23,241 has always

been used to achieve satisfactory practical control.

The approach used in this book is based on some earlier
work on stability and convergencel25,26] utilising the
input-output stability approachCL27] and also some work on
discrete-time robustness[28,291.

0.5. ORGANISATION OF THE BOOK

Apart from this chapter, the book contains a further 10
chapters. The arrangement of material is such that the
reader should not need to refer forward to wunderstand a
particular topic. The reader may, of course, wish to look

forwards for the purposes of motivation. The index 1is
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designed in such a way that any topics referred to in the
index are underlined unless they actually form part of a
section heading.

The chapters in the book are as follows:
1 Continuous-time systems
2 Emulators
3 Emulator-based control
4 Non-adaptive robustness
5 Least-squares identification
) Self-tuning control
7 Robustness of self-tuning controllers
8 Non-adaptive and adaptive robustness
9 Cascade control
10 Two-input two-output systems

These chapters are outlined in the following subsections.

Continuous-time systems

The background required for this book 1is that of an
undergraduate course 1in classical continuous-time control
from the transfer-function point of view. The book by
Dorf[301 would exemplify the sort of material required.
This chapter provides the basic ideas and notation used 1in
the rest of the Dbook and could be skimmed through on a
first reading. A small amount of material on state-space
filters is included as background to the implementation of

the self-tuning algorithms.
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Emulators

This chapter provides design equations for a number of
emulators; 1including those for reducing relative order,
reducing the number of non-mimimum phase zeros and reducing
time delay. Algorithms are given in detail. Some care is
taken to incorporate system 1Initial conditions into the
emulator design, as it is known that these are important in

parameter identificationl31,32].

Emulator-based control

A number of fixed parameter controllers arise from put-
ting an emulator 1into a feedback loop. These include:
model-reference control, predictive control and pole~
placement control. All these controcllers may have control
weighting giving detuned versions, which, as shown in

chapter 7, have desirable robustness properties.

The ideal of a notional feedback system 1s introduced

in this chapter.

Non-adaptive robustness

The robustness of fixed parameter, emulator-based con-
trollers to neglected dynamics 1is considered 1in this
chapter. As well as being of interest 1in 1ts own right,
this provides a basis for the adaptive robustness proper-
ties considered in chapter 7. Rohrs second example[20]1 1is
used to illustrate the results.

Least-squares identification

As it is less well known than its discrete-time coun-
terpart, a continuous-time least-squares algorithm 1is
cderived in full. It is shown that the algorithm may be
regarded as a single-input single-output system with gain

(in a special sensel271 ) of less than one. This result 1is
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central to the robustness analysis of chapter 7.

Discrete-time least-squares is outlined and compared

with the continuous-time version. It 1is shown how
continuous-time parameters can be estimated via this
method.

Self-tuning control

Putting together emulators, feedback and least-squares
identification gives self-tuning control. In particular, we
regard a self-tuning controller as a self-tuning emulator
within a feedback 1loop. We distinguish between implicit
and explicit algorithms as well as between on and off-line
emulator design. The algorithms include implicit versions

of model-reference and pole-placement algorithms.

A number of illustrative simulations are given.

Robustness of self-tuning controllers

An error feedback system for the self-tuning con-

troller, in the presence of neglected dynamics, is derived
in this chapter and is shown to comprise a 1linear time-
invariant system M(s) in feedback with the single-input
single-output system £ representing the least-squares esti-
mator. It follows that the properties of M(s), in particu-
lar the M-locus M(jw), are crucial in determining robust-
ness. Some results are proved for a particular version of

the self-tuning controller.

The results are illustrated by simulation based on

Rohrs’'s examplel20].

This chapter is based on an internal reportf33].
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Non-adaptive and adaptive robustness

When is adaptive control better than non-adaptive con-
trol? This is an unanswered question. This chapter attempts
to illuminate this question and its possible answers by
comparing the non-adaptive design method of Horowitz[34,35]
with a particular self-tuning controller. It 1is suggested
that the adaptive controller has an advantage for slowly
varying systems in that an extra degree of design freedom
may relieve the sensor noise problem associated with high-
gain two degree-of -freedom design.

This chapter is based on a conference paper[(361.

Cascade control

Cascade control is a common multi-loop control confi-
guration. This chapter compares and contrasts a number of
approaches to this problem in a self-tuning context.

This chapter is based on a conference paper[371.

Two-input two-output systems

The final chapter of the book considers another common
control system configuration: an interacting two-loop sys-
tem. The single-loop self-tuning algorithm is extended to
account for loop interaction and the robustness of the

resulting scheme is analysed.

This chapter is based on an internal report[381.
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CHAPTER 1

Continuous-Time Systems

Aims. To review the system theory required as a
background for the rest of the book.

1.1. INTRODUCTION

For most of this book, we shall be concerned with the

control of single-input single-output linear time-invariant

systems. Multivariable systems will also be considered,

but will be built up from the single-input single-output

systems examined 1in this chapter. The assumption of
linearity 1s, as always, more for convenience than for
realism.

The assumption of time invariance is to simplify the
the description of the systems and the analysis of the
algorithms. In must be admitted that with this assumption
the current of view of self-tuning methods is inconsistent:
part of the motivation for using such methods is that prac-
tical systems change with time. Nevertheless, simulation
results indicate that slowly time-varying systems can be

successfully controlled by self-tuning algorithms.

We shall model systems using the differential equation
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and Laplace transform transfer function approach. Of course

computers see the world in terms of difference equations
and z -transforms because they are Dblinkered by the
analogue-digital interface; but it is argued in this book
that this 1is no reason for us to take such a computercen-

tric view of systems.
Systems in this book are formed from three components:

1. The controlled system forced by the control signal.

2. Transient disturbances modelled as the transient

response of an input-free dynamic system.

3. Forced disturbances modelled as the output of a dynamic

system forced by a signal which cannot be controlled. A
special case of a forced disturbance is a stochastic

process where the system input is white noise.

These components are treated in the following subsec-
tions. They are combined into a standard form in section
1.9.

We shall only cover those topics from system theory
which are relevant to this book. Those who are not fami-
liar with basic system and control theory are advised to

consult a standard textbook such asll,2,3].

1.2. TRANSFER FUNCTIONS

The simplifying assumptions of 1linearity and time-
invariance allow dynamic systems to be written as linear

differential equations with constant coefficients. The

time variable 1is denoted by t and is assumed to start at
t=0. We shall take the view that complex systems can kLe

built up by interconnecting elementary subsystems of the

form
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-1

iu’(t) (L)

n
b=
0 ~dt

i
|
|
ot
ct
I
MS

0 ~dt i

’

y’ 1s the system output, u’ the system input and ai and bi

(0 ¢1 < n) are system coefficients.

We will assume without loss of generality that

a 0#0 (2)
and thus the system order is n. Let m be the highest value
of j for which bn_j#O. Then

6o%n - m (3

is the relative order of the systemn.

Fiqure 1.2.1 Laplace transform of subsystem

This equation may be rewritten 1in terms of Laplace

transforms (see Figure 1.2.1) as

- _B'(s)-, D’ (s)
y'(s) = At 3 T AT
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where
A (s) = a's™ +a’s"t o+ +a/ (5)
B'(s) = bs™ + bls™ h o+ + b’ (6)
y'(s) is the Laplace transform of y’(t), u'(s) is the
Laplace transform of wu’(t), and D’'(s) is a n-1th order
polynomial dependent on the n initial conditions

I,
¥ 9y  i=0..n-1. (7)
atJ

The system transfer-function is the ratio of the two

polynomials

' _ B'(s)
H' (s) = A (s) (8)

The transfer function is said to be strictly proper if the

relative order p = n-m > 0, and proper if the relative

order p = n—m>0.

The n system poles are the n roots of A’(s)=0; the m
(finite) system zeros are the m roots of B'(s)=0. If none
of the poles has the same value as any of the =zeros then
the polynomials A’(s) and B’(s) are said to be relatively
prime and the transfer function B'(s)/A’(s) is said to have

no cancelling factors.

The system frequency-response is defined as

.- _ B’ (jw)
H' (jw) = A7 (Gw) (9)

this complex function of frequency can be interpreted as

the ratio of the steady-state system output to the system
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input when the system input is the unit exponential eAJwt.

1.3. MARKOV PARAMETERS AND IMPULSE RESPONSE

Equation 1.2.4 reveals that the solution to the dif-

ferential equation 1.2.1 has two parts: a forced response

with Laplace transform

- B'(s)
A’ (s)

H' (s)uls) uls) (1)

and a transient response with Laplace transform

D' (s)
A (s) 2

The forced component, involving the transfer function
H'(s), determines the effect of the system input on the
output and hence is of particular interest in the design of

feedback control systems.

A useful notion is the impulse response h'(t) of a sys-

tem defined as the forced system response when the input is
a dirac & function. As the Laplace transform of a § func-

tion is unity, it follows that

. - B'(s)
Lap{h' (t)} = A (s) (3)
That 1is, the system transfer function H'(s) is the Laplace

transform of the system impulse response h'(t).

The system transfer function <can be reexpressed in

terms of s*1 and the relative order p as

Using repeated algebraic long division, this transfer func-

. ! . . -1
tion can be expressed as a polynomial in s as
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The coefficients hi are the system Markov parametersC3].

From equation 4 it follows that

hi = 0 for 1 ¢ p (6)

Multiplying by 1/s (the Laplace transform of a unit
step) and taking the inverse Laplace transform, the unit
step response of a proper system is given by the Taylor

series about t=0

Thus the Markov parameters hi i>0 are the 1ith derivatives
of the unit step response at time t=0+.

The Markov parameter representation 1is wuseful for
dividing the Laplace transform of derivatives of the
inmpulse response of the system into proper and improper
parts. In particular, the transfer function H'(s) multi-
plied by sk can be decomposed into a strictly proper

transfer function and the rest as

F. (s)
k., _ kB'(s) _ kT
s H' (s) = s A (s EK(S) + A (s) (3
where
deg(F) < deg(A) (9!

(It is shown in standard algebra textbooks, e.g.C43, that
this decomposition is unique iff B’ (s) and A’ (s) are rela-

tively prime ).

Equation 8 corresponds to the operation of long divi-

sion using integers where Fk(S) corresponds to the quotient
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and Ek(s) the remainder.

The first term represents the non strictly proper part
and is given by

+ ... +h (10)

and the second term represents the strictly proper part

given by

F (s) 00 .

XKF_T = T h.s ! = hk+]S_1 + ... (11)
S ST '

Denoting the coefficient of 5n~l in Fk(5> by ka’ it fol-
lows that

o

Meel A,

Those familiar with the discrete-time predictor of
Astromf51 will recognise this decomposition with z replac-

ing s. This is because Markov parameters in discrete-time

are the coefficients of the weighting sequence expansion of

a z-transfer functionf{3].

1.4. THE MARKOV RECURSION ALGORITHM

A Markov recursion algorithm giving the Markov parame -

ters hk’ together with the polynomials Ek(s) and Fk(S)’ can

be derived as follows{e]:
Multiplying equation 1.3.8 by s

i:'

K+l
s (

B'(3)
A’ )

0 n
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where the second equality is obtained by adding hkfl to the
first term and subtracting it from the second. Using equa-
tion 3.11, the second term of the second equality is
proper. Together with equation 3.12 this yields the follow-

ing recursive algorithm:

Lo}

h - KO (2)

M
"
\

il = SE, (s) +

Fk+1(5) = st(s) - hk+1A’(s)

The initial polynomials are

Eo = 0; FO = B'(s) (3)

Note that if k < p then

Fl (s) = sKB' () (4)

1.5. STABILITY AND GAIN

Stability

We list some standard stability results for linear time
invariant systems described by the transfer function
H' (s) = B'(s)/A’(s). These results are intuitively obvious;
a deeper treatment is found , for example, inl[7,8].

1. The system is stable if the poles of H'(s) (roots of

A’ (s)) have negative real parts.

2. The transient response decays to zero at least as fast

as Ke‘“t for a finite constant « if the poles of H(s



Sec. 1.5. STABILITY AND GAIN 1-9

o) have negative real parts.

Gain

The gain of a system can be defined 1in various
waysl7,8]. For a 1linear time invariant system H'(s) the
gain vy may be defined as the maximum steady-state
sinusoidal gain at any frequency w
Yy = sup H' (jw) (1)

W

The root mean square of the system output y(t) may be
shownl7,8]1 to be bounded in terms of the system input u(t)

by

t t
nyz(T)dT <oy quZ(T)dT + k for all t (2)
0 0

where k is a finite positive constant.

The scalar quantity

t
Jfutcnd (3)
0

Is also called the truncated Lﬁ norm of the signal
ult)t7,817.

Exponential weighting

The exponentially weighted function ym(t) corresponding
to a signal y(t) 1is defined as

Suppose that the impulse response of H'(s) is h’(t). Using
the convolution integral, it follows that
t

y(t) = fh'(t-Tmiult)dr (9)
0
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Substituting for the exponentially multiplied variables

t
ym(t) = éh'“(t“T)u“(T)dT (6)
where
he oty & e®*tnct) (7)

The transfer function of this exponentially multiplied sys-
tem is then

oo_ t o0
H' (s) = fe °“h' (t)dt = fe
@ 0

0

“(s7) by (eydt = H' (s-00) (8)

In other words, the exponentially multiplied signals are

related by the same transfer function as the original sig-

’ ‘

nals except that ‘s’ is replaced by ‘s-a’ This corresponds
to the well known ’'shifting on the s axis’ theorem of

Laplace transformsC9].

1.6. CONTROLLABLE STATE-SPACE REPRESENTATION

The differential equation for a strictly proper subsys-

tem may be written in controllable state-space form as:

3% - ax© ¢ wu (1)
y(t) = BIxC(t) (2)

where the companion matrix A is given by

| - a - a - a . - a’' |
| 1 2 3 n I
1 0 0 0 o
A= 0 1 0 0 o (3)
i ) ,
o 0 0 1 o
B = b ', b ', .., b 1 (4)



Sec. 1.6.CONTROLLABLE STATE-SPACE REPRESENTATION 1-11

U’ =1r1,0,0,...,01 (5)

If the subsystem is not strictly proper (bo¢0) the sys-
tem has a direct feedthrough term. For the purposes of this
book, we handle this in a rather wunconventional way by
using an extended state vector. The single nth order dif-

ferential equation 1.6.1 is recast as n first order dif-

ferential equations and an algebraic equation

dc _ _c .
at¥ i T X 4., i=1l..n (6)

(x - xcn forms the state; xCO is the extension)

Taking Laplace transforms (with zero initial condi-

tions) of equations 6 and 7 gives

sx7, = x©, (9
i i-1
-C - 2 -i-c
a x = ul(s) - T s "x (10)
0% o . 0
i=1
and so
- Sn
o T A (s (11)

It follows that (with zero initial conditions) the Laplace
transform of the extended state vector is
|
n
!
-1

3w

_1
A (s)

!
!
E
L
| 1

b

fu(s) (12)
|

|
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In this formulation, the states are all derivatives of

xcn. For this reason, xcn is sometimes called the partial
state £ of the system[C3]1. With =zero initial conditions,

the partial state & can be written in terms of the system
input and output as
c 1

- = . 1 - - 1
E =x n = A,(S)U(S) 57757y(s) (13)

[

.7. OBSERVABLE STATE-SPACE REPRESENTATION

An alternative state-space representation is:

Y = th ,h , ..., h1 (3)
- n 1

where hi is the ith Markov parameter of the system. As 1in

the controllable representation, this may be rewritten in
terms of n first order differential equations and one alge-

braic equation as:

x° = hu-a x° -ax® - .. -a x° (4)
0 n 171 27 2 n n

_dyo o y©° i=l..n + h_ .u i=l..n (5)

dt™ i i-1 n-i te

The extended state vector is then defined as

x° = x°, x°, .., x°1T (6)

Taking the Laplace transforms (with zero initial condi-

tions)
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= _ B'(s)~
X, = y(s) = ETTgTu(S) (7)

hence, taking the Laplace transforms

F' (s)
-0 B B'(s) _ - _ 1
X n-1 - [SXTTET hl]u(s) = A (8) u(s) (8)

Proceeding in this fashion, it follows that

F’ (s) F' o(s)
z0 - k-1l 3 N S
X'k T Cs A (s) hk]u(s) A(s) 4is) (9)
that is
Lp (s |
! n |
|F’ (s)]
50 _ 1 n-1 -
X (s) = A’(s): . :u(s) (10)
| B’ (s) '

Thus the observable form is closely related to the Markov

recursion algorithm of section 1.4,

1.8. TIME DELAYS

Many practical systems include a pure time delay. One

class of subsystems with a pure input delay can be modelled

as

n n-1i n dn—l

La;i——y'(t) = I bi———u (t-T) (1)
i=0 tqtn"7? i=0 ggh?

where T is the duration of the delay. If the initial condi-

tions corresponding to the time delay are zero the

corresponding Laplace transformed system is

-, . -sT B'(s)-, D'(s)
y'(s) = e A;TETu (s) + A (s) (2)
The modelling of systems with non-zero initial conditions

corresponding to the delay is more difficultlf10,111. We
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shall not consider it in this book.

1.9. THE SYSTEM EQUATION

The systems considered in this book are composed of a
number of subsystems representing the effect of the control
signal and the disturbances affecting the process. These
subsystems are considered in turn and then combined to form
the overall system model of the form

- ~ -sT B(s)-, Cls)- D(s)
y(s) = e A(S)u(s) + A(S)V(S) + Als)

P

(L)

The issues involved in modelling the disturbances are then

considered.

The controlled system equation

The controlled system is modelled by the equations of
section 1.2 with vy’ replaced by yC and with a time delay

included

T B ( ¢
a8 B 5_)_,_3(5) + D (s) (20

7o (s) =
at(s) A% (s

ransient disturbances

Some disturbances may be modelled as the transient
response ot a dynamic system. In Laplace transtform torm
such a disturbance yt(t) can be written in the form of
1.2.4 with u’ = 0 as

£
PATETREE S (1)

At(s)
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Example: Constant

The constant disturbance

-t _k

y (s) = < (9)
Example: Sinusoid

The sinusoidal disturbance
t _

y (t) = cos wot (6)
can be modelled as

%) = -7——5—-~~-5 (7)

s° 4+ wy

Forced disturbances

Practical disturbances are often toco irregular to be
modelled as transient disturbances but are nevertheless
smooth enough to be predicted over a limited time horizon.
Such disturbances can be usefully modelled as a high
bandwidth random signal v(t) passed through a transfer

function
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Example: Random jumps

A piecewise constant signal with jumps of random ampli-

tude at random times can be modelled as

o0
vis) = L k.e (10)

where ki is a sequence of random amplitudes and Ti a

sequence of random times.

Example: Random process

A stochastic process with rational spectral density

sf (s pf(s) (119

Af(-s)Af(s)

may be modelled by passing white noise through a rational
transfer function; seel5,121 for a detailed discussion. To
avoid the mathematical details of stochastic process, we

will consider a model of the form

_ | P
sy = B8lG (12)
A" (s)

where v(s) is a finite variance, high bandwidth stochastic

process.

The system model
The disturbed single-input single-output system (Figure
1.9.1) considered here is of the form

= -sT B(s)- C(s)~ D(s)
Yy = CANCRS LAN-RE AN
y(s) e A(S)u(s) + A(S)V(S) * A(s) (13)

This can arise from the three types of subsystems in
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- [
u(s)| -sT B(s)|

—->—e

various ways. In particular, if

yit) =

then

yis) =

This is identical to equation 1.9.1 if

D(s) =

voeey v yoeey + yioe

-sT B (s) - °(s) . 8Y(s)
e " +

f
+ B (s)-

Figure 1.9.1 The system model

- uls) + = t
A" (s) A (s) A7 (s)

A“(s) al(s)
At(s) Af(s)
A(s) af(s)

v(s)
Af(s)

p(s) atcsy afsy + B%(s) a%s) af(s)

L-17

(14)

(19)

(16)

(17)

(18)
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This example makes it clear that systems written in the

form of 1.9.1 will usually contain common factors in the

numerator and denominator of the various terms. This
implies that when each term 1is written in controllable
state-space form it will be unobservable, and when written

in observable state-space form it will be uncontrollable.

See, for examplel3].

Assumptions about the disturbance

In many cases, the disturbance component of the system
is such that we would not wish to differentiate it. Given
that v(s) contains white noise or impulsive components,

this can be modelled by making

Disturbance assumption 1

deg(C) = deg(A) - 1

An even worse case would be when we would not wish even to
use the system output directly. This can be modelled by
making

Disturbance assumption 2

deg(C) = deg(A)

Throughout this book we will assume that C(s) is known,
or rather available as a controller design parameter for us

to choose.

Disturbance assumption 3

C(s) known.

This seems at first sight to be a rather sweeping
assumption. But let us suppose for a moment that the system

is "really” given by
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yis) = e 7T 2E(s) + Si8lg () 4 RiS) (20)
then this can be written in the form of 1.9.1 if

~ - _ -y .= _C'(s)=,

C(s)v(s) = C’'(s)v’(s); that is v(s) = Cls) Vv (s) (21)

As the precise details of the disturbance v(s) do not con-

cern us here, the fact that v(s) is different from v’'(s) is
not important.

A state-space representation

The system equation can Dbe written in observable
state-space form as

3ex0 = ax° + H

Ere: u+ Hwv (22)

b -C

v = utx® = x_ (23)

Taking Laplace transforms

| |
P 2b | ¢ |
I Fon | Fon
igb | lpc |

e _ 1] n-1|- 1 ] n-i|-
X~ = Als) | ) |u(s) + ACs) | ) |v(s) (24)

[ B | I C
| | | |

Recalling that Fbi - s'B for i{p it follows that

FC
o) _ _kB(s)- . K-
Xk = 8 A(S)u(s) + ngyv(s) for kdp (25)
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CHAPTER 2

Emulators

Aims. To introduce the concept of an emulator as
the generalisation of a predictor. To describe
particular emulators providing emulation of
improper transfer functions and derivatives, zero
cancellation and prediction. To present design

methods for a variety of emulators.

2.1. INTRODUCTION

In 1959, Smith introduced the idea of using a predictor
to overcome the problems encountered in controlling a sys-
tem with dead-timelC1l1l. The Kalman-Bucy filter was
developed around the same timelL21, followed by the state

observer(3]. (Seef4] for a tutorial account of such state

space methods).

These are all examples of using a model of the system,
together with input and output measurements, to deduce sig-
nals which cannot be directly measured. The Smith predictor
deduces future values of the system output; the Kalman
filter and state observer deduce system states. The term

inferential control has been used to describe control sys-

tems containing elements which infer unmeasured



2-2 EMULATORS Chap. 2

variables([5S,6].

All these examples illustrate an approach to control
systems design where physically unrealisable operations
such as prediction or taking derivatives can be emulated by
making use of a parametric system model. We shall call the
dynamic systems which emulate unrealisable operations emu-

lators.

[The Concise Oxford Dictionary defines the verb
‘emulate’ as "Try to equal or excel; rival; imi-
tate zealously”. We use the last meaning in this

book. ‘Emulator’ is the corresponding noun.]

In this chapter we shall consider three classes of such
unrealisable operations and their corresponding emulators;

those corresponding to:

1. Derivatives

2. Zero cancellation
and

3. Prediction.

Why are such emulators useful? Derivatives are useful
to reduce the relative degree p of a system, zero cancella-
tion is useful to reduce the number of non-minimum phase
system zeros, and predictors are useful to reduce system
time delay. These aspects are considered further in chapter

3, where the emulator is put into a feedback loop.

The difficulty with emulators (as with predictors) 13
that an accurate system model is required before the emula
tor can be designed. Self-tuning enulators, and the

corresponding self-tuning controllers, are inicdauced in
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chapter 6 to overcome this problem.

2.2. OUTPUT DERIVATIVES

In the presence of noise, it is usually not feasible to
take derivatives of the system output. This is reflected in
our model by the disturbance assumptions 1 and 2 of section

1.9 that the relative order of the disturbance transfer
function C(s)/A(s) is either 0 or 1. The former case
implies that we would not wish to use y directly without
low-pass filtering, the latter that we could wuse y but

could not take any derivatives.

In this section we show that it is possible to emulate
the operation of taking a derivative without introducing
white noise and its derivative. The method 1is <closely
related to the state-space observable form of section 1.7,

and hence to state observers[3,4].

As most of the development is in the Laplace domain, it
is convenient to consider s-multiplied signals in the
Laplace domain rather than signal derivatives in the time
domain. The two approaches are the same if initial condi-
tions are zero; and in any case the resultant stability

properties are the same.

The sk multiplied system output (equation 1.9.1) is

§k(s) = skﬁ(s) = skgfg%ﬁ(s) + sk%%S%G(s) + sk%%g% (1)

k

Using the Markov parameter expansion of section 1.4, the s
multiplied disturbance transfer function may be decomposed
into two parts

kC(s)

S Als) - Elk(S) + ——— (2)

where
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E1k(5) R L ... K

1

oy
w
+
oz
4]

+
+
=
"

hi (i = 0..k) are the first k Markov parameters of

C(s)/A(s) and

deg(F) < deg(A) (4)

The transfer function F_ (s)/A(s) represents the strictly

k
proper part of kgz:z and E1k(5) the improper remainder.
Such a decomposition is unique (if C(s) and A(s) have no

common factors)L7].

In a similar fashion, the sk multiplied initial condi-

tion term can be decomposed as:

D
F (s)
kD(s) _ D T 1k
Sacs) © B k'™ TRis) (5
The first term Ele(s) is a polynomial in S; the

corresponding time domain function contains impulse func-

tions and their derivatives; this term is thus not realis-

D
E k(s)
able. On the other hand, the second term aX{s) - is a

proper transfer function.

Using this realisability decomposition, §k(s) may be
- &
written as the sum of an emulated value Yy *(s) and the

. — Ak
corresponding error elk(s):

- - K&k —kk

yk(s) = yk (s) + e1k(5) (6
where
D
F o (s) F (s)
- KK kB(s)- 1k - T 1k
Y (8) Acs) s As) VS T TR(s) (7)
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" (s) = E ) v ¢ gV )
elk S = 1k(5 v(is) - 1k(5

Equation 7 cannot be implemented as it stands as

1s unknown. But from the system equation 1.9.1

v(s) = B8lg g Bls) =sT 5 o) _ D(s)
cis)Y C(s) C(s)
Hence
F . (s) Foo(s)
o kA . kB(s) = "1k B(s)4.-sT - 1k b
Y 180 = st A(s) C(s)1®  Us) + gy v(s)
D
. [F 1k(5) i Flk(S)D(S)]
Als) A(s) C(s)
Using the decomposition identity 2
okBis) Tk Slpis) By (s)Bls)
A(s) A(s) C(s) C(s)
Using the decomposition identity S
FP (s) F. (s) E (s)D(s) - EP  (s)C(s)
1k " Tk D(s) _ 1k 1k
A(s) A(s) C(s) C(s)
Hence
F . (s) E  (s)B(s) I . (s)

- Ak _ o1k T - 1k S -sT - ik T
k9T TEey Vs T ey e T uls) v iy
where

I .(s) = ED (s)C(s) E . (s)D(s)

1k S = 1k S S - 1k S) S
Remarks

F1k(5)
1. G5y is, by definition, proper.

(8)

vis)

(9

(10)

(11)

(12)



2-6 EMULATORS Chap. 2

E (s)B(s)

2. The relative degree of ALKETET'ﬁA is p - k where p 1is
the relative degree of the controlled system transfer
function g%%%. For this term to be realisable, we must
have k ¢ p.

3. The emulator is constructed in such a way that the ini-

tial condition term FD1 (s)/A(s) is strictly proper. It

k
follows that in its final form, the corresponding emu-

lator term ka(S)/C(S) is also strictly proper.

As, by definition, C(s) is stable, the initial condi-
tion term D(s)/A(s) corresponds to a decaying transient
term which becomes small after a time somewhat greater than
the time constants associated with C(s). For this reason,
the term may be omitted from the predictor to give the
approximate predictor (see Figure 2.2.1):

F_ o, (s) E  (s)B(s)

- & 1k - Lk -sT -

= e +
yk (s) o) y(s) Cis) e u(s) (15)
with associated error

I (s)

K =Kk 1k
e1k(5) = elk(s) + sy (16)

The auxiliary output and the emulator

Linear combinations of output derivatives can be
readily emulated using such methods. In particular, if the

auxiliary output @l(s) is defined as

o (s)

. P(s)y(s) (17)

i

s"Fis) + p sP Hyis) 4 + p y(s)
P, ¥ P, y (s . v Py

The corresponding emulated auxiliary output can be written

as



Sec. 2.2. OUTPUT DERIVATIVES 2-7
— y(s)
— Ik k
V(s)d—ds |——> 1> %
| | | e(s)
R — +| k
0>
|
— y(s)|
— I F 1+ k|
Y(s)=>d —k o O—>—l
P C 1 +]
| S| I
|
|
— |
— jE B | |
U(S) =)~ ke
I C
I

Fiqure 2.2.1 Emulating output derivatives

Proy ¥y (S) (18)

with corresponding error

n
— & & — kX
e1 (s) = kEopn_kelk(s) (19)

* A
Using the explicit expression 2.2.13 for Vi (t), it fol-
lows that

A F1(5)~ E (s)B(s) _ I (s)

I S D ST - 1 1
¢ 1(s) TS y(s) + i) e u(s) + (o) (20)

I (s) = El(S)D(S) - E 1(S)C(S) (21)
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— 4)(5)
- I | 1
y(s)—>—"qP(8) p——d—7—>
| | | _~
b +| el(s)
0—>
| _*
— lp(s)
_ I A |1
y(s)=>—rd — p—0—>—L>
¢ 1+l
| S| I
|
|
— |
- | EB | |
u(s)—>—rra — p—-
[ C
1

Figure 2.2.2 Emulating the auxiliary output

with associated error

Ak - D
e (s) = E (s)v(s) + E~ (s)
1k 1 1
E (s), E- (s) and Fl(s) are obtained from
n
E (s) Zp, E  (s)
1 k=0 n-k 1k
n
D D
E- (s) = Z p__ E (s)
1 k=0 n-k— 1k
n
F (s) E pn_kFlk(s)

Chap.

(22)

(24)

(2%
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Alternatively, taking a weighted sum of the Markov
decomposition 2, El(s) and Fl(s) may be obtained from

F.o(s)

- (S) l__
P(s) =B () + 115 (26)

S
(s)

>0

This is the algebraic (s replaces z) continuous-time analo-
gue of the discrete-time generalised minimum variance
method in(8,91.

State Space Considerations

Comparison with section 1.9 shows that (assuming zero
*
initial conditions) Yy (t) 1is the kth component of the
observable state space form for all k ¢ p. That is

-k

¢" (s) = px° (27)

where

p = L£0,0, ,Pn e , pO] (28)
p

Seell10] for further details.

Exampl

Consider the second order system described by

A(s) = s(s+1); B(s) = 1+bs; T = 0 (29)

C(s) = l+sc; D(s) = 1l4ds

. C
Applying the Markov recursion formula to X%i% we have:

Initial values
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E = 0 and F = 1l+sc
10 10

First Markov parameter

h = c
1
Step 1
E = h = c;
11 1
F = sF - h h = s{l+cs) - cs{l+s) = s(l-c)
11 10 11
Defining an auxiliary output with P(s) = l+ps
E1 = 1.E10 + p'£11 = pc
Fl = 1'F10 + p Fll
= 1l+cs + ps(l-c) = 1 + (ptc-pc)s

In a similar fashion:

and so

El(s)D(s) - EDl(s)C(s) = pc(l+ds) - pd(l+cs) = plc-d)

Thus
ria _ pclltbs)- 1 + (ptc-pc)- ple-d)
¢ 1(5) - l1+cs AT l+cs (s) + l+cs

Note that all three transfer functions are proper.
In the particular case that

p=0.5; c=0.5; b=0.1; 4 = 0.1

2

(30)

(31)

(32)

(33)

(34)

(35)
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it follows that

=%k _0.25(140.1s) - 1+0.75s~ 0.2

D (s) u(s) + 140.5s y(s) + 1+0.58

1 - 1+0.5s (36)

2.3. ZERQO CANCELLING AND OTHER FILTERS

The previous section considers an auxiliary output 6
l(s) which 1is a polynomial P(s) times the system output;
the all zero filter P(s) is not physically realisable due
to the implied derivative action. 1In this section we con-
sider the emulation of a different sort of non-realisable
transfer function: multiple derivative action filtered by a
possibly unstable polynomial Z(s). Such an emulator can be
used to effectively cancel right half plane zeros.

To include the derivative (or, more correctly, s multi-
plied) emulators of the previous section as a special case,
we include derivatives in this section as well. Thus we

define the signal ék<s> (FPigure 2.3.1) by

Kk
E (s) = E%g7y(s> (1)
—k—
_ i s |
yis)—> { F >— E(s)
[Z(s) |
| I

Fiqure 2.3.1 Zero cancelling filter

Using the system equation 1.9.1,
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K

= k B -sT - Kk C - s D

_ kB __Cc = __sD
Epfs) = S ZiaTa(s® uts) + "7y Vs * Zis)as) (¥

As in section 2.2, sC/ZA and sKD/ZA are divided into

realisable and non-realisable parts. But first we divide
1/7 into notionally realisable and non-realisable parts by
defining the polynomials Z+(s) and Z (s) as two factors of
Z(s):

Z(s) = 2 ()% (s) (3)

This decomposition is not unique, and particular choices of
Z+(s) and % (s) will depend on the application. Z+(s) is
regarded as the realisable part and 2 (s) the non-
realisable part. The following design rules are imposed:

13

design rule 1

+
7" (s) contains no zeros with positive real part.

[[\)

design rule 2
7Z(s) contains no zero at s=0.

Note that the first rule implies that 7 (s) contains
all the factors of Z having roots with positive real parts,

but may also have roots with negative real part.

With this notation, we can define the polynomials
E (s) and F2 (s) by

2k k
k C(s) _ B! Fox(s!
S A(s)Z(s) - * " (4)
Z (s) A(s)Z (s)
where
deg(F_, (5)) ¢ deg(A(s)Z (s)) (5)

In terms of polynomials, this equation becomes
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k

s’C(s) = E_, ()2 (s)A(s) + F, ()27 (s) (6)

2k k

Note that when Z=1, we have Ezk(S) = Elk(s) and

sz(s) = Flk(S)'

In a similar fashion, the initial condition term can be

decomposed as

ED (s) FD (s)

k _ D(s) 2k 2k

S = + - (7)
A(s12(s) 27(s)  A(s)zV(s)
where
D +
deg(F Zk(s)) { deg(A(s)Z (s)) (8)

We shall defer the solution of these equations for a
D
moment and assume that Ezk(S)’ EDzk(s), sz(s) and F zk(s)

have been found. Substituting into equation 2

= k B -sT -

Ek(s) = s Z(s)A(s)e u(s) (9)
sz(s) - Ezk(S)—
+ ———““:———V(s) + —————v{(s)
A(s)Z (s) Z (s)
D D
. F zk(s) . E zk(s)
A ztis) 77 (s)

As in the ©previous section, this may be divided into

realisable and unrealisable parts as

= = kX -k K

Qk(s) = gk (s) + elk(s) (10)
and the system equation 1.9.1 used to eliminate v(s) to
give

F_ (s) E_, (s)B(s)
—- Ak - - -
ES sy = 4 gy v 28T 5 (11)

Z (s)C(s) Z (s)C(s)
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[2(5)
e
where
ED (s)C(s) - E D(s)
2k s s zk(s) (s
Iz(s> = ~
Z (s)
and
D
(s) E (s)
sy = 2K G(s) 4 —2K
Z (s) Z (s)

This error signal is never actually generated, so the

that it is not realisable is not a difficulty.

A particularly important case is when

B(s) = B (s).B (s); Z (8) = B (s)

and B (s) contains all zeros of B(s) with positive

part. Equation 11 then hecomes

+
F_,.(s) E_,(s)B (s) ~
Ek**(s) = 2k y(s) + %“—P sT u(s)
C(s)Z (s) ’
IZ(S)
e

The auxiliary output and the emulator

Linear combinations of filtered output derivatives

(12)

(13)

fact

(14)

real

can

be readily emulated using such methods. In particular, if

auxiliary output 62(5) is defined as

¢ (s) = g—::‘%{;(s)

(1e)
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the corresponding emulated auxiliary output can be written

as

Ak n kA

o . (s) = kgopn_kgk (s) (17)

Note that if Z(s) = 1 then &2(5) = ¢ (s).

— (?(S)
_ IP(s) | 2
yis)—> 1 F >——>
1Z(s) | |
| S +‘ e
0>
| _*
— [&(s)
[ F 1 + [ 2
yi(s)=>—rd — p—Q—>—1 )
FCo o+
L |
I
|
— |
_ | EB |
u(s)=->—— — ——
C
I |

Figure 2.3.2 Emulating the auxiliary output

- Ak
Using the explicit expression for ék (3), it follows that

Fz(s) E_(s)B(s) _sT - I_(s)
- S uls) +

Cis)1z¥(s) C(s)Z 7 (s) Cis)

(18)

(Figure 2.3.2 shows approximate version) with associated
error

e (s) = ~EP—g(s) + —2— (19)
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EZ(S), Iz(s) and Fz(s) are obtained from

n
E,(s) = I p,_pE (8) (20)
2 k=0 n-k—2k
n
I.(s)y = Lp I , (s) (21)
2 k=0 n-k 2k
n
F (s) = T p P (s) (22)
2 k=0 n-k 2k

Alternatively, taking a weighted sum of the the Markov

decomposition, Ez(s) and Fz(s) may be obtained from

E_(s) F_(s)
P(s)C(s) _ Z2 + 2 (23)

Z(s)A(s)  g-(g) 2% (s)A(s)

or in polynomial form

P(s)C(s8) = EZ(S)A(S)Z+(S) + FZ(S)Z~(S) (24)

and 12(5) is obtained from

D D
P(s)D(s) _ E z(S) F 2(5) .
Z(s)A(s) — - e (257

Z (s) Z (s)A(s)
and

D
EZ(S)D(S) - E 2(s)C(s)
I,(s) = — (26)
Z (s)

State Space Considerations

If Z(s) = B(s), then go corresponds to the partial

state of the system.
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Thus, in this case,

- C

mz(s) = pX (27)
where

p = [0,0,..,pnp, . ey pOJ (28)

It follows that this special case 1s related to the
ontrollable form of section 1.6.

2.4. SOLVING DIOPHANTINE EQUATIONS

The emulator of the previous section requires the solu-
tion of the polynomial equation 2.3.24

P(s)C(s) = EZ(S)A(S)Z+(S) + F ()2 (s) (1)

This equation is an example of a linear Diophantine equa-
tionf11,12,13,73. This section 1is devoted to methods of

solving such equations.

This Diophantine equation has a solution if, and only
if, the greatest common divisor (GCD) of Z (s) and
(z¥(s)A(s)) is also a factor of C(s)C11,12,13,71. However,
we will avoid this problem by arguing as follows. Firstly,
we will choose Z+(s) and Z (s) so that they have no common

factors. Secondly, the purpose of the filter is to cancel
B(s)
A(s)
in cancelling zeros of B(s) which are already cancelled by

zeros of using the polynomial Z(s). There is no point
A(s), so we choose Z(s) so that it has no factors in common
with A(s). Hence we would never wish to choose Z(s), Z (s)
and z'(s) in such a way that Z (s) and (2 (s)A(s)) had com-
mon factors. Nevertheless, we require a method of checking
that this is so, preferably without needing to factorise

the polynomials.
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This leads to the following three step algorithm for
solving equation 1 (that is, equation 2.3.24) for EZ(S) and
Fz(s) (this approach is essentially that ofC71, page 159;

alternative approaches appear inC1l1l,12,130:

A Use Euclid’s algorithm to calculate the GCD (g(s)) of
2 (s) and (2'(s)A(s)). Compute 2  (s) = 37é§l

B Use Euclid’s algorithm to solve the polynomial equation

e(s)a(s) + f(s)b(s) =1 (2)

where

a(s) = A(s)Z7(s); b(s) = 2 (s) (3)

C Use e(s) and f(s) to solve

E  (s)a(s) + Fz (s)bl(s) = C(s) (4)

2k k

The three steps A-C are considered in the following sub

sections.

A. Finding the GCD

The classical Euclidian algorithmC71 for finding the
GCD of two polynomials is to be found in many textbooks on
algebra, for exampleC73. Euclid applied the algorithm to
integers; it also applies to polynomials, as integers and

polynomials possess a similar algebraic structurel7,131.
The algorithm is as follows:

1. Set %, = a(s) = A(S)Z+(S) and set ®, = b(s) = Z (s).

2. Recursively compute the remainder £y and the quotient

ay from
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®x 4 T 9y L (5)
and set
“1+l =ry (6)

3. The degree of oy decreases as i increases, so eventu-

ally for some i=n+1, rn+l = 0, and so

0tn - qn+l°‘n+l (7

It follows that %he1 = Fp is a factor of L From equa-
tion 4 with i = n it follows that rn is also a factor of
%no1° Repeating this argument, r_ is a factor of both «

n 0

and ®, -

Thus the GCD g(s) of a(s) and b(s) is the last non-zero
remainder L of the above algorithm. That is,

gls) = r (8)

B. Solving the Diophantine Equation

Having found the GCD g(s), we are in a position to com-

-- _Z (s)
pute Z (s) = g(s)
1. If degree(g(s))>0 then the previous algorithm 1is exe-

cuted but with Z (s) replaced by Z (s).

2. Equation 4 with i=n can be rewritten as:
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Using equations 4&5 with i=n-1, it follows that

% 7 fn-1 T %n-2 9h-1%n-1 (107
Hence we can write

Bn-1%-1 * Yn-1%n-2 L (11)

where

Bn—l = Yn T Bnqn~1; Yn-1 ~ Bn (12)

Proceeding in this way the following equations for B

i
and Y; are recursively computed from the following:
Recursive algorithm
Bia®i1 ¥ Yi-1%i2 T 1 (13)
Biop = ¥s ~ Bidyy7 Yiq 7By (14)
B1 = f(s) and Y1=e(s) then solve
e(s)a(s) + f(s)b(s) =1 (15)
C. Diophantine recursion

From the previous equation, we have
e(s) f(s) _ 1 (16)

b(s) T als) ~ b(sia(s)

In other words

e(s) f(s) 1 g(s)
* - = : (17)
2 (s Az sz (s1ztsars)  BSIES)




Sec. 2.4. SOLVING DIOPHANTINE EQUATIONS 2-21

and multiplying by sk

Sk_§i§1~ + Sk f(s) k_ g(s)

= s = (18)
Z " (s) INEIVAL Als)Z(3)

s)

Following the arguments in section 1.3, we can wuse the

Diophantine recursion algorithm to divide the transfer

function

k__f(s)
acsH)ztes)

(19)

+
into a realisable (derivative free) part, F’'(s)/A(s)Z (s),

and unrealisable E’'(s) parts as

Sk———iLél—— = E' (s) + ——=—— (20)

as)2 (s a1zt es)

Substituting into equation 1 (or 2.3.24) then gives

K ais) LBt F, (s)
S A(s)Z(s) ~ - * ¥ (21
Z (s) A(s)Z (s)
where
k , -
Ezk(S) = 5 e(s)g(s) + E'(s)Z (s) (22)
D
sz(s) = F'(s) (23)

Finally, following the arguments of sections 2.2 & 2.3:

(s) Ezk(s)B(s{e_ST _

_ F
* 2K als) (24)

E X(s) = —2K  S(s) 4 - -
k cisrztis) Cis)Z (s)

Remark

Common factors of B(s) and Z (s) should be cancelled

before implementation of equation 23.
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Example

As in section 2.2, consider the second order system

described by

A(s) = s(s+1l); B(s) = 1l+bs; T = 0 (25)

C(s) l+sc; D(s) = 1l+ds

i

We wish to derive a zero-cancelling emulator for:

¢ (s) = ;- y(s) (26)

where Z(s) is given by:

Z(s) = Z (s) = l+zs (27)

We shall not specify P(s) at the moment.

As discussed in section 2.4, the corresponding Diophan-

tine equation may be solved in three steps as follows:

A. Find the GCD of Z (s) and A(s)

Using the algorithm of section 2.4, subsection A, the

following equations result:

o« = Als)Z (s) = s(l+s); w = 2 (s) = l+zs (28)

Using the recursive formula

o, (s) = qi(s)ai(s) + ri(s) (29)

%, (s) = r,(s) (30)

the following sequence of polynomials results:
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! i | o | q. | . | r.
[ i-1 | i | i | i |
: 1 : s(1l+s) : s/z { l+zs : s(z~1)/zl
|2 1+zs | 2%/ (z~1) | s(z-1)/z | 1
! | | | | |
3 (z-1)/ (z-1)/ 1 0
S el T B Z | 1
B. Solving the Diophantine equation
Following the algorithm in section 2.4, we have
22
FBo= -~ gy = 545 v, =1 (31)
Using the recursion equations
Bion = vy 7 Bi9y0 vy T By (32
with i=2 gives
f(s) =B, = vy, - Bq (33)
_ _ Z_ s _ 4
=1 l-z 2 ! 1-z
3 ) _ ozt
els) = v =B, = (34)
It can be verified by partial fraction expansion that
indeed
2
e(s) fis) _ 1 . = l-z-zs _ 1
b(s) © a(s) ~ 1-zt1+zs ' s(s+l) - b(sla(s) (35

C. Diophantine recursion
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Using the recursive equations of section 2.4,

EZK(S) = SEzk—l + hlkz (s) (36)
F . (s) = sF - h, A(s)27(s) (37)
k'S T %k 1kt S s
where
sz—l
h = first Markov parameter of P (38)

1k Als)zt(s)

we get the following sequence of polynomials:

E ) F_ (s)

zk(s

i i | | |
f | 1k | | 2k |
} 0 ‘ -1 ‘ z2/(1-2) : 1 - sz/(l—z):
| 1| -z/(l-z) | -z/(l-2) | s/(1-2)

: 2 : 1/(1-2) : 1/(1-2) ‘ ~s/(1-2)

| 3| -VQ-m | s - ez | s/2) |

In is now possible to compute emulators of various
choices of P(s) and C(s) without having to recompute solu-

tions to Diophantine equations. For example

P(s) = (1 + 0.58)% = 1 + s + 0.2552; C(s) = 1+0.5s (39)

50

P(s)C(s) = (1 + 0.55)3 = 1 + 1.55 + 0.75s% + 0.125s>  (40)

Using equations 2.3.20&22 and the entries in the Table,

E_(s) and Fz(s) are given by

Ez(s) = Cz° - 1.5z + 0.75 - 0.1253 + 0.125s (41)

= I%;[zz - 1.5z + 0.625) + 0.125s
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F(s) = 1 + “2[-z + 1.5 - 0.75 + 0.1251 [42)
2 l-z
=1 + 7-[0.875 - z1
14z " ‘
Example: B(s) = 1+0.1s
In this case

E (s) = 0.125s + 0.539; F (s) = 0.86ls + 1 (43)
giving
Tk . 0.1255+40.539~- _, . 0.B6lstl-
¢2(,) 0. st —uls) + 0.55+1-y(;) (44)
Note that the factor
Z (s) = B (s) = Bl(s) = 140.1s (45)

has been cancelled from the u(s) term of the emulator equa -

tion.

This example can be compared with the example of sec-

tion 2.72.

Example: B(s) = 1l-3

In this case

E_(s) = 0.125s + 1.562; F_(5) = 0.9385 + 1 (46)
giving

=* - 0.125s5+1.562- 0.938s+1-

mz(s) = 0. 5541 u(s) N Seil v{(s) (47)

Note that the factor

7 (s) = B (s) = B(s) = 1-5 (48)
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has been cancelled from the u(s) term of the emulator equa-

tion.

2.5. PREDICTORS

We now turn to systems with pure time delay which can

be written as equation 1.9.1, repeated here as

- C(s)-
u(s) + KTETV(S) (1)

= _-sT B(s)
yls) = e A(S)

The question of initial conditions becomes difficult in
the presence of time delays; so, for simplicity, we will

assume zero initial conditions (D(s)=0) in this case.

As pointed out by SmithCl] one approach to designing
feedback controllers for such systems is to incorporate a
predictor into the feedback loop. This method has been dis-
cussed in detail by MarshalllC14].

The use of predictors in discrete-time minimum variance
conrrol was considered by Astrom in his book[151; in par-
ticular he pioneered the polynomial approach to designing
predictors. The presentation in this book is a

continuous-time analogue of this method.

Prediction of random functions has a long history. The

Weiner filter has a predictive version (see, for example,

the book(16] by Kailath). Other relevant books
arel17,15,18,19]. The statistical approach is not used in
this book.

The purpose of a predictor is to deduce the system out-
put a time T (the system delay) into the future. Putting
this together with the previous section suggests an auxili-
ary function &a(s) of the form
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(2)

But firstly, we consider the predictor alone and consider

yp(t) = y(e+T) (3)

or in Laplace transform terms

y - T ys (4

Using equation 2.5.1

- _sT - _ B(s)- sT C(s)-
yT(s) = e y(s) = A(s)u(S) + e XT;TV(S) (5)

The first term of the right-hand side 1is known. This
could, by itself, form a predictor giving
—* B(s)

o () = a )Cus) (6)

ui

o4
n

- * _ .sT C(s)=
e (s) = e KTETV(S) (7)

Due to its open-loop nature this would not usually make a
satisfactory predictor.

To obtain a closed-loop predictor we must somehow

include the disturbance term eST %%2% in the predictor.

But, due to the exponential factor, this term is not causal
and hence not realisable. In the same way as in previous
sections, this disturbance term is divided into realisable
and non-realisable parts; but in this case realisability is

associated with causality rather than with properness.

sT C(s)
e

Let the impulse response of A(s) be denoted by

ho(t), that is

_ _ sT C(s)
Lap{ho(t)} = HO(S) = e Als) (8)



2-28 EMULATORS Chap. 2

C(s) .
As A(s) is causal
h (t) = 0 t<-T 19)

It follows that ho(t) can be written as the sum of two

functions

hO(t) = hl(t) + hz(t) (10)
where

hl(t) = 0; t20 and hz(t) = 0; £t <0 (11)

Thus setting

H (s) ® Lapth (£)3; H,(s) 8 Lapth ()} (12)

the disturbance transfer function can be decomposed as

ST CLS) 4y (s) = H (s) + H_(s) (13)
A(s) o] 1 2

Example (Unit integrator)

Suppose that

C(s) _ 1 )
A(s) s (1)
Then
{1 t > -T
= -
ho(t) :O elsewhere 15)
| STt <D
h1(t) - }O elsewhere
t > T

o
N
ct
"

|
:O elsewhere
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These functions of time are displayed in Figure 2.5.1.

h (t)y »
0
T
|
|
[
|
l
l
[ et e e >
- T 0 t
h (¢) 7
1
{ 1
[ I
| |
l |
I |
l l
I I
[ e [ e e e >
-T 0 t
h (t) »
2
r
|
l
|
|
|
.............. [ oot i e e e
-T 0 t

Figure 2.5.1 Realisability decomposition - unit integrator

The corresponding Laplace transforms are:
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H (s) = e =H (g) = —— —=; H (s) =

0 |-
-
o

Note that both transfer functions are proper.

Example (Rational transfer function)

C(s)

Suppose that A(s) is rational and A(s) has n distinct
roots &y Then a partial fraction decomposition is:
H (s) = e &481 ; ST i (17)
0 A(s) . S - .
i=1l i

The corresponding impulse response is

n mit+T
h (t) = £ r.e ; £>-T (18)
n . i
i=1
Hence
n -{3 - mi)T
H (s) = I T ll'es — (19)
i=1 i
and
. T
n i
H(s) = £ ¢, om0 (20)
2 - i s - o
i=1 i
u)

Continuous-time FIR Transfer Function

In each of the above examples, the realisability decom-
position is of the form
C(s) -sT FT(S)

Cis) | ., fpic
A(s) - Bpfs) re Als) (21)
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Having performed the decomposition, the unrealisable

quantity iT(s) can be rewritten as

- — -
yT(s) = yT(s) + e (s) (23)
where

F.(s)
-* B(s)- T -
yT(s) = A(s)U(°) + NS vi(s) (24)
%(s) = H (s)7(s) = T Ep(s)V(s) (25)

Finally, substituting for v(s) in equation 24 and using the
decomposition 21, the predictor can be written as

ET(s)B(s) F.(s)

~* _ - T e

yT(s) = () u(s) + s y(s) (26)
The transfer function ET(S) = e_ST Hx(S) has an impulse

response which is zero for all time t>T. For this reason it
will be called a CFIR or continuous-time finite impulse
response system. CFIR transfer functions based on rational

transfer functions with distinct poles have the following

properties:

1.  The impulse response is zero for all time greater than
a finite value T.

2. The transfer function has no poles.
3. The transfer function is not rational.

Properties 1 and 3 are obvious; property 2 may be
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derived as follows:

Property 2
ET(s) = e~ST H1(S) comprises n terms of the form
~(s-o )T
l - e t
r. — (27)
i S xy

At first sight, this term has a pole at s=m6. But substi-
tuting S=0 into the numerator gives 1 - e = 0. Thus each
of the n apparent poles has zero residue; that 1is, the

function has no poles.

Property 3 is important as it means that Hl(s) cannot
be realised using a rational transfer function; however,
Hl(s) can be approximated by a rational transfer function.
One way of doing this is described in a following section.

The auxiliary output and the emulator

Based on the results of the previous sections, we are

in a position to define an auxiliary output &3(5) as

= _ 8T = _sT P(s)-
¢3(s) = e wz(s) = e iTETY(S) (28)
From the results of section 2.3, it follows that in the

presence of a pure time delay ( and zero initial condi-

tions):
F (s)
A _ - _
(s = ———v(s) + Pis)B(s) -sT 5y (29)
A(s)Z (s) A(s)Z (s)
hence
F (s)
A - ~
¥iis) = ¥ —E—Ts) + B(s)BEs) s, (30)
A(s)Z (s) A(s)Z (s)

The first term 1is wunrealisable, so decompose it into
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realisable and unrealisable parts as

_fz(é)_ _ Fa(S)

~
We can then define ¢3‘5) as the realisable part of ¢

F3(s) _ ) -
o _(s) = 7 v(s) + —————"u(s) (32)
A(s)Z (8) A(s)Z (s)

Finally, combining the system equation 1.9.1 with the two
identities 21 and 31

_ Fa(S) B Eg(s)B(s)_
o _(s) = —————:-~y(s) + u(s) (33)
’ Ct(s)Z (s) C(s)Z (3)
where
E (s) = E_(s) + Z (s)E_(s) (34)
3 F 2
Alternatively, Ea(S) and Fa(S) can be directly
expressed as:
sT P(s)C(s) _ _sT La(S) Fa(S) (26
€ Z(siAls) & Tt % (35)
Z (s) Z (s)A(s)
2.6 APPROXIMATE TIME DELAYS

The problem with designing controllers for systems with
a pure time delay is that the resultant controller is not
rational and thus cannot be realised using rational
transfer functions. One approach to this problem is to
design a controller for a rational system which contains a

rational approximation to a time delay.
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Time-delay approximation

One class of approximations to time delays have the

all-pass transfer function

-sT  T(-s)

e * T(s) 1)

where T(s) is a finite order polynomial in s. A particular

choice of T(s) is the Pade polynomial of order N given by

by
n, n,-1
T(s) = t.s L +t.s L 4 ft (2)
0 1 n
T
where
t = 1 (3)
N
and
T
t R - - t . (4)
nT—l 1(nT—1+1)(2nT—1+1) nT—lfl

Seell41 for details.

System approximation

Using this approximation for the time delay, the system

can be approximately written as

—~ _ T(-s) B(s)- C(s)= D(s) .
yi(s) = T(s) KTETU(S) + A(S)v(s) + Als) (5)
B.(s) Cnis) Dn(s)
Y S T S T
= AT(s)““S’ * AT(s)V‘S) Sy
where

AT(S) = T(s)A(s); Bn,(s) = T(-s)B(s) (6)
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C.(s) = T(s)C(s); DT(s) = T(s)D(s)

The auxiliary output and the emulator

In a similar fashion, we define the auxiliary function

P.(s)
_ _ Bpls) . sT P(s) -
¢4‘5’ = ZT(S> y(s) % e Z(s) y(s) (7)
where
P (s) 2 T(s)P(s); Zp(s) = T(-3)Z(s) (8)

The rational system is now of the form considered in
section 2.3. Noting that the Pade polynomial T(s) has all
roots within the stability, the polynomial T(-s) has all
roots without the stability region. Thus the polynomial

ZT(s) is decomposed as:

- + +

+ - -
Z = ZT(S)ZT(S): ZT(S) = Z (8); Znis) = T(-s8)Z (s) (9)

T(s)

With the above approximations, the polynomial identity
2.4.1 (or 2.3.24) becomes
E (s) F (s)

4 4

= - + (10)
T(-s)Z (s) Z (s)A(s)

_T{(s)P(s)C(s)
T(-s)Z(s)A(sS)

where deg(FT(s)) < deg(Z+(s)A(s)). The corresponding emu-
lator equation then becomes:

Ak F“(s) _ E“(S)B(S) B I“(s)
P e Tis)Cimz (s o T Tsiclsy (M
where

ED (s)Cis) - E (s)D(s)
I (s) = —* * (12)

“ Zp(s)
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with corresponding error

E (s) E- (s)
‘0 < —_—

N 727 (s) 7 (s)

2.7. LINEAR-IN-THE-PARAMETERS FORM

One particular structure which can be used for vrealis-
ing the emulators of this section is the linear-in-the-
parameters form. In transfer function form, each emulator

can be written as

—kk G(s)~ F(s)= I(s)
¢ (s) = u_(s) + 5 —y_(s) s (1)
CT(S) Z C(s)'z CT<S)
where
— kA (s)
¢ U8
e
(s)
— Ak z .
¢ (s) = according to context (2)
—kk
(s)
3
— Ak
(s)
4
and
G(sl 6 _E(s)B(s) (3)

C(s)2 " (s) C(s)Z (s)

with common factors of 2 (s) and B(s) cancelled out. In

kA
the case of ¢ q(s), using equations 2.6.6,

CT(s) = T(s)C(s) (4)
otherwise
Cn(s) = C(s) (5)
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The filtered signals Qz(s) and ?Z(s) are given, in the

— kA&
case of ¢ 1(s),by
- s -sT - - & -
uz(s) = e u(s); yZ(s) = y(s)
, - kK
in the case of ¢ 2(s) by
~sT
u,(s) & f—is); y, (s 8 L)
Z (s) Z (s)

. - A& ~ A A
and in the case of ¢ 3(s) and ¢ q(s) by

sy & —AJis); v (s

8 y(s)
z 2 (s z AR

This emulator equation may be rewritten as

o *(t) = x T

()8
-e -e

where the data vector Xe(t) and the parameter vector Qe

given, in Laplace transform terms, by

|
| =u ‘e '
_ I 5 | |“U|
X (s) 21X (s)'; 8 = 0|
e I~y | e |“Y|
Iz (s)! 184
| =1
Where
! f } |
| s™ | s
fn-1] | n-1]
S _ _ 1 's - LS 1 's -
Xu(s) = C(s)‘ ) |uz(s), Xy(s) = (s)' i |yz(s)
i 1 | | 1 f
| f i !
| f
s
~ . _»Llsn'll
Xi(S) B C(s)| . l
| {
| |

are

(10)

(1)

(12)
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and 6 1is aiven by

e

o
171 F 1

0= : R= F S (12
0 . =y oo -1 e
K= PE i1
n n n
(I oo [

The vectors XU(S), Zv(s) and Zi(s) are the Laplace

transforms of vectors 1in controllable form (see section

1.6). The time-domain versions may therefore be computed

from the differential equations 1.6.1.

This particular form provides a convenient means for

implementing an emulator. In particular, the data vector

X (t) is clearlv distinguished from the parameter vector

@

6 . This form will used in chapter 6 when self-tuning emu-

D

lators are discussed.
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CHAPTER 3
Emulator-Based Control

Aims. To introduce and illustrate the use of

emulators in a feedback loop. To introduce the
notional feedback loop and its use in investigat-~
ing the closed-loop properties of the emulator-
based control. To show that well-known control
strategies such as model-reference, pole~-
placement and predictive control are 1limiting
cases of particular emulators in a feedback loop.
To discuss the choice of emulator-based control

design parameters.

3.1. INTRODUCTION

Self-tuning controllers are based on many different
non-adaptive control design techniques. The purpose of this
chapter is to present a selection of such design approaches
in a unified fashion. The unifying concept is the emulator
considered in the previous chapter. We shall see that, by
incorporating such an emulator in the feedback path of an
otherwise classical control scheme, many types of algo-
rithms can be considered in a common framework. The classes
of algorithms include: model-reference (pole/zero place-

ment), pole placement, steady-state linear-quadratic, and
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predictive control.

An important concept to be covered is that of control
weighting or detuning of control algorithms. This will be
shown in a later chapter to be crucial in giving a robust

adaptive algorithm.

3.2. THE CONTROL LA

The single-input single-output feedback controllers
considered 1in this book can all be written in a common
form; as classical feedback controllers but with an emula-
tor 1in the feedback path. The control law can be written

in two equivalent forms:

A 1 - — %
= - (
u(s) Q(S)[R(s)w(s) ¢ (s)1 1)
and
-k ~ ~
¢ (s) + Q(s)u(s) - Rw(s) = 0 (2)
where
iSymbol { Quantity l
[~ | |
juls) | Control signal |
| & l |
o (s) | emulator output |
:Q(s) : setpoint :
10(s) | control weighting|
LR(S) ; setpoint filter }

—k
1/9(s) and R(s) are proper transfer functions. ¢ (s) is the

emulator output corresvonding to one of the emulators
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described in chapter 2. That is

¢ _(s)

P (s) = according to context (3)

and can be written in transfer function form as in section
2.7 as
el G(s) - F(s)-

¢ (s) = 5757“2(5) + C(s)yz

(s) (4)

This would typically be implemented 1in linear-in-the-
parameters form as in section 2.7.

Alternatively, we could use 6**(5) in place of 6*(5).
However, in this chapter, we shall ignore the effect of
initial conditions; that is, we concentrate on the system
setpoint response and the system disturbance response. This

emulator-based control law is given in Fig 3.2.1.

Limiting the control signal

In many contexts, it is appropriate to limit the con-
trol action of a feedback controller, typically to avoid
actuator saturation. This can readily be done here by
interposing a suitable non-linearity between the 1/Q(s)
transfer function and the control signal as follows:
~ & l

- —-*
u (s) = Q(S)ER(s)w(s) - ¢ (s)1 (S)

A

ult) = Satfu™ (t)3 (6)



3-4 EMULATOR-BASED CONTROL Chap. 3

1 — _
w(s) 1 | B | y(s)
—r QA — b= >

| | Q| f A | |

| | — | o

| 1 | EB | Il F $(s)

| = — o4 — F—0->—

| I CZ | | FC 1 f

| ! > ! |

| |

L ( J

where "Sat" indicates the appropriate non-linear saturation

function.

The crucial point here is that the emulator should

operate on the signal u(t) reaching the plant, not the sig-

nal G*(s) before the saturation. Seell,2]1 for a discussion

in the discrete-time context.

3.3. THE NOTIONAL FEEDBACK LOOP

To obtain the properties of emulator-based feedback
control laws, the idea of a notional feedback loop is

introduced in this section. To obtain general equations,
we consider the emulator for 53(5) which includes all the

other emulators as special cases. Recall that:

? - & I
¢3(a) = ¢3(q) + e3<q) (
and that

- _sT P(s)

@3(5) = e 7(s) (2)
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In this chapter, the controller output is assumed to be
the nominal system input:

ul(s) = G(S) (3)

The consequences of this assumption being false are exam-
ined in chapter 4.

Combining these equations gives the block diagram of

Figqure 3.3.1. This notional feedback system provides an

easier way of deriving system equations than wusing Figqure
3.2.1.

B
_ | C(s)|
V(is)— —— |—>q
| A(s)| |
—
l
l
- T/ e | -
wo | + 1 | uts)| -sT B(s)| | y(s)
—->— R(s) p—0-—>—rf —>— e — = O——>
I b= I QCs) | | Als)| |
e | | S S | |
1 |
| ——— |
I + | +sT P(s) | |
— 0 | e S
[~ | Z(s) |
|_k S — |
e(s)

Figure 3.3.1 The notional feedback system

This block diagram is a correct representation of the
preceding equations; and is useful for giving insight into
the control laws and their relationships. However, it does
not, by itself, give any information about sensitivity to

modelling error, as the error equation 3.3.1 assumes no
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modelling error. We will return to the study of sensi-
tivity in the next chapter, but for the moment we assume no

modelling error.

As discussed by Horowitz[3,431, controllers for single-

input single-output systems have two degrees of freedom

available to the designer: a transfer function multiplying
the setpoint w and one multiplying the measured system out-
put y. The controllers considered in this chapter are no
exception to this rule: Figure 3.3.1 is one of the many
ways of representing such a controller. In later chapters,

-
the non adaptive emulator generating ¢ (s) will be replaced

by a self-tuning version. In such circumstances, the

transfer function g%i% becomes a third degree of freedom

available to the designer. This idea is pursued further in

chapter 8.

Combining the equations displayed in Figure 3.3.1, the
following expressions for closed-loop system quantities are
obtained:

Notional loop-gain

o 1 P(s)B(s)
T Q(s) Z2(s)A(s)

L(s) (4)

This is the product of all the transfer functions within
the loop displayed in Figure 3.3.1.

Closed-loop system output

Lts) =sT Z0s)rpig)G(s) + & (5)] (5)

vis) = Tiis) © P(s)

1 Cls) =

Y 1fL(s) A(s) Y

(s)
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_ -sT B(s)Z(s) - - ~*
T P(s)B(s) + Q(s)Z(s)A(s)R(SIW(s) + e (5)]  (6)
. 0(s) Z(s)C(s) -

P(s)B(s) + Q(s)2(s)A(s)V(S)

Closed-loop system input

G(s) = L(s) Z(s)A(s) - (7
UsS) = TYL(s) P(s)B(s) 2(S

where the equivalent setpoint z(s) is given by

sT P(s)C(s)-

—k
Z(s)A(S) (s) + e (s) (8)

z(s) = R(s)w(s) - e

= - E(s) _sT P(s)C(s)
= Ris)wls) + € & Z(s)als)

7 (s)

Ivis)

= Ris)us) - —8l gy (9)

AZ (s)

This equivalent setpoint may be regarded as the net influ-
ence of disturbances and setpoint on the control signal
referred to the same point on the block diagram as the fil-
tered setpoint R(s)w(s).

It will sometimes be convenient to decompose this

— X
equivalent setpoint into the part e (s) due to the emula-

tion error and the rest as

Z(s) = z(s) + &*(s) (10)
where

- _ - _ ST P(s)C(s)-

z(s) = R(s)w(s) e ZTETXTETV(S) (11)
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The closed-1loop characteristic equation

Before taking a detailed look at the various controller
options available, these two equations can be used to give
an overview of the aims and characteristics of the
emulator-based control 1laws. The following commments can
be made:

1. As discussed in section 2.3, an important special case

is to choose

B(s) = BV (s)B (s); Z(s) = 2°(8)2 (s); Z (s) = B (s) (12)

In this case, the nominal loop-gain L(s) is

+
Lis) = P(s)B (s) (13)

0(s)2¥(s)A(s)

2. The stability of the closed-loop system is dependent on
the =zeros of the transfer function 1+L(s); thus the

equation

P(s)B (s) + 0(s)A(s)Z (s) = 0 (14)

must have no zeros with positive real parts.

Parallel transfer functions

An alternative viewpoint, based on(S51, 1is to regard
Q(s) as a transfer function in parallel with the system.

Define

o 8

P (s) p(s) + Q(s)uls) (15)
Q

as the auxiliary output corresponding to the system in Fig-

ure 3.3.2 comprising Q(s) in parallel with P(s) cascaded
with the system. The transfer function of the augmented
plant relating 6Q(s) to u(s) is
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oY)
1
O

ffffff (16)
as)Z (s)

The zeros of this augmented plant are precisely the vroots
of the characteristic equation (3.3.14).

The control law 3.2.1 may be rewritten as:

- - —*
QQ(s) = R(s)w(s) + e (s) (17)

In the absence of any disturbance (é*(s)=0), this control
law sets the auxiliary output 6Q(s) exactly equal to the
filtered setpoint R(s)w(s); this is only possible if the

augmented plant is invertible. In particular, the augmented

system must have stable zeros.

Thus Q(s) may be reinterpreted as a means of moving
plant zeros to give an invertible augmented plant. A dis-
cussion along these lines (but in the discrete-time con-

text) appears inl5,61 andLC7].

e
_ | C(s)|
v(s)— —— }—>5
| A(s)| |
) i
I
|
_ | _ —
u(s)| -sT B(s)| | yi(s)| P(s)| _
—r—e 0 { F—19(s)
| A(s) | | 2¢s)| | Q
[ t— ] SO 0—>
| — |
| | I
L { Q(s) pb—
| [
| S |

Figure 3.3.2 The auxiliary output
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3.4. CHOOSING P(s) AND Z(s)

Let us first of all consider the case with no time
delay (T=0), no control weighting (Q(s)=0) and no setpoint
filter R(s):

Q(s) = 0; R(s) = 1; T = 0; B(s) = B (s)B (s); (1)

In addition Z(s) is chosen as

Z(s) = 27(s)Z (s); Z (s) = B (s) (2)
The closed loop equations then become:

Notional loop-gain

L(s) = o (3)

Closed-loop system output

- - —%
yis) = %%g%tw(s) + e (3] (4)

The closed loop system output y(s) has two terms: the

setpoint response %%g%ﬁ(s) and the disturbance response
—*

%%g%e (s). Both terms are of the form of a gz:; multiplied

by a signal. Thus the closed-loop system output is deter-

mined by the reference-model %%2%. The reference model

zeros are the roots of Z(s); the reference model poles are
the roots of P(s).

The closed-loop transfer function generating the system
output is stable 1iff P(s) has all zeros within the left-
half s-plane.
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As we would usually require that there be no steady-
state offset due to the setpoint, we shall choose P(s) and

Z(s) such that

P(s) design rule

P(0) =1 (5)

Z(s) design rule

77(0) = 2 (0) =1 (6)

Closed-loop system input

+
G(s) = 4(s)A(s) Z(s) = £ (s)A(s) Z(s)

(7)
P(s)B(s) P(s)B+(s)
where the equivalent setpoint z(s) is given by
2(s) = w(s) - —=2l 5 (8)
A(s)Z2 (s)

The closed-loop transfer function generating the system

input is stable iff P(S)B+(S) has all zeros within the
left-half s-plane.

Three special cases of this control strategy are

a Model-reference control
] Pole-placement control
a Steady-state linear-quadratic control

These will be treated in turn.
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Model-reference control

Model-reference control is a special case of the above
algorithm defined by

B (s) =2 (s) =1 (9)

thus the closed-loop system model is not related to the
open-loop system. It is clear that the control signal will

only be stable if

B(s) is stable (10)

Example

Consider the example of section 2.2 where the system is

given by

A(s) = s(s+1);B(s) = 1+0.1s (1)

and the design polynomials by

P(s) = 1+0.5s; 2(s) = 1; C(s) = 1+0.5s (12)

As in section 2.2, the corresponding emulator (without ini-
tial conditions) is:

- K _ K _ 0.25¢1+0.1s) - 1+0.75s-
¢ (s) = ¢ 1(s) = ———Izajgg*"—u(s) + IIBT%E_Y(S) (13)

Combining this with the control law 3.2.1 with 0Q(s)=0 and
R(s)=1,

¢ (s) = Rw(s) (14)
gives:
G(sy = - a 0.T5s5 ., 1#0.557 (15)

1+0.1s 1+0.1s
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This is of the classical two degree of freedom formC31 and

the transfer function relating u(s) to y(s) is of the stan-
dard phase-advance form of classical control to be found in

any elementary textbook, for example(8].

Note that the system zero at s=-10 is cancelled by the
controller. This 1s an inevitable result of specifying a
reference model with different zeros to those of the open

loop system.

Pole-placement control

Pole-placement control is a special case of the above
algorithm defined by

B (s) = 2 (s) = B(s); 2 (s) =1 (16)

thus the closed-loop system model is related to the open-
B(s)

loop system; the zeros of the open-loop system A(s) are
identical to those of the closed-loop system %%2%' It 1is

clear that the control signal will be stable even if B(s)

is not.

Example

Consider the example of section 2.4 where the system is

given by

A(s) = s{s+1);B(s) = 1-s (17)

Note that the system has a zero at s=1 with positive real
part. This can be regarded as an integrator in series with
a time delay of 2 units represented by the (very crude)

first order Pade approximation (section 2.6):

-2s 1-s

e * 1%s (18)
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The design polynomials in the second example of section 2.4

are

P(s) = l+s+0.2552; Z(s) = Z (s) = 1-s; C(s) = 140.5s (19)
Note that Z (s) = B(s) in this case to remove the offending
Zero. As in section 2.4, the corresponding emulator

(without initial conditions) is:

(s = 0-125801.362 5,  0.93881l5 (20)
Combining this with the control law 3.2.1 with Q(s)=0 and

R(s)=1,

o (s) = wis) (21)
gives:

A o 1+40.938s- 1+0.5s-

u(s) = 0.6402 l+0.08005y(5) + mw(s) (22)

This is of the classical two degree of freedom formL3] and

the transfer function relating G(s) to y(s) is of the stan-
dard phase-advance form of classical control to be found in
any elementary textbook, for examplel8].

Note that the system zero at s=1 is not cancelled by
the controller. The controller has lower steady-state gain
and larger phase advance than the model-reference con-
troller designed in section 2.2 for the system with a zero
at -0.1.

Steady-state linear-quadratic control

This is not the place to go into a full discussion of

linear quadratic controlf9,10,113. Roughly speaking, the
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essential result is that linear gquadratic control is a spe-
cial case of pole-placement control where P(s) is obtained
as the stable spectral factor of

P(s)P(-s) = B(s)B(-s) + XA(S)A(-s) (23)

with the restriction that B(s) and A(s) must have no common
factorsC12,93.

3.5. CHOOSING R(s)

From equation 3.3.5 or 3.3.6 it follows that R(s)
merely acts as a setpoint filter. Thus if R#1, we can

replace wis) by %R(s) in the previous section where

%R(s> = R(s)w(s) (1)

R(s) has no effect on the feedback loop itself; it merely
acts as another degree of freedom for manipulating the set-
point response without affecting the system loop-gain or

response to disturbances.

The importance of R(s) lies in the second degree of

freedom it gives in manipulating closed-loop performance.

Model-reference control

If the model-reference controller of section 3.3 is

extended so that R#1, then the resultant closed-loop set-
point response is determined by

=~ _ R(s)-
y(s) = ﬁTETW(S) (2)

In this equation, R(s) and 57%7 play identical roles, and
as far as the setpoint response is concerned the following
design choices are equivalent:

= desired model; R(s) =1 (3)
P(s)
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1
P(s)

= 1; R(s) = desired model (4)

However, when disturbances and sensitivity to parameter
variation are considered, these two approaches are very
different. Indeed the latter approach leads to an infinite
gain controller; thus choosing P(s) = 1 is not practical.
(SeeCl3] for a discussion of this point in a discrete-time

context).

In practice then, both P(s) and R(s) have their wuses;

in particular R(s) specifies the setpoint response, whereas

P(s)
P(s) alters the disturbance response and closed-loop sensi-

tivity.

As we normally require a unity steady-state system gain

from setpoint to output we impose the

R(s) =1 (5)

3.6. CHOOSING Q(s)

It seems intuitively obvious (and we shall prove this
later) that it 1is not a good idea to have a system with
loop gain L(s) = w. 0f course, this is only a notional loop
gain and the system is not implemented in this form. But
nevertheless, the implication of L(s) = o is that we ask
for exact matching of our desired closed loop-system at all
frequencies. It is clearly unnecessary to specify system
performance precisely at high frequencies; we shall see
later, in the self-tuning context, that it is also very

unwise.

We have already noted (equation 3.3.14) that the sta-
bility of the closed-loop control system is dependent on

the roots of the characteristic equation:
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P(s)B (s) + 0(s)A(5)Z (s) = 0 (1)

We emphasise that this equation does not necessarily give
rise to a stable <closed-loop system. It has been sug-
gestedl(5,14,21 in the discrete-time context and in the spe-
cial case where B+(s) = B(s) that Q(s)#0 can be used to
give stability when B(s) is not stable. In this book, we
do not regard this as being a very useful approach to sta-
bilise a nominal system with unstable zeros: the zero can-
celling (pole-placement) approach is more appropriate. We
believe that the role of Q(s) is make a feedback controller

more robust in the face of neglected dynamics.

If the notional feedback system is stable, then for
those frequencies w where L(jw) is large the ratio of the
closed-loop output y to the set point w is:

yOw) o - IwT Z20iw)

B G RO (2)

Wi jw)

Under such circumstances, the closed-loop setpoint fre-

quency response approximates that of the reference model:

-sT Z(s)
BrayR(S) (3)

In particular, if Q(s)=0 (for all s), exact model matching
is achieved for all frequencies; and if Q(0)=0 this is
achieved at zero frequency.

To give zero weighting at zero frequency we impose the

Q(s) design rule

0(0) = 0 (4)

Thus Q(s) will be regarded as a device for reducing the
exact matching requirement at high frequency. The use of
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Q(s)#0 leads to detuned or control-weighted versions of the

control laws derived with Q(s) = 0. In particular, we now

have three control-weighted algorithms:

u] Control weighted model-reference control
a Control weighted pole-placement control
u] Control weighted linear-quadratic control

In practice, we would wusually require exact model
matching at zero frequency to avoid steady-state offset. In

such circumstances we would choose Q(s) such that

Q(0) =0 (5)

3.7. CHOOSING T

In the above discussion, we have implicitly equated the
"T" appearing in the emulator with "T" corresponding to the
assumed system time-delay. This is in fact quite general as
in a later chapter we shall discuss the effect of incorrect
system modelling.

The crucial result of the predictive (eST) component of
the emulator is to eliminate the system time-delay from

both the nominal loop-gain and the closed-loop characteris-

tic equation. This idea was proposed by SmithC{151 and is
discussed in detail in the following section. The purely
predictive emulator of section 2.5 is in fact a generalised

version of that proposed by Smith.

3.8. SMITH'S PREDICTOR

The idea that control of systems with time-delay can be
simplified by making use of a predictor was suggested by
Smith in the late ’'50s{15,161. His predictor can be
described by the following Figure. Like the emulator
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Fiqure 3.8.1 Smith’s Predictor

discussed in the previous section, Smith’s predictor can be
regarded as a method of realising the unrealisable transfer

sT

function e In particular, it generates the quantity

?;(s) given by

Fp(s) = ys) + €1 - e 5T 3BI8)5s) (1)
In the absence of disturbances, substitution of the system

equation gives

_A - - -
yp(s) = %%i%u(s) - T Jis) - yo(s) (2)

where §T(s) is the Laplace transform of yT(t)=y(t+T). That
is, in the absence of disturbances, the effect of the Smith
predictor is the same as including an inverse time delay
(eST ) in series with the system output.

How does this relate to the emulators derived here?
The purely predictive emulator of section 2.5 is in fact a

generalised version of that proposed by Smith. To see this
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we take the special case

P(s) = 1; Z(s) = 1; C(s) = A(s) (3)
and
Q(s) = inverse cascade compensator (4)

The decomposition identity can be written as

F.(s)
_ -sT T
1 = ET(S) + e A(s) (5)
If, in addition, we break the rule that gé:; is strictly
proper, this my be solved by
Ep(s) = 1 - e %0 ; Fp(s) = Als) (6)

giving the Smith predictor.

Smith’s predictor has the advantage that it can be
implemented with rational transfer functions and a pure
delay; it has the disadvantage that the predictor poles are
identical to the system poles, giving poor transient
response unless the open-loop system poles have fast time

constants.

3.9. CHOOSING C(s)

At first sight, the polynomial C(s) is part of the sys-
tem; but, as discussed in section 1.8, this is not so as v

(s) is not specified in detail. To see this, set

b _C'(s)-,
vis) = 6727—v (s) (1)
where C’(s) is a polynomial of the same degree as C(s). An

alternative system equation to 1.9.1 is then given by

replacing C(s) by C'(s) and v(s) by v'(s) to give

- B(s)- C'(s)-,
yis) = 35S * ate) A(s)

(2)
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Using this equation to deduce the closed-loop system equa-

tions gives

Closed-1loop system output

L(s) -sT 4(s) - C'(s)-*

yi(s) = TiLsy Ce Bls) (R(sIW(s) + & =e (5))] (3)
* 1+L}s) %%?%LG"S)
P(s)B(s)Bisé%;?é(s)A(s)[e_ST R(s)u(s) + cridle’ s )
v 00s) ﬁ(s)u(s?(i)ggéié(s>A(s);'(S’
Closed-loop system input
GS) = Ter BBy 209 (s)

where the equivalent setpoint z(s) is given by

z(s) = R(s)w(s) - G (8)F(s) vi(s) (6)

cisHacs)z sy

It follows that the design polynomial C(s) affects the
pcles and zeros of the «closed-loop response to distur-
bances, but has no effect on the setpoint response. It
plays a similar role to the observer pole-polynomial in
state-space theory[17,93].

To give unique solutions to the emulator design, we

usually impose the
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C(s) design rule

C(o) =1 (7)

3.10. INTEGRAL ACTION

As stated inC18,191, the large number of PI (propor-
tional + integral) and PID (proportional + integral +
derivative) controllers used routinely for process control
applications may be regarded as experimental evidence for

their usefulness.

As PI and PID controllers are so common, there must be
something about the dynamics of many systems which makes
such control appropriate. It follows that it should not be
necessary to force an adaptive controller to have a PI or
PID structure, but rather this structure should arise
naturally from reasonable assumptions about the dynamics of
the controlled process. It is shown in this section that
this is indeed so: suitable modelling of non-zero mean dis-
turbances leads to an algorithm with integral action, and
the additional assumption of a first (second) order system

gives rise to a PI (PID) controller.

This approach of letting the integral action arise
naturally from the specification of a suitable disturbance
model rather than forcing integral action into the con-
troller distinguishes the algorithms of this book from some
previous methods. As will be shown, this approach automat-
ically removes offsets from Dboth the controller and the

estimator.

An extensive discussion of the method (but resticted to
the model-reference case) appears in[191. Details of the
self-tuning version appear in chapter 6.
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Two common forms of disturbance in control systems are
constants and piecewise constant signals with random jumps.
As discussed in sections 1.8 and 1.9, each form of distur-
bance corresponds to a transfer function

B(s) _ Bf
atisy  afs)

(s) k
]

the former corresponding to the initial condition response
of an integrator, the latter to the forced response of an
integrator to a random sequence of impulses. In either
case, the results of section 1.9 indicate that A(s) and
B(s) will have a common factor s; as C(s) is chosen, this
common factor need not appear in C(s). This gives rise to
the following design rule:

PI design rule 1

A(s) and B(s) have a common root at s=0:

A(s) = AO(S)S; B(s) = BO(S)S (2)

In addition, we make the following design rule:

P1 design rule 2

Z (s) has no root at s=0: 2 (0)#0. This implies that,
in this case, B+(s) contains the factor s in B(s) = sBo(s).
To see the implications of these design rules consider

the defining identity leading to 6:(5) (equation 2.5.33):

sT P(s)C(s) _ _sT Ea(S) Fa(S)

. 3 . (3)
Z(s)A(s) 27(s)  zYis)acs)

evaluated at s=0. As, by assumption, A(s) has a factor s
and Z+(s) hasn’t, it follows that:
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F(0) - BLOICCO) . P(gzg§o> 1 )
Z7(0)

Where the last equality follows from the P(s), Z(s) and
C(s) design rules. Hence, 1in this case, F}(s) can be
rewritten as

Fa(S) = l+sF3o(s) (5)

—

Turning to equation 3 (2.5.33), ¢3(s) can be written
as
1+sF_ (s) SEB(S)B (s)

o (s) = —22—(s) +

" - u(s) (6)
C(s)Z (s) C(s)Z (s)

PID control

As discussed in detail elsewherel19,18]1 certain forms
of assumed system give rise to PI and PID controllers. We
give two examples based on the model-reference and pole-

placement examples given in previocus sections.

Example (Model-reference PID)

Consider the example of section 2.2 and section 3.4 but
a cancelling s term is included to model offset. The aug-

mented system is given by

A(s) = s%(3+1);B(s) = s(1+0.1s) (7)

The design polynomials are as before except that C(s) 1is

now second order:

P(s) = 140.5s; 2(s) = 1; C(s) = (140.5s)° (8)

As in section 2.2, the corresponding emulator (without ini-

tial conditions) is:
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- 2
@*(S) - @* (s) = 0.125S(l+0.15)a(s) + 1+1.55+0.625s §(s)(9)

(1+0.5s)° (140.5s5)°

Combining this with the control law 3.2.1 with Q(s)=0 and
R(s)=1

6" (s) = Rw(s) (10)
gives:
G(s) 8 wis)-y(s) (11)

+ (W(sS)~1.5y(s)) + s(0.25Ww(s5)-0.625y(s))]

This has the structure of a PID controller with filtering

and modified proportional and derivative setpoint terms.

Consider the example of section 2.4 and section 3.4 but
a cancelling s term is included to model offset. The aug-

mented system is given by

A(s) = s°(s+1);B(s) = s(l-s) (12)

The design polynomials are as before except that C(s) is
now second order:

P(s) = (1+0.5s)%; 2(s) = l-s; C(s) = (1+40.5s)°2 (13)

As in section 2.4, the corresponding emulator (without ini-
tial conditions) is:

- - & —_
(p’*(s):@ﬂ(s):S(2.460+0.06255)u(S

: (140.5s5) 2 (140.5s

. 2
)+1+3.0o+2.03135

)2 y(s) (14)
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Combining this with the control law 3.2.1 with Q(s)=0 and
R(s)=1

-k -

¢ (s) = Rwis) (15)
gives:

2 _ . 0.405 _w(s)-y(s) -
uls) = 73002545 s (16)

+ (Ww(s)-3.00y(s)) + s(0.250w(s)~-2.033y(s))]

This has the structure of a PID controller with filtering
and modified proportional and derivative setpoint terms.
Note that the proportional gain is lower, and the deriva-
tive gain much higher, than for the model-reference example

- the system is much harder to control.

3.11. A DETUNED MODEL-REFERENCE CONTROLLER

In the sequel (chapters 7&8 in particular), we shall
analyse a particular form of detuned model-reference con-
troller, introduced inC201].

This controller is defined by the Table:
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L?arameter { Value }
:Pfs) : Desired closed loop pole polynomial :
127 0s) |1 |
:z'zs> : Ples); 0¢e<l :
[0(s) | ~%i§l deg(q) = deg(P)

f | Z (s) i
|C(s) | Desired disturbance closed-loop poles|
| i |

0
I | 1

Note that Z (s) is not used for zero cancellation here.

This particular emulator based controller is unusual in

that the notional feedback loop is realisable. At first

sight, it would seem that there is no purpose to be served
in implementing the emulator or its self-tuning version.

However, as discussed in detail in chapter 8, the high-

frequency gain of the transfer function ;Ei; is:
P(oo) _ Plow) _ 1. A
Tlo) - Plew) - Thi DT deg(P) (1)

This may be excessive for small € and lead to amplification
of unwanted high-frequency sensor noise. The replacement of
the realisable transfer function by a suitable emulator can
remove this undesirable effect - see chapter B8 for a
detailed discussion of the relative merits of implementing

the notional feedback loop and the self -tuning emulator.

The corresponding closed-loop system is defined by:

Notional loop-gain

_ P(s)B(s)
Lis) = JsVa(s) (2



3-28 EMULATOR-BASED CONTROL Chap. 3

Closed-loop system output

L(s) P(es)

yis) = 1+L(s) [P(s) (R(s)w(s) + e (s))] (3)
+ L Cls)e o,
1+L(s) A(s)
- B(s)Z(s) - - - %
" B(s)Bls) * qls)A(g)R(SIWis) + e (s)] (4)
+ q(s) Cls) vis)

P(s)B(s) + q(s)A(s)

Closed-1loop system input

= _ _L(s) Z(s)A(s) =
us) = 70770s) P(s)B(s) 203 (5)

This controller can be thought of as an approximate
model-reference controller in the sense that as Q(s)—20 the
control 1law approaches that discussed 1in the model-
reference section. The importance of these particular algo-
rithms is that can be made into an implicit self-tuning
controller with global robustness properties. It 1is a
continuous-time generalisation of the discrete-time gen-

eralised minimum variance control lawl2,5]

Example

Consider the example in section 2.4, where the system
is given by

A(s) = s(s+l);B(s) = 2s (6)

Thus the system is now first order and has a constant
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disturbance. This example is to be used later to investi-
Jate robustness. The example is that of Rohrs[C213. The

corresponding design parameters (see chapter 7) are

P(s) = 1+0.3s; C(s) = 1+0.3s 7))
Chocsing € = 0.1 then gives
Z(s) = Z (s) = 1+0.03s (8)

Tsing the results from the example of section 2.4 with

P(5)C(s3) = (140.25)° = 1 + 0.65 + 0.0952: z = .03 (9)

Jives

E_(s) = E + 0.6RE + 0.09E £10)
z 20 21 22

= Azt - 0.6z + 0.09) = 0.07515

l1-2
and
F(s) =F + 0.6F  + 0,09F (11)
2 20 21 22
=1 + +2-(-z + 0.6-0.09) = 1 + 0.4948s

l-z

The corresponding emulator is then

* N E (s)YB(s) F (s)
- _ 5 _ -
pois) = (5) T —————ls5) + o= 12
: Cisyn T (z) acsrztos)
0.1%03s sy 4 1+0.4948s5-
(1+0.3s5)(1+0.025) 7' 53 1+0.2s 7'®
Combininag this with the control law 3.2.1
-* . - e qis) -
P sy 4+ O(siulz) - Fwis) = ¢ (35) + - - wis) = 0 £13)
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Jives:
A 1+0.4948s -
uis) = SE(0.07515 + q) + 0.3qs1° '’ (14)
2 —_
. (1+0.35)(1#0.03s) - |

sC(0.0751%5 + o) + 0.3gs]

Note that this controller has integral action, and its gain

may be varied using the scalar weighting factor q.
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CHAPTER 4
Non-Adaptive Robustness

Aims. To investigate the effect of neglected
system dynamics on the stability of (non-
adaptive) emulator-based controllers. To relate a
number of stability criteria. To provide the
background for the robustness analysis of self-
tuning controllers.

4.1. INTRODUCTION

In the previous section, it was assumed that the nomi-
nal system exactly represented the actual system to be con-
trolled. This is an unrealistic assumption in practice.
This chapter presents an analysis of the robustness of the
controllers designed in the previous chapter to neglected
system dynamics; that is, the extent to which the closed-
loop system remains satisfactory in the presence of
neglected system dynamics is investigated. The system
dynamics are assumed to be linear, but it 1is possible to
extend the results to non-linear systemsC1l]. The
corresponding analysis for self-tuning control is presented
in chapter 7, where it will be found that the adaptive and
non-adaptive results are closely related. This relation-

ship is explored further in chapter 8.
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Three approaches to the robustness problem are

presented:
1. A classical Nyquist approach.

2. A method based on a discrete-time analysis of
AstromL2,31.

3. A method based on the discrete-time analysis of
Gawthrop and LimC113.

The advantage of 2 and 3 is that the results are expressed
directly 1in terms of the controller design parameters and
the neglected dynamics; the advantage of 3 1s that the
results are directly applicable to the analysis of certain
self-tuning versions. We shall be concerned to relate these
three methods as they all provide different insights into
the robustness problem.

4.2. NEGLECTED PLANT DYNAMICS

~

—  EEE—
u | | u | -sT B(s8)}| ¥y
—>—4N(s)} > {e b >
| I | A(s) |
| I— | E———

Fiqure 4.2.1 Neglected plant dynamics

In the previous chapter, it was tacitly assumed that
the system was exactly modelled. This assumption is not
practically realistic. In this chapter we retain the
linearity assumption but account for possible errors in

plant modelling. Thus the system equation 1.9.1 is replaced
by:
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C(s)
A(s)

y(s) = H(s)u(s) + v(s) (1)

where H(s) is a proper transfer function representing a

linear time-invariant system and u(s) is the controller
output. This true system equation may be rewritten in

terms of the nominal system as (see Figure 4.2.1):
u(s) = N(s)u(s) (2)

where the neglected dynamics N(s) are given by:

_ sT A(s)
N(s) = e ETETH(S) (3)
4.3. ROBUSTNESS BASED ON THE ACTUAL FEEDBACK SYSTEM

The standard way of analysing the robustness properties
of a feedback loop is in terms of the Nyquist diagram based
on the actual system loop-gain (seel4]1, for example).
Although this method will not be used very much here, it is
introduced to provide a link between such classical methods
and the methods discussed later in this chapter.

As an exampf=z, consider the emulator-based controller

using the signal 63(5). The emulator is of the form (see
chapter 2, section 5):
F3(s) E_(s)B(s)_

y(8) + —————0(8) (1)

—*
¢3(s) = T ~
C(s)Z (s) C(s)2Z (s)

The corresponding control law can, from section 3.2, be

written as

—% A -
¢ (s) + Q(s)u(s) - Rw(s) = 0 (2)
hence
Fo(s) Ea(s)B(s) - -
———y(s)C + Q(s)Juls) = Ris)w(s) (3)

C(s)Z (s) C(s)Z (3)
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We can ignore the setpoint when treating stability; the
feedback transfer function relating u(s) to y(s) is then
G(s) } F3(S)Z (s) (a)
y(s) E_(s)B(s)Z'(s) + Q(8)C(8)Z (s)

The actual system loop-gain is then given by the pro-
duct of this transfer function and the system loop-gain as

-sT B(s) Fs(s)Z (s)

A(s)

L, (s) % Nes)e (5)

Ea(s)B(s)Z+(s) + Q(8)C(5)Z (8)

The well-known theorem of Nyquist (as extended by
Desoer[51 to the time-delay case) gives the following
robustness criterion:

Non-adaptive criterion 1

The (non-adaptive) closed-loop system is stable iff the
Nyquist locus

La(jm) (6)
obeys Nyquist’s criterion.

4.4. THE ERROR FEEDBACK SYSTEM

The analysis of both non-adaptive and adaptive control
is simplified by rewriting the relevant equations to form
an error feedback system which exhibits how errors, rather

than actual signals, are propagated.

The neglected dynamics give rise to two extra error
signals in the notional feedback system, the first due to
the system input not being the controller output, the
second due to the emulator being no longer exact. These two
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error sources are considered in turn.

The Control Signal Error

The neglected dynamics can be represented by the
equivalent expression

uls) = u(s) - u(s) (1)

where the control signal error u(s) is given by

u(s) = CN(s) - 17u(s) (2)

The Emulator Approximation Error

The emulator based on the nominal system cannot be used
directly in the presence of unmodelled dynamics as the
input u(s) to the nominal system 1is not available. An
approximate emulator can, however, be easily obtained by
replacing the unknown nominal system input u(s) by the

known controller output G(s). The resultant error depends
on the deviation of the neglected dynamics N(s) from unity.

The approximate emulator (with output 6a(s)) is thus

given by:
(s = — 8L gy BI8IBOsIG (3)
c(s)z¥(s) C(s)Z7 (s)

The emulator approximation error introduced by replacing u

(s) by G(s) is given by

- — % _ ~
e®(s) = 3 (s) - 92(s) = E8IBGSI g, (4)

C(s8)Z (s)
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The modified notional feedback system

These two errors arising from the neglected dynamics
N(s) modify the properties of the notional feedback system
of the previous chapter by forming two additional input

signals as in Fig 4.4.1.

—
| C(s)]|
v — l—)j
|} A(s)| |
~ | S| I
u —>— [
i |
N —" | | _
w | | + |1 ju +} u} -sT B(s)| | y
—>— R(s)}|—0 >—i } 0—i e — 00—
| -1 I QUs)y |+ | A(s)| |
! |
| _a - 1 |
| o + 0 | +sT P(s)] |
— 0 | e —_— <
}- | Z(s) |
_}q| —a U ——
e + e

Fiqure 4.4.1 The modified notional feedback system

From this block diagram, the control signal can be
written in terms of the notional loop-gain as:

L(s)

Lls) o0 Ty + Al8)Z(s)
1+L(s)

= -a
B(5)1;,(3)(2(5) + e (8)) (5)

u(s) = C - G(s) +
where the equivalent setpoint z(s) is given by equation

3.3.8 as

2(s) = R(sras) - 5T EL8IEE8I5 4, o %(q) (6)
- = E(s) _sT P(s)C(s)~
= R(s)w(s) + [— e Z(s)A(s)JV(S)

Z (s)



Sec. 4.4. THE ERROR FEEDBACK SYSTEM 4-7

The error feedback system

The equations for u(s) and éa(s) are combined with
those of the modified notional feedback system in Figure
4.4.1 to give Figure 4.4.2.

— — — A ~
z + |2 A | - i L | u | [ u
>—0— —0 { l > { N-1 —t—
I+ |[PB | + | 1+L | | | |
I | I —_ —_ |
| I
- 1 |
e | | EB | |
(L ¢ ) —F ¢ )

Figqure 4.4.2 The error feedback system

This Figure shows a two-loop feedback system which can be
transformed to a number of equivalent single-loop systems
using standard techniques. Each such equivalent single loop
leads to a stability criterion for the non-adaptive feed-
back systems. Two such criteria are considered here. Both
criteria have been given previously in a discrete-time con-
text: the first is due to Astrom[2] (see[31 section 10.6,
Theorem 10.3), and the second is similar to that given by
Gawthrop and Lim[C1]l. The second <criterion 1is important

because, unlike the first, it extends to the adaptive case.

4.5. ROBUSTNESS - ASTROM’'S CRITERION

Looking at the feedback system of Fig 4.4.2 in terms of
u(s), it can be written as a single loop system in terms of

the intermediate variable u as:
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- _ _ ~ _ _L(s) =
u(s) = [CN(s) 1][u0(s) 1+L(s) vl

+
- _ _ E(s)A(8)Z (s),7]
(1 P(s)C(s) u(s)

c
1

-sT F(s)Z (3)~
€ C(s)P(s) 4’

Chap. 4

(1)

(2)

where uo(s) is the control signal corresponding to no

neglected dynamics and is given by

5 gy o Lis) Z(s)Als).
UyiS) = 14L(s) P(s)B(s)”

(s)

This feedback system appears in Figure 4.5.1.

~

o | | u

0——— N(s) - 1}—

R | f
e 1
| r——‘—1_r—°‘—“_l|
| |  L(s) | | Fz- | |
e ———
| 1+L(s) | | PC |
[ O —— | | U — |

(3)

Figure 4.5.1 The single loop error feedback system

From Fig 4.5.1, Nyquist’'s theorem gives

robustness criterion:

Non-adaptive criterion 2

following

The (non-adaptive) closed-loop system is stable iff the

Nyquist locus
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_ST -
, AN L e FZ (s) ., _
M'(s) = 1+L P(s)C(8) (I N(s)1] (4)

obeys Nyquist’s criterion.

A more conservative criterion is that the modulus of
the loop gain is less than unity at all frequencies. Noting

that 1e'ij| = 1, this gives the following robustness cri-
terion:

Non-adaptive criterion 3

The non-adaptive feedback system of Figure 4.5.1 is
stable if:

1. M’'(s) is stable, and

2. :M’(jw){ ¢ 1 for all w.

Astrom’s formulation

In the special case that the actual system is given by:

—sTOBO(s)
H(s) = e (5)
A (s)
)
then
—s(To—T) B (s)A
N(s) = e g

A (3B (6)

The relevant Nyguist locus is then given by:

L(s) F()A(5)Z (s),_ ToB%) g7 B(s)

M'(s) = 7T(s) P(s)B(s)C(s) ¢ As) ¢ As

] (7)

Part 2 of the conservative criterion then may be rearranged
as:

| -sT B,(s) -sT B(s) ! l1sn(s) B(s)P(s)C(s)!
le A "¢  am! ¢ I'Lis . ' (8)
| 0 L A(8)Z (s)F(s) |
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for all s = jw.
In the particular case that L(s) = o, and so
L(s) _
1+L(s) 1 (9

and both the nominal and actual systems are stable, this
reduces to the criterion derived by AstromC2] Theorem 1,
and reproduced inCL3] section 10.6 as Theorem 10.3.

4.6. ROBUSTNESS - THE M-LOCUS

An alternative way of analysing the error feedback sys-

tem of Fig. 4.4.2 is in terms of e?(s). Solving for the

upper feedback loop:

-a 2 (s)A(S)E(s) L(s)CN(s)-11_

_ = -a
e (s) = P(s)C(s) 1+L(s)N(S) Lz(s) + e (s)] (1)

Combining this with the rest of the block diagram:

e2(s) = - M(s)[z(s) + e3(s)] (2)

(see Figure 4.6.1) where the transfer function M(s) is

+ -1
s - LisiBeIbe N La)
1+L “(s)N " (s)
B(s)E(s) 1-N(s)

7 (s)Q(s)C(s) 1+L(sIN(s)

This leads to an alternative robustness criterion:

Non-adaptive criterion 4

The (non-adaptive) closed-loop system is stable iff the

Nyquist locus

M(jw) (4)
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— e
z + | | a
—-)—O0———M(s8) >
- | |
|

|
L

[ |

Figqure 4.6.1 The single loop error feedback system

obeys Nyquist’s criterion.

Once again, a more conservative criterion is:

on-adaptive criterion 5

=

M(s) represents a stable system (all poles have nega-
tive real parts)

2. :M(jm): ¢ 1 for all w

4.7. ROHRS EXAMPLE

In a celebrated paperf6]1, Rohrs and his colleagues
illustrated the poor robustness properties of a particular
model-reference adaptive control algorithm by examining its
performance on two particular example systems. In this sec-
tion, the second of these example systems is used to illus-
trate the non-adaptive robustness properties of the detuned
model-reference adaptive controller of section 3.10.

The system

Rohrs’ system, in our notation, is described by:

H(s) = 200 (1)

(s+1)(s% + 8s + 100)
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5 Actual loop qain 2 Notional loop dain

2% 4 e 1 2% 4 9 1 2
M{jw) locus M’ (jw: locus

2 2

) T T B EOS U

o fT T o ()i

e ) _____ S 1
- S

Fiqure 4.7.1 Example 1

One possible decomposition into nominal (B(s)/A(s)) and

neglected dynamics (N(s)) is

BaL - B e - § 0
s + 8s + 100

Thus the actual system is third order; we are assuming for
design purposes that it is first order. The neglected
dynamics are second order with natural frequency 10rad
sec ' and damping ratio 0.4. There are clearly an infinite

number of possible decompositions having the property that

_ B(s)
H(s) = N(S)A(s) (3)
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5 Actual loop gain 5 Notional loop gain

2% 1 e 1 21%% -1 e 1 2

2 — 2

POl SRR ‘ ..... ‘ ,,,,, g frr ey
P SR (\:; ..... A S o ORI
) DT . o T S o
-2 -2

Fiqure 4.7.2 Example 2

The design parameters

Rohrs and colleagues attempt to match the reference

model
B 1
s+3 ~ 1+0.3s (4)

For consistency with this requirement, choose

P(s) = 1 + 0.3s (5)

As, for practical reasons, we would like integral action,

choose

A(s) = s(l+s); B(s) = 2s (6)
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5 Actual loop gain > Notional loop gqain

22 1 e 1 2
M( jw) locus

Fiqure 4.7.3 Example 3

This leaves C(s), Q(s) and Z(s) to choose. To achieve the
right sort of disturbance response, choose

C(s) = P(s) = 1 + 0.3s (7)

To make &(s) realisable, choose 1/Z(s) to be the first
order low-pass filter:

Z(s) = 1 + 0.03s (8)

Finally, make Q(s) zero at s=0 by choosing

_as _ as
Q(s) = 70s) = 1+0.03s (9)

Note that g=0 would give exact model following; g>0 detunes
the controller at high frequencies.
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Actual loop qain

5 Notional loop qain
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25 e 1 22 1 e 1 2

Figqure 4.7.4 Example 4

Robustness analysis

in

4.7.

4-15

To exemplify the use of the various criteria presented

this

chapter,

1-4) based on that of Rohrs.

The four examples have the following in common:

Four frequency loci are plotted for values of w>0:

a)

b)

c)

The M-locus M(jw)

The notional loop gain
included): N(jw)L(jw)

The actual loop gain: La(jw) (equation 4.3.5)

(with

(equation 4.6.4)

we will consider four examples (Figures

neglected dynamics
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d) The M'-locus M’ (jw) (equation 4.5.4)
The actual system H(s) is as given in equation 4.7.1.

The emulator and controller design parameters are as

given in equations 4.7.4-9.

The four examples are different in the following ways.
parameter b determining the decomposition of equation

2, and the control weighting factor q of equation 9, are

vari

ed as in the following table (see Figures 4.7.1-4):

{Example: b : q {
} 1 } 1.0: o.os{
| 2 | 1.0] 0.2 |
: 3 { 0.5{ 0.05:
| ¢ 0.5[ 0.2 |

Remarks

As both the nominal and actual systems are stable, the
loci corresponding to La(s) and M'(s) imply stability
if there are no encirclements of the -1 point. Both
these loci predict stability for examples 1,2&4 and
instability for example 3.

In this example, stability of the transfer function
M(s) depends on the stability of

L(s)N(s)
1+L(s)N(s)

In examples 1 and 3, the N(s)L(s) locus encircles the
-1 point, indicating instability; in examples 2 and 4
it does not, indicating stability. 1In examples 2 and
4, the M-locus does not encircle the -1 point, indicat-

ing stability. In example 1, the M-locus encircles -1
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the requisite number of times in an anti-clockwise
sense, indicating stability; whereas in example 3 the
M-locus does not encircle the -1 point, indicating ins-
tability.

As criteria 1,2 and 3 are all necessary and sufficient,
it 1is not surprising that they all give the same sta-
bility predictions. The conservative criteria, however,

do not always agree.

The N(s)L(s) locus is the same for examples 1 and 3,

and for 2 and 4. This locus is not affected by the
B(s)
A(s)’

choice of the decomposition of H(s) into N(s) and
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CHAPTER 5
Least-Squares ldentification

Aims. To discuss linear-in-the-parameter system
models. To introduce and derive the continuous-
time least-squares method and to analyse its pro-
perties. To show that discrete-time least-squares
methods can be used to identify continuous-time

parameters.

5.1. INTRODUCTION

Least-squares parameter identification has been used in
self -tuning control for a long timefl,2,3,41. However this
has usually been in a discrete-time context. A notable
exception 1is the work of Young[51 who combined digital
least-squares with analogue components to give estimates of
continuous time transfer function parameters and hence to
control a system. In a survey paper[61, Young points out
that as well as discrete-time estimation of discrete-time
system parameters, discrete-time and continuous-time esti-
mation of continuous-time system parameters is also possi-
ble. These two latter approaches to the identification of
cont inuous-time parameters are considered here:
continuous-time identification of continuous-time parame-

ters and discrete-time identification of continuous-time
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parameters. The former is of theoretical interest as a
limiting case; the latter is more appropriate to practical
application. In each case, we require a linear in the
parameters system representation; so this is considered
first.

5.2. LINEAR IN THE PARAMETERS SYSTEMS

The standard linear in the parameters model to be used
in this book is

¥(t) = X (£)8 + e(t) (1)

where ¥(t) is the scalar system output, X(t) 1is a column
vector of measured variables, 6 1is a column vector of
parameters and e(t) is the linear in the parameters error.

Thus the scalar output of a linear in the parameters model
is composed of two terms: the sum of products of measure-
ments and parameters, and an error term. Particular cases
will be derived in detail in chapter 6; for the purposes of
this chapter the linear in the parameters model 1is

motivated with a simple example.

Example: Linear i

the parameters model

Consider the first order system:

- _ b - d 1 -
y(sg) = ;;u(s) + aia + g:gv(s) (2)

where d represents the effect of 1initial conditions.
Choosing a polynomial Cs(s) = s+c (c»0), this may be

rewritten as

+ — - —_

2485 (s) = 2 +S%C+gi—cv(s) (3)
Rearranging gives

- o Y(s) u(s) 1 1 -

y(s) = c-a s+cC + b s+C +d S+C + EIEV(S) (4)
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This is in the linear in the parameters form with

¥(s) = §(s); e(s) = —==V(s) (5)
and

| _ |
- jy(s)|
|c-a| - 1 |- |

6 = | b |; X (s) = - ,uls) (6)
[ d | s+c| 1 |
| I

The data vector X(t) is formed from the output of three
low-pass filters with transfer function E%E' one driven by
y(t), one driven by u(t) and the other with no input. The
first two filters have zero initial condition; the third

has unit initial condition. Seel7] for more details.

Example: The effect of offset

Consider the same first order system but with a wunit
constant added:

- b - d 1 - 1

y(s) = s+au(s) + s+a g:gv(s) + 3 (7)
B sb - (sd+s+a) s -
- s(s+a)U(S) Y Ts(s+a) T s+aV(S)

Where d represents the effect of initial conditions and 1/s
represents a constant. Choosing a polynomial C(s) = (s+c)?

(c>0), this may be rewritten as

(8115 (5 = D jg) 4 SRR 5 g, (8)
(s+c) (s+c) (s+c) (s+c)?
Rearranging gives
c? - sy(s) su(s)
€1 - ———1y(s) = (2c-a) =% S+ b ; (9)
{(s+cC) (s+c) (s+c)
+ 1+4d S 4 a_ S —Y(s)

(s+c)2 (s+c)2 (s+c)2
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This is in the linear in the parameters form with

= c2 = 52+2cs =
¥(s) = [1 - “;] y(s) = = y(3) (109
(s+c) (s+c)
e(s) = + —2—v(s) (11)
(s+c)
and
| |
|2¢c-a| }sy(s)}
o = | b I’ _XT(S) - 1 ISU(S)| (12)
|d+1 | ( +C)z| s |
la | T

This model has the important property that the filtering of

y(s) and u(s) removes constant components.

5.3. CONTINUOUS-TIME LEAST-SQUARES CRITERION

Suppose we have a linear-in-the parameters system as in
equation 1 of the previous section, with output ¥(t),

parameter vector 6 and data vector X:

¥(t) = X(t)8 + e(t) (1)

Assume that ¥(t) and X can be measured but that the nominal
parameter vector 8 is unknown. Suppose that we choose an

estimate é(t) of 8. Then we can deduce an estimate @(T) of
¥(t) at a time T (less that the current time t) based on

the current estimate é(t) from the equation

Y = X(T8L) (2)

The resultant estimation error e(t,T) is then defined as

et 2 v - Yo (3)
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For convenience, we shall write the estimation error based

on the current parameter estimate as

e(t) 2 et,t) = ¥(t) - ¥(t) (4)

The aim of least-squares estimation is to choose the

current estimate é(t) to minimise a weighted average esti-
mation error over all measurements from time 0 to time ¢t.
The choice of the particular criterion leading to the
weighted average is somewhat arbitrary. As is usual, a qua-
dratic form with exponential weighting (’'least-squares’) is
used in this book. This method (particularly in its
discrete-time version) has a long track record of success-
ful application. It will also be shown in the sequel that
using the least-squares approach endows an self-tuning
algorithm with desirable robustness properties.

The exponentially weighted least-squares cost function

which we will use here is

A _l_at/\ ‘AT A —/\
J(t),t) = 5 (8(t) Qo) §O(Q(t) Qo) (5)
t 2
+ lfe_a(t_T)e(t,T) dt
2
0
where B i3 a non-negative scalar:
g >0 (6)
§0 is a positive definite matrix:
S >0 (7)

-0

The first term in the cost allows us to include a prior
estimate in the algorithm; often we would wish to start a
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self-tuning controller off with a known ‘safe’ set of coef -
ficients, and this feature allows this. The second term
brings the measured data into the criterion; it is a
weighted average of the square of past estimation errors
based on the current parameter estimate. The exponential
weighting coefficient B acts as a forgetting factor. As

time t increases, the effect of old data at time <t ¢ t 1is
discounted exponentially with the elapsed time t - T; the

initial parameter estimate QO is discounted in a similar
way. S(0) varies the weight given to the initial parameter

estimate.

Note that J is a function of two variables: time t and

parameter estimate O(t).

The least-squares estimate is that value of 8(t) which

minimises this cost for each time t 2> O. At such a
minimum, the partial derivative of J(8(t),t) with respect

to é(t) is zero:

Jl(é(t),t) 8 358(t), t) = 0 (8)

Note that JI(Q(t),t) is a vector of the same dimension as ©
(t).

5.4, MINIMISATION OF THE COST FUNCTION

We consider the minimisation of the cost function in

three stages:
1. Existence and uniqueness of a minimum.
2. A non-recursive (integral) form of the solution.

3. A recursive (differential equation) form of the solu-

tion.
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Existence of solutions

Before performing the minimisation, it is important to
know if a minimum (with respect to 8(t)) exists. The cost

function is quadratic in 6(t), so existence depends on the
second derivative:

2

T (B(t),t) = —2-J(8(t),t) = S(t) (1)
z — 2
86
where
A _-Bt t g(t-n) T
st) 2 ePs 4 e (R (T)dt (2)
0

e—Btgo. The second term S(t) depends on the data but,

because of its form, is non-negative definite. Thus

S0 is, by definition, positive definite; hence so is

S(t) = Jz(é(t),t) > 0 (3)

This condition is sufficient to ensure existence and
uniqueness of the solution of the minimisation problem.

There is one global minimum and it occurs when the first

derivative of J(8(t),t) with respect to 8(t) is zero.

However, for practical purposes, this 1is not good
enough, as Jz(g(t),t) may become nearly singular. Not only

must Jz(é(t),t) be non-singular, but it must be numerically
non-singular. Also, for later theoretical reasons, we
require that S(t) be uniformly positive definite (even when
B8>0) in the sense that

S(t) > ¢ (4)

where I is a constant positive definite matrix.
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In practice, then, the data-dependent persistent exci-

tation condition

S(t) > X >0 (5)

is often required.

Non-recursive solution

Taking the partial derivative of J(8(t),t) with respect

to 8(t)
3 (8(t),t) = e Pts Bty - 8 (6)
1 2 s} (4]
£ ait-v T oA
+ fe R(T) (XL(T18(t) - ¥(T))dT
0
- LeBts (Giey - 8
2 o - =0
£ gt-1) T ~
r Cfe 2R (11dt18(t)
0
t
je BT Ty nywitdn
¢]

~

Setting Jl(é(t),t)=0, it follows that the wvalue 8 (t)
corresponding to the minimum of J(8(t),t) is given by

~ t

s(t18(t) = e Pts § 4 ge BIETT
0

8 X(T¥(tidz (7)
0~0

This equation, together with that for St} (5.4.2),

forms the non-recursive solution of the least-squares
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estimation problem. This solution is unique at time t iff

S(t) is non-singular, and is then given by

-1 -g(t-T)

(t) e‘Btg

]
D >
o

~ t
8(t) = 8 + fe X(T)¥(t)dr (8)
0

Recursive solution

To get a recursive solution, we first convert the
integral form of the cost (5.3.2) to a differential form by
taking partial derivatives with respect to time. Taking

partial derivatives with respect to time

2

~23(8(t),t) + BI(B(L),t) = lett) (9)

at
and then taking i partial derivatives with respect to 8(t)

- 2
1

A-é A Y _ L a A
atJi(Q(t),t) + BJi(Q(t),t) = ‘—ze(t) (10)
36
where
J.(8(t),t) = —=J(8(t),t) (11)
i ael

The total derivative with respect to time is then given by
the formula
d

i A _a A _I\
atJi(Q(t),t) + AJi(ﬁ_(t),t).dt@(t) (12)
a6

.4 A
qed; (80, )

= atJi(Q(t),t) + Ji+1(§(t),t).agﬁ(t)
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A formula for the optimum value 6(t)

Recalling that our condition for the optimal value 6(t)
is Jl(é(t),t) = 0, it follows from 12 with i=1 that

2

A _d;/\ _ 1 8a°
JZ(Q(t),t)dtQ(t) = ;—je(t) (13)
a8
= X(t)e(t)

Noting from equation 5.4.1 that Jz(é(t),t) = 8(t), it fol-
lows that

_dA B -1 A
dtQ(t) = 8 “(t)X(tle(t) (14)

A formula for Jz(é(t),t)

As J is quadratic in 6(t), it follows that

Ji(g(t),t)=0 for i>2. Thus Jz(é(t),t)=§(t) is given by:

sty + psit) - X(EYKL () (15)
(note that g%g(t) - a%g(t) as S(t) is independent of 8(t).

This formula can also be obtained by differentiating

the non-recursive formula 5.4.2.

Initial conditions

Considering J(é(t),t) at time t=0, it follows from the
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non-recursive solution that

OC0) = QO (16)
and also that

JZ(Q(t), 0) = 3 (17)

5.5. THE RECURSIVE LEAST-SQUARES ALGORITHM

We are now in a position to state the continuous-time

recursive-least-squares algorithm.

Recursive least-squares - inversion

The recursive least-squares algorithm 1is, from equa-
tions 14&15, defined by the pair of differential equations:

S(t1z36(t) = K(trect) (1)

d

ges(t) + BS(t) = XKL (t) (2)

and the algebraic equation

e(t) = ¥(t) - ¥(t) = ¥(t) - XT(t)Q(t) (3)

with initial conditions:

©(0) = 8 ; S(0) = § (4)
o = o)

A disadvantage of this approach is that 6(t) does not
appear explicitly; essentially S(t) must be inverted to
obtain a solution. This problem is removed by the follow-

ing reformulation.
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Recursive least-squares - no inversion

Assuming S(t) is non-singular, the equations can be
expressed directly in terms of §_1(t) as

95ty = 8T H(HIR(tIe(t) (5)
at2 2 &
ﬁg'l(t) + s Nt = STHOIR(OX(HS  (t) (6)

Note that, for numerical reasons, it is better to wupdate
the square root of S(t) rather than S(t) itselfl8].

5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES

The continuous-time recursive least-squares algorithm
has some important properties which lead to robust self-

tuning control. These properties are now derived.

The ‘ideal’ cost

For the purposes of this section, we shall define the
ideal conditions for the estimator by having zero error

e(t) and by having the correct initial estimate:

e(t) = 0; 8 =8 (1)
Such ideal conditions do not reflect a practical situation,
but rather provide a basis for analysing the recursive
least-squares algorithm operating wunder non-ideal condi-

tions. With ideal conditions, the estimation error is
given by:
e(t, 1) 2 ¥(1) - ¥(1) = XK(T)I6(L) (2)

where the error in the parameters 6(t) is defined as
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B(t) 2 8 - B(t) (3)

Under these conditions, the ideal cost (which will be

*/\
called J (B(t),t)) is given from 5.3.5 by

e, )

1oBtGt) - 8)Ts Bty - 6 ) (4)
2 - -0 -0 -0

-B(t-1)

t T A
+ %Ie (X (T)e(t)) %dr
0

T

= letlsmect

Under these conditions, the ideal cost J*(QA(t),t) is

given by the quadratic form %é(t)Tg(t)é(t). Its minimum
value is clearly zero, corresponding to 6(t) = 6.

Guided by this result, we define the quadratic function
V(t):

vty & 2aorTsece (5)
*A
As we have shown, under ideal conditions J (6(t),t) = V(t).

In the sequel, the behaviour of V(t) under non-ideal condi-
tions, but using the least-squares algorithm, will be found
to be of interest.

To obtain a differential equation for V(t), we first

differentiate with respect to time to give:

-d -1
gVt = S8t

T d ~t N T _dz
FES(L)6(t) + B(E)TS(E)z50(E) (6)

Using the least-squares algorithm 5.5.1&2 and noting that
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a7 . _ 43
qeft) = qeo(e)

this becomes

E%V(t) = i@(t)T[~B§(t) + X(t)KT(t)]Q(t)

- Q(t)TX(t)e(t)

At this stage, it is convenient to define the
induced error
Q) 2 e TRt
This gives
d _ 186 2 6 n
d%V(t) +BV(E) = et e (tre(t)
Now
e(t) = ¥(t) - ¥(t)
= (¥(t) - X(t)1e) + (XT(t)e - XL (tra(t))
= e(t) + ee(t)
So we can replace ee(t) by e(t) - e(t) to give
-y 4 gy = ety - e(t))? - (e(t) - e(t)relt)
dt 2

2

i[e(t)z - e(t) 1

Chap. 5

(7)

(8)

parameter-

(9)

(10)

(11)

(12)
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This gives the following property of the ideal cost

2
et - 1 2 _ 4
gV + BV Sle(t) e(t) ) (13)

This is discussed in the following section.

Properties

The equation

2
o}

et - 1 2 _ 2
dtV + BV = 2(e(t) e(t) ) (14)
can be interpreted as follows: the (positive) ideal cost V
is the output of the low-pass filter FLP(S) (Figure 5.6.1)

with transfer function

s _1
Fip(s) = 538 (15)

2

with input i[e(t)z - e(t) 1 and initial condition V(0).

2 —
e —>— —————y Vis)
+ [ !
0->—4F (s) p—r——)
~ 2 - | LP !
e —>—

If the two signals e(t) and g(t) are exponentially multi-

plied (as in section 1.5) by eOLt to give e_(t) and ea(t):

o

e (t) 2% oty e (t) 2% Sty (16)
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then
2 2
e 2ty = e¥* e()?; o, () = 2% 2t (17)
[0 9 [0 9
Similarly define
2at
V. (t) = e vit) (18)

It follows from chapter 1, section 5, that the (positive)
exponentially multiplied ideal cost Vm(t) is the output of
the low-pass filter FLP(S - 2a) with transfer function

S S
Frp(s - 2;) = s 7 B-2a (19)
2
with input >(e *(t) - e, (t)) and initial condition V(0).
In particular, if
= g (20)

The low-pass filter becomes an integrator and

2

2 A
(t) -~ ey (t))dT (21)

t
= 1
V“(t) = V(0) + zé(eu

The small gain property

The estimator can be regarded as a single input single

output system £ with input e(t) and output g(t) (Figure
5.6.2). We now derive a simple property of this system.

Noting that V“(t) > 0, it follows that

2

t. t
Lre (mrdr ¢ %;e“2(1>d1 + V(0) (22)
20 % 0

Intuitively, this expresses the fact that the integral over
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| |
e e
S Q>
f I

Figure 5.6.2 The estimator ‘system’

time of the exponentially multiplied estimator squared

"output’ e(t) is less than, or equal to, the integral over
time of the exponentially multiplied estimator squared

“input’ e(t) plus a constant.

Noting that

t t t
Lre Z(mydt+vio) Lre 2(mHdt+V(0)+d fe 2(T)dT.42V(0) (23)
ZO o 20 X 0 o

fo~

t
= irife T(mrdt + y2v(0)1?
2 0 o

it follows that

2

t

(Tydt ¢ eraz(T)dT + 42V(0) (24)
0

In this sense (seel9,101 for details) the gain of the esti-

mator system £ is unity.

Ideal behaviour - estimates

Suppose that the external system is such that the sig-

nal e(t)=0, that is there are no neglected dynamics and no
2

disturbances. As € (t) > 0, it follows that
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V_(t) < V(0) (25)
LB <

hence

vit) < e 2% y(o) (26)

That is, the ideal cost V(t) is proportional to the initial
cost V(0) and decays at 1least exponentially with time.
Recalling that the quadratic function V(t) is

1}

vit) & %é(t)T

S(t18(t) (27)

it follows that this result does not say wmuch about the
parameter estimate error ©8(t) unless the matrix S(t) is
non-singular. However, if we assume the data-dependent

persistent excitation condition

S(t) > T >0 (28)

it follows that
1. é(t) is bounded.

2. Q(t) converges to zZero exponentially.

Ideal behaviour - estimation error

If e(t) = 0, the sole 1input to the 1lowpass filter
2

A
FLP(S) is the signal - e(t) . Hence the filter output

V(t) can be written in terms of the filtered signal e LP(t)
2

representing the contribution of e(t) to the filter out-
put:

2

a%ng(t) + aéLp(t) = e(t) ; epp(0) = 0 (29)

as
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~

Vity = V0) - eLP(t) (30)

As the output V(t) of the filter must remain positive, it

follows that the low-pass filtered signal eLP(t) nust be
bounded by V(0):

(t)y < V(o) (31)

This is not sufficient to ensure that g(t) is bounded (for
example, passing a 8§ function into a low-pass filter gives

a bounded output).

5.7. DISCRETE-TIME PARAMETER ESTIMATION

Digital implementation of the continuous-time estimator
implies a sample rate similar to that of the corresponding
digital controller. In this section, it is shown that
discrete-time estimation of continuous-time parameters is
possiblel5,61 without introducing any sampling error. This
allows the estimation sample rate to be divorced from the
controller sample rate.

The-linear-in-the parameters model

The linear-in-the parameters model

¥(t) = XL(£)18 + e(t) (D

is non-dynamic; it is just an algebraic relation. It may
thus be sampled at any time tm to give

¥ =X7Tg+e (2)
m ~m m
where
A Ta T
Tm = W(tm), X = X7 (t ); en = e(tm) (3)
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Note that this relation holds whether or not the samples tm

are equispaced or indeed in the correct order.

The Least-Squares Algorithm

The discrete-time least-squares algorithm appropriate
to the discrete-time linear in the parameters model is well
known and will not be derived here. See any of the text-
books[11,12,13,14,151 for details.

The parameter update algorithm is

=9 +58

_1 )
Om+1 = O * Sq M pEnl¥n - XTmEpd (4)

where the matrix §d is given by
T
mxm

S + X

S4m = PaSdm-1 *t ¥ (5)

As discussed in the references ([81 in particular), the

inverse, or the square-root of the inverse, of §d

updated in practice. These exact discrete-time equations

is

may be regarded as an approximation to the continuous-time
equations. Assuming a constant sample interval A, the equa-

tions can be rewritten as

6 .. -8
T+l Tmo (as. Yy vty -
oY =dm “m m

TA
gm Qm] (6)

where the matrix A§d is given by
AS., - AS i (By - 1)

dm =dm-1
A - N =dm-1 Xm)—(m

(7)

Regarding the left-hand side of each equation as an approx-
imate time derivative, and comparing with equations
5.5.1&2, shows that:

x

D>

(t )i Sy * #8(t); By ¥ 1 - OB (8)

AO)
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CHAPTER 6
Self-Tuning Control

Aims. To introduce a class of self-tuning con-
trollers based on self-tuning emulators in a
feedback loop. To distinguish between implicit
and explicit methods. To distinguish between
off-line and on-line emulator design. To show
that some standard self-tuning methods, such as
model-reference, generalised minimum variance,
pole-placement and PID, are special cases of the
more general class. To 1illustrate some self-

tuning controllers using simulation.

6.1. INTRODUCTION

Self-tuning controllers (in the sense of this book)
have two parts: a tunable feedback controller and a parame-
ter 1identification based tuning method. Emulator-based
feedback control has been considered 1in chapter 3 and
least -squares identification has been considered in chapter
5. Putting these two 1ingredients together gives a self-

tuning controller.

In chapter 3, it was found that the notion of an emula-

tor embedded in a feedback 1loop wunifies a number of
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apparently diverse control laws; they are all examples of
an emulator within a feedback loop. In the same way, the

notion of a self-tuning emulator in a feedback loop unifies

a number of self-tuning controllers.

Astyrom and Wittenmark£1l] make the distinction between
two types of self-tuning algorithm:

1. Explicit algorithms which explicitly identify the sys-

tem parameters and then deduce the corresponding emula-
tor parameters. These have also been called indirect
methods.

2. Implicit algorithms which identify the emulator parame-

ters directly; system parameters are implicit in the
identified emulator parameters. These have also been
called direct methods.

Implicit self-tuning control in a continuous-time setting
has been considered by Egardtf2,3,431. In particular, he
unifies a number of algorithms and gives relations between
self-tuning control and the classical model-reference
approachesf5]1. This chapter deals with implicit methods in
the same spirit as Egardt; in particular, the intention is
to unify a number of methods. The difference 1is that a
wider class of algorithms is considered here and the self-
tuning is based on recursive least-squares. The approach
extends and amplifies that given infé6l.

This twofold division of algorithms is not sufficient
for the purpose of this book. We make the further distinc-

tion between on-line and off-line emulator design:

1. O0ff-line design. The emulator design parameters P(s),
Z(s), C(s) and T, the control weighting Q(s) and the
setpoint filter R(s) are chosen off-line, that 1is
before the self-tuning algorithm starts.
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2. On-line design. Some, or all, of the emulator design
parameters P(s), Z(s8), C(s) and T, the control weight-
ing Q(s) and the setpoint filter R(s) are automatically
varied during self-tuning. There is two-level tuning
taking place: both emulator parameters (G(s), F(s)
etc.) and emulator design parameters are automatically
tuned. The adjectives 'implicit’ and ‘explicit’ refer
to the former tuning process.

Examples of on-line emulator design in a discrete-time
context are the algorithm of Allidina and Hughes({ 7] where
P(s), Q(s) and R(s) are chosen on-line; and the discrete-
time LQ method of Grimblel81 where the continuous-time
equivalent is to choose the polynomial P(s) on-line via a

spectral factorisation of the form:

P(s)P(-s) = B(s)B(-8) + XMA(s)A(-s) (1)

where the system polynomials A(s) and B(s) are estimated

on-line.

Organisation of the chapter

Section 2 considers feedback control in a self-tuning
context and relates the algorithms to those of chapter 3.
Section 3 considers system identification; that is a method
of deriving system parameters using least-squares methods

is given. Section 4 considers explicit self-tuning con-

trol; the system identification algorithms of section 3 are
combined with the design methods of chapter 2. Section 5

introduces implicit self-tuning methods where emulator

parameters are identified without identifying system param-
eters or using the design methods of chapter 2. The section
is subdivided into off-line approaches where the emulator
design parameters P(s), Z(s) and T, and the controller
parameters Q(s) and R(s), are chosen a-priori, and on-line
design methods where the emulator design parameters P(s),
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Z(s) and T, and the controller parameters Q(s) and R(s),
are chosen on-line using an additional system identifica-

tion stage. Section 6 provides some simulations.

6.2. FEEDBACK CONTROL

In chapter three, a range of non-adaptive feedback con-
trol algorithms is described and discussed. The feature
common to all these controllers is that they may be
described as an emulator in a feedback loop. The disadvan-
tage of these non-adaptive controllers is that the system
parameters (coefficients of A(s), B(s) and T) must be known
if the desired performance is to be achieved. The aim of
self-tuning control is to remove this restriction. In par-
ticular, the fixed emulator of chapter 3 is replaced by a

self-tuning emulator.

The self-tuning controller is described by an equation
identical to the non-adaptive controller of section 3.2

—%
(equation 1) except that the emulator output ¢ (s) is

replaced by an estimated value a(s):

~ _ 1 — B A

u(s) = Q(S)ER(s)w(s) ¢(s)1 (1)
where

| | ; |
%Symbol { Quantity {
ju(s) i Control signal i
| A | |
|p(s) | self-tuning emulator output|
:@(s) : setpoint :
|Q(s) | control weighting |
{R(s) 1 setpoint filter :

1/Q(s) and R(s) are proper transfer functions. ¢(s) is the
self-tuning emulator output corresponding to one of the
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emulators described in chapter 2. That is,

01(5)

R 02(5)

oi{s) = according to context (2)
@3(5)
04(5)

where ¢ (s8) 1s the Laplace-transformed output of the

appropriate self-tuning emulator

p(t) = x T

X T8 (t) (3)
e -e

and Xe(t) and Qe(t) are the appropriate emulator data vec-
tor and parameter estimate vector respectively.

6.3. SYSTEM IDENTIFICATION

Explicit self-tuning methods require estimates of the
system parameters. The approach taken here is to write the
system as its own emulator; the coefficients arising from
the corresponding self-tuning emulator give the required

system parameters. Most systems are subject to disturbances
containing a constant component. If not properly accounted

for, such disturbances can give rise to very poor parameter
estimation; so this subject is given a section of its own.

This section is organised into the following subsec-

tions:
1. An emulator for the system
2. A self-tuning emulator

3. Non-zero mean disturbances.
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Consider the particular case where the emulator is
designed to emulate the system itself and that the delay T
is zero; that is

di(s) = y(s) (1)

The identity 2.2.2 then becomes

C(s) _ F(s)
acs) - EB(S) * a(e)

(2)

If we make the choice deg(C) = deg(A)-1, the identity gives

E(s) = 0; F(s) = C(s) (3)
giving
o (8) = y(s) (4)

which is not useful. If, however, we choose

C(s) = CS(s) (5)

deg(CS(s))=deg(A(s)) and, in addition, choose the highest-
order terms of A(s) and Cs(s) to be 1,

c =a =1 (6)
(this may always be done by suitably rescaling the distur-
bance), then the identity gives

E(s) = 1; F(s) = CS(S) - A(s) (7)

and so

x . _B(s)- Cgls) - A(s) _

o (s) = Cs(S)u(s) + CS(S) y(s) + —— == (8)
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—
Thus the system can be written as its own emulator; ¢ (s)
can be regarded as the system output y(s) minus the distur-

bance term v(s).
An example appears in chapter 5, section 2.

If the delay T is not zero but is known, the control

signal u(s) can be replaced by a delayed version:

up(s) = e 3T Ues) (9)

in the above equations. As in section 2.5, we assume that
the time-delay initial conditions are zero.

A self-tuning emulator

The system, rewritten as an emulator and including ini-
tial conditions associated with the rational part, can be
written in the linear-in-the-parameters form of chapter 5

as
T
V(t) = X, (£)8, + e (t) (10)

where the data vector Xs(t) and the parameter vector Qs are

given, in Laplace-transform terms by

| | [
[Tu "7 5]
- e [=u]
X (s)y = X (s) ; 8. = {6 | (11)
S | =y | S Y
% (s)! 195
| =1 |
where
| | ! |
n-1 n-1
= =
n- n-
_ 1 s sT S _ 1 s =
Xu(s) = C (s)l . | e u(s); Xy(s) = (S)l ) ly(s) (12)
N N
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Y
I's |
B | n-2]
R, (8) = s2—1% | (13)
i C_(s), .
s 21
! |
and Qs is given by
b, | lc, - al 111
Iy | e~ al 10
| 72| | "2 2| [T2]
= ; 8, = ; 8. = (14)
Su Ty T 1727 ). !
I “n 7 °n) R

The vectors gu(s), Xy(s) and gi(s) are the Laplace
transforms of vectors 1in controllable form (see section

1.6). The time-domain versions may therefore be computed
from the differential equations 1.6.1.

This linear-in-the-parameters model is suitable for the
least-squares estimation algorithms of chapter 5:

¥(t) = ZT(t)Q + e(t) (15)

if we set

¥(t) = y(t); X(t) = xs(t); 8 = QS; e(t) = e (t) (16)
The coefficients bi of B(s), and ii of I(s) are identified
directly; the coefficients a of A(s) are obtained by sub-
tracting the appropriate entries of 6 from the known coef-
ficients ¢y of Cs(s).

The advantages of including initial condition terms in
parameter estimation is discussed in detaill else-
wherel9,101.
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Non-zero mean disturbances

As pointed out in chapters 1 and 3, the almost inevit-
able non-zero mean component of a disturbance can be
included in the system model by assuming that

A(s) = SAO(S); B(s) = sBO(s) (17)

With this assumption, the system emulator becomes

o sBo(s) _ s(CO(s) - Ao(s)) +c,
¢ (s) = C (s) u(s) + C (s) y(s) (18)
s s
+ I(s)
Cs(s)
where
Cs(s) =cy sCo(s) (19)

This can be written in linear-in-the-parameters form as

- T
y (£) = K, ()8, + e () (20)

where v (s) is the high-pass filtered system output
)

C (s)_
y (s) = SE-TETY(S) (21)
s

the data vector 80(5) and the parameter vector 950 are now

given by
Iz (5! |
| =uo | 6
~ A |)_< | |guO|
X ( = ; 6 =
X, s) |_Yo(s)| 6 l—YO: (22)
|2 I [SP
I§_<io(s)| |~io|
where
! | | |
n-1 n-1
|s | I's |
5 - T e 5 _ 1 lgn2l
guo(s) c (5)| ] | e u(s); Xyo(s) T (s)‘ . ly(s)(23)
s s Ty |
| I | |
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(s) =

[fegel

and & is given by

| RS
b c, -
=T =2 z |
Suo T 1 . 17 Byo T | (28
Ibn—1} !Cn—l h an—1:

The vectors X (s), gy(s) and Xi(s) are the Laplace

transforms of vectors 1in controllable form (see section

1.6). The time-domain versions may therefore be computed
from the differential equations 1.6.1. This linear-in-

the-parameters model is of the correct form for the least-

squares estimation algorithms of chapter 5:

¥(t) = X (t)8 + elt) (25)

if we set

Y(t) =y (t); X(t) = X (t); 86 =08 _ ; e(t) = e_ (t) (26)
0 S0 S0 S0

where

~ CO(S),

yo(s) = SE;TETY(S) (27)

Both sides of this equation comprise high-pass filtered
quantities, but note that the same system parameters are to
be found in Qso as in QS. The importance of using this

zero-gain emulator 1in practice cannot Dbe overstated.

SeeCll] for a discussion of this point from a discrete-time
point of view andlCl2,63 for a discussion from the

continuous-time point of view.
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It is also emphasised that the use of high-pass filter-
ing 1in this context, because it arises naturally from the

system model, does not involve any approximation.

An example appears in chapter 5, section 2. The simula-
tion examples 7 and 9 of section 6.6.2 illustrate the

advantages of the zero-gain method.

6.4. EXPLICIT SELF-TUNING CONTROL

The adjective ’'explicit’ implies that the system param-
eters corresponding to A(s) and B(s) are estimated on-1line,
and these estimates (together with the polynomials P(s),
Z(s) and C(s) are then used to design the emulator on-1line.
The self-tuning system emulator provides these system
parameters. There are two types of explicit algorithm:

1. Off-line design. The emulator design parameters P(s),
Z2(s), C(s) and T, the control weighting Q(s) and the
setpoint filter R(s) are chosen off-1ine, that 1is

before the self-tuning algorithm starts.

2. On-line design. Some, or all, of the emulator design
paraweters P(s), Z(s), C(s) and T, the control weight-
ing Q(s) and the setpoint filter R(s) are automatically
varied during self-tuning.

These are considered 1in separate subsections. Each

type of algorithm has two phases of operation:

1. The off-1ine (a-priori) design phase. This occurs

before tuning starts.

2. The on-line tuning phase.

o

.4.1. Off-line design
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The off-line (a-priori) design phase

Choose the emulator polynomials P(s), Z+(s), 2 (s),
C(s) and the delay T.

Choose the weighting filter Q(s).

Choose the setpoint filter R(s).

Choose the system order.

on-line tuning phase

Update the system data vector gs(t) (or gso(t)) as in

section 6.3.

Update the system parameter estimate vector Qs(t) of QS

(or QASO(t) of QSO) using either the continuous or

discrete algorithms of chapter 5.

Use an appropriate emulator design algorithm from
chapter 2 to generate the parameters of the required
emulator from the estimated system parameters. These

are placed in the the vector Qe(t) as an approximation
to the ideal emulator vector Qe.

Generate the emulator data vector ge(t) as 1in section
2.7. 1f the same denominator polynomial 1s used for

both the system emulator and the emulator
(C(s) = Cs(s)) and so &e(t) = Xs(t), this step may be
omitted.

Generate the emulated signal ¢(t) using (see equation

A _ T ey
2.7.9) o(t) = Xe (t)Qe(t).

Generate the control signal as 1in section 6.2. In

Laplace-transform terms, this 1is:
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A l_. - ~ A
uls) = 6?;5[R(S)W(S) ¢(s)3 (1)
6.4.2 On-line design

The off-line (a-priori) design phase

1. Choose a design rule giving the emulator design polyno-
mials P(s), Z+(s), Z (s), C(s) and the delay T in terms
of the system parameters. For example, a pole-placement
design rule would be to choose

_ B(s)
Z2(s) = B(0) (1)

and to choose the other polynomials a-priori.

2. Choose a design rule weighting filter Q(s) in terms of

system parameters.

3. Choose a design rule giving the setpoint filter R(s) in

terms of system parameters.
4. Choose the system order.

In practice, some of these rules can be purely a-
priori. Thus, for example, Q(s) and R(s) could be chosen
a-priori. If all the rules are, in fact, a-priori, then the

on-line design reduces to the off-line design.

The on-line tuning phase

1. Update the system data vector Xs(t) (or X 0(t)) as in

S
section 6.3.

~

2. Update the system parameter estimate vector Qs(t) of QS

(or © SO(t) of Qso) using either the continuous or
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3b.

3c.

3d.

~
u(s)

SELF-TUNING CONTROL Chap. 6

discrete algorithms of chapter 5.

From the estimated system parameters, derive the
corresponding emulator design parameters P(s), Z+(s).
72 (s), C(s) and the delay T in terms of the estimated
system parameters.

From the estimated system parameters, derive the
corresponding control weighting transfer function Q(s)

in terms of system parameters.

From the estimated system parameters, derive the
corresponding setpoint filter transfer function R(s) in

terms of system parameters.

Use an appropriate emulator design algorithm from
chapter 2 to generate the parameters of the required
emulator from the estimated system parameters. These

are placed in the the vector Qe(t) as an approximation
to the ideal emulator vector Qe.

Generate the emulator data vector Xe(t) as 1in section

2.7. If the same denominator polynomial is used for
both the system emulator and the emulator
(C(s) = Cs(s)) and so Ze(t) = gs(t), this step may be
omitted.

Generate the emulated signal ¢(t) using (see equation

T

2.7.9) ¢(t) = Xe (t)Qe(t).

Generate the control signal as 1in section 6.2. In

Laplace-transform terms, this is

= 6(-;'7[1?(5)&(5) - 9(s)1 (2)

This differs from the off-line design in that the addi-

tional on-line steps 3a-3c are added; 3d is as step 3 of
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the off-line design.

6.5. IMPLICIT SELF-TUNING CONTROL

Implicit self-tuning control avoids the separate design
phase by identifying the emulator parameters directly.

Tuning the emulator

As discussed in chapter 2, the emulator can be written
in linear-in-the-parameters form as:

-x T *
p(t) = Ze (t)Qe + e (s) (1)
In many emulators, ¢(t) is not a realisable quantity, but

can be made so by appending a realisability filter A(s) to

give a realisable signal @A(t):

9,(s) = Als)o(s) (2)
such that
eST %%g%A(s) is realisable and proper (3)

As will be seen in chapter 7, we will also require that the

inverse be proper:

-sT Z(s) ;
P(s)AS)

! is realisable and proper (4)

(As this filter is under our control, we may choose the
initial <conditions associated with A(s) to be zero; this

will be assumed in the sequel).

One possibility is to choose

__~-sT Z(s)
Als) = e P(s) (S)

giving
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(t) = y(t) (6)

The corresponding linear-in-the-parameters model is then

T

9,(t) = X,7(£)8 + e, (t) (7)
where
R, (s) 8 A(s)R(s); &, (8 8 A(s)E(s) (8)

Note that XA(S) can be generated in the same way as Ze(s)
except that the signals u(s) and y(s) are prefiltered by
A(s).

Example 1

If P(s) = Z(s) = 1, and equation 5 is used, then
A(s) = e 5T, Xy(s) = e 5T %o (9)
fe)
KA(t) = X(t-T) (10)
This corresponds to many discrete-time algorithms, includ-

ing the self-tuning regulatorC131].

Example 2

If Z(s) = 1 and T=0, the filtering effect of A(s) 1is
closely related to the filtering approach discussed by
Egardt in chapter 3 of his book[21.

This linear-in-the-parameters model is suitable for the
least-squares estimation algorithms of chapter 5:

¥it) = XT(t)Q + e(t) (11)

if we set
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Yit) = ¢A(t); X(t) = X, (t); e(t) = e, (t) (12)

A A

There are two types of implicit algorithm:

1. 0ff-line design. The emulator design parameters P(s),
Z(s), C(s) and T, the control weighting Q(s) and the
setpoint filter R(s) are <chosen off-line, that is
before the self-tuning algorithm starts.

2. On-line design. Some, or all, of the emulator design
parameters P(s), Z(s), C(s) and T, the control weight-
ing Q(s) and the setpoint filter R(s) are automatically

varied during self-tuning.

These are considered 1in separate subsections. Each
type of algorithm has two phases of operation:

1., The off-line (a-priori) design phase. This occurs
before tuning starts.

2. The on-line tuning phase.

o2}
o

1. ff-line design

The off-line (a-priori) design phase

1. Choose the emulator polynomials P(s), Z+(s), Z (s),
C(s) and the delay T.

2. Choose the weighting filter Q(s).
3. Choose the setpoint filter R(s).
4, Choose the system order.

5. Choose the realisability filter A(s) according to equa-

tions 6.5.3&4. Typically we would use equation 6.5.5:

_ -sT Z(s)
Als) = e P(s) (1)
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Steps 1 and 5 may not always be possible. For example,
if pole-placement 1is to be used and =0 Z(s) = B(s), these
steps are not possible unless B(s) is known a-priori.

The on-line tuning phase

1. Generate the quantity ¢,(t), where 6A<s> = A(s)P(s).

2. Filter the control signal u(t) and the system output
y(t) by A(s).

3. Generate the emulator data vector XA(t) using the fil-
tered signals from step 2 together with differential
equations 1.6.1.

4. Update the emulator parameter estimate vector 6 e(t)
using either the continuous or discrete algorithms of
chapter 5 and based on the 1linear-in-the-parameters

model of equations 5.2.9&10.

5. Generate the emulated signal ¢(t) using (see equation

T

2.7.9) 8(t) = K (£)B ().

6. Generate the control signal as 1in section 6.72. In
Laplace-transform terms, this is

u(s) = 57%7cR<s>§(s> - 9(s)1] (2)
6.5.2 On-line design

The off-1line (a-priori) design phase

1. Choose a design rule giving the emulator design polyno-
+ —_
mials P(s), 2 (s), Z (s), C(s) and the delay T in terms

of the system parameters. For example, a pole-placement
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design rule would be to choose

B(s)
= B(0) (1)

Z(s)

and to choose the other polynomials a-priori.

2. Choose a design rule weighting filter Q(s) in terms of

system parameters.

3. Choose a design rule giving the setpoint filter R(s) in
terms of system parameters.

4. Choose the system order.

5. Choose a design rule giving the realisability filter

A(s) 1in terms of the system parameters and the emulator
design parameters according to equations 6.5.3&4. Typi-
cally we would use equation 6.5.5:

-sT Z(s)

A(s) = e B(s) (2)

In practice, some of these rules can be purely a-
priori. Thus, for example,Q(s) and R(s) could be chosen a-
priori. If all the rules are, in fact, a-priori, then the

on-line design reduces to the off-line design.

The on-line tuning phase

1. Update the system data vector Xs(t) (or Xso(t)) as in
section 6.3.

2. Update the system parameter estimate vector Qs(t) of

(e

A

(or 6 SO(t) of Qso) using either the continuous or

discrete algorithms of chapter 5.

3. From the estimated system parameters, derive the

corresponding emulator design parameters P(s), Z+(s),
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11.

12.

u(s)
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72 (s), C(s) and the delay T in terms of the estimated

system parameters.

From the estimated system parameters, derive the
corresponding control weighting transfer function Q(s)

in terms of system parameters.

From the estimated system parameters, derive the
corresponding setpoint filter transfer function R(s) in

terms of system parameters.

Deduce the realisability filter A(s) in terms of the

estimated system parameters and the derived values of
P(s) and Z(s).

Generate the quantity ¢A(t), where $A(s) = A(s)@(s).

Filter the control signal u(t) and the system output
y(t) by A(s).

Generate the emulator data vector KA(t) using the fil-
tered signals from step 2 together with differential

equations 1.6.1.

Update the emulator parameter estimate vector QAe(t)
using either the continuous or discrete algorithms of
chapter 5 and based on the linear-in-the-parameters
model 5.2.6&7.

Generate the emulated signal g(t) using

A LT
o(t) = X,

(t)Qe(t).
Generate the control signal as in section 6.2. In

Laplace-transform terms, this is

_ 1

- GreytR(s)u(s) - ®(s)3 (3)
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This differs from the off-line design in that the addi-
tional on-line steps 1-6 are added. At first sight, this
looks to be more complex than an explicit algorithms. But
in fact it is simpler in that the emulator polynomials G(s)
and F(s) are not deduced on line but are rather identified
directly.

6.6. SOME SIMULATED EXAMPLES

In this section, a number of simulated illustrative
examples are given. The simulations are divided into two
sections: algorithms using the realisability filter A(s)
and those which do not.

6.6.1. Using realisability filter

A number of versions of self-tuning algorithms using

A(s) = gf:;

(1)

were simulated using the SIMNON languagel14,151]. All the
examples in this section have the following in common:

1. Four emulator parameters are identified.

2. The initial §_1(t) matrix is, in each case, given by:

1100 0O 0 0 |

-1 ] 0 100 0 0 |

50 =g o 100 0 | (2)
| 0 0 0 100

3. C(s) = 1+0.5s.

4. All examples are detuned versions of the wunderlying
0.01s

algorithms with Q(s) = 1+40.1s"

5. A(s) = s(l+s).

6. The realisability filter is given by A(s) =

jgs|
2]
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Qutput, Setpoint, Model output.

1.254f\

0.4f

-1.2% . . . ‘ . .
0. 12,9 29, 37.9 g,
1Emutator paramitars
i,
0.9
IJ- a Al T T T T T
0, 12,9 29, 3749 S0

Figure 6.6.1.1 Example 1

7. The algorithms are simulated with a noise-free system
having no neglected dynamics for 50 time units.

8. The upper graphs in Figures 6.6.1.1-5 show the setpoint
(a square wave between +1 and -1 with a period of 25
units), the actual system output, and the model output.
The model output §m(s) corresponds to

= _ Z(s) -
ym(s) = ETETW(S) (3)

9. The lower graph of Figures 6.6.1.1-5 shows the evolu-
tion of the four emulator parameters with respect to

time.
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1Dutputa J8tpoints Modal gutpuyt,

L.g8
1r
0.
]
-1.25 . : - : , — —
0. 12.% 2%, 37.% 0.
' &9 ' 749 ' 50,

10.

Figure 6.6.1.2 Example 2

In each case, the presence of the non-zero Q(s) control
weighting prevents the system output following the
model-output exactly. But note that the discrepancy is
zero at zero frequency (constant setpoint) and only

appears at high frequencies (changing setpoint).

Figures 6.6.1.1-5 correspond to examples 1-5 of this

section. The differences between the five examples are

summarised in the following Table:
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wOutputf Setpoint, Model output.
1.5{\
*)/
0,
-1.9 . . —— . . .
0. 12.9 25. 37,9 S0,
TEmulator paramaters
ln‘ (",
t:i.E-_f""
I]l — 'i A T T T o
0. 12,9 €9, 37.9 ol
Figure 6.6.1.3 Example 3
‘ SIMULATION SUMMARY '
| |
{No.| Method | P(s) | 2(s)| B(s) | Design j
1 t 1 t t
}1 | Model reference| 1+0.5s | 1 | 1+0.1s| Off—line}
| 2 : Model referencel 1+0.5s : 1 : l+s : O0ff-line|
:3 | Pole placement | (l+0.Ss)2| B(s) | 1+0.1s| On-1line }
|4 : Pole placement : (1+o.55)2: B(s): l+s : On-line |
| 2 - Y |
l5 I Pole placement I (1+0.5s) | B(s)l l-s I On 11ne“J

See chapter 3 for

ncn-adaptive context.

a discussion of these examples

in a
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Output: Zefpoint. Model ocutput,
-

Figure 6.6.1.4 Example 4

Remarks

Examples 1 and 2 can use off-line design, as P(s) and
Z(s) are both chosen a-priori. Examples 3, 4 and 5 can-

not, as 2(s8) = B(s) is not known a-priori.

The systems in examples 1-4 are minimum phase and so
either model-reference or pole-placement design 1is
appropriate. The system in example 5 has a zero at
s=1; model-reference control 1is not possible in this
case, but pole-placement is. Note the characteristic
non-minimum phase step response of the closed-loop sys-

tem in example 5.
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Qutput, Setpoint, Model output,

o
=

T

12,5 ' FES o 37.5 j 5y,

Enulator parandters

U, ' &\ 5 ' 29, ! 3705 ‘ 50,
Figqure 6.6.1.5 Example S
3. The system in examples 2 and 4 is
_i+s 1
s(1+s) s (4)

a+s
a+s

Thus the apparently second-order system is in fact
first order. It can be represented as a second-order
system with a first order cancelling factor of the
form:

(5)

for any values of a. (Note that the coefficient of s
is wunity, as it is assumed that the coefficient of the
highest-order s term is unity as in equation 6.2.6)

Thus, in each case, the estimated parameters do not
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have a unique "true" value. This 1is revealed in the
estimated parameters. In example 4, the desired closed
loop system is not unique, as Z(s) = B(s)/B(0) = l+s/a.
In fact the estimator ends up with

a = 0.55 (6)

in this particular simulation. Note that the model out-

put in this case assumes that B(s) = Z{(s) = 1+s and so
is different from what is actually achieved.

o

.6.2. Not using realisability filter

1Dut-puts detpoints Model cutput,

»

il | sp |
0, ] ﬁ g “

-1,2% i
0, ’ 12, ) 2z, ' 37.5 i L)
ylata Jrayeters
0.8
[1144[
U.f
0, 2.9 29, 709 ! S

Figure 6.6.2.1 Example 6

A number of versions of self-tuning algorithms using
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_Uuhputs Yehpoint. Model output,

o
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n.93
p
] f—\ X
0.4_(
 N—
r.l |? _y T T T T
0, 12,3 z9, 370 s0.
Figure 6.6.2.2 Example 7
A(s) =1 (1)

were simulated using the SIMNON languageCl4,153. All exam-
ples have the following in common:

1. Two emulator parameters are identified.
2. The initial §—1(t) matrix is, in each case, given by:

(2)

s ') = '180 0

|
| 100|

3. In each case, the emulator design parameters are:

P(s) = 1+0.3s; 2(s) = 2 (s) = 140.03s (3)
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1Dutputn etpoints Model output.
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Fiqure 6.6.2.3 Example 8

See section 3.11 for a discussion of the ideas behind

this strategy. Note that g%g% is realisable and so

A(s) = 1 may be used here.

All examples are detuned versions of the underlying
_0.2s

model-reference algorithm with Q(s) = 1+0. 15"

The algorithms are simulated using a system having no
neglected dynamics for 50 time units. Examples 7 and 9
have a unit output step disturbance occurring at
time=15 units; that is, one is added to the system out-

put from time 15 onwards.

The upper graph of Figures 6.6.2.1-4 shows the setpoint

(a square wave between +1 and -1 with a period of 25
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Jubputy Tetpoint: Model output,

0.8 — .-
r ¢
_ﬁ v
) '
0,4 Jh I& n
'\.__ [ ‘\__ r\___
-l N
0,
ﬂl IEIS L-.':-’ll 5_\|'.' .‘1]:

units), the actual system output, and the model output.

The model output corresponds to

- Z(s) -~
ym(s) = §Tg7w(s) (4)

7. The lower graph of Figures 6.6.2.1-4 shows the evolu-

tion of the two emulator parameters with respect to

time.

Figqures 6.6.2.1-4 correspond to examples 6-9 of this
section. The differences between the four examples are

summarised in the following Table:
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SIMULATION SUMMARY

| }

i |

1N | A(s) | B(s)] C(s) | Disturbancel
1 t t t

le | s(1+s)| 2s | 1+40.3s| No '

L | | | '

| 7 | s(l+s)| 2s | l+0.3s| Yes

:8 | 1+s | 2 | 1 | No {
| | | |

19 | 1+s l 2 l 1 | Yes l

See chapter 3 for a discussion of these examples in a

non-adaptive context.

Remarks

In each case, the presence of the non-zero Q(s) control
weighting prevents the system output following the
model-output exactly. But note that the discrepancy 1is
zero at zero frequency (constant setpoint) and only
appears at high frequencies (changing setpoint).

The self-tuning emulators used in examples 6 and 7 are
designed on the basis of a system with a cancelling s
term - they have integral action. This does not make
much difference between examples 6 and 8 which have no
step disturbance. Example 7 illustrates the superior
performance when non-zero mean disturbances are assumed
a-priori as compared with example 9. A similar effect
may be observed when using the realisability filter.

Despite the different controller structure, examples 6
and 8 end up with the same closed-loop setpoint
response, though the disturbance response is different,

as discussed in remark 2.
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CHAPTER 7

Robustness of
Self-Tuning Controllers

Aims. To analyse the behaviour of continuous-
time self-tuning controllers in the presence of
neglected system dynamics. To introduce the con-
cept of an error feedback system and its role in
robustness analysis. To introduce the M-locus
approach to analysis and design of robust self-
tuning controllers. To illustrate the results
using simulation.

7.1. INTRODUCTION

The robustness of non-adaptive emulator based control
systems was considered in chapter 4. The purpose of this
chapter is to extend those results to include implicit
off-line design self-tuning algorithms; that is, the non-
adaptive emulators are replaced by self-tuning emulators.
The problem is analysed with the realisability filter A(s)

included, but the the results are only complete for the
case A(s) = 1. This chapter 1is based on an internal
reportlCl].

There is a considerable amount of literature concerned
with the stability of adaptive controllers. A common thread
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running through much of this work is the idea of an error

feedback systemf21. This error feedback system 1is a

single-loop feedback system composed of two blocks: one a
linear transfer function, the other a time varying system
representing the effect of the estimator. Although not
specifically about adaptive control, many textbooks have
been written about the stability of such feedback systenms,
includingf3,4,5,6]. This body of 1literature provides a
valuable source of mathematical tools applicable to the
adaptive robustness problem. In particular, Landauf?2]
applied the hyperstability techniques of PopovL31 to solve

a number of adaptive control and estimation problems.

More recently, attention has focused on the input-
output approach (as opposed to the state-space Liapunov and
Hyperstability approaches). Early work is reported
inf7,8,9,101. Some methods are compared in a discrete-time
context infC111. More recent work appears
inf£12,13,14,15,1617. An advantage of the input-output
approach is that standard textbook[4,5,61 proofs are avail-
able for use.

A simpler problem than that considered here arises from

the analysis of adaptive algorithms where, unlike in this

chapter, neglected dynamics are excluded (N(s)=1). Impor-
tant results (in the discrete-time context) were obtained
by Goodwin, Ramadge and Caines[C171]. A compendium of

results in this area appears in the book by Goodwin and
Sinf181].

This chapter provides an analysis of implicit off-line

design self-tuning controllers. Complete robust stability

results are given when the realisability filter A{s)=1 and
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partial results when A(s)#1.

7.2. THE ERROR FEEDBACK SYSTEM

In the same vein as chapter 4, an error feedback system
describing the evolution of various errors associated with
the self-tuning controller can be derived. This has two
advantages: an intuitive idea as to what factors are impor-
tant in determining stability is given; and, in some cir-

cumstances, precise robustness criteria may be derived.

The emulation error

The self-tuning emulator gives an output ¢(s) which 1is
an approximation to the emulated value ¢(s). Define the
corresponding emulation error e€(t) by

e€(s) @ $(s) - o(s) (1)

As in chapter 4, this can be divided into a number of terms

which can be written (in terms of Laplace transforms) as

- - A — — - -k
6%(s) = [32(s)-0(s)T + [ (5)-82(8)] + [H(s)-3 (8)] (2)
= a%s) + e(s) + &% (s)
-a —-* -k
where the approximation error e (s) = ¢ (8) - ¢ (s) has

%
been introduced in chapter 4 and the error e (s) in chapter

2. The new term due to the tuning ét(s) will be called the
tuning error and is given by

ety = 02(t) - a(t) = X (t)B(t) (3)

where the error in the parameters é(t) is given by
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a(ty 29 - 8(t) (4)

If initial conditions are included in the estimation and
design, then equation 2 is replaced by

— — ~ —kk - - — kA

e€(s) = [0 (s)-0(s)T + [P (5)-92(s)T + [e(s)-9 (s)T  (5)

- -~ — Ak
= et(s) + ea(s) + e (s)

The approximation error

Following the same analysis as in chapter 4 (section

4.6 in particular), and noting the effect of the additional

error term due to tuning ét(s), it follows that

a t

e?(s) - M(s)Lz(s) + e2(s) + e“(s)1 (6)

n

- M(s)Lz(s) + e%(s)1

where, as in chapter 3, equation 3.3.11,

sT P(s)C(s)~

F oA n s NV
Z(s)A(s) 'S N

z(s) = R(s)w(s) - e

The estimation error

The emulation error e€(s) 1is closely related to the

estimation error, which was defined in chapter 5 as

e(s) 2 ¥(s) - ¥(s) (8)

where ¥(s) is the scalar output of the 1linear-in-the-

parameters model and ¥(s) its estimate. In the particular
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case of implicit off-line design algorithms, e(s) is given
by

e(s) = 9y(8) - 0,(8) = A(S)9(s) - 9,(s) (9)

where A(s) is the realisability filter. At first glance,

g(s) appears to be just a A(s) filtered version of ef(s);

but this is not so,as QA(5)¢A(5)¢(S) (unless A(s) = 1 or
é(t) is constant). So we define the filter-induced error
e(s) by

~ A A A

e(s) = A(s)¢(3) - @A(s) (10)

This error is zero in two cases:

1. A(s) =1

2. 6(t) is constant

Combining these equations gives

A

A(s)p(s) - 0,(s) (11)

1]

e(s)

A(S)(B(s) - 6(3)) - (A(s)e(s) - ¢

A(s))

A(SIEH(s) - 0(8)] - e(s)

A(s)e€(s) - e(s)

Rearranging the last equation gives the emulation error
ée(s) in terms of the estimation error e(s) as:

~

eS(s) = Als) ‘Ce(s) + e(s)] (12)
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e®(3) = A(s) 'Le(s) + e(s)] (12)
Example
-sT
Suppose that A(s) = e . Then
”~ T ~ ~
e(t) = XT(t)La(t) - 6(t-T1 (13)
and
e ~ T ~ ~
e (t) = e(t+T) + X (t)[B(E+T) - B(t)1 (14)

The filter induced error e(s) is zero if either T=0 or 96(t)
is constant.

The filter induced error e(t) is then closely related

to the difference between the a-priori and a-posteriori
errors discussed in a discrete-time context by Landaul2]

and others.

The estimator input

In chapter 5, it was shown that the least-squares
parameter estimator could be viewed as a single-input

single-output system & with input e(t) and output e(t). In
particular, the estimator input e(t) is given by (5.5.3):

W

e(s) = A(s)p(s) - 2T<s>g (15)

A(S)(B(3) - 82(s)) = A(s) (87 (s) + &2(s))

Using equation 6 to replace the approximation error éa(s),
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Als)e (s) (16)

0]
4]
i\

A(s)M(s)Cz(s) + &S(s)1

And using equation 12 to replace the emulation error ée(s),

—*
Als)e (s) (17)

H

el(s)

A(sIM(s)Lz(s) + A(s) ‘(e(s) + e(s))]

-k ~ ~ A
Als)Le (s) - M(s)z(s)]1 - M(s)e(s) - M(s)e(s) (18)

Writing the disturbance and setpoint induced error éd(s) as

-d A -k ~
e (s) = Al(s)Le (s) - M(s)z(s)] (19)

the estimator input error e(s) is seen to contain three
components, the disturbance and setpoint induced error

d(s), the filter induced error ;(s) filtered by - M(s),

e
and the estimator output error filtered by the transfer
function - M(s). That is,

a(s) = ed(s) - M(s)e(s) - M(s)e(s) (20)

The error feedback system

Equation 20 gives the estimator input e(s) in terms of

the estimation error e(s), the filter-induced error e(s)

d

and the disturbances induced error e“(s). Combining this

linear system with the time-varying estimator system Q

relating e(t) and e(t) gives the error feedback system
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displayed in Figure 7.2.1.

d A
e e | | e
—0—— & b
- I | !
| |
T e
e
(———] M(s) }———0(—
| |

Fiqure 7.2.1 The error feedback system

The output error

As well as being of interest in its own right, the
effect of the emulation error e“(t) on the system output
is of interest. This effect can be studied on the basis of

the notional feedback system considered in chapters 3 and

4. One difference here is that the difference between the
emulator output and the emulated signal is now

—~ — k& - - —
ef(s) = - &' (s) + e2(s) + et(s) rather than - e*(s) in

chapter 3 and - &' (s) + 82(s) 1in chapter 4. Another
difference is that the neglected dynamics N(s) now appear
explicitly. The corresponding block diagram appears in Fig-
ure 7.2.2. Define eY(t) to be the component of the system
‘output due to the emulation error

L(s) -sT Z(s) -e

-y,
et (s) = 7175y © P(s)

(s) (21)

Using equation 12 this then gives the output error éy(s) in
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— | I 1 f 1
w | | + | 1 | 1 |
—>— R(s) p—0—>—
| I -1 | QCs) |

J

 I—— l L

—_— O

® ]

Fiqure 7.2.2 The notional feedback system

terms of the estimation error e(s) and the filter-induced
error e(s) as
L(s) -sT Z(s)

225 A(s) Le(s) + e(s)] (22)

-y -
e (s) = Ti1(s) © P(s)

Exponential weighting

As in chapter S5, exponentially weighted signals are
useful in deriving stability results. In chapter S5, it was

shown that e(t) and e(t) could be replaced by exponentially
weighted versions:

e (t) = emt e(t); em(t) = emt e(t) (23)

and { still has a gain of one as long as o ¢ B/2.
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Moreover, pre- and post- exponentially multiplying the
linear transfer function M(s) gives M(s - «). The gain of
this transfer function is called Yo and, 1if M(s - «) 1is
stable, is given by

Yo = sup:M(jw - a): (24)
W

This is considered further in the next section.

7.3. THE M-LOCUS

The error feedback system (Figure 7.2.1) for the adap-
tive case 1is similar to that in chapter 4 for the non-
adaptive case. In particular, the transfer function M(s)

+ -1
M(s) = Z (s)E(s)A(s) N "(s)-1 (1)

P(s)Cls) 1,171 ()N Y(s)

still appears in the feedback loop. The differences are:

1. The unit feedback 1loop appearing in chapter 4 |is
replaced by the system Q, which has a gain of one.

2. The filter induced error g(s) appears as a disturbance.

Not surprisingly, the transfer function M(s) is crucial in
analysing the stability of the feedback system. Roughly
speaking(details will appear in the next section), a stan-
dard Theorem applicable to this sort of feedback
looplC4,5,61 says that the feedback loop will be stable if
the loop-gain is less than one. As we have already decided
that the gain of Q with exponential weighting is less than

one when making

Assumption 1

the exponential weighting coefficient o and the
exponential forgetting factor B (section 5.3) are related

by



Sec. 7.3. THE M-LOCUS 7-11
1
o = 28 , (2)

we get the rather simple result that stability of the feed-

back loop follows from the gain of M(s - a) being less than
one.

There are two parts to this condition:

1. M(s) must be stable. As P(s) and C(s) are chosen to be

stable, this condition becomes that the transfer func-

tion:
N''(¢s)-1  _ L(s)C1-N(s)1 (3)
140 Y s)N " Yis) 14L(s)N(s)

be stable. This condition is satisfied if two assump-
tions are true:

Assumption 2

N(s - &) is stable.

Assumption 3

L(s - o)
1+L(s - a)N(s - )

is stable.

2. The gain of M(s - «) is less than 1. This can be writ-
ten as:

Assumption 4

y. = sup'M(juw - ! (4)
o T SUP |

Note that assumptions 2 and 4 depend on the choice of

N(s) 1in the decomposition of equation 4.2.3, repeated here
as
Hs) = e 3T Bls) g, (5)

A(s)
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It is important to realise that, in the adaptive context,
B(s)
A(s)
ics N(s) are not chosen. Thus all that is required is that

the nominal system and the resultant neglected dynam-

such a choice exists satisfying the above criteria.

Finally, to deduce that the signals are bounded, we
must also assume that the exogenous signals due to the set-
point and disturbance are bounded:

Assumption 5
e { K (6)

where Ko is a constant.

The importance of control weighting

Typical neglected dynamics are low-pass. That is,

Lt N(jw) =0 (7)
w—o

Hence, at high frequencies,

» 2 (s)E(s)A(S)
P(s)C(s)

M(s) L(s) (8)
Without control weighing, L(s) = = at all frequencies and
thus the small gain condition cannot be satisfied. It fol-
lows that control weighting 1is essential when low-pass
neglected dynamics are present.

Although nothing has been proved so far in this
chapter, it seems at this stage that M(s) is crucial in
determining the stability of the self-tuning controller
when neglected dynamics are present. As shown in the next
section, stability can be shown (in terms of M(s)) for the
case when ;(s)=0, that is A(s)=1. Although not proved,

simulations suggest that these results may be extended to



Sec. 7.3. THE M-LOCUS 7-13

include A(s)#1.

7.4. ADAPTIVE ROBUSTNESS

In this section, it is assumed that

A(s)=1, that is e(s) = 0 (1)

The error equations developed in the previous sections
reveal that the robustness problem reduces to examining the
single-loop feedback system of Fiqure 7.4.1. Note that as

A(s) = 1 the filter induced error éA(s) is zero.

d ) ~
e + | | e

— O & >
- I I I
| —_ [
I I
I — I
( | I |
{—"At——+ M(s) }——-

|
|

Fiqure 7.4.1 The exponentially multiplied system

Qutline of proof

The proof proceeds as follows:

1. In Lemma 7.1, the exponentially multiplied error

This section involves some technical mathematics. It
may be omitted on a first reading.
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feedback system is shown to be L2 stable using the
standard small-gain theorem[51 and the formula for the
gain Yo (7.2.24).

2. In Lemma 7.2, it is shown how Lm results about the
error feedback system can be derived from the L2
results about the exponentially multiplied error feed-
back system.

3. Theorem 7.1 combines the two Lemmas to give input-
output stability results for the self-tuning controller
in terms of the neglected dynamics N(s) and the emula-
tor design polynomials P(s), C(s) and Q(s).

4, Theorem 7.2 (section 7.5) extends these results to

A
include parameter boundedness and estimation error e(t)

boundedness. This requires a persigstent excitation con-

dition to be imposed on the signals affecting the sys-
tem.

Lemma 7.1 (L2 stability of the exponentially weighted sys-
tem)

If assumptions 1-4 of section 7.3 are true, that 1is
M(s - a«) 1is stable, o = iB and Ya<l' Then the exponen-

tially weighted system of equations displayed in Figure

7.4.1 1is Lz stable in the sense that the estimation error e
e(t) and the estimator input error e(t) are bounded by

t A2 t

17e®%Te (midt ¢ - vset*Ted(miat + k) (2)
0 Yo 0
t 200T_2 1 t 200t _d2

ife e " (t)dt < ——— Jfe e “(1T)dT + K (3)
0 Ve 0 2

where Ky and k, are finite constants and Yo is the gain of

M(s - o) (see 7.2.24).
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Proof

This follows from the small gain theorem III.2.1 on
page 41 of[51 and the fact that the gain of ﬂa {1 (see
chapter 5). o

Remarks

1. Setting oo = 0, this theorem gives L2 stability of the
system. This holds even with no forgetting (g8 = 0).

2. Using assumptions 2 and 3 and assuming that the distur-
bance and the setpoint are uniformly bounded, the

signal ed(t) is uniformly bounded.

3. If the quantity ed(t) is exponentially decreasing fas-

ot

ter than e ", then so is e.

Lemma 7.2 (Bounds on low-pass filtered signals)

If the error system input ed(t) is bounded (assumption

4), then the low-pass filtered estimation error:

A t — - A2
e (t) & ye 2% t-TIE" (1y4r (4)
F 0
is bounded by:
K
~ 1 0 -t
ep(t) ( T YGEHZM + e %l (5)

Proof: From assumption 4, the integral in the righthand
side of equation 2 of Lemma 7.1 is bounded by:

t t
JIeZ“TedZ(T)dT < KoerzaTdT (6)
0 0
_ _1- 2at 1 o
= 4(2a[e 13 < 1200 ¢ t
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Substituting this into equation 2 of Lemma 7.1 and multi-

plying by e Ot gives the result.

o
This Lemma gives conditions such that the signal
A2
obtained by passing the squared emulator error (e ) through
the low-pass filter §"¥12a is bounded. Of course, this does

not imply that the emulator error is bounded. A lemma due
to Vidyasagarf61 (section 9.1) shows that this result does

imply that the output signal obtained by passing the emula-

N
tor error e into any low-pass system whose impulse response

decays faster than e~zat (in particular that generating

-y , .
ef(s) ) is in Lw.

This result is wused to prove the main robustness
theorem of this book.

Theorem 7.1(Adaptive robustness)

If assumptions 1-4 of section 7.3 are satisfied, then
the output error e¥(t) is bounded.

Proof

Let m(t) be the inverse Laplace transform (impulse

response) of M(s). Then:

t ~
e¥(t) = fm(t - De(mdT (7)
0

ct

LD e - me - UG nax

Ot

Using Schwartz’s inequality:

L ooa(t-1) 2 o 2a(t-T)n?
e m

Y2 (¢ (t - T)dT. fe e (T)dT (8)
0

e

|
O
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Using assumptions 2 and 3 of section 7.3, it follows that:

t 200 (t-T)
fe
0

m’(t - vdt < K (9)

where K is a constant. The result then follows from Lemmas

7.1 and 7.2, and assumptions 1-4.

Remarks.

1. The adaptive and non-adaptive results are both based on
the Nyquist 1locus of M(s). In the adaptive case, the
locus must lie within the unit circle, and in the non-
adaptive case, must not encircle the -1 point.

2. In the adaptive case, it is required only that there
exist a nominal system g such that the condition on
M(s) is satisfied. If the orders of B and A correspond
to those of the numerator and denominator of the actual
system G(s), then such a system always exists, namely
% = G(s) which gives N(s) = 1 and thus M(s) = 0.

In the non-adaptive case, the condition on M(s) must be
satisfied for the particular nominal system chosen by
the designer. Even if the orders of B and A are
correct, parametric error can give a non-zero M(s) for

the chosen system.

3. This result may be related to that of Kosut, Johnson
and Friedlander(12,13] by

M(jw - &) ¢ 1 ¢=> RefH_ (jw - a)} > >

where

H 2 rt1emes)a™?
ev
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4. The results differ from those of Kosut, Johnson and
Friedlander[12,131 in that we consider an algorithm
with control weighting which makes it possible to
satisfy assumptions 3 and 4 of section 7.3.

7.5. INTERNAL STABILITY

Section 6 deals entirely with input-output stability;
it does not directly give information about the properties
of the parameter error é or about the data vector X. This
section considers this problem, again for the special case
of A(s)=1, that is ¢(t) is realisable.

This section shows that both the data vector X and the
parameter error © are bounded. Not surprisingly, the
latter result requires a persistent excitation condition on

~

the data vector X.

The properties of the data vector X are treated in the

following Lemma:

Lemma 7.3 (Boundedness of the data vector X)

Under the same conditions as Theorem 7.1, all elements
of the data vector X (equation 6.5.12) are uniformly
bounded.

Proof

From Theorem 7.1, the system output y 1is uniformly
bounded.

The control signal is obtained from

A __.L - B ~

u(s) = Q(S)IZR(s)w(s) o(s)1 (1)
This section involves some technical mathematics. It
may be omitted on a first reading.
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L rRis)m(s) - ELS) - e(s)]

0(s) Z(s)Y(s)

1/Q0(s) and P(s)/Z2(s) are proper in the case considered
here. The corresponding components of the data vector X

A
are obtained by filtering u (s) by the low-pass filter
1/Z(s). This filtered signal has three components driven

- - ~ —
by w(s), y(s) and e(s). w(t) is, by assumption, bounded. ¥y
(s) has been shown to be bounded. The component due to

g(s) is also bounded,as we have shown that g(s) is bounded

when passed though a low-pass filter.

The elements of the X vector are obtained by passing §

(s) or u(s)/Z(s) through proper transfer functions of the
form sl/C(s); so0 these elements are also uniformly bounded.

~

The boundedness result for the parameter error 6 is

contained in the following Theorem:

Theorem 7.2 (Bounded parameter error)

If, in addition to the conditions of Theorem 7.1, the

data vector X is persistently exciting in the sense that

Assumption 6

£ . .T
sty = e BT (ndr > 3 (2)
0

where I is a positive definite matrix, then the parameter

error 8 is uniformly bounded.

Note that S(t) is the output of the low-pass filter
used in the parameter estimator (equation 5.5.2).
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Proof

Equation 5.6.21 can be rearranged as

t t A2
Vit.o) = V(0,0 + fe2¥Te?(mrat - fe?®%e (midt (3)
0 0
Multiplying each side of the equation by e~2°Lt gives:
2
8(t)Tsa(t) = e 2%t V(0,00 + ef(t) - ep(t) (4)

where eF(t) and eF(t) are the filtered error signals
defined as in equation 7.4.5 (Lemma 7.2). Lemma 7.2 then

shows that the right-hand side of equation 4 is bounded and

50:

~ T~

e(t) 8Se(t) « Ky (5)
where Ko is a constant. The result follows from assump-
tion 6.

a]

7.6. ROHRS EXAMPLE

In a celebrated paper[19]1, Rohrs and his colleagues
illustrated the poor robustness properties of a particular
model-reference adaptive control algorithm by examining its
performance on two particular example systems. In chapter
4, the non-adaptive robustness properties were examined; in
this section, the second of these example systems is used
to illustrate the robustness vresults for the detuned
model-reference adaptive controller analysed in the previ-
ous section together with some related controllers. Simu-

lations appear in the next section.
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The system and the design parameters

These have already been considered in the example con-
sidered in section 4.7.

Robustness analysis

As discussed in section 7.3, the basic requirement
(assumption 2) is that the exponentially multiplied
notional feedback loop (with neglected dynamics) should be
stable.

| 1l+cs |
i F !
fs(1+s) | |
| U I
. I
T 1 r — - 1 I R
w | 140.03s| u | | u | 2s | +] vy
0 4 - {N(s) | - F—0— >
I [ as I I | | sCl+s) | + |
| L J L J | I | |
| |
[ } 1+0.3s | |
' 0——¢ I I '
| | 1+0.03s |
| e e ——
Fiqure 7.6.1 The notional feedback system
From Figure 7.6.1, the notional loop gain L(s) is
_ 2(140.3s)
L(s) = gs(1+s) (1)

We can get a rough estimate of the value of q required for
stability as follows. At high frequencies:

0.6

Lijw) = 22
v jwg
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and in particular the argument of L is about - n/2 radi-
ans. At a frequency of 10 radians sec—l, the argument of
N(jw) is also - 7/2 radians and its gain is 100/80. Thus

for the L(jw)N(jw) locus to pass though the -1 point:

0.6 100 _

160" 80 1 (3)
that is

q = 5% % 0.1 (4)

To exemplify the use of the various criteria presented in
this chapter, we will consider four examples based on that
of Rohrs. These four examples are identical to those con-
sidered in chapter 4 except that we now consider adaptive

control.
The four examples have the following in common:

1. Four frequency loci are plotted for values of w>0 in

Figures 4.7.1-4:
a) The actual loop gain: La(jw) (equation 4.3.5).

b) The notional loop gain (with neglected dynamics
included) N(jw)L(jw).

¢c) The M-locus M(jw) (equation 4.6.3).
d) The M’'-locus M'(jw) (equation 4.5.4).
2. The actual system H(s) is as given in equation 4.7.1.

3. The emulator and controller design parameters are as
given in equation 4.7.4-9.

The four examples are different in the following ways:
The parameter b determining the decomposition of equation
4.7.2, and the control weighting factor q of equation

4.7.9, are varied as in the following Table:
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IExample' b I q |
17 | | |
I’ 1 ll 1.0'| 0.05'|
| 2 | 1.0] 0.2 |
: 3 : 0.5{ 0.05:
l 4 l O.SI 0.2 ,
Remarks

H(s)

The loci for La and M’'(s) are not relevant to adaptive
control.

In each case, N(s) is stable and so assumption 2 of
section 7.3 is satisfied for sufficiently small «.

In examples 1 and 3, the N(s)L(s) locus encircles the
-1 point indicating instability; in examples 2 and 4 it
does not, indicating stability. Thus examples 2 and 4
satisfy assumption 3 of section 7.3 for sufficiently
small «; examples 1 and 3 do not.

In examples 2 and 4, the M(jw) locus has magnitude less
than one at all frequencies. Thus assumption 4 of sec-
tion 7.3 is satisfied for sufficiently small values of

.

The L{jw)N{jw) locus does not depend on b. Thus it is
the same for examples 1 and 3 and for 2 and 4.

In the adaptive context, all that is required is that a

suitable nominal system g:z;, together with N(s), exist
satisfying 4.2.3:
-sT B(s)
= e A(s) N{s) (5)

Thus in this context it is merely required that the

criteria be satisfied for some value of b. In fact, the
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criteria are satisfied for both of examples 2 and 4.

To summarise, if q=0.2, the adaptive controller is
stable, but if q=0.05 it has not been shown to be stable

and may be unstable.

7.7. SIMULATION RESULTS

1.251%utputz Setpoint, Model output,

v |
i ! |
00 ‘ i
v | |
* A | .
-1.25) i l‘j"' B
] ’ 12,5 ‘ 25, ' EE ' i

P ) \ —
4 d
y e P -
LI. T T T T = T T -
U 12,9 29, 3709 R

Figqure 7.7.1 Example 1

The simulation results of this section illustrate the
results of this chapter and indicate that the results also
seem to apply to a wider class of self-tuners than actually
analysed. To enable comparisons to be made to the results
of other workers, the example of Rohrs[19]1 discussed in the

previous section is considered.
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4,63 _ Dutput s Fetpoint, Model cutput,

r(
£
1
i, — T, ! lL
i H‘
] I\
=
-4, k2 !
[}
l',
0, ' 1,25 ’ A ' 3,75 ’ g
_Emulator parameters
t.2 ~
bl ‘,H—.
—
1 fﬂﬁ—f
D|6_ l|l
|
] |
|
T T
T T o T = T
{, S ) 3,75 H

Figure 7.7.2 Example 2

As in chapter 6, the self-tuning algorithms were simu-
lated wusing the SIMNON languagef20,211 (Figures 7.7.1-6).

All examples have the following in common:
1. Two emulator parameters are identified.

2. The initial §_1(t) matrix is, in each case, given by:

-1 1100 0 | 1)

3. The emulator design parameters are chosen according to

the various strategies.

4. All examples are detuned versions of the underlying

algorithm. Q(s) 1is given in Tables 7.1 and 7.2 (pages
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_l:Sgt;th.v. .‘:.‘etpx:\int‘: Mode! output,

-1.9 Y .

U ' 12,5 FER ' EE ’ S,
1 Lat arameters

0.8
n N

4l]
i 4 '\ ' o

it

U 12.5 29, 37,9 ' sU,

Fiqure 7.7.3 Example 3
7-29&30) .

S. The algorithms are simulated using a system having the
neglected dynamics

N(s) = > 100 (2)
s + 8s + 100

dynamics for 50 time units. All examples have a unit
output step disturbance occurring at time=15 units;
that is, one is added to the system output from time 15

onwards.

6. The upper graph of Figures 7.7.1-6 shows the setpoint
(a square wave between +1 and -1 with a period of 25

units), the actual system output, and the model output.
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JOutput: fetpoint. Model output.

U » il 3 T - — T
7 S N NS " L 1 l
-’ R \ / Voo i / |
| A \,‘ / g‘ / H
- 5\ . ll
~-15. - _ A ‘
0 i 1,25 ' "N 3,75 B8

_Enulator parameters

R
— -
J y»'—_\_\—?
|

0] e . : , - : .

0. 29 2.9 V79 9

Fiqure 7.7.4 Example 4
The model output corresponds to:

= _ Z4(s)-
Ym(s) = ETETW(S) (3)

7. The lower graph of Figures 7.7.1-6 shows the evolution

of the two emulator parameters with respect to time.

The differences between the six examples are summarised
in Tables 7.1 and 7.2 (pages 7-29&30). 1In Table 7.1, MR

means model reference and PP pole placement.

Remarks

1. Despite the diversity of algorithms treated here, they
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3. Output, fetpoint, Model output,
o
—
I
J ) .
0. \{\ Van
5‘.-’ l !
W
0, ' 12,9 ’ 25, ' 37,5 ' ot
_Emulator paramsters
1,29 f—
o
.ﬂw"!
I S
iy ?f'—-.-
\/
-1|E \f\}
N 12,9 €9, 37,9 ' 20,
Fiqure 7.7.5 Example 5
all have a common notional loop-gain:
_ P(s)B(s) _ 2(1+40.3s)

L(s) = 77)0(s)A(s) ~ qs(l+s) (4
Thus the L(s)N(s) locus of Figure 4.7.1 (for g=0.05) is
appropriate to examples 2, 4 and 6; and Figure 4.7.2
(for g=0.2) is appropriate to examples 1, 3 and 5.

2. Examples 1 and 2 are as discussed in the previous sec-

tion. The self-tuning controller of example 1 is stable
as predicted; that of example 2 was not predicted to be
stable and is, in fact, unstable. Simulations starting
off at the correct (that is, based on the correct nomi-
nal system) parameters and with a reduced initial vari-

ance did, however, give stability in both examples 1
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20, _Qutputs Zetpoint: Model output,
el
4 ! ~_
/ g -—“'1.
[l ' . r. ".-L‘
emveed —— - .. _.\V
\— o
- .:.l ':l . -—“-‘\-\___'_ﬂ"’r_.
i ' 1,25 ’ 2.5 ' 3,75 ' B
e ——
‘ 3,79 ' g
Figure 7.7.6 Example 6
i Table 7.1 SIMULATION SUMMARY 1
:No.| Method| A(s) | B(s) | P(s) | Z(s) :
1 t t t 1
:1 | MR | s(1+s)| 2s | 140.3s | 1+0.03s:
| 2 : MR : s(1+s): 2s : 140.3s I 140.03s |
:3 | MR | s(1l+s)| 2s | 1+0.3s |1
14 : MR I s(1+s)I 2s : 1+0.3s : 1
‘5 | PP | (1+s)2] 2(1-s)| (140.3s)(1+s)| 0.5B(s):
6 { PP I (1+s)2= 2(1—5){ (1+o.3s)(1+s){ 0.5B(s) |
and 2.
3. Examples 3-6 were not analysed in the previous section.

But, as pointed out in remark 1, the L(s)N(s) loci are
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Table 7.2 SIMULATION SUMMARY

| i
L |
INo. | 0(s) | A(s) | Design |
Ly % " ’
:1 | 0.2/(140.03) | 1 | Off—line:
12 : 0.05/<1+o.o3): 1 : Off-line|
L3 | 0.2 | Z(s)/P(s)| Off-line!
L | N ‘
¢ | 0.05 | 2(s)/P(s)| Off-line|
:5 | 0.2 | Z(s) )| On-line ‘
|6 l 0.05 { Z(s)/P(s) { on-line |

appropriate. Thus M(s) is stable in examples 3 and 5
and unstable in examples 4 and 6. It was suggested, but
not proved, that stability of M(s) was essential for
global stability of all the algorithms treated here. As
shown in the appropriate Figures, this tentative pred-
iction is realised; the self-tuning controller in exam-
ples 3 and S is stable but unstable in examples 4 and
6.

4. The importance of the control weighting Q(s) was
emphasised 1in section 7.3. In these simulations,
0(0)=0 in each case giving no low-frequency weighting.
The weighting in examples 1, 3 and 5 is four times that
in examples 2,4 and 6; as predicted, the robustness of
the algorithms is improved by the control weighting.
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CHAPTER 8

Non-Adaptive and
Adaptive Robustness

Aims. To compare and contrast adaptive and non-
adaptive approaches to sensitivity reduction by
feedback. To suggest a three degree of freedom

approach to the design of self-tuning controll-
ers.

8.1. INTRODUCTION

It is now over 20 years since Horowitz[l,21 discussed
the relationship between adaptive and non-adaptive feedback

systems used for removing the effects of plant uncertainty.

(Some readers may prefer the terms ‘"passive-adaptive"
or "ordinary feedback" to the term "non-adaptive" and the
terms "active-adaptive", "plant adaptive" or ‘“parameter-

adaptive" to the term "adaptive”. Perhaps they could make

the necessary translations themselves.)

In his bookL2] he gives a detailed discussion of some
of the limitations of non-adaptive feedback and how these
might be overcome wusing adaptive methods. In section
8.21C11, he discusses the "inflexible relationship between

sensitivity over system response bandwidth and sensitivity
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to rate of parameter variation". In particular, he says
that

suppose that in practice the parameter vari-
ations are slow. It therefore seems that the
design is wasteful in its ability to cope with
faster parameter variations than actually occur.
It would be extremely desirable to exchange this
unrequired benefit of feedback for something
else, specifically for reduced system sensitivity

to feedback transducer noise."”

He goes on to consider a particular example and con-
cludes that

Some other kind of feedback data-processing

is therefore required.”

In his book, however, no specific method of adaptive
control is treated, and it 1is left as an open question
whether an adaptive controller can, in fact, improve
matters.

Since 1963, there has been much work on adaptive con-
trol; but much of this work has been isolated from the fun-
damental issues of feedback control theory. Indeed, all
too often, adaptive control has been justified by the
erroneous assumption that processes with uncertain dynamics
require adaptive control. A recent critique of the field
by Kidd[31 states:

“Many researchers have jumped on the adaptive
control bandwagon, but none seem to have publicly
taken any trouble to to look deeply at the jus-

tifications for using adaptive control.”

Another crucial point raised by Kidd[31 1is that, too
often, adaptive control is used as an alternative to think-
ing about a control problem in terms of the fundamental
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principles of feedback control.

This chapter makes a start on bringing together the
apparently opposing disciplines of adaptive and non-
adaptive control. In particular, we examine the suggestion
of Horowitz, mentioned above, that adaptive control can
provide a means of reducing the effect of sensor noise when
controlling plants with large but slow parameter varia-
tions. We use the particular self-tuning controller (gen-
eralised minimum variance) for which robustness results
have been found in chapter 7.

FollowingfL4l, a plant with parameters which, though
constant, are uncertain within a prescribed domain is con-
sidered. It is assumed that a two degree of freedomC2] high
gain controller can be designed to satisfy performance cri-
teria in terms of the system response to setpoint changes,
in the face of the plant uncertainty, using the methods of
Horowitz and Sidif2,41, of Ashworthf51 or as simplified by
East and LongdonLé6,7,81. It is assumed that these perfor-
mance criteria are of, or have been converted tof4l, the
form that the frequency response relating system output to
setpoint changes lies between specified bounds for all fre-
quencies w < w.- Above We s the loop gain is assumed to be
reduced as fast as possible consistent with an adequate
phase marginf2,4,6,7,81. Based on this design, a self-
tuning algorithm is presented which, by actively reducing
uncertainty via parameter estimation, allows the high-
frequency loop gain to be reduced, thus reducing the effect
of high-frequency sensor noise. Using the robustness
results of chapter 6, the design implications of the self-
tuning approach are discussed and interpreted as a three
deqgree of freedom design.
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This chapter is based on a conference paper(9]

8.2. TWO DEGREE OF FREEDOM DESIGN

In chapter 6 of his book[2], Horowitz shows that, with
non-adaptive control, any 1linear feedback controller for

single input-single-output systems
F(s) = H(s)u(s) (1)

based on only two measurements (the system output and the

setpoint) 1is equivalent to the two degree of freedom con-

trol law:
uls) = Hl(s)v}(s) - Hz(s)f’(s) (2)

displayed in Figure 8.2.1,

—_— 1 — 1 —
w I f + u ! | y
—>— H (s) } 0 > | H(s) p——a—>
1 !
I I
I I
. < | H (5) p—ro
2
| |

where H(s) is the system to be controlled, Hl(s) and Hz(s)

are the two controller transfer functions (giving the two

degrees of freedom), u(s) is the control signal, y(s) is
the system (plant) output, and w(s) is the setpoint. It is
important to realise that any linear control system with

these constraints (for example, conditional feedback) may
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be written in this form[C1l1.

With these two degrees of freedom, there are at least

three objectives to be achieved by the control system:

1. Desired response of the system to the setpoint.

2. Insensitivity of the closed-loop system to plant param-

eter variation.

3. Satisfactory response to plant disturbances and meas-

urement noise.

Sometimes, it is possible to satisfy all three sets of
requirements, sometimes it isn‘t. In particular, require-
ments 2 and 3 may be conflicting: 2 may require a feedback
element Hz(s) with high gain at high-frequencies which
could give problems with high-frequency measurement noise,
and so conflict with requirement 3.

— — -
w | R(s) | + | 2(8)] u | ! y
—— } 0—{ b—>— H(s) pb———F—>
| 2(s) | -1 1 ats)| | |
| |
| N T |
| o | P(s) | |
L ¢ { }__._]
| 2(s) |
| PE——

The two degree of freedom controller can be rewritten
(Figure 8.2.2) as:

a(s) = 281p REsVZ oy 5(g)a (3)
ats) Tom g
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NSU— _ — -
W | R(s) | + u | [ y
— H 0 > | H(s) p——1—>
[ q(s) | -1 | | |
T | —_— |
| [
| — l
| | P(s) | |
L < 1 } 3
[ q(s) |
| E— |

o(s) = B85, (4)
Z (s)

where u(s) is the control signal P(s), q(s) and Z (s) are
polynomials in the operator s; R(s) 1is a transfer function.

This can be reorganised as in Figure 8.2.3, from which it
follows that

P(s) _ . -
qs) ° Hz(s), q(s Hl(s) (5)
To avoid ambigquity, P(s) 1is chosen to have wunit =zero-

frequency gain:

P(0) =1 (6)

P is thus the suitably normalised numerator of Hz(s) and Q
the corresponding denominator. The polynomial 2 (s) is, at
this stage, redundant, but it will be used in the next sec-
tion. It 1is chosen to have unit zero-frequency gain and
poles further away from the imaginary s-plane axis than
those of the system. It follows that both P(s)/Z (s) and
72 (s)/q(s) are proper:

Z (0) = 1; degree(P) deqree(Z_(s)) ¢ degree(Q) (7
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This control scheme corresponds to the notional feed-

back loop associated with the detuned model-reference con-

trol of section 3.11. In this particular case, the notional

feedback loop is realisable.

Example (Horowitz)

The example used in this chapter is drawn from chapter
6 of[21. The system is of the form:

H(s) = —— L250K - (8)
s(s™ + 20w s + w_")
PP P

where K may vary from 1 to 4 and the two complex system
poles can vary over a wide range with real parts between 0
and -6 and with imaginary parts between j2 and jl0.

A design objective is that the «closed-loop setpoint
response has a dominant pole-pair within circles of radius
1.2 centred at -10+j10. A number of design solutions are

given by Horowitz[23; one of these is

+ 18s + 167.5

2
H (s) = 6.2 10°—2

2 2 2,2 (9
(s® + 1040s + 590°)
This corresponds to the alternative form where:
P(s) = 1+ 1.070 + 0.5970°7 (10)
q(s) = q(l + 0.02990 + 0.0002870) 72 (11)
where
q = 0.1l1l67 (12)

and the definition o = s/10 has been made for clarity of
presentation. P(s) has roots at about s=-9+3j9.3, and q(s)

has roots at about s=-520+7280. Roughly speaking, the
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compensator Hz(s) is chosen as follows. The compensator
zeros are near to the desired closed-loop poles. The com-
pensator has high enough gain to keep the two complex
closed-loop poles close to the compensator zeros despite
plant parameter variation, and to move the remaining plant
pole far to the left. The compensator poles are chosen far
enough away from the zeros to avoid stability problems with
the far-off closed-loop poles.

The feedback compensator has a gain of just under 20dB
at low frequencies, rising to over 70dB. Horowitz comments
(section 8.21C23 ) that:

“ .. suppose that the system .. has exceedingly
slow parameter variations, such that a year may
elapse before the poles move from +j2 to -6+3j10.
The final design 1is very sensitive to high-
frequency feedback transducer noise .. but it
seems ridiculous that it should be so, in view of
the extremely slow parameter variations. Common
sense tells us that the feedback data may be
evaluated more slowly .. such that high-frequency
noise has negligible effect. However .. slower
evaluation by means of linear time-invariant net-
works cannot ensure the desired insensitivity."

The purpose of this chapter 1is to suggest that the
self-tuning emulator-based approach of this book is one
possibility to implement the sort of control implied by

Horowitz.

A particular emulator was given in section 3.11 with

2 (s) = P(es); Q(s) = 381 (1)
Z (s)

and so 62(5) is realisable and given by:
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= _ _P(s)
®,(8) = Bes) (2)

This choice corresponds to the two degree of freedom struc-
ture in equations 8.2.3&4.
If the control law

1 P(es)- P(s)-

u(s) = 9(s) Cw(s) - ¢(s)] = 5737—w(s) - P(es)y(S) (3)
is applied (corresponding to the notional feedback system),
the disturbance v(s) together with a high gain
Hz(s) = P(s)/P(es) (as in the Example) can lead to unac-

ceptably large control signals when the high~gain control
law of the previous section is wused. To see this, the

notional closed-loop system may be written as

_ _L(s) 1 q(s)C(s)-
Y = T4L(s) LB(a)R(SIW(S) + By s)v(s)] (4)
- _ L(s) . A _C-
u(s) = T+L.(s) [BPR(s)w(s) Bv(s)] (S)

where the nominal loop gain L(s) is

A(s) _ P(s)B(s)
B(s) g(s)A(s)

L(s) = Hz(s) (6)

This approach corresponds to implementing the notional

feedback system directly; in this particular case, this is
P(s)
Z(s)

possible as is realisable.

Over the range of frequencies for which L(s) is large,
vis) is amplified by the transfer function C(s)/B(s),
which will be improper for a system with at least two more

poles than zeros - this leads to large control signals.

As a first step in solving this problem, the high gain
design 1is converted into a low gain design via the emula-
tor. This low gain design no 1longer amplifies the high-

frequency noise, but 1is, of course, sensitive to plant
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variation. As discussed in the following sections, the
long-term sensitivity due to replacing P(s)/Z(s) by the

emulator may be overcome by using a self-tuning emulator.
Noting from chapter 2 that ¢(s) is the sum of the emu-
—-* —K
lator output ¢ (s) and the error e (s):

-k

$(s) = 3 (s) + & (s) (7)

it

Sy = L8)p Ris)o

—
R y - 9 (s)3 (8)
als) "z (g

Of course, this only works if the nominal system parameters
A and B and the nominal input u(s) are available to imple-
ment the emulator. In practice, this method is sensitive to

parameter uncertainty and the unknown quantity u(s) has to

be replaced by the known control signal G(s), so the advan-
tage of the high gain control is lost. Effectively, another
two degree of freedom structure has been created and, as
such, has no particular advantages over that of equation 1.

8.4. THREE DEGREE OF FREEDOM DESIGN

The input-output predictor structure removes high-
frequency noise at the expense of sensitivity to parameter
variation. If, however, plant parameters vary slowly, a
self-tuning emulator can be used.

This adaptive algorithm has two additional free polyno-
mials C and 2Z (s) in addition to the P(s), q(s) and R(s)
already fixed by the two degree of freedom design. These
appear in the identity 2.3.4 as a transfer function
C(s)/Z (8) and thus give rise to one more transfer function
degree of freedom, making three in all.
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As discussed in section 3.11, one possible choice of

Z (s) is:
Z (s) = Ples) 0 < e <1 (1)
e=1 gives 2 (s) = P(s) and 6(3) = y, and thus the algorithm

corresponds to the original two degree of freedom design.
On the other hand, € ¥ 0 gives the maximum noise reduction
via the self-tuning emulator. Intermediate values allow a

trade-off between the two extremes.

Thus the self-tuning approach can be interpreted as a

three deqree of freedom design method. The additional

degree of freedom allows an additional trade-off to be made
in the design process.

8.5. ROBUSTNESS

To examine the robustness of controllers to plant
uncertainty the uncertainty must be modelled. For simpli-
city, the disturbances will not be included in the analysis
of this chapter. As in chapter 4, the plant is assumed to
be linear, and thus can be represented as the nominal plant
B(s)/A(s) in series with the neglected dynamics N(s):

. B(s)- .o - .
y = A(S)U(S)' u(s) = N(s)u(s) (1)
where N(s) (see chapter 4) 1is a transfer function given by
actual system _ A(s)
N(s) = nominal system His) 5ig) (2

and u(s) 1s the control input. As in chapter 4, this sys-

tem equation can be rewritten in terms of an additive dis-
turbance u(s) as

v(s) = %EQ(S) + uls)] (3)

where (in the absence of disturbances):
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u(s) = (1 - N(s)_l)%y (4)

Two degree of freedom design

Using the two degree of freedom control law (either 2

or 3&4 ), the closed-loop system response can be written
as:
y(s) =y (3) + y(s) (5)

where y(s) is the output error (compare with éy(s) in

chapter 7). The nominal system output is
= _ _L(s) 1
Y508 = 14L(s) P(s)¥ (&)

L is the nominal loop gain and ;(s) is given by

- B 1 - .
y(s) = A 1+L(S)U(S) = Ao(s) vy (7)
where

- 1 - N(s) '

Bo(8) = TRL(s) 8

The two degree of freedom design methodC2] as simplified by
Eastl6,7,8]1 1is based on making Eo(s> sufficiently small at
each frequency w within a frequency band 0 ¢ w ¢ W, to
satisfy design specifications. For w > Wer the nominal
loop gain is reduced as rapidly as possible.

Alternatively, the output error can be expressed as

v(s) = B(s) y,(5) (9)
where

A (5) -1
a(s) = —2 - —1 = N(s) (10)

1-3_(s) L(s) + N(s) !
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Typically, the design will ensure that Ao(s) is small for

w < Wes in addition, if N(s) represents low-pass dynamics,
N™' will be large at high-frequencies and so

A(s) % -1 for sufficiently large w > We (11)

Three deqgree of freedom design.

There is an additional source of error when applying

self-tuning control: e(s) = ¢(s) - ¢(s)#0. It is shown in
chapter 5 that

e(s) = Qe(s) (12)

where @ is a time-varying system representing the tuning
algorithm. In addition , as discussed in chapters 4 and 7,
the estimator input error is related to the estimation

error, the setpoint and disturbances by

a(s) = ad(s) - M(s)e(s) (13)
where
+ -1
_ E(s)A(s) _ 2zt (s)E(s)A(s)IN Y(s)-11
M(s) = BESIBRLS) i) acs) . (14)

P(s)C(s)C1+L Y (s)N Y (s)1

These equations form a feedback system. It is shown in
chapter 7 that a sufficient condition for stability is that
the gain of the linear transfer function M(s) be less than

one at all frequencies.
The system output is given by

- L(s) ~

yi(s) = §0<s) +y(s) + T cae(s) (15)

~ A

As well as requiring y(s) to be small, we require e (s) to
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be small. This implies that M should be small at the

relevant frequencies.

8.6. COMPARATIVE ROBUSTNESS

The aim of each design method is to make the system
output y sufficiently close to the nominal system output'y0
to satisfy the design objectives within the frequency range
0 < w( W

It is important to distinguish between the methods used
by the non-adaptive and adaptive controllers to reduce the
effect of plant uncertainty. In the non-adaptive case, the
nominal plant B(s)/As is chosen by the designer, and this
implies the value of N(s) = H(s)A(s)/B(s). In the adaptive
case, however, all that is required is that a suitable nom-
inal plant B/A exist so that, together with the correspond-

ing wvalue of N, the robustness conditions are satisfied.
If B/A had the same structure as H(s), such a nominal sys-
tem would be B(s)/A(s) = H(s) and N=1 and so the robust-
ness conditions would be satisfied. But, in practice, this
would not normally be the case. Indeed, for the purposes of
this discussion, it will be assumed that the neglected

dynamics are low-pass:

Lt N(jw) = 0 (1)
W

and hence that
Lt A(jw) = -1 (2)

W

Two degqree of freedom design

The two basic design rules for two degree of freedom

non-adaptive design are (roughly speaking)[4,5,6,7,81:
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NAL. Ao(s)(jw) must be sufficiently small for w < W, to

satisfy the design constraints.

NAZ2. L(jw) must be reduced as fast as possible (consistent

with adequate phase margin) for w > w.
The first rule gives insensitivity to plant variation; the
second reduces the effect of high-frequency sensor noise as

much as possible.

Three degree of freedom design

The self-tuning method also requires that the underly-
ing design method be insensitive to plant variations,so the
first adaptive design rule is the same as the first non-

adaptive design rule:
Al. NAl

In addition, it is required that M(jw) be small at all fre-
quencies. The two frequency ranges above and below w, are
considered separately.

! The adaptive con-

w(w _Here L(s) is large, so LA(s) % 1-N
troller must thus be capable of reducing the uncer-
tainty N(s) in this frequency range. Hence the second

design rule is:

AZ. The structure of the adaptive emulator must be such
as to capture all significant plant dynamics at fre-

quencies w ¢ W,

w)wcdegree(EA) = degree(PC), so for high frequencies
EA/PC-k, where « is a non-zero constant. In addition,
A(s) ¥ 1,and so M ¢ - kL. Hence, L(s) must be small
at high frequencies and thus the third adaptive design

rule is the same as the second non-adaptive design
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rule:

A3. NA2

As pointed out by Horowitz and Sidil41, minimum phase
systems can, in principle, support a feedback control
design with infinite loop-gain at all frequencies; but this
is wundesirable for reasons of sensor noise. Hence, design
rule NA2 is used in practice. The arguments leading to
design rule A3 show that, for the adaptive case, such an
infinite notional-loop gain approach is not merely undesir-
able but leads to a design which cannot satisfy A3. Thus a
pure model-reference approach with 1/P as the desired model
and Q=0 1is not feasible in practice. Although the algo-
rithms are different, this conclusion is in accordance with
those of Rohrs and colleagues[101 concerning the impracti-
cality of model-reference adaptive control.

8.7. SUMMARY

An initial attempt has been made to wunite the non-
adaptive and adaptive approaches to feedback control for a
particular, but important, case: a single-input single-
output system with constant but uncertain parameters where,
although non-adaptive control can yield the desired insen-
sitivity, the resultant amplification of sensor noise is
unacceptable. It is suggested that the non-adaptive design
is a prerequisite to the adaptive design; this is in dis-
tinction to the commonly held view that the use of adaptive
control avoids design. 1In particular, the pure model-
reference version of the algorithm in this chapter, which
attempts to match the closed-loop system to the reference
model 1/P at all frequencies,is not a practical algorithm.

Much work remains to be done in this area. Detailed
design examples are required to refine the broad outline

presented in this chapter. It would seem that a similar
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approach could be applied to the multivariable and cascade

controller configurations of the following chapters.

An interesting extension of these ideas would be to
consider significantly non-minimum phase systems (with
time-delay or right half-plane zeros) where these charac-
teristics are removed from the notional system by the emu-

lator.
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CHAPTER 9
Cascade Control

Aims. To consider the cascade control of
single-input single-output systems with a number
of measurable signals available. To introduce a

recursive emulator approach to cascade control.

9.1. INTRODUCTION

If self-tuning methods are to be widely used in real
applications, it must be possible to use self -tuning con-
trollers as components within a larger multi-loop control
system. The current practice in the process control indus-
try is that a control scheme for a multi-loop process is
built up out of a number of simple modules rather than from
one complex multi-loop algorithm. The philosophy behind
this chapter is to develop a similar approach for self-
tuning algorithms - they should be a simple component out

of which complex control schemes may be created.

As part of this process, simple standard multi-loop
configurations are under investigation. This chapter con-
siders a standard configuration: cascade control:; the next

chapter considers decoupling control of two-input two-
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output systems. With the exception of[1ll1, cascade control
has received 1little attention in the context of self-
tuning. Derivative generating (model-reference) type emu-
lators (section 2.2) in cascade control are discussed
inC23; this chapter extends the results to cover all of the
emulators of this book.

9.2. CASCADE SYSTEMS

u —— YU —— ¥y U —— ¥ U m—— vy
1 | B | 1 2B | 2 3B | 3 N|B | N
— o — b — > — — o —
| A | | A | | A | | A |
| IS | | S| | IS | S|

Figure 9.2.1 Cascaded systems

A class of systems to which cascade control is
appropriate 1is given by the series connection of a number
of systems of the form (Figure 9.2.1):

-sT., B, (s)
i 7i -

yi(s) = e K;TETUi(S) + vi(s) (@9

(For simplicity, initial conditions will be ignored in this
chapter). The series interconnection is specified by:

ui(s) = yi_l(s); i=2..N (2)
The (single) output to be controlled is YNi the (single)
input available for control is ul(s). The disturbances are
as described in section 1.9.

It is common in the process industry to have a number
of measurements pertaining to various stages of a given

process; current self-tuning methods cannot wuse such
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information. The algorithm presented in this chapter goes
some way to filling this gap.

9.3. POSSIBLE CASCADE METHODS

There are a number of ways of extending the single-loop
methods of earlier chapters to control the cascade systeﬁs
of equations 9.2,1&2. Some of these will now be con-
sidered. For simplicity, assume Gi(s)=0 for the rest of
this section. For each method, advantages are indicated by
"(+)" and disadvantages by “(-)"

Single-loop control

One possible strategy is to 1ignore the intermediate
signals §i(s) i = 1..N-1, and just have a single-loop
self-tuning controller using yN as output and y0 = ul(s) as
input.

(+) This requires no special algorithm.

(-) The single self-tuner must correspond to a system with
order equal to the sum of the subsystem orders. This
may be large.

(~) When ignoring the additional information provided by
the intermediate outputs, the system is more difficult
to control in terms of both phase lag and disturbance
rejection.

Ignoring inner loops

A common way to implement cascade control loops 1is to
ignore the dynamics of loops inside the one being designed.
That is, having closed i-1 cascaded loops to give a system:

yi_l(s) = 8 (s)wi_

-1 1(8) (1)
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(where Wy is the setpoint to the ith controller); the ith
loop 1is designed as if Si-l(S) = 1. The approximation is
thus that the input to the ith system (the output of the
i-lth system) follows the i-1lth setpoint exactly:

(s) = (s) (2)

Wi-1

(+) Fach individual self-tuner has structure corresponding
to the relevant subsystem. The order of the subsystem
may be much less than that of the overall system. Thus

control is easier and disturbance rejection improved.

(+) By using the additional information provided by the
intermediate outputs, the system is made easier to con-
trol in terms of both phase lag and disturbance rejec-
tion.

(-) The result will only be satisfactory if the individual
subsystems are ordered in terms of increasing time
constant. If the dynamics of the i-1th 1loop are not
negligible with respect to the ith loop, poor perfor-

mance and even instability may result.

Taking account of inner 100ps

The problems encountered in the previous section may be
overcome by including the dynamics of inner loops in the
design of the outer loops. That is, using the notation of
the previous section, the ith loop is designed on the basis
of :

(s) (3)

(+) Dynamics are not neglected; the dynamics of the inner

loops do not affect the accuracy or stability of the



Sec. 9.3. POSSIBLE CASCADE METHODS 9-5

final design.

(+) By using the additional information provided by the
intermediate outputs, the system is made easier to con-
trol in terms of both phase lag and disturbance rejec-
tion.

(~-) The compexity of the design increases with the 1loop
index i. Indeed, the outer loop is of the same complex-

ity as that of single-loop control.

The recursive emulator method

In view of the above methods, there seems to be a need
for a method which will handle cascaded systems with simi-
lar time-constants while retaining a simple structure based
on N self-tuners operating on the N measured outputs.
This algorithm is introduced in the next seccion; here its

merits in with respect to the other methods are outlined:

(+) Each self-tuning emulator operates on a subsystem and

is thus simple.
(+) The effect of inner loops is exactly allowed for.

(+) By using the additional information provided by the
intermediate outputs, the system is made easier to con-
trol in terms of both phase lag and disturbance rejec-
tion.

(-) The reference model for each loop must be identical.

This implies that each subsystem have similar dynamics.

(-) An additional level of coordination 1is required when

compared to the cascade method ignoring inner loops.

The method presented is not the only possible, but it
is felt that it strikes a balance between complexity and
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flexibility of use.

9.4. THE RECURSIVE EMULATOR METHOD

The aim of this method is to give a closed-loop system:

N
= e 8NT 2 (3)2 ., (1)

¥,.(8)
N PN(sa)

with the restrictions that:

deg(P) = deq(Aj(s)) - deq(Bj(s)); T = Tj (2)
for all j = 1..N.
To achieve this, define:
_ 18T P(8) i
%1, %1% Z(m| Y4 (3)

The emulator with i=1 corresponding to each individual sys-
tem is given by:

. F.(s) G.(3)
®,5 % CAEY vyt GHEY ¥y-1 (4)
where:
P(3)C,(3) F.(s)
—1  _ g (s) + A— (5)
A, (s) j A (s)
3 3
and:
G.(s) = B,(8)E,(8) (6)
] ] 3

Once again, Cj(s) is chosen for each subsystem. The

corresponding error is then:

* The subscripts refer to the loop index, not to the
emulator version
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e, . = E.(s)z (7)
1,73 j

A recursive expression for ¢i i may be obtained from these

definitions as follows:

i
(] p (S)¢l,j (8)

i3

1]

i * i
P (s)¢ 1,3 + P (S)el,j

Using the above definitions, this can be further expanded

F.(s) G.(s)
o, . = =1—0 + ~1—p (9)
i,3 Cj(s) i-1,3 C.(s)7"i-1,3-1
+ Pie. .
i,j
There are many possible approximations to ¢. . but to

i, ]

be useful they must have the following properties:
a) The approximation error must depend only on distur-
bances, not on the control signal. That is, the approx-

imation does not affect closed-loop stability.

b) The approximation must be realisable; it must not con-

tain derivatives of disturbance terms.

Fi(S) G.(s)
As both ST and Cj(s) are proper, a realisable emula-

*
tor ¢ i3 may be defined as:
% F.(s) G.(s)

_ a i *
L cj<s)¢ i-1,5 1 Cj(s)¢ i-1,3-1 (10

The corresponding error e, j is defined as:

’

e. . =¢. . -0 . | (11)
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The recursive formula for the error is then:

F.(s)

- pt A
ei,j = P (S)el,j + Cj(s)ei—l,j (12)

The recursive emulator for a 3-loop cascade system

appears in Figure 9.4.1.

9.5. SELF-TUNING CASCADE CONTROL

To implement the recursive emulator for an N-loop cas-
cade control system, the N polynomial pairs {Fj(s), Gj(s)}
are required. It 1is proposed that these De generated
(together with estimates for ¢*l,j ) using N self-tuning
emulators of ¢l,j = Pyj, each operating on one ?f the N
systems of equation 9.1.1. The control signal u(s) (=y )

0
may be generated in two stages:

1. Compute the emulator outputs: ¢1'J which have no direct
link to the control signal u, that is for i<j. This

~

i-1,1

gives the N values ¢ for i=1..N.
: N,N - 1ri Y = 1
2. Letting ¢ = w, compute ¢ for i = N-1..0 wusing

equation 9.4.9. The control signal is then u = ¢

9.6. EXAMPLES

To illustrate the two non-adaptive cascade control
methods, consider a double integrator system (see Figures

9.6.1&2) where the output of each integrator can be



EXAMPLES

Sec.

recursive emulator

The

measured. That is:

(1)

method, the objective 1is to give a

control

For each
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setpoint tracking response corresponding to a critically
damped system given by:

Z(s) 1
= (2)
P(s) (1+ps)2
l1.e.
Z(s) = 1; P(s) = (l+ps)? (3)

Single-loop ccntrol

|

w ™ ¥ 1 r 1
| 1l+cs | (O] 1 | 1) 1 | 3
0— > i } >— >
| | p+2pctpe | I 8 I I & [
| | U | L - | L - | ‘
I |
| {
| —— |
| | 1+(2p+c)s |
( (— F< -
| l+cs i
N |

Fiqure 9.6.1 Single-loop control

If the intermediate variable 1is not wused, a filter
polynomial C(s) = l+cs must be used to give a realisable
control law (without derivatives). The left-hand side of
identity 9.4.5 becomes:

P(s)C(s)
A(s)

1 + (2p+c)s_+ (2pc+p2)s2 + pzcs3
2
s
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This gives:

E

(2pc+p2) + pzcs (5)

!
i

1 + (2p+c)s (6)

The resultant feedback control law appears 1in Figure
9.6.1, and may be written as:

u (s) = 1ics (7)

! (2pc+p2) + pZCS

- -
Cw(s) - 1 + (2p+c)s

l+cs yisi]
Ignoring inner loops

‘:’ | ] f T T ‘l?l 1 ;
b1 | (11 1 1 | 11 2
—0—f — }—0—f —}— b —

e 1 1 1 1 1 s | | s |

lll ) I | i L 1

L

e ——

Figure 9.6.2 Ignoring inner loops

Choose both the inner loop controller and the outer

loop controller (ignoring inner loop) to give a setpoint

response:
1 1
P(s) - l+ps (8)

In this case, a filter C is not required and the left-hand
side of identity 9.4.5 becomes:
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P(s)C(s) _ l+ps

A(s) =~ s (9)
This gives controller polynomials:
E(s) = p; F(s) =1 (10)

If the dynamics of this inner 1loop are ignored, the
outer loop dynamics are, in this case, identical to the
open-loop inner loop dynamics. Thus the outer 1loop con-
troller is the same as the inner loop controller. This

gives:

U (s) = —iw(s) - ¥ ()1 - 3 (&) (11)
1 p2 2 pl1

This is shown in Figure 9.6.2. The closed-loop setpoint
response is, of course, not correct. It is given by:

7,(s) = — s (12)

l+ps+p25

Taking account of inner loops

The design of the inner loop is the same as in the pre-

vious section.

The system response, with the inner loop closed, from
the inner loop setpoint to §2(5) is then:

1

s(1+ps) (13

As in the previous section, the outer 1loop controller
requires a filter C, again chosen as C(s) = l+cs. The
left-hand side of identity 9.4.5 becomes:

P(s)C(s) _ (l+ps)?(i+cs)

A(s) - (l+ps)s (14)




Sec. 9.6. EXAMPLES 9-13

w -1 ; | ] | ] ; | — ;
|  l+cs | 0] 1 | 1] 11| 2
—>0— 0 {— A
| | ptctpes | | | p | I s | P ls 1|
| R | | L ] L ] | [ 4 I
| | I |
| L < ! [
| |
| — [
| [ 1+p | [
L < { 'L < J
[ l+c |
—

Figqure 9.6.3 Taking account of inner loops

1 + (ptc)s + pcs2

S

It follows that:

E = (p+c) + pcg; F = l+ps (15)

The resultant feedback control law appears in Figure 9.6.3
and may be written as:

_ 1 l+cs = _ 1l+ps =
ul(s) = p[p+c ¥ pCS[w(s) 1tcs z(s)] (16)
- yl(s)]

The recursive emulator method

As the two cascaded systems are identical, the
corresponding polynomial identities are the same and given
by:

P(s)C(s) l+ps

A(s) =~ s (17
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+ 1 1] 0 1| 1 (1] 2
->—0— 00— —A— 21— F=
i T I <2 N R I = s 11 1 s | |

| L < 1 |

| — | |

| + | | | [

O0—————+ p H{—————-

[+ | | |

| — |

| I

L < ]

Figqure 9.6.4 The recursive emulator method

This gives:

El(s) = Ez(s) = p; Fl(s) = Fz(s) =1 (18)

The three emulators are thus given by:

* -
¢4, = yl(s) + pul(s) (19)
= g.(s) + py () 20)
(0] 1.2 ° y2 S py1 S (20
* * *

The resultant control law appears in Figure 9.6.4 and may

be written as:

u (s) = —LCw(s) - 2py (s) - y. ()1 (22)
1 pZ 1 2

This may be compared with the single-loop <controller of
Figure 9.6.2. In equation 22 (in the absence of distur-

bances), §1(s) = s§2(s). This equation becomes the same as
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7 if, in that equation, C=1. However, in practice, such
differentiation is inadmissible.

These examples illustrate that the recursive emulator
method leads to the simplest control law giving the desired
closed-loop system. Moreover, the two corresponding self-
tuning emulators operate on first-order systems; the first
and third each require a self-tuning emulator operating on
a second- order system. Finally, unlike the third example,
the controller parameters for the outer loop do not depend

on those for the inner loop.
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CHAPTER 10
Two-Input Two-Output Systems

Aims. To consider the control of two-input two-
output systems using two self-tuning controllers
with feedforward. To analyse the robustness of
the self-tuning control in the presence of
neglected loop-interaction dynamics.

10.1. INTRODUCTION

A typical process control system will involve many con-
trol 1loops. Often, some of these loops will involve mutu-
ally interacting systems. It follows that 1if self-tuning
methods are to be of use in large process control systems,
they must be able to perform satisfactorily in such an
interactive environment. One approach to the control of a
number of interacting loops forming an n-input n-output
system 1is to wuse a single multivariable self-tuner. Such

approaches have been reported in the literaturelCl,2,3].

0f course, the distinction between the two approaches
is vague. BorissonCl]l has shown that a multi-loop self-
tuning regqulator may be viewed as a number of single-loop
controllers with a shared database, Morris, Nazer and
Wood[31 and Peel, Morris and Tham[43 also make this point.
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Nevertheless, an advantage of the one-loop philosophy is
that from the start it implies that a multiloop process
should be controlled wusing a number of autonomous (from
both the hardware and software points of view) one-loop
modules. This is in keeping with the current trend towards
decentralised distributed control systems based on
microprocessor units connected via a local area network.
The particular algorithm used here is the detuned model-
reference controller of section 3.10; but it would seem
that the results extend to other emulator-based self-tuning
controllers. As noted in chapters 3 and 6, this algorithm
has PI and PID versionsCS,61.

This latter approach gives rise to two distinct prob-

lems addressed in this chapter:

a) Do self-tuners, designed as 1if there were no loopP
interaction, behave satisfactorily 1f interaction 1is

present?

b) Can self-tuners be modified to account for interaction
and, if so, do they then behave satisfactorily?

This chapter is limited to a two-input, two-output sys-
tem. The extension to n-input n-output systems with
neglected dynamics in the forward path 13 given else-
wherel71. For such a system, this chapter provides a
theoretical analysis of each question. Both design and
analysis are Dbased on methods introduced 1in earlier
chapters of this book in the context of single-loop con-
trol. In this chapter the detuned model-reference con-
troller of section 3.10 is discussed; however, the main
idea would seem to apply to other algorithms. The design
follows a three-stage process: a notional feedback 1loop
design, a corresponding emulator-based design and finally a
self-tuning emulator design; the analysis uses the input-
output methods of chapter 7. This chapter concentrates on

the additional design and analysis required in the two-loop
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case. In the single-input single-output case (Chapter 7),
the robustness problem arises from unmodelled dynamics in
the transfer function relating input to output; here it
arises from unmodelled, or partially modelled, interaction
terms.

The analysis of the two-input two-output adaptive and
non-adaptive decoupling methods of this chapter is much
simplified by the use of a representation whereby interac-
tion 1is modelled by system outputs being coupled to system
inputs. This approach is found in certain works on the
analysis of large-scale systems, for example[8,91. This is
in contrast to the usual transfer function matrix approach
where interaction arises from coupling from inputs to out-
puts. In this chapter, the former representation is called
the feedback interaction model, and the latter representa-
tion is called the feedforward interaction model. In the
the case of two-input, two-output systems, these models are
related via the relative gain array of BristolL101]. These
two alternative models have been discussed in the chemical
engineering literature: the feedforward model has been
called the P-canonical structure and the feedback model the
V-canonical structuref4,11,12,131].

Robustness results are derived for four cases: with and
without decoupling and with and without adaptation. This

chapter is based on an internal reportf141].

The chapter is organised as follows. Section 2 presents
the feedback interaction model of two-input two-output sys-

tems and examines the relationship of this model to other
representations. Three illustrative examples are given.
Section 3 describes non-adaptive and self-tuning methods
for the control of two-input two-output systems. As this
self-tuning method has been discussed in earlier chapters,
section 3 mainly considers the additional detail required

for the two-loop case. In section 4, it is shown that the
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two-loop self-tuning control method is associated with a
single-loop error feedback system. Section 5 presents the
non-adaptive robustness results, and section 6 the
corresponding adaptive results. Section 7 <concludes the

chapter.

10.2. THE SYSTEM

The interactive two-input two-output system considered

here is displayed in Figure 10.2.1, and is described by:

yl(s) = 811(5)[u1(5) + S1z(5)yz(5)] (1)
yz(s) = Szz(s)[uz(s) + 521(s)y1(s)3 (2)
u —— y
1 | | 1
—)— 00— S (s) } y >
I I 11 i |
I _ i
| I
"t Emmae—
| I | I
I 5 (s) | | 8 (s) |
I 12 I [ 21 I
l—r—l L_..__.r—l
_ I |
y I ) | u
2 I I | I 2
< L { S (s8) b——O0—HK—
I 22 |
—

Fiqure 10.2.1 The open-loop system

Disturbances may be included in the algorithms and in

the subsequent analysis, but for clarity and simplicity,
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this aspect is ignored in this chapter. Similarly, initial
conditions are not treated here.

The two interacting systems have outputs §1(s) and
§Z(s). The interaction is a consequence of the transfer

functions S_ _(s) and S _(s}.
21 12

Equations 2.1 and 2.2 may be rewritten in matrix form

as:
Yy = §1(u + §21) (3)
where

ISII(S) 0 | | 0 SIZ(S)l
S, 7 1o s (s)li 8 T s (s o |

| 22 | [T21 |
and

I3 | | = |

(
i Iyl s)| ) Iul(S)I

I RS A EEN

|y (s)| lu (s)

§1 is a diagonal transfer function matrix, §2 is an off-
diagonal transfer function matrix and y and u are vectors
of outputs and inputs respectively. Equation 2.3 will be
called the feedback interaction model in this chapter.
This structure seems quite general (for a linear two-input
two-output system), as other structures (such as coupling
from input to input) can be incorporated by suitably rede-
fining the various transfer functions.

For example, a common system model is:

Y1(S) = Rll(s)ul(s) + Rlz(S)uz(S) (4)

y_(s) = RZZ(S)UZ(S) + RZI(S)UI(S) (5)



10-6 TWO-INPUT TWO-OUTPUT SYSTEMS Chap. 10

This may be written 1in the wusual transfer-function

matrix form as:

y = R (6)

Equation 2.6 will be called the feedforward interaction
model. In this two-input two-output case, R is given in
terms of S by:

-1

R=1T[01-58.3"S (7)
= =1=2 1
or, in terms of the individual elements, by:
-1
Bll(s) = [l~LI(s)J Sll(s) (8)
-1 -1
Blz(s) = El—LI(s)J LI(s)821(s) (9)
where the interaction loop-gain LI(s) is given by:
L.(s) =S (s8)S (s)S_ (s)S_ _(s) (10)
I 11 12 22 21
Bzz(S) and 321(5) are given by similar equations.
Similarly, S is given in terms of R by:
S (s) =R__(s) - R__(s)R__(s) 'R__(s) (11)
11 11 12 22 21
_ -1 -1
512(5) = 511(5) Blz(s)gzz(s) (12)
The former representation (using the §1 and §2

matrices) gives the simplest results for the analysis given
here. It also arises naturally in some physical systems as

demonstrated by the following example.
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Example 1l: Qutput coupled tanks

Figure 10.2.2 Qutput coupled tanks

The system of two coupled tanks displayed in Figure
10.2.2 will be wused for motivating and illustrating the
results presented here. It has been used previously by
Owens[15].

Assuming each tank has unit cross-sectional area, and
that the flow out of each tank is proportional to the
heights and the flow between the tanks proportional to the
difference in heights, it follows that:

Y, = ul(s) - k1y1(5) - kz(yl(s) - yz(s)) (13)
In terms of the feedback interaction model 10.2.3, this
gives:

311(5) = 322(5) = ata’ 312(5) =85 (s) =Kk (14)

where: a = kl + kz and k = k.. The interaction 1loop gain
is:

2
__L_z (15)
(s+a)
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In terms of the feedforward interaction model:

R, ,(s) = R, (s) = ——51;—""—-—2 (16)
(s+a) - k

R _(s) =R, (8) = —%— (17)

12 —21 2

(s+a)? - k

The feedback interaction model may, as shown Dby the
following example, be used when a feedforward interaction

model arises directly from the physical problem.

Example 2: Input coupled tanks

u ku ku u
1 2 1 2
—> —<{= =/ —<(—
I | [ [
Py | |
I R R F
r<— | | >4
| | S | | P l
ky ky
11 2 2

Fiqure 10.2.3 Input coupled tanks

Consider the two-input coupled tanks in Figure 10.2.3.
The input to tank 1 is Gl(s) + kaz(s) and vice versa. It

is readily shown that the dynamics of tank 1 are given by:

- _ l - -
Y1(S) = g:;(ul(s) + kuz(s)) (18)

and similarly for tank 2. Thus in feedforward interaction

form:



Sec. 10.2. THE SYSTEM 10-9
(s) = R _(s) = —7-; R _(s8) = R_ (s) = T = (19)

Using equations 10.2.11&12, the feedback interaction model

becomes:

- i -k - _ k(sta)
511(3) = Szz(s) = T5ia S, (s) = S__(s) = L 2 (20)

and the interaction loop-gain is k2.

In this case, the feedback interaction model involves
improper terms 512(5) and 521(5)'

o

Example 3: Postlethwaite & MacFarlane

Example 5.6 ofL£16] uses the transfer function matrix

(G(s) in their notation):

1 |s-1 s |
1.25(s+1)(s+2)|-6 s-21

R(s) = (21)

After some manipulation, the feedback interaction form 1is
described by:

S, (s) = ﬁs—%?_ﬂ (22)
512(5) = 1.25s

s, (s) = -7.5

5,208 = T35(5°Ty

This example illustrates a system in feedforward

interaction form with stable diagonal elements having zeros
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in the right half-plane. However, in feedback interaction
form, the diagonal elements are unstable with no right
half-plane zeros. A small perturbation to the R

12(s) term
would, however, give S, (s) and S,,(s) with right half-
plane zeros. More detailed analysis of the underlying phy-
sical system would be required to determine whether such a
perturbation was physically possible.

Relative gain array

One measure of interaction found in the process control
literature is the relative gain array of Bris-
tollC10,17,18,191. This provides an interesting relation
between the feedback and feedforward interaction forms.
For a two-input two-output system, the relative gain array
is:

DN 1-x|
| 1-a x| (23)
Where
Y,
9 with u, constant
A = y‘ (24)
1
a with Y, constant

=

Using the feedback interaction model of egqn. 10.2.3, and
the feedforward interaction model of equation 10.2.6, it
follows that:

Rll(O) 1

511(0) 1 - LI(O)

A = (25)
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Example

The output coupled tank has a relative gain array with

A= o (26)

A= T, (27)

10.3. A SELF-TUNING ALGORITHM

In previous chapters, a continuous-time self-tuning
controller arose via the following three design methods:

1. A method based on the notional feedback loop (Chapter

3) with a possibly unrealisable element in the feedback

loop to cancel out undesirable system characteristics.

2. An emulator-based design method which replaces the
unrealisable feedback element in 1. by the correspond-
ing emulator (chapter 3).

3. A self-tuning design method based on 2. which attempts
to reduce sensitivity to modelling error by replacing
the emulator in 2. by a self-tuning emulator (chapter
6).

In this chapter, the additional details required to apply

such methods to a two-loop system are discussed.

In the single-loop design, the basic requirement was
that the notional design method gave a stable closed-loop
system; this required that significant system zeros were

in the 1left half-plane. In the two-loop case, it will be
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seen that the feedback interaction model provides a
straightforward basis for the notional feedback 1loop
design. In particular, the zeros of the two transfer func-
tions 511(5) and Szz(S) will be found to be important. As
example 3 (section 10.2) shows, these zeros may be quite
different from those of the feedforward transfer functions
Bll(s) and Rzz(S)' To emphasise the importance of 511(5)
and Szz(s), an analogy with the single-input single-output
case is made by defining the polynomials A,(s) and B, (s)
by:

Bl(s)
Ax(S) = Sll(s) (1)

Notional design

The single-loop notional feedback loop design (chapter
7) is applied directly to each loop ignoring the interac-
tion. Thus for loop 1:

B 21(5) B a

ul(S) = Q:TEYCEITE7W1(S) - ®I(S)] (2)
where

B Px(S)-

@1(5) = QTTET l(S) (3)

Note that the polynomial Zl(s) plays no role at this
stage; it is merely included to provide compatibility with

later sections. As in chapter 3 (3.11 in particular), the

* Here and hereafter, repetition of similar equations
is avoided by writing only the equation for the first
loop. Equations for the second loop are found by
changing subscript "1" to "2" and vice versa.
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following design rules are used:

Dl. degree (Pl(s)) = degree (A1(S)) - degree (Bl(s))
D2. 2 (s8) = P _(gs)

1 1
D3. PI(O) = 1.

Ql(s) is a proper stable ’‘compensator’ with proper
stable inverse, Ql(s) is the desired value of the output of
loop one and Pl(s) is the desired closed-loop system.

The closed-loop output of loop 1 is

1 @ (s) + 2(s)1 (4)

where the closed-loop transfer function Scll(s) is given
by:

L1(S) 21(5)

~C _
ST 08) = 1+L1(s) P1(5) (5)
where
Pl(s)

Ll(S) = SII(S)ETTET (6)
and the detuning error &2(s) by:
sy = Q‘i)-s v.(s) (7)

21(5) 12y2

The first assumption is that the two loops are stable when
the interaction is zero. As in the earlier chapters, it is
further assumed that the systems have sufficient stability
margin for the exponentially multiplied systems to be
stable.

Al. Scll(s—m) and Sczz(s—m) have no right half-plane poles.
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Q1(S)=O corresponds to model-reference control; in this
case the wusual model-reference condition that B1(5) be
stable would replace condition Al. Al is thus a less
stringent condition for the suggested detuned control where
Ql(s)#o.

The two closed loops are displayed in Figure 10.3.1.

—
| B(s) |
f < }
(| ZKS) | |
T e | _
W | ——u — | y
11 | 2(s) | 1 | | | 1
—>0+ t >—0 >— S (s) } > { >
| Q(s) | | | 11 ! |
| |
—— ——
f ! | |
{ S (3) | | S (s) |
| 12 | | 21 |
— —
_ | I _
y | — | u M
2 | | | 2|1 Z2(3)
(e (] S (S) p—A—0—A—f —
| | 22 | | Q(s)
| L —
I — |
| | B(s) | |
L > —| —
| st) |
e

Fiqure 10.3.1 The notional feedback loop

If Ql(s) is small, and the resulting system is stable, the

loops are approximately decoupled and:

- « 1 -
yl(s) () wl(s) (8)

1
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Also, it is assumed that the coupling terms 812(5) and

SZI(S) have no right half-plane poles, and in addition:
A2, Slz(s—m) and Szl(s—m) have no right half-plane poles.

Using Nyquist’s theorem, this two-loop notional system

will be stable if the Nyquist locus of:

c c Ql(s) Qz(s)
- 8 11(s).S Zz(s).ZZTETSIZ(S).ZQTETSZI(S) (9)
does not encircle the -1 point. If this wunderlying

notional feedback 1loop 1is wunstable, the adaptive system
cannot be stable, so it is assumed that this notional feed-

back loop is stable:

A3. The two-loop notional feedback loop system is stable.

Example: Coupled tanks

For both input and output coupled tanks:

- - b
8,,(8) =8,,(s) = =~ (10)

where b=1 for output coupled tanks and b=1-k’ for input
coupled tanks. If the design parameters P and Q are chosen
as:

P(s) = l+ps; Z(s) = Z (s) = 1l+zs; Q(s) = gs (11)

then the loop gains are given by:

_ _ b (l+ps)
Li(s) = L (s) = = ——ES__ (12)

The notional closed-loop transfer function Scll(s) is then

c l+zs
S (s) = (13)
ga q.2
1 + (p+b )s + bS
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The emulator

As in the single-loop case (chapter 6), the self-tuning
controller is based on a low-gain emulator-based version of

the notional design of the previous section. In particu-
P (s)
lar, the notional feedback loop transfer function ZLTET is

1
replaced by an emulator-based version using state-variable

filters. In the two-loop context, loop interaction must
be accounted for in the emulator design; this section con-

centrates on this aspect of the emulator.

The first loop of the system may be rewritten as:

_ B (s) _
Y1(S) A (s [u (s) + S1z(5)yz(5)] (14)
where
B1(S)
SII(S) = A (s) (15)

Following the analysis of chapter 2, and replacing u by u

1(s) + Slz(s)§2(s), an emulator may be written as:

Cx Fo(s)_ G (s) _ ~ «
¢>1(5) = 'C-l(—s)'yl(s) +W§')—m‘s{ul(s) + SIZ(S)YZ(S)] (16)
where
p1(S)C1(S) E1(S) F1(S)

= + (17)

Zl(s)AI(S) 21(5) Al(S)

deg(El(s)) deg(Zl(s))—l; deg(Fl(s)) = deg(Al(s))—l (18)

* The subscript 1 refers to the loop index, not to the
emulator version.
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For practical reasons, it may not be possible to implement
this emulator: the order of the various transfer functions
may make it too complex or 512(5) may be improper. So

three alternative design rules are proposed:

D4a The emulator is fully implemented

D4b The emulator is implemented with an approximate decou-
pling term Blz(s)/Al(sM

Bl(s) B _(s)

~ 12
A (8)°12(8! © R (s (19)

D4c The emulator is implemented with S1z(S) replaced by

zero.

The latter cases give an approximate emulator which

1
S. _(s) for Déc

will be denoted by 6?(5). The approximation error is given
by:
_a G1(S) ~ _
e (s) = EITgTz:?ETSIZ(S)yz(S) (20)
where
:O for D4a
~ | B _(s)
S, _(s) = |8 _(s) - g==—— for D4b (21)
12 | 12 B (s)
I
|

In all cases, the control law is given by:

Z (s)
a

Ul(S) = QZTET[Z:TETWI(S) - ¢1(S)] (22)

The closed-loop system then becomes

L (s) Z (s)
1 1 -

— - ..Q -a
yl(s) 1+L1(s) Pl(s) [Zl(s)wl(s) + el(s) + el(s)] (23)
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Example: coupled tanks

Continuing the example of the previous section:

A = st+a; B = b; C(s) =1 (24)

Identity 17 becomes:

(l+ps) _ e f
(s+a) (1+z5) ~ (l+zs) ' (s+a) (25)
where:

= - e = P-4, - - f = l-ap

El(s) = Ez(s) = e 1-az’ F1(S) Fz(s) f 1-az (26)
Thus, ignoring the coupling terms,
-a be - -
¢1(s) = i:;§u1(5) + fyl(s) (27)
32(s) = T2, (s) + £7,(s) (28)
o

The adaptive controller

A continuous-time detuned model-reference self-tuning
controller was considered in an earlier chapter. The sim-
plest approach is to use design rule D4c and thus ignore
coupling. The two - loop self-tuning controller is then
merely two single-loop self-tuning controllers, one for
each 1loop. Although this approach is simple, the presence
of coupling terms not accounted for in the algorithm leads
to possibly poor performance and even instability. This
will be analysed in section 10.6.
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The self-tuning method considered here vrelies on a
linear-in-the-parameters representation of the emulator
equation. In general, the emulator equation cannot be
easily put into such a form due to the unknown denominators
of 312(5) and 321(5),50 design rule D4a cannot be directly
used in the adaptive context. This section concentrates on

design rule D4b.

Recalling the approximation in D4b, define the polyno-

mial

G _(s) = B _(s)E (s) (29)
12 12 1

The approximate emulator equation becomes:

_a Fl(s)_ Gl(s) B G1 (s) _

9080 =T S P Tz s ) T E iz (s17, () (30

This may be rewritten as:

6‘?(5) - R (s)e (31)

where

%' (s) = =2—Fa (s), su. (s) : ¥y, (s), sy (s) ; (32)
s Cl(s) L8), ul S)y, .. y1 s), sy1 S), ...

yz(s), syz(s), ]

and

e - ; £, f ;g v ] (33)

~ - gor glw LS 4 o’ 17 ---rgorglr ..

where 95 is the ith coefficient of Gl(s), fi is the ith

coefficient of Fl(s) and g’i is the ith coefficient of

G1z(5)'
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*
As 1in the single-input single-output case, ¢ is

replaced by the output of the emulator with estimated

parameters:
o = X (s)8 (34)

The algorithm for generating © is identical to that given

in chapter 5.

The resultant error:
~ — % ~
e(s) = ¢ (s) - ¢ (35)

leads to the closed-loop system of equation 10.3.23 but
with e replacing e3(s):

~

(s) [t (5) + é2(s) + &1 (36)
11 Zl(s) 1 1 1

- _ aC
yl(s) S

As in the single-input single-output case, the exponen-

tially multiplied estimation error emteA(s) can be con-

sidered to be the output of a system Ql with input

at-a
e

e (s).

10.4. ERROR EQUATIONS

In this section, the various equations describing the
error equations resulting from the three design methods
(notional, emulator-based, and self-tuning) are gathered

together. These equations appear in Figure 10.4.1.

The output of the first loop may be written as:

The first term represents the system output with no error
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w — — y
1 1 1 | o c | 1
—>— — | 0 { S } > T ?
2 | e [ 11 | I
Q | e |
e 0 y 1 —t—
1 | | !
| — 4 —L—
| & | T I | T |
| i 1 | | 22 | I 21 |
|
—— L —t
[ S T | a8 | I
P11 12 | [ 2 | |
| I ~ i Q
L Y ) e L—0— e
| 2 le 2
y | — | I2)/——— w
2 | | c | I | 1 | 2
¢ L ¢ {'s 0—rd — <=
I 22 | Iz,
| S— | | |

Figqure 10.4.1 The error feedback system

due to interaction or estimation; the second term will be

called the output error and is given by:

C

I(
1 1

;;1 - 8¢ (srelcs) (2)

where the interaction error is the sum of the detuning
error and estimation error:

e9s) + e(s) (3)

®
w
"

The aim is to find stability conditions such that ;1 (and

yz) are small relative to the setpoints W, and W,
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The detuning error, representing the effect of control

weighting, is

_Q _ -
ex(s) = T11(S)Y2(5) (4)
where
Q1(5)
T11(S) =7z (5)512(5) (5)

The expression for e(s) depends on which of the three
design methods is used. The three expressions are combined

into one by defining:

:0 for the notional design

Ql = |1 for the emulator-based design (6)
|

|Q1 for the self-tuning design

Thus

e =0 8%(s) (7)
1 101

and

-a B -

e (s) =T (s)y_(8) (8)
1 12 2

where

El(s)Bl(S)N
T, ,t8) = 5;(5)21(5)512(3) (9)

The equations of this section appear 1in Dblock-diagram
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form in Figure 10.4.1.

10.5. NON-ADAPTIVE ROBUSTNESS

The stability of the notional feedback 1loop design
method has already been considered in section 3; so this
section concentrates on the other non-adaptive method: that

based on emulator-based control. Thus here:

8 =1 ()
Hence the relation between the interaction error éf(s) and
the system output §2(s) is given by:

elis) = e®(s). + &%s) = [T (3) + T. ()37 () (2)
1 1 11 12 2

The equations of section 10.4, and Figure 10.4.1, reveal
that there 1is a single feedback loop describing the two-
loop system. This may be analysed using Nyquist’'s theorem

as follows:

Theorem 10.1 (non-adaptive robustness)

The two-loop system (eqns. 10.2.1&2) controlled wusing
the non-adaptive controller is stable if assumptions Al and
A2 hold and if the shifted Nyquist locus of:

s€ (s)Sc (s)Sc (s)Sc (s) where s = - o + jw (3)
11 12 21 22

where

s =T _(s) + T, _(s) (4)
12 11 128

does not encircle the -1 point.

Proof
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From assumptions Al and A2, and the fact that Q(s) and
Z(s) are stable polynomials, all transfer functions in eqn.
10.5.3 are stable. The result then follows from Nyquists
theorem. The wuse of a>0 gives a certain stability margin
and is included here for comparison with the results of the

next section.

Remark

In fact, as discussed in chapter 4, it is not necessary
(in the case of non-adaptive control) that assumptions Al
and A2 are true. But in such circumstances, the more gen-
eral version of Nyquist‘s criterion must be used.

10.6. ADAPTIVE ROBUSTNESS

In the self-tuning case, the same set of equations as
in the non-adaptive case describes the evolution of the
error, except that:

Q. =4 (1)

As Ql is not a linear time-invariant system, Nyquist’'s
theorem cannot be used. However, from chapter 5, Ql has a
gain in the L2 sense of unity. Hence, the small gain
theoremL20] may be applied. But first, the error equatZons
must be written 1in a suitable form. Unlike the non-
adaptive case, the presence of ﬂ\ means that the paraZlel
transfer functions cannot be amalgamated into one transfer

function Sclz(s). Instead, the error éf(s) is rewritten as

follows:

el(s) = n e2(s) + &%s) (2)
171 1
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e =T (518 (s)fel(s) + w (s)] (3)
Ql(s) 11 22 2 2

and

e2(s) = T (5)8° (s)fel(s) + w (s)] (4)
1 12 22 2 2

Similar expressions give éi(s) in terms of éf(s) and Ql(s).

This feedback system appears in Figure 10.4.1.

As in the earlier chapter, the first step is to show
that the exponentially multiplied feedback system with
inputs Ql(s) and Qz(s) is L stable. As y is related to

éi(s) by a low-pass transfer function, L, stability is

shown for the system with Ql(s) and ﬁz(s) as inputs and y
and y, as outputs.

These ideas lead to the following theorem:

Theorem 10.2 (Adaptive robustness)

If the adaptive controller is designed according ¢to
design rules D1-D3 and D4b, assumptions Al-A3 are true
and:

1. The forgetting factor of the self-tuning algorithm is
positive: 8>0

2. For some a>0:

(yll(m) + le(a)).(yzz(a) + YZI(a)) <1 (5)
where:
Y, (@) = sup|T  (w - m)Sczz(w - o) | (6)
w

and
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sup|T (w - a)SS (w - a)} (7)
W 12 22

le(a)

then the resultant closed-loop system is stable in the
same sense as described in chapter 7.

Proof
Firstly, each block in Figure 10.4.1 1is premulti-
plied by e - ot and postmultiplied by eat. As the gain of

ﬂl < 1, then the gain of ﬂlle(s)Sczz(s) < the gain of

T (s5)8% (s). As T  (s)S® (s) and T__(s)8° (s) are
12 22 11 22 12 22

linear transfer functions, then their gain (in the L2

sense) 1is given by the expressions for Y., and Yio® The

same statement holds with 1 and 2 interchanged. As 1in

chapter 7, the Lz stability of the exponentially multiplied

system follows from the small gain theorem[20].

Using the results of chapter 7, the fact that the
exponentially multiplied system with inputs ﬁl(s) and &2(5)

and outputs éf(s) and e is L2 stable, together with the

12
fact that Y, and y, are related to é;(s) and €1y via low-
pass transfer functions, give the required result.

To illustrate these results, the transfer functions Tij

are derived for the two coupled tank examples.

Example: Output coupled tanks

Using the same control parameters as in section 3, it
follows that in the case of output coupled tanks b=1 and

Q. (s)
c - c 1 c
T11(S)S 22(s) = TZZ(S)S 11(s) = Zl(s)slz(S)S 22(s) (8)
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kgs

1 + (ptga)s + qsz
If the coupling term is estimated (as it can be here), then

C
le(S)S 22(s) = T21(s) =0 (9)

On the other hand, if no attempt is made to identify the
coupling term, then Slz(s) = sz(S) and:

c _ c
le(S)S 22(s) = T21(S)S 11(s) (10)

El(s)Bl(s)N

NS Rt R c
- Cl(s)Zl(s)Slz(S)S 22(5)

ek
1 + (ptga)s + qs2

Example: Input coupled tanks

Using the same control parameters as in section 3, it

follows that in the case of input coupled tanks b=1-k2 and

T ()8 (3) = T ()8 (s) (11)
11 22 22 11

Q_ (s)
1 c
Zl(S)S”(s)S 22(s)

kgs(s+a)

1+ (p(l—kz) + gal)s + q52

The coupling term cannot be estimated S0 that

[621R

12(s) = 512(5) and:
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T (s)s° (s) =T (s)8° (s) (12)
12 22 21 11
E (s)B (s). .
= Cl(s)Z1 Slz(S)S zz(S)

ek(s+a)
1 + Cp + qa/(1-k*)1s + Cq/(1+k>)1s’

The robustness conditions are harder to satisfy for the

input coupled tanks, as the improper interaction terms
c c

(Slz(s) and 321(5)) lead to T11(5)S 22(s) and Tzz(s)S 11(s)

having non-zero gain (k) at high frequencies, and this gain

is independent of the weighting factor g if q#0.

10.7. SUMMARY

Using a particular representation for two-input two-
output systems, standard input-output methods have been
used to derive frequency-domain conditions to ensure that a
continuous-time least-squares based self-tuning algorZthm
is stable in the face of unmodelled interaction dynamiIcs.
Because of the particular structure chosen, the stabiiity
analysis is based on a single-loop feedback system. As in
the single-input single-output case, both adaptive and
non-adaptive stabilities are based on the frequency-domain

properties of certain transfer functions.

The n-input n-output case 1is discussed elsewhereL7].
However, as the error equations no longer form a single-
loop feedback system, this results in a more complex cCri-
terion. The two-input, two-output system considered in
this chapter is thus an important special case which

deserves separate analysis.
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assumptions about disturbance
Astrom’'s formulation

augmented plant

auxiliary output

auxiliary output and the emulator

(o

C(s) design rule

cascade control

cascade methods

cascade systems

CFIR

choosing C(s)

choosing P(s) and Z(s)

choosing Q(s)

choosing R(s)

choosing T

closed-loop characteristic equation
closed-loop system input
closed-loop system output

common factors

companion matrix

continuous-time self-tuning control
continuous-time systems
continuous~time approach
continuous-time design

Kl

2-34

S-12

4-5

2-6

2-33
4-5,7-3,7-4
1-18

4-9

3-8,3-9
2-6,2-14,3-8
2-6,2-14,2-32,2-35



K2 Keyword Index

continuous-time finite impulse response 2-31
continuous-time FIR transfer functions 2-30
continuous-time least-squares criterion 5-4
continuous-time systems 0-10
control law 3-2
control signal error 4-5
control weighting 0-11,0-3,0-9,3-2,3-18
control weighting - importance of 7-12
controllable 1-18,2-17
controllable form 1-10,2-38,6-8,6-10
controlled system 1-2,1-14
controlled system equation 1-14
D

data vector 2-37,2-38,6-5,6-7,6-9
derivatives 2-3
design parameters 4-13
design rules 2-12
detuned 0-11,3-18,6-21,6-29,7-25
detuned model-reference 3-26,8-7
detuning 3-2
detuning error 10-13
difference equation 0-3
differential equation 0-3,1-1,1-2,2-38,6-10,6-18,6-20,6-8
Diophantine equation 2-17,2-19,2-20,2-21,2-23
Diophantine recursion 2-20,2-21,2-23
Dirac d 1-5
discrete-time design 0-3
discrete-time parameter estimation 5-19
disturbance and setpoint induced error 7-7
disturbance assumptions 1-18,2-3
disturbance response 3-3
E

elementary subsystens 1-2
emulation error 7-3,7-4
emulator 0-3,0-7.2-1,2-2,3-1,3-2,8-8,10-15
emulator and the auxiliary output 2-6,2-14,2-32,2-35
emulator approximation error 4-5,7-3,7-4
emulator for system b-b
emulator output 3-2
emulator-based control 0-11,3-1,6-1,10-11
emulators 0-5,0-11,2-2
equivalent setpoint 3-7,3-11,3-21,4-6
error feedback system 0-12,4-4,4-7,7-2,7-3,7-7,10-20
error in parameters 5-12,7-3
estimation error 5-4,5-5,7-4
estimator input 7-6
existence of solutions to least-squares estimation 5-7
explicit algorithms b-2
explicit self-tuning 6-3,6-11
exponential weighting 1-9,5-5,5-15,7-9
extended state vector 1-11,1-12



Keyword Index

F

feedback control
feedback interaction
feedforward interaction
filter-induced error
forced disturbances
forced response
forgetting factor
formula for J

formula for optimum value of J
frequency-response

G
gain
greatest common divisor

H
hybrid
hyperstability

I

ideal behaviour - estimates
ideal behaviour - estimation error
ideal conditions

ideal cost

ignoring inner loops
implicit self-tuning
improper

impulse response

index

inferential control

initial conditions

integral action

interaction

interaction error

internal stability

K
Kalman-Bucy filter

L

Laplace transform
least-squares algorithm
least-squares cost function
least-squares estimate
least-squares identification
limiting the control signal
linear

linear-in-parameters
loop-gain

low-pass

K3

3-2,6-4,8-4
10-3,10-5,10-7
10-3,10-6,10-7
7-5,7-6
1-2,1-15

1-5

5-6

5-10

5-10

1-4

1-9,5-17,7-9,7-10
2-18,2-22

2-36,5-2,5-4,5-19

3-6,3-10,3-16,3-27,7-27,10-6

7-16,10-25



K4 Keyword Index

M

M-1locus 4-10,7-10
Markov parameters 1-6,1-7,1-12,2-3,2-4
Markov parameters and impulse response 1-5
Markov recursion algorithm 1-7,1-13
minimisation of cost function 5-6
model-reference control 3-12,3-15
modified notional feedback system 4-6
N

neglected dynamics 4-2,4-3,4-12,8-11
nominal loop-gain 3-18,8-9
nominal system 4-3,7-12,7-23
non-adaptive criterion 1 4-4
non-adaptive criterion 2 4-8,4-9
non-adaptive criterion 3 4-9
non-adaptive criterion 4 4-10
non-adaptive criterion 5 4-11
non-adaptive robustness 4-1
non-adaptive and adaptive robustness 8-1
non-realisable 2-12
non-recursive 5-6
non-recursive solution 5-8
non-zero mean disturbances 6-9
notional design 8-9,10-12
notional feedback loop 0-9,3-4,3-27,8-7,10-11
notional feedback system 0-11,3-5,7-8,8-9
notional loop-gain 3-6,3-10,3-16,3-27,7-27
numerically non-singqular 5-7
0

observable 1-18
observable state-space form 1-12,1-19,2-3
off-line a-priori design phase 6-12,6-13,6-17,6-18
off-line desiagn 6-2,6-11,6-11,6-17,6-17,6-2,7-2
on-line design 6-2,6-11,6-13,6-17,6-18,6-3
on-line tuning phase 6-12,6-13,6-18,6-19
organisation of book 0-9
outline of proof 7-13
output derivatives 2-3
output error 7-8,8-12,10-21
P

P(s) design rule 3-11
Pade approximation 2-34,3-13
Pade polynomial 2-34
parallel transfer functions 3-8
parameter vector 2-37,2-38,6-7,6-9
parameter-induced error 5-14
partial state 1-12,2-16
persistent excitation 5-8,5-18,7-14
PID control 3-24
PID design rule 1 3-23

PID design rule 2 3-23



pole-place
poles
predictor
proper

Keyword Index

ment control

property of ideal cost

Q(s) design rule

quotient

R

rational approximation

realisabil
realisabil
realisabil
realisable
recursive
recursive
recursive
recursive
recursive
recursive
recursive
reference
reference
reference

ity
ity decomposition
ity filter

algorithm

emulator method

least squares - inversion
least squares - no inversion
least-squares algorithm
solution

model

model poles

model zeros

relative gain array

relative o

rder

relatively prime

remainder
robust
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness
robustness

- actual feedback system

- adaptive

- adaptive and non-adaptive
- Astrom’s criterion

- assumption
- assumption
- assumption
- assumption
- assumption
- assumption
- comparative
- global

- local

-~ M-locus

~ non-adaptive

- self-tuning controllers
analysis

U W

Rohrs’'s example

2-33

2-4,2-13,2-29,0-21

2-4

6-15,6-17,6-19,6-20,6-27,7-1,7-2,7-5

2-12,3-27
5-6

2-20
9-5,9-13
5-11

5-12

5-11

5-9
3-10,3-17
3-10

3-10
10-10

1-3
1-4,1-6
2-18
0-2,0-3,0-8

0-8,0-12,4-1,8-11

4-3
7-13,10-24
0-13
4-7
7-10
7-11
7-11
7-11
7-12
7-19
8-14
0-8
0-8
4-10

0-11,4-1,10-23

7-1
4-1,7-1
4-11,7-20



K6 Keyword Index

S

self-tuning cascade control
self-tuning control
self-tuning emulator
self-tuning emulator output
setpoint response

simulated examples
single-input

single-loop control
single-output

slow

small gain property

Smith’s predictor

solving Diophantine equations
spectral density

spectral factor

stability

stability and gain

state space considerations
state-space representation
steady-state linear-quadratic control
step response

stochastic

strictly proper

system approximation

system coefficients

system equation

system identification
system input

system model

system order

system output

system transfer-function
taking account of inner loops

T

Taylor series

third degree of freedom
three degree of freedom
time delay

time-delay approximation
time-invariance

transfer functions
transient disturbances
transient response
tuning error

two degree of freedom
two-input two-output systems
two-level tuning

U
uncontrollable
unique
unobservable

9~3,9-10,10-28
1-1

8-3

5-16

3-18
2-17,2-19,2-23
1-16

3-15

1-8

1-6
3-6

8-3,8-10,8-11,8-13,8-15

1-13,3-13
2-34
1-1,1-2
1-2
1-2,1-14
1-5

7-3

3-6,8-4,8-12,8-14,8-4

0-13,10-1
6-3

1-18
5-9
1-18



Keyword Index

unrealisable

W
white noise

Z

Z(s) design rule

zero cancelling filters
zero-gain emulator

K7

0-5,0-6,2-2,3-19

1-2

2-12,3-11
2-11
6-11






Symbol Index

A'(s)

Ao(s)

Al(s)

A_(s)
2

AT(S)
AS(s)
A" (s)
Ai(s)
Als)

A7 (s)
B’ (s)
B (s)
B (s)
Bo(s)
Bl(s)
Bz(s)

Bg(s)
B (s)

1-3,1-4
3-23
10-12
10-12
1-10
2-34
1-14
1-15
9-2
1-14,1-16
1-14
1-3,1-4
2-14
2-14
3-23
10-12
10-12
1-10
2-34
1-14

Bf(s)
Bi(s)
B(s)
Bt (s)
Cmis)
C(s)
Dn(s)
D™ (s)
D(s)
Elk(S)
El(s)
Ezk(S)
E_(s)

2
E_(s)

3
E (s)
E (s)
E
E Zk(s)
E 2(s)
E- (s)

4

o

1k
1(s)

U b oo

S1

1-15

9-2
1-14,1-16
1-14

2-35
1-14,1-16,3-20
2-35

1-14
1-14,1-16
2-3

2-8

2-12

2-16

2-33

2-35

2-4

2-8

2-13

2-16

2-35



S2 Symbol Index

Ep(s) 2-33 Li(s) 10-6
E(s) 2-36 L_(s) 4-4
F o (s) 2-3 L 7-14
1k o0
F (s) 2-8 L(s) 3.6
F () 2-12 M (s) 4-9
F,(s) 2-16 M(s) 4-10,7-10
F_(s) 2-33 N(s) 4-2,4-3
F (s) 2-35 PL(s) 2-35
(s) 2-4 P(s) 2-6,2-14,2-32,3
le
F 1(s) 2-8 Q(s) 3-2,3-16
FDzk(s) 2-13 R(s) 3-2,3-15
FDZ(s) 2-16 s, 5-5
P (s) 2-35 S (s) 10-4
4 él
Fo(s) 5-15,5-16 s (o 10-13
FB 1-19 5, (s 10-4
F(s) 2-36 T 1-13,1-14,3-18
G () 10-16 T (s 10-22
G(s) 2-36 T (s) 10-22
H' (s) 1-4 U 1-11
H (s) 2-30 Vo(t) 5-16
0 o
H (s) 2-30 V(t) 5-13
H, (s) 2-30 X 5-2,6-8,6-17
H 1-12 X (t) 6-9
H(s) 4-3,7-23,8-4 38 1-10
I, (s) 2-5 R, (s) 2-37
I (s) 2-7 R, (s) 6-10
1 )
I (s) 2-14 %, (s) 2-37
2k =i
I,(s) 2-16 X, () 6-16
I,(s) 2-35 R, (s) 6-16
I(s) 2-36 XB 5-19
J B, t) 5-6 2 1-12
N R(s) 6-7
3 (8(t), ) 5-7 % (o) 67
J.(8(t),t) 5-9 X (s 6-9
1 jYO
Je(t),t) 5-5 X¥<s) 67
Z (s) 2-12,3-10

L2 1-9



Symbol Index

2-12,3-10
2-36
10-12
2-35

2-35

2-35
2-11,2-10

2-4

7-3
7-15
1-9

4-5,7-4

10-22

7-8

1-5

2-27
2-27
2-27
3-27
5-19

—*
u (s)
ul(s)

uz(s)

3-3
10-4
10-4

3-2
1-14
4-5
1-14
10-12
3-2
1-11
1-12
1-3
6-10,8-12
10-4
10-4

2-31
2-27

1-14
8-12
4-6

8-12
8-12
6-15
5-16
7-10

S3



S4

o (s)

—xA
o (s)
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6-5
2-35
3-8
4-5
©6-5
6-15
5-4
5-19

2-14
2-12
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