
Continuous-Time Self-Tuning Control
Volume I – Design

Peter Gawthrop

Originally published in 1987

doi:10.5281/zenodo.7004513

https://doi.org/10.5281/zenodo.7004513

Foreword

Self-tuning control has traditionally developed in a

discrete-time context. In contrast, industrial control sys-

tems (whether electronically analogue or digital) appear to

the user to be continuous-time devices. This dichotomy has

hindered the application of self-tuning controllers. 	This

monograph attempts to bridge this gap by considering self-

tuning control in a continuous-time context. This reorien-

tation of self-tuning research is not merely cosmetic.

There is a good reason for designing industrial control

systems in a continuous-time setting: the real-world is

made up of continuous-time objects. This fundamental

advantage of continuous-time design will, I hope, become

apparent on reading this monograph.

There are a number of apparently competing approaches

to self-tuning control to be found in the literature. An

objective of this monograph is to provide a unified

approach to the design and analysis of such algorithms.

This volume concentrates on the design of continuous-

time self-tuning controllers; a companion volume will give

details of digital implementation, including Pascal

vii

viii

algorithms.

Any research monograph builds upon the work of many

people too numerous to mention. However I must acknowledge

the long and fruitful collaboration with Dr. David Clarke

of the University of Oxford which led directly to many of

the ideas to be found in this monograph. Also I must ack-

nowledge the influence of Dr. K.W. Lim of the University of

Singapore who, as a research student, made many contribu-

tions to the robustness ideas to be found here. I wish to

thank Chris Barclay, Ahmad Besharati-Rad, Mohamed Khar-

bouch, Xiaofeng Liu, Coorous Mohtadi, Markku Nihtila and

Panos Nomikos who read though many badly written drafts,

made helpful suggestions and eliminated some (but undoubt-

edly not all) of the errors.

The University of Sussex 	 P.J. Gawthrop

July 1986

Notation

Numbering

The chapters are numbered from 0 to 10. The sections

within each chapter are numbered sequentially using decimal

notation; thus section 5 of chapter 2 is numbered as 2.5.

Within each section, equations are numbered sequentially

from 1. References to equations within a section just give

the equation number. References to equations without a sec-

tion are prefixed by the full section number; thus equation

3 of section 2 of chapter 1 is denoted by equation 1.2.3.

Pages are numbered within each chapter; thus the 5th

page of chapter 4 is denoted by 4-5. Left-hand pages also

display the chapter number and title; right-hand pages also

display the section number and title. It is hoped that the

reader will find this system beneficial when searching the

book.

Each chapter is followed by a list of references in

order of appearance in the chapter. An index to keywords

is given at the end of the book.

ix

X

Symbols

In general, functions of time are written in lower case

followed by the time argument (t); thus the system output

is symbolised by y(t). The corresponding Laplace transforms

are denoted by a 	and followed by the Laplace argument

(s); thus the Laplace transformed system output is symbol-

ised by y(s). System transfer function polynomials are

written in upper case followed by the Laplace argument (s);

thus the system transfer function denominator is symbolised

by A(s).

Quantities associated with an emulator output are

denoted by 	**; quantities associated with an approximate

emulator output (ignoring initial conditions) are denoted

A
by 	. Estimated quantities are denoted by .

An index to the more important symbols appears at the

end of the book.

A

XI

0-1
0-3
0-5
0-8
0-9
0-10
0-11
0-11
0-11
0-11
0-12
0-12
0-13
0-13
0-13

Contents

CHAPTER 0: CONTINUOUS-TIME SELF-TUNING CONTROL

0.1. INTRODUCTION
0.2. THE CONTINUOUS-TIME APPROACH
0.3. EMULATORS
0.4. ROBUSTNESS
0.5. ORGANISATION OF THE BOOK

- Continuous-time systems
- Emulators
- Emulator-based control
- Non-adaptive robustness
- Least-squares identification
- Self-tuning control
- Robustness of self-tuning controllers
- Non-adaptive and adaptive robustness
- Cascade control
- Two-input two-output systems

CHAPTER 1: CONTINUOUS-TIME SYSTEMS

1.1. INTRODUCTION 	 1-1
1.2. TRANSFER FUNCTIONS 	 1-2
1.3. MARKOV PARAMETERS AND IMPULSE RESPONSE 	 1-5
1.4. THE MARKOV RECURSION ALGORITHM 	 1-7
1.5. STABILITY AND GAIN 	 1-8

- Stability 	 1-8
- Gain 	 1-9
- Exponential weighting 	 1-9

1.6. CONTROLLABLE STATE-SPACE REPRESENTATION 	 1-10
1.7. OBSERVABLE STATE-SPACE REPRESENTATION 	 1-12
1.8. TIME DELAYS 	 1-13
1.9. THE SYSTEM EQUATION 	 1-14

- The controlled system equation 	 1-14

XII

- Transient disturbances
	

1-14
- Forced disturbances
	

1-15
- The system model
	

1-16
- Assumptions about the disturbance
	

1-18
- Disturbance assumption 1
	

1-18
- Disturbance assumption 2
	

1-18
- Disturbance assumption 3
	

1-18
- A state-space representation
	

1-19

CHAPTER 2: EMULATORS

2.1. INTRODUCTION 	 2-1
2.2. OUTPUT DERIVATIVES 	 2-3

- Remarks 	 2-5
- The auxiliary output and the emulator 	 2-6
- State Space Considerations 	 2-9
- Example 	 2-9

2.3. ZERO CANCELLING AND OTHER FILTERS 	 2-11
- Z design rule 1 	 2-12
- Z design rule 2 	 2-12
- The auxiliary output and the emulator 	 2-14
- State Space Considerations 	 2-16

2.4. SOLVING DIOPHANTINE EQUATIONS 	 2-17
- A. Finding the GCD 	 2-18
- B. Solving the Diophantine Equation 	 2-19
- Recursive algorithm 	 2-20
- C. Diophantine recursion 	 2-20
- Example 	 2-22
- A. Find the GCD of Z-(s) and A(s) 	 2-22
- B. Solving the Diophantine equation 	 2-23
- C. Diophantine recursion 	 2-23
- Example: B(s) = 1+0.1s 	 2-25
- Example: B(s) = 1-s 	 2-25

2.5. PREDICTORS 	 2-26
- Example (Unit integrator) 	 2-28
- Example (Rational transfer function) 	 2-30
- Continuous-time FIR Transfer Functions 	 2-30
- Property 2 	 2-32
- The auxiliary output and the emulator 	 2-32

2.6. APPROXIMATE TIME DELAYS 	 2-33
- Time-delay approximation 	 2-34
- System approximation 	 2-34
- The auxiliary output and the emulator 	 2-35

2.7. LINEAR-IN-THE-PARAMETERS FORM 	 2-36

CHAPTER 3: EMULATOR-BASED CONTROL

3.1. INTRODUCTION
	

3-1
3.2. THE CONTROL LAW
	

3-2
- Limiting the control signal
	

3-3
3.3. THE NOTIONAL FEEDBACK LOOP
	

3-4
- Notional loop-gain
	 3-6

- Closed-loop system output
	

3-6
- Closed-loop system input
	

3-7

XIII

- The closed-loop characteristic equation 	 3-8
- Parallel transfer functions 	 3-8

3.4. CHOOSING P(s) AND Z(s) 	 3-10
- Notional loop-gain 	 3-10
- Closed-loop system output 	 3-10
- P(s) design rule 	 3-11
- Z(s) design rule 	 3-11
- Closed-loop system input 	 3-11
- Model-reference control 	 3-12
- Example 	 3-12
- Pole-placement control 	 3-13
- Example 	 3-13
- Steady-state linear-quadratic control 	 3-14

3.5. CHOOSING R(s) 	 3-15
- Model-reference control 	 3-15

3.6. CHOOSING Q(s) 	 3-16
- Q(s) design rule 	 3-17

3.7. CHOOSING T 	 3-18
3.8. SMITH'S PREDICTOR 	 3-18
3.9. CHOOSING C(s) 	 3-20

- Closed-loop system output 	 3-21
- Closed-loop system input 	 3-21
- C(s) design rule 	 3-22

3.10. INTEGRAL ACTION 	 3-22
- PI design rule 1 	 3-23
- PID design rule 2 	 3-23
- PID control 	 3-24
- Example (Model reference PID) 	 3-24
- Example (Pole placement PID) 	 3-25

3.11. A DETUNED MODEL-REFERENCE CONTROLLER 	 3-26
- Notional loop-gain 	 3-27
- Closed-loop system output 	 3-28
- Closed-loop system input 	 3-28
- Example 	 3-28

CHAPTER 4: NON-ADAPTIVE ROBUSTNESS

4.1. INTRODUCTION 	 4-1
4.2. NEGLECTED PLANT DYNAMICS 	 4-2
4.3. ROBUSTNESS BASED ON THE ACTUAL FEEDBACK SYSTEM 	4-3

- Non-adaptive criterion 1 	 4-4
4.4. THE ERROR FFFnBACK SYSTEM 	 4-4

- The Control Signal Error 	 4-5
- The Emulator Approximation Error 	 4-5
- The modified notional feedback system 	 4-6
- The error feedback system 	 4-7

4.5. ROBUSTNESS 	- ASTROM'S CRITERION 	 4-7
- Non-adaptive criterion 2 	 4-8
- Non-adaptive criterion 3 	 4-9
- Astrom's formulation 	 4-9

4.6. ROBUSTNESS 	- THE M-LOCUS 	 4-10
- Non-adaptive criterion 4 	 4-10
- Non-adaptive criterion 5 	 4-11

4.7. ROHRS EXAMPLE 	 4-11

XIV

- The system 	 4-11
- The design parameters 	 4-13
- Robustness analysis 	 4-15
- Remarks 	 4-16

CHAPTER 5: LEAST-SQUARES IDENTIFICATION

5.1. INTRODUCTION
5.2. LINEAR IN THE PARAMETERS SYSTEMS

- Example: Linear in the parameters model
- Example: The effect of offset

5.3. CONTINUOUS-TIME LEAST-SQUARES CRITERION
5.4. MINIMISATION OF THE COST FUNCTION

- Existence of solutions
- Non-recursive solution
- Recursive solution
- A formula for the optimum value 0(t)
- A formula for Jz((t),t)
- Initial conditions

5.5. THE RECURSIVE LEAST-SQUARES ALGORITHM
- Recursive least squares with inversion
- Recursive least squares without inversion

5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES
- The 'ideal' cost
- Properties
- The small gain property
- Ideal behaviour - estimates
- Ideal behaviour - estimation error

5.7. DISCRETE-TIME PARAMETER ESTIMATION
- The linear in the parameters model
- The Least-Squares Algorithm

CHAPTER 6: SELF-TUNING CONTROL

6.1. INTRODUCTION
- Organisation of the chapter

6.2. FEEDBACK CONTROL
6.3. SYSTEM IDENTIFICATION

- An emulator for the system
- A self-tuning emulator
- Non-zero mean disturbances

6.4. EXPLICIT SELF-TUNING CONTROL
6.4.1. Off-line design

- The off-line (a-priori) design phase
- The on-line tuning phase

6.4.2. On-line design
- The off-line (a-priori) design phase
- The on-line tuning phase

6.5. IMPLICIT SELF-TUNING CONTROL
- Tuning the emulator
- Example 1
- Example 2

6.5.1. Off-line design
- The off-line (a-priori) design phase

5-1
5-2
5-2
5-3
5-4
5-6
5-7
5-8
5-9

5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-15
5-16
5-17
5-18
5-19
5-19
5-20

6-1
6-3
6-4
6-5
6-6
6-7
6-9
6-11
6-11
6-12
6-12
6-13
6-13
6-13
6-15
6-15
6-16
6-16
6-17
6-17

XV

6-18
6-18
6-18
6-19
6-21
6-21
6-25
6-27
6-31

- The on-line tuning phase
6.5.2. On-line design

- The off-line (a-priori) design phase
- The on-line tuning phase

6.6. SOME SIMULATED EXAMPLES
6.6.1. Using realisability filter

- Remarks
6.6.2. Not using realisability filter

- Remarks

CHAPTER 7: ROBUSTNESS OF SELF-TUNING CONTROLLERS

7.1. INTRODUCTION 	 7-1
7.2. THE ERROR FEEDBACK SYSTEM 	 7-3

- The emulation error 	 7-3
- The approximation error 	 7-4
- The estimation error 	 7-4
- Example 	 7-6
- The estimator input 	 7-6
- The error feedback system 	 7-7
- The output error 	 7-8
- Exponential weighting 	 7-9

7.3. THE M-LOCUS 	 7-10
- Assumption 1 	 7-10
- Assumption 2 	 7-11
- Assumption 3 	 7-11
- Assumption 4 	 7-11
- Assumption 5 	 7-12
- The importance of control weighting 	 7-12

7.4. ADAPTIVE ROBUSTNESS 	 7-13
- Outline of proof 	 7-13
- Lemma 7.1 	 7-14
- Lemma 7.2 	 7-15
- Theorem 7.1 	 7-16

7.5. INTERNAL STABILITY 	 7-18
- Lemma 7.3 	 7-18
- Theorem 7.2 	 7-19
- Assumption 6 	 7-19

7.6. ROHRS EXAMPLE 	 7-20
- The system and the design parameters 	 7-21
- Robustness analysis 	 7-21

7.7. SIMULATION RESULTS 	 7-24

CHAPTER 8: NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS

8.1. INTRODUCTION
	

8-1
8.2. TWO DEGREE OF FREEDOM DESIGN
	

8-4
8.3. THE EMULATOR
	

8-8
8.4. THREE DEGREE OF FREEDOM DESIGN
	

8-10
8.5. ROBUSTNESS
	

8-11
- Two degree of freedom (non-adaptive) design

	
8-12

- Three degree of freedom (adaptive) design
	

8-13
8.6. COMPARATIVE ROBUSTNESS
	

8-14
- Two degree of freedom (non-adaptive) design

	
8-14

- Three degree of freedom (adaptive) design 8-15
SUMMARY 8-16

CHAPTER 9: CASCADE CONTROL

INTRODUCTION 9-1
CASCADE SYSTEMS 9-2
POSSIBLE CASCADE METHODS 9-3
- Single-loop control 9-3
- Ignoring inner loops 9-3
- Taking account of inner loops 9-4
- The recursive emulator method 9-5
THE RECURSIVE EMULATOR METHOD 9-6
SELF-TUNING CASCADE CONTROL 9-8
EXAMPLES 9-8
- Single-loop control 9-10
- Ignoring inner loops 9-11
- Taking account of inner loops 9-12
- The recursive emulator method 9-13

CHAPTER 10: TWO-INPUT TWO-OUTPUT SYSTEMS

10.1. INTRODUCTION 	 10-1
10.2. THE SYSTEM 	 10-4

- Example 1: Output coupled tanks 	 10-7
- Example 2: Input coupled tanks 	 10-8
- Example 3: Postlethwaite & MacFarlane 	 10-9
- Relative gain array 	 10-10
- Example 	 10-11

10.3. A SELF-TUNING ALGORITHM 	 10-11
- Notional design 	 10-12
- Dl 	 10-13
- D2 	 10-13
- D3 	 10-13
- Al 	 10-13
- A2 	 10-15
- A3 	 10-15
- Example: Coupled tanks 	 10-15
- The emulator 	 10-16
- D4a 	 10-17
- D4b 	 10-17
- D4c 	 10-17
- Example: coupled tanks 	 10-18
- The adaptive controller 	 10-18

10.4. ERROR EQUATIONS 	 10-20
10.5. NON-ADAPTIVE ROBUSTNESS 	 10-23

- Theorem 10.1 (non-adaptive robustness) 	 10-23
- Remark 	 10-24

10.6. ADAPTIVE ROBUSTNESS 	 10-24
- Theorem 10.2 (Adaptive robustness) 	 10-25
- Example: Output coupled tanks 	 10-26
- Example: Input coupled tanks 	 10-27

10.7. SUMMARY 	 10-28

KEYWORD INDEX

XVI

8.7.

9.1.
9.2.
9.3.

9.4.
9.5.
9.6.

SYMBOL INDEX

CHAPTER 0

Continuous Time
Self-Tuning Control

0.1. INTRODUCTION

Self-tuning control has largely developed within a

discrete-time framework; presumably because of the digital

technology necessary for the implementation of adaptive

control. However, although technology dictates implementa-

tion, it need not dictate design. As the world outside the

computer is essentially continuous-time, it seems appropri-

ate to design self-tuning controllers in a continuous-time

setting although the implementation is digital.

A continuous-time approach to self-tuning control was

given by Young in 1965[1]; more recently, and with the

benefit of the large amount of work in discrete-time self-

tuning, a continuous-time approach has been revived by

Egardt[2,3].

In my own research, I tentatively discussed the idea of

continuous-time self-tuning in my thesis[4]. Choosing

discrete-time transfer functions for self-tuning control

based on continuous-time models was explored in refer-

encel57, and a hybrid approach was discussed in refer-

ences[6,7]. An argument for a fully continuous-time design

0-1

0-2 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

approach was given in reference[8]. 	This book brings

together some thoughts on the subject of continuous-time

self-tuning control arising from the ideas appearing in

reference[8].

Of course, most work in model-reference adaptive con-

trol has been conducted in a continuous-time setting; but

such algorithms are usually of a rather simple form due to

the constraints of analogue implementation. However,

model-reference adaptive controllers and self-tuning con-

trollers have been shown[2,3] to be closely related.

There have also been a number of attempts to link

continuous-time and discrete-time approaches, for exam-

pleC5,6,9,10].

Within the continuous-time context, Egardt was able to

unify a number of apparently diverse algorithms[2,3]. More

recently[8], a number of algorithms including model-

reference, pole-placement and predictive have been con-

sidered within a unified continuous-time context. In this

book, these ideas are extended and refined. The notion of

an emulator is introduced and is used to unify a number of

old algorithms and to generate some new ones. This is

introduced by way of the celebrated Smith predictorCll].

The design approach presented in this book is more

closely related to control engineering practice than is

usual in this field; in particular, the method is motivated

by Smith's predictorill]. It is to be expected that such

an approach is likely to lead to robust control algorithms,

and this has been proved in certain cases (see chapter 7).

In short, three main ideas are explored in this book:

❑ Design of self-tuning controllers in a continuous-time

(as opposed to a discrete-time) context.

Sec. 0.1. 	 INTRODUCTION 	 0-3

❑ The use of an emulator, an extension of Smith's predic-

tor, to unify and illuminate the design of self-tuning

controllers.

❑ The use of control weighting to give self-tuning con-

trollers which are robust in the face of neglected sys-

tem dynamics.

These three ideas are introduced in the following sections.

0.2. THE CONTINUOUS-TIME APPROACH

Most systems of interest to the control engineer exist

in a continuous-time setting - they are described by dif-

ferential equations. In contrast, most controllers which

are sophisticated enough to have a self-tuning capability

are implemented using digital microprocessor technology and

as such exist in a discrete-time setting - they are

described by difference equations. It follows that con-

trollers must often be designed by starting off with a

continuous-time system and ending up with a discrete-time

controller. 	We contrast two approaches to such design:

continuous-time design as in Figure 1; and discrete-time

design as in Figure 2.

I 	 I 	i 	
IContinuous-timel-->1Controller F—>-1Continuous-discretef--1
Isystem 	 I 'Design 	I 'transformation 	I I

I 	1 	
0-IDiscrete-time I
'controller 	I

Figure 0.2.1 Continuous-time design

Each design method starts with a continuous-time system and

0-4 	CONTINUOUS-TIME SELF-TUNING CONTROL 	Chap. 0

i 	 t 	i 	 i 	i 	 i
1 Continuous-timel—>lContinuous-discretel—>-IController1--1
'system 	 1 'transformation 	I 'design 	1 I
I 	 1 	1 	 I 	I 	 I 	I

1
I 	1 	 1
L>A Discrete-time I
'controller 	1

Figure 0.2.2 Discrete-time design

ends with a discrete-time controller; but the design and

continuous-discrete transformation steps are transposed

between the two methods.

Some advantages of the continuous-time, as opposed to

the discrete-time approach are as follows:

❑ The design method is matched to the actual system to be

controlled. Thus system characteristics such as rela-

tive degree and zero location can be directly

addressed.

❑ Artefacts of sampling such as sampled minimum phase

systems having zeros outside the unit discC12,13] are

avoided.

❑ The controller coefficients arising from the self-

tuning controller correspond to continuous-time

(Laplace domain) transfer functions. Most control

engineers find these easier to interpret than coeffi-

cients of discrete-time (z-domain) transfer functions.

An example of this is that the self-tuning PI (propor-

tional plus integral) controller discussed in this book

and elsewhereC14] directly estimates the integral

time-constant of the controller.

(1)

Y

Sec. 0.2. 	THE CONTINUOUS-TIME APPROACH 	 0-5

❑ The controller sample interval is chosen after the

design stage, not before.

0.3. EMULATORS

The control of systems with time-delay can be simpli-

fied by making use of a predictor. This idea was suggested

by Smith in the late '50sC11,15].

Smith's predictor can be regarded as a method of

realising the unrealisable transfer function esT. In par-

ticular, itenerates the q 	 quantity yT(s) (Fig 1) given by

-* yT (s) = y(s) + C1 - e-sT]Â(~(s)

w + 	1 	 I 	u 	I 	 I 	 I 	 1
—0 {controllerl--> , 	IDe1ayE--> 	!Plant' 	

ACTUAL

MODEL
1 	 I 	1 	 *
	I Plant F--> , 	'Delay I----, - + y
1 	1 	(1 	1 	0-0—T> T

	

1 	> 	1+ + 1

Figure 0.3.1 Smith's Predictor

In the absence of disturbances, substitution of the system

equation gives

-* 	 - sT yT(s) = A(s)u(s) = e 	y(s) =T(s) (2)

where yT(s) is the Laplace transform of yT(t)=y(t+T). That

0-6 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

is, in the absence of disturbances, the effect of the Smith

predictor is the same as including an inverse time delay

(esT) in series with the system output.

The significant thing about this result is that the

time delay (e
sT) is cancelled from the system loop-gain

by the inverse delay (esT). 	That is the closed-loop

characteristic equation does not have a time delay factor.

This is brought out by drawing the feedback loop as in Fig-

ure 2, where the explicit predictor equation 1 is replaced

by equation 2.

w + 	, 	 , 	u 	, 	i 	 I 	i 	Y
	0---I Controller F—>--{ Delay l 	> 	 I Plant f 	,

	

_1 	I 	 I 	I 	I 	 i 	1 	I

	

! 	
1

e 	
I

	~Inversf--< 	 ~

1Delay I
L 	,

Figure 0.3.2 The equivalent feedback l000p

The main points of this discussion are now summarised:

1 	A nasty component of the system, a delay, can be

removed from the loop gain using an unrealisable com-

ponent, an inverse delay.

2 	An unrealisable component can be emulated using realis-

able transfer functions operating on both the system

input and the system output.

3 	Such emulation is only possible if the system transfer

function is known.

A particular design method, based on Smith's predictor,

can be used to overcome the effect of a nasty system com-

ponent, a time delay. The method can be interpreted as

Sec. 0.3. 	 EMULATORS 	 0-7

using an emulator to emulate an unrealisable component (in

this case eST) which cancelled out the nasty component

(in this case e-sT)

However, a time delay is not the only bothersome com-

ponent of a transfer function; there are at least three:

1 	A time delay.

2 	A high relative degree p (a lot more poles than zeros).

3 	Zeros with positive real parts (unstable numerator

B(s)).

Why not cancel all these out?

The corresponding unrealisable transfer function gen-

erates the quantity ~(s) from p(s) as

~sT P(s)~
(s) = e
	

(s)
Z(s)

(3)

1 	esT cancels out the delay; the net delay is reduced to

zero.

2 	If degree(P(s))-degree(Z(s)) = p (the relative degree

of the system), the net relative degree is reduced to

zero.

3 	If Z(s) contains all the unwanted factors of B(s) then

such factors are cancelled; the net number of unstable

zeros is reduced to zero.

In this book, the design of such emulators, together

with the corresponding fixed and self--tuning controllers,

is discussed in some detail.

As the seminal self-tuning regulator of Astrom and Wit-

tenmarkCl6] was based on a discrete-time predictor, it is

not surprising that the emulator, as a generalisation of a

0-8 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

predictor, also forms the basis of a self-tuning algorithm.

Finally, we note that the concept of an emulator is not

restricted to the continuous-time approach; a discrete-time

development is given in reference[17]. However, the notion

of an emulator is much more meaningful in a continuous-time

setting as it relates directly to the actual continuous-

time system.

0.4. ROBUSTNESS

In this book, a controller is said to be robust if it

remains stable in the presence of neglected system dynam-

ics. There are two categories of neglected dynamics con-

sidered here:

o 	Neglected dynamics arising from underestimating the

order of a single-input single-output system.

❑ Neglected dynamics arising from neglecting the interac-

tion between loops in a two-input two-output system.

These two situations can be generalisedClBi, but this gen-

eralisation is beyond the scope of this book.

Robustness has received considerable attention in the

past few years; see the references for chapter 7. Indeed a

book on the subject has recently appeared[l91. 	Roughly

speaking, robustness research can be divided into local

robustness meaning stability for sufficiently small initial

parameter error and sufficiently small estimation rate and

global robustness meaning stability for any initial parame-

ter error and parameter update rate. It is the latter that

is discussed in this book.

Much theoretical research was stimulated by the work of

RohrsC20] who showed, by means of simulation, that model

reference adaptive control was not robust, in the sense

that it could be rendered unstable by quite small neglected

Sec. 0.4. 	 ROBUSTNESS 	 0-9

dynamics. His two examples[20] have now become standard for

illustrating robustness results, and we use his second

example in chapters 4 and 7.

The key idea used in this book to give robust control

is control weighting. Roughly speaking, the reason why

model-reference is not robust is that it tries to match a

reference model at all frequencies. This is both unneces-

sary and dangerous: unnecessary because we are not

interested in closed-loop setpoint response at high fre-

quencies; dangerous because it is not usually possible to

match a reference model at high frequencies. In chapter 7

it is shown that adaptive robustness is intimately con-

nected with a notional feedback loop which must be stable

for robustness. It is found that the notional feedback loop

has infinite gain in the absence of control weighting, and

this leads to non-robust algorithms.

The conclusion reached in this book is that control

weighting at high frequencies is essential for robustness.

This conclusion is in accord with my practical experience

(for example[21,22]) where control weighting (using the

generalised minimum variance algorithm[23,24] has always

been used to achieve satisfactory practical control.

The approach used in this book is based on some earlier

work on stability and convergence[25,26] utilising the

input-output stability approach[27] and also some work on

discrete-time robustness[28,297.

0.5. ORGANISATION OF THE BOOK

Apart from this chapter, the book contains a further 10

chapters. 	The arrangement of material is such that the

reader should not need to refer forward to understand a

particular topic. The reader may, of course, wish to look

forwards for the purposes of motivation. 	The index is

0-10 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

designed in such a way that any topics referred to in the

index are underlined unless they actually form part of a

section heading.

The chapters in the book are as follows:

1 	Continuous-time systems

2 Emulators

3 	Emulator-based control

4 	Non-adaptive robustness

5 	Least-squares identification

6 	Self-tuning control

7 	Robustness of self-tuning controllers

S 	Non-adaptive and adaptive robustness

9 	Cascade control

10 Two-input two-output systems

These chapters are outlined in the following subsections.

Continuous-time systems

The background required for this book is that of an

undergraduate course in classical continuous-time control

from the transfer-function point of view. 	The book by

DorfC301 would exemplify the sort of material required.

This chapter provides the basic ideas and notation used in

the rest of the book and could be skimmed through on a

first reading. A small amount of material on state-space

filters is included as background to the implementation of

the self-tuning algorithms.

Sec. 0.5. 	ORGANISATION OF THE BOOK 	 0-11

Emulators

This chapter provides design equations for a number of

emulators; including those for reducing relative order,

reducing the number of non-mimimum phase zeros and reducing

time delay. Algorithms are given in detail. Some care is

taken to incorporate system initial conditions into the

emulator design, as it is known that these are important in

parameter identification[31,32].

Emulator-based control

A number of fixed parameter controllers arise from put-

ting an emulator into a feedback loop. These include:

model-reference control, predictive control and pole-

placement control. All these controllers may have control

weighting giving detuned versions, which, as shown in

chapter 7, have desirable robustness properties.

The ideal of a notional feedback system is introduced

in this chapter.

Non-adaptive robustness

The robustness of fixed parameter, emulator-based con-

trollers to neglected dynamics is considered in this

chapter. As well as being of interest in its own right,

this provides a basis for the adaptive robustness proper-

ties considered in chapter 7. Rohrs second example[20] is

used to illustrate the results.

Least-squares identification

As it is less well known than its discrete-time coun-

terpart, a continuous-time least-squares algorithm is

derived in full. It is shown that the algorithm may be

regarded as a single-input single-output system with gain

in a special sense[27]) of less than one. This result is

0-12 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

central to the robustness analysis of chapter 7.

Discrete-time least-squares is outlined and compared

with the continuous-time version. It is shown how

continuous-time parameters can be estimated via this

method.

Self-tuning control

Putting together emulators, feedback and least-squares

identification gives self-tuning control. In particular, we

regard a self-tuning controller as a self-tuning emulator

within a feedback loop. We distinguish between implicit

and explicit algorithms as well as between on and off-line

emulator design. The algorithms include implicit versions

of model-reference and pole-placement algorithms.

A number of illustrative simulations are given.

Robustness of self-tuning controllers

An error feedback system for the self-tuning con-

troller, in the presence of neglected dynamics, is derived

in this chapter and is shown to comprise a linear time-

invariant system M(s) in feedback with the single-input

single-output system SZ representing the least-squares esti-

mator. It follows that the properties of M(s), in particu-

lar the M-locus M(jw), are crucial in determining robust-

ness. 	Some results are proved for a particular version of

the self-tuning controller.

The results are illustrated by simulation based on

Rohrs's exampleC20].

This chapter is based on an internal reportf_33].

Sec. 0.5. 	ORGANISATION OF THE BOOK 	 0-13

Non-adaptive and adaptive robustness

When is adaptive control better than non--adaptive con-

trol? This is an unanswered question. This chapter attempts

to illuminate this question and its possible answers by

comparing the non-adaptive design method of Horowitz[34,35]

with a particular self-tuning controller. It is suggested

that the adaptive controller has an advantage for slowly

varying systems in that an extra degree of design freedom

may relieve the sensor noise problem associated with high-

gain two degree-of-freedom design.

This chapter is based on a conference paper[36].

Cascade control

Cascade control is a common multi-loop control confi-

guration. This chapter compares and contrasts a number of

approaches to this problem in a self-tuning context.

This chapter is based on a conference paper[37].

Two-input two-output systems

The final chapter of the book considers another common

control system configuration: an interacting two-loop sys-

tem. The single-loop self-tuning algorithm is extended to

account for loop interaction and the robustness of the

resulting scheme is analysed.

This chapter is based on an internal report[38].

0--14

References

CONTINUOUS-TIME SELF-TUNING CONTROL 	Chap. 0

1. Young, P.C., The determination of the parameters of a

dynamic process," Radio and Electronic Engineer, vol.

29, pp. 345-361, 1965.

2. Egardt, B., "Unification of some continuous-time adap-

tive control schemes," IEEE Trans. Autom. Control, vol.

AC-24, p. 588, 1979.

3. Egardt, B., Stability of adaptive controllers,

Springer, 1979.

4. Gawthrop, P.J., Studies in identification and control,

1976. D.Phil. Thesis, Oxford University

5. Gawthrop, P.J., 	Some interpretations of the self-

tuning controller," Proceedings IEE, vol. 124, no. 10,

pp. 889-894, 1977.

6. Gawthrop, P.J., "Hybrid self-tuning control," Proc.

IEE, vol. 127, no. 5, pp. 229-236, 1980.

7. Gawthrop, P.J. and Clarke, D.W., "Hybrid self-tuning

control and its interpretation," Proceedings of 3rd IMA

Conference on Control Theory, Academic Press., 1980.

8. Gawthrop, P.J., "A continuous-time approach to

discrete-time 	self-tuning control," Optimal Control:

Applications & Methods, vol. 3, no. 4, pp. 	399-414,

1982.

9. Goodwin, G.C., Some observations on robust estimation

and control," in Preprints of the 7th IFAC/IFORS sympo-

sium on identification and system parameter estimation,

York, U.K., 1985.

10. Goodwin, G.C., Leal, R.L., Mayne, D.Q., and Middleton,

R.H., "Rapprochement between continuous and discrete

REFERENCES 	 0-15

model-reference adaptive control," Automatica, vol. 22,

no. 2, pp. 199-208, 1986.

11. Smith, 0.J.M., "A controller to overcome dead-time,"

ISA transactions, vol. 6, no. 2, pp. 28-33, 1959.

12. Astrom, K.J., Hagander, P., and Sternby, J., "Zeros of

sampled systems," Automatica, vol. 20, no. 1, pp. 31-

38, 1980.

13. Wellstead, P.E., Zanker, P., and Edmunds, J.M., Well-

stead, P.E., Edmunds, J.E., Prager, D., and Zanker, P.,

"Self-tuning pole/zero assignment regulators," Int. J.

Control., vol. 30, no. 1, pp. 1-26, 1979.

14. Gawthrop, P.J., "Self-tuning PID controllers: Algo-

rithms and implementation," IEEE Transactions on

Automatic Control., vol. AC-31, no. 3, 1986.

15. Marshall, J.E., Control of time-delay systems, Peter

Peregrinus Ltd., 1979.

16. Astrom, K.J. and Wittenmark, B., On self-tuning regu-

lators," Automatica, vol. 9, pp. 185-199, 1973.

17. Gawthrop, P.J., 	An introduction to 	discrete-time

self-tuning control," in Signal processing for control,

ed. Jones, R.P., Springer, 1986.

18. Gawthrop, P.J., "Robust self-tuning control of n-input

n-output systems," in Preprints of the 7th IFAC Sympo-

sium on Identification and System Parameter Estimation,

York, U.K., 1985.

19. Anderson, B.D.O., Bitmead, R.R., Johnson, C.R., Kokoto-

vic, P.V., Kosut, R.L., Mareels, I.M.Y., Praly, L., and

Reidle, B.D., Stability of adaptive systems: Passivity

and averaging analysis, MIT Press, 1986.

0-16 	CONTINUOUS-TIME SELF-TUNING CONTROL
	

Chap. 0

20. Rohrs, C.E., Valavani, L., Athans, M., and Stein, G.,

"Robustness of continuous-time adaptive control in the

presence of unmodeled 	dynamics," Trans. IEEE, vol.

AC-30, pp. 881-889, 1985.

21. Clarke, D.W and Gawthrop, P.J., "Implementation and

application of microprocessor-based self-tuners,"

Automatica, vol. 17, no. 1, pp. 233-244, 1981.

22. Proudfoot, C.G., Gawthrop, P.J., and Jacobs, O.L.R.,

"Self-tuning control of a pH neutralisation process,"

Proc. IEE, vol. 5 pt D., no. 5, pp. 267-272, 1983.

23. Clarke, D.W and Gawthrop, P.J., "Self-tuning con-

troller," Proceedings IEE, vol. 122, no. 9, pp. 929-

934, 1975.

24. Clarke, D.W and Gawthrop, P.J., "Self-tuning control,"

Proceedings IEE, vol. 126, no. 6, pp. 633-640, 1979.

25. Gawthrop, P.J., "On the stability and convergence of

self-tuning controllers," in Proceedings of the IMA

conference on 'The Analysis and Optimisation of Sto-

chastic Systems'„ Academic Press, 1978.

26. Gawthrop, P.J., "On the stability and convergence of a

self-tuning controller," Int. J. Control, vol. 31, no.

5, pp. 973-998, 1980.

27. Desoer, C.A. and Vidyasagar, M., Feedback systems .

Input-output properties, Academic Press, London, 1975.

28. Gawthrop, P.J and Lim, K.W., "On the robustness of

self-tuning controllers," Proc. IEE, vol. 129 ptD, pp.

21-29, 1982.

29. Lim, K.W., Robustness of self-tuning 	controllers,

D.Phil. Thesis, Oxford University, 1982.

REFERENCES 	 0-17

30. Dorf, R.G., Modern control systems, Addison-Wesley,

1980.

31. Gawthrop, P.J., "Parametric identification of transient

signals," IMA Journal of Mathematical Control and

Information, vo]. 1, pp. 117-128, 1984.

32. Gawthrop, P.J., "Parameter identification from non--

contiguous data," Proceedings IEE, vol. 131 pt. D, no.

6, pp. 261-265, 1984.

33. Gawthrop, P.J., "Robustness of self-tuning controllers

PartI: Single-input single-output systems.," Report

CE/T/13, School of Engineering and Applied Sciences,

Univ. of Sussex., 1985.

34. Horowitz, I., Synthesis of feedback systems, Academic

Press, 1963.

35. Horowitz, I. and Sidi, M., "Synthesis of feedback sys-

tems with large plant ignorance for prescribed time-

domain tolerances," International Journal of Control,

vol. 16, pp. 287-309, 1972.

36. Gawthrop, P.J., "Comparative robustness of non-adaptive

and adaptive control," in Proceedings of the IEE

conference "Control '85", Cambridge, U.K., 1985.

37. Gawthrop, P.J., "Multi-loop self-tuning control: Cas-

cade systems," in Preprints of the 9th IFAC triennial

world congress., ed. K.J. Astrom, vol. VII, pp. 	127-

132, Budapest, 1984.

38. Gawthrop, P.J., "Robustness of self-tuning controllers

PartII: Two-input two-output systems.," Report CE/T/12,

School of Engineering and Applied Sciences, Univ. of

Sussex., 1985.

CHAPTER 1

Continuous Time Systems

Aims. To review the system theory required as a

background for the rest of the book.

1.1. INTRODUCTION

For most of this book, we shall be concerned with the

control of single-input single-output linear time-invariant

systems. Multivariable systems will also be considered,

but will be built up from the single-input single-output

systems examined in this chapter. The assumption of

linearity is, as always, more for convenience than for

realism.

The assumption of time invariance is to simplify the

the description of the systems and the analysis of the

algorithms. In must be admitted that with this assumption

the current of view of self-tuning methods is inconsistent:

part of the motivation for using such methods is that prac-

tical systems change with time. Nevertheless, simulation

results indicate that slowly time-varying systems can be

successfully controlled by self-tuning algorithms.

1-1

We shall model systems using the differential equation

1-2 	 CONTINUOUS-TIME SYSTEMS
	

Chap. 1

and Laplace transform transfer function approach. Of course

computers see the world in terms of difference equations

and z-transforms because they are blinkered by the

analogue-digital interface; but it is argued in this book

that this is no reason for us to take such a computercen -

tric view of systems.

Systems in this book are formed from three components:

1. The controlled system forced by the control signal.

2. Transient disturbances modelled as the transient

response of an input-free dynamic system.

3. Forced disturbances modelled as the output of a dynamic

system forced by a signal which cannot be controlled. A

special case of a forced disturbance is a stochastic

process where the system input is white noise.

These components are treated in the following subsec-

tions. 	They are combined into a standard form in section

1.9.

We shall only cover those topics from system theory

which are relevant to this book. Those who are not fami-

liar with basic system and control theory are advised to

consult a standard textbook such asC1,2,3].

1.2. TRANSFER FUNCTIONS

The simplifying assumptions of linearity and time-

invariance allow dynamic systems to be written as linear

differential equations with constant coefficients. 	The

time variable is denoted by t and is assumed to start at

t=0. We shall take the view that complex systems can be

built up by interconnecting elementary subsystems of the

form

Sec. 1.2. 	 TRANSFER FUNCTIONS 	 1-3

n 	d
n-i 	 n 	do i

E a: 	y'(t) _ Eb: 	u'(t)

	

i=0 ldtn 1 	i=0 ldtn i

y' is the system output, u' the system input and a and bí

(0 (i < n) are system coefficients.

We will assume without loss of generality that

a'0#0
	

(2)

and thus the system order is n. Let m be the highest value

of j for which b
n-j

#0. Then

0
p = n - m (3)

is the relative order of the system.

r 	 i
D' (s) 1

I 	 F->
I A'(s) 1

_ 	 1 B'(s) 1 	+ 	_
u' (s) >--{ 	 f—> 	0 	> y' (s)

1 A'(s) 1 	+

Figure 1.2.1 Laplace transform of subsystem

This equation may be rewritten in terms of Laplace

transforms (see Figure 1.2.1) as

B'(s)-, 	D'(s)
y'(s) - A'(s)u

(s) + A'(s)

(1)

(4)

1-4 	 CONTINUOUS-TIME SYSTEMS
	

Chap. 1

where

A'(s) = aósn
 + alsn 1 + . . + aR 	 (5)

B'(s) = bósm + bísm 1 + ... + bm 	 (6)

y'(s) is the Laplace transform of y'(t), u'(s) 	is the

Laplace transform of u'(t), and D'(s) is a n-lth order

polynomial dependent on the n initial conditions

d v'(0) 	i=0..n-1. 	 (7)
dt

The system transfer-function is the ratio of the two

polynomials

B'(s)
H'(s) A'(s)

The transfer function is said to be strictly proper if the

relative order p = n-m > 0, and proper if the relative

order p = n-m)0.

The n system poles are the n roots of A'(s)=0; the m

(finite) system zeros are the m roots of B'(s)=0. If none

of the poles has the same value as any of the zeros then

the polynomials A'(s) and B'(s) are said to be relatively

prime and the transfer function B'(s)/A'(s) is said to have

no cancelling factors.

The system frequency-response is defined as

B'(iw)
H'(jw) A'(jw)

(9)

(8)

this complex function of frequency can be interpreted as

the ratio of the steady-state system output to the system

Sec. 1.2. 	 TRANSFER FUNCTIONS 	 1-5

input when the system input is the unit exponential e jwt.

1.3. MARKOV PARAMETERS AND IMPULSE RESPONSE

Equation 1.2.4 reveals that the solution to the dif-

ferential equation 1.2.1 has two parts: a forced response

with Laplace transform

H'(s)u(s) -
A'(s)

u(s) (1)

and a transient response with Laplace transform

D'(s)
A'(s)

(2)

The forced component, involving the transfer function

H'(s), determines the effect of the system input on the

output and hence is of particular interest in the design of

feedback control systems.

A useful notion is the impulse response h'(t.) of a sys-

tem defined as the forced system response when the input is

a dirac S function. As the Laplace transform of a S func-

tion is unity, it follows that

Lapth'(t)} = B'(s)
A'(s)
	 (3)

That is, the system transfer function H'(s) is the Laplace

transform of the system impulse response h'(t).

The system transfer function can be reexpressed in

terms of s 1 and the relative order p as

-i 	 -m
B'(s) - s-p bo + b 1 	

+ ... + bms

A'(s) 	a
o
+ a s-1 +... + a s-n

i 	 n

(4)

Using repeated algebraic long division, this transfer func-

tion can be expressed as a polynomial in s 1 as

CONTINUOUS-TIME SYSTEMS 	 Chap. 1

op
H'(s) 	 -i
~,

(s)
_

i
îOhis

The coefficients hi are the system Markov parameters[3].

From equation 4 it follows that

h. = 0 for i < p 	 (6)

Multiplying by l/s (the Laplace transform of a unit

step) and taking the inverse Laplace transform, the unit

step response of a proper system is given by the Taylor

series about t=0

00 	ti
h'(t) = h ~ h.
	-! i o. i=1

Thus the Markov parameters hi i>0 are the ith derivatives

of the unit step response at time t=0+.

The Markov parameter representation is useful for

dividing the Laplace transform of derivatives of the

impulse response of the system into proper and improper

parts. In particular, the transfer function H'(s) multi-

plied by sk can be decomposed into a strictly proper

transfer function and the rest as

F (s)
skH'(s) = s

kB'(s)
- Ek(s) + A'(s)

(8)

where

deg(F) < deg(A) 	 (9'

(It is shown in standard algebra textbooks, e.g.C4], that

this decomposition is unique iff B'(s) and A'(s) are rela-

tively prime).

L - 6

(5)

(7)

Equation B corresponds to the operation of long divi-

sion using integers where Ek(s) corresponds to the quotient

(1)

[sFk(s) - hk+1A'(s)]

Sec. 1.3. MARKOV PARAMETERS AND IMPULSE RESPONSE
	

1-7

and Ek(s) the remainder.

The first term represents the non strictly proper part

and is given by

Ek(s) = E hisk-i = hsk-p + ... + hk
i=p

and the second term represents the strictly proper part

given by

F (s) 	00

 his 1 	hk+l.s
i+ 	

(11)
i=k+1

Denoting the coefficient of sn 1 in Fk(s) by fk0, it fol-

lows that

fk0
hkfl = a0 (12)

Those familiar with the discrete-time predictor of

Astrom[5] will recognise this decomposition with z replac-

ing s. This is because Markov parameters in discrete-time

are the coefficients of the weighting sequence expansion of

a z-transfer function[3].

1.4. THE MARKOV RECURSION ALGORITHM

A Markov recursion algorithm giving the Markov parame-

ters hk, together with the polynomials Ek(s) and Fk(s), can

be derived as follows- LEA:

Multiplying equation 1.3.8 by s

	

k+18'(s) 	 Fk(s) s 	A,(_s-) 	aEk(s) + sA' (s)

- 	(S) + h11 	+ 	A' (3i

(10)

1-8 	 CONTINUOUS--TIME SYSTEMS
	

Chap. 1

where the second equality is obtained by adding hk}1 to the

first term and subtracting it from the second. Using equa-

tion 3.11, the second term of the second equality is

proper. Together with equation 3.12 this yields the follow-

ing recursive algorithm:

_ fk0
hk+1 a0

Ek+l
(s) = sEk(s) + hk+1

Fk.}1(s) = sFk(s) - hk+lA'(s)

The initial polynomials are

Eo = 0; Fo = B'(s)

Note that if k < p then

Fk(s) = skB'(s)

1.5. STABILITY AND GAIN

Stability

We list some standard stability results for linear time

invariant systems described by the transfer function

H'(s) = B'(s)/A'(s). These results are intuitively obvious;

a deeper treatment is found , for example, in[7,87.

1. The system is stable if the poles of H'(s) 	(roots of

A'(s)) have negative real parts.

2. The transient response decays to zero at least as fast

as Ke
at
 for a finite constant K if the poles of H(s -

(2)

(3)

(4)

Sec. 1.5. 	 STABILITY AND GAIN 	 1-9

a) have negative real parts.

Gain

The gain of a system can be defined in various

ways[7,8]. 	For a linear time invariant system H'(s) the

gain y may be defined as the maximum steady-state

sinusoidal gain at any frequency w

y = sup H'(jw) 	 (1)
w

The root mean square of the system output y(t) may be

shown[7,8] to be bounded in terms of the system input u(t)

by

t 	 t
JfyZ(T)dT < y JfuZ(T)dT + K for all t
0 	 0

where K is a finite positive constant.

The scalar quantity

t
JfuZ(T)dT
0

Is also called the truncated L

u(t)C7,8].

norm of the signal

Exponential weighting

The exponentially weighted function ya(t) corresponding

to a signal y(t) is defined as

y(t) = e
at

 y(t) (4)

Suppose that the impulse response of H'(s) is h'(t). Using

the convolution integral, it follows that

t
y(t) = fh'(t-T)u(T)dT

0

(2)

(3)

(5)

1-10 	 CONTINUOUS-TIME SYSTEMS Chap. 1

Substituting for the exponentially multiplied variables

t
y(t) - fh'a(t-T)ua(T)dT

0

where

h' (t) ~ eath(t)
a

The transfer function of this exponentially multiplied sys-

tem is then

Go
H' (s) = fe sth' (t)dt = fe

-(s-a)t
h'(t)dt = H'(s-a)

a 	0 	a 	 0

In other words, the exponentially multiplied signals are

related by the same transfer function as the original sig-

nals except that 's' is replaced by 's-a' This corresponds

to the well known 'shifting on the s axis' theorem of

Laplace transforms[9].

1.6. CONTROLLABLE STATE-SPACE REPRESENTATION

The differential equation for a strictly proper subsys-

tem may be written in controllable state-space form as:

ddxc = Axc + Uu (1)

y(t) = BTX(2(t) 	 (2)

where the companion matrix A is given by

- a'1
	

-- a'2 	- a' 3 	- a'n 1

1 	0 	0 	0 	0
0 	1 	0 	0 	0

0 	0 	0 	1 	0

BT = Cb 	b l', 	Z

(6)

(7)

(8)

A = (3)

(4)

Sec. 1.6.CONTROLLABLE STATE-SPACE REPRESENTATION 	1-11

= E1,0,0,...,0] 	 (5)

If the subsystem is not strictly proper (bo#0) the sys-

tem has a direct feedthrough term. For the purposes of this

book, we handle this in a rather unconventional way by

using an extended state vector. The single nth order dif-

ferential equation 1.6.1 is recast as n first order dif-

ferential equations and an algebraic equation

d ci 	xC i 1 	i=1..n 	 (6)

aoxc o
=u-axc l 	a Z xc Z - . - anxcn 	 (7)

The extended state vector is then defined as

Xc = Cxco, xcl, "' xcn]T (8)

(xcl - xcn forms the state; xco is the extension)

Taking Laplace transforms (with zero initial condi-

tions) of equations 6 and 7 gives

-c 	_ - c
sx

i 	í (9) -i

n-
aoxco = u(s) - E s lxco 	 (10)

i=1

and so

-r 	g n
x o
	A'(s)

It follows that (with zero initial conditions) the Laplace

transform of the extended state vector is

u(s) 	 (12) X (s) = A'(s)

s
n

s
n-1

1

1-12 	 CONTINUOUS-TIME SYSTEMS 	 Chap. 1

In this formulation, the states are all derivatives of

xcn. For this reason, xcn is sometimes called the partial

state Ç of the system[3]. With zero initial conditions,

the partial state Ç can be written in terms of the system

input and output as

~ -c 1 - 	 1
= x n 	A'(s)u(s) - B'(s)y(s)

=

1.7. OBSERVABLE STATh-SPACE REPRESENTATION

An alternative state-space representation is:

ddX° = AX° + Hu

y = UTX° = x° n

where A and U are as before and

HT = Chn' hn-l
' . ., hl]

where h_ is the ith Markov parameter of the system. As in

the controllable representation, this may be rewritten in

terms of n first order differential equations and one alge-

braic equation as:

x°O = hnu 	alx°1 	a`x°Z 	. - anx°n 	 (4)

daxoi 	xoi i 	i
=1..n + n-1 i=1. .n 	 (5)

The extended state vector is then defined as

X° = Cx°o, x°1 , .., x
on]T (6)

(13)

(3)

Taking the Laplace transforms (with zero initial condi-

tions)

Sec. 	1.7. OBSERVABLE STATE-SPACE REPRESENTATION

x°n 	= 	y(s) 	- 	A'(s)u(s)

hence, taking the Laplace transforms

F' 	(s)

the

1-13

(7)

(8)

(9)

(10)

Markov

xOn 	i 	
Cs
A'(s) 	

- 	hl]u(s) 	- 	A'(s) 	
u(s)

Proceeding in this fashion, 	it follows that

F' 	(s) 	 F' 	(s)
= 	Cs Ak(s) xOn k

that is

F'
n
(s)

F' 	(s) n.i

B'(s)

form

hk]u(s) - 	A'ks) 	u(s)

u(s)

is closely related to

X°(s) 	= 	A'(s)

Thus the observable

recursion algorithm of section 1.4.

1.8. TIME DELAYS

Many practical systems include a pure time delay. One

class of subsystems with a pure input delay can be modelled

as

n 	dn-i 	 n 	dn-i
E a' 	-y'(t = E b: 	u'(t-T)

	

i=0 ldtn 1 	i=0 ldtn i

where T is the duration of the delay. If the initial condi-

tions corresponding to the time delay are zero the

corresponding Laplace transformed system is

y'(s) = e-sT (s) + D'(s)
A'(s) 	A'(s)

(2)

(1)

The modelling of systems with non-zero initial conditions

corresponding to the delay is more difficult[10,11]. We

1-14 	 CONTINUOUS-TIME SYSTEMS
	

Chap. 1

shall not consider it in this book.

1.9. THE SYSTEM EQUATION

The systems considered in this book are composed of a

number of subsystems representing the effect of the control

signal and the disturbances affecting the process. These

subsystems are considered in turn and then combined to form

the overall system model of the form

-
y(s) = e

-sT B(s)
u(s) + C(s)

v(s)
	
D(s)

A(s) 	 A(s) 	 A(s)
(1)

The issues involved in modelling the disturbances are then

considered.

The controlled system equation

The controlled system is modelled by the equations of

section 1.2 with y' replaced by yc and with a time delay

included

y-(s) = e
-sT Bc(s)

~(s) +
D
c
(s)

Ac(s) 	 Ac(s)

Transient disturbances

Some disturbances may be modelled as the transient

response of a dynamic system. In Laplace transform form

such a disturbance yt(t) can be written in the form of

(.2.4 with u' = 0 as

yt(s) =
Br(s)

At(s)

(2)

(3

Sec. 1.9. 	 THE SYSTEM EQUATION 	 1-15

Example: Constant

The constant disturbance

yt(t) = k

can be modelled as

yt(s) =
k
s

(4)

(5)

Example: Sinusoid

The sinusoidal disturbance

yt(t) = cos w0t

can be modelled as

yt(s) 	
s

Forced disturbances

Practical disturbances are often too irregular to be

modelled as transient disturbances but are nevertheless

smooth enough to be predicted over a limited time horizon.

Such disturbances can be usefully modelled as a high

bandwidth random signal v(t) passed through a transfer

function

yf(s) 	B
f
f(s)~(s)
A (s)

(8)

(6)

(7)

1-16 	 CONTINUOUS-TIME SYSTEMS 	 Chap. 1

Example: Random jumps

A piecewise constant signal with jumps of random ampli-

tude at random times can be modelled as

-f 	1-
= s y 	 (s)

00 	-sT.
v(s) = E kie 	1

i=0

where k. is a sequence of random amplitudes and Ti a

sequence of random times.

Example: Random process

A stochastic process with rational spectral density

Bf (-s)Bf (s)

Af (-s)Af (s)

may be modelled by passing white noise through a rational

transfer function; see[5,12] for a detailed discussion. To

avoid the mathematical details of stochastic process, we

will consider a model of the form

f
yf(s) - B (s)v(s)

Af(s)

where v(s) is a finite variance, high bandwidth stochastic

process.

The system model

The disturbed single-input single-output system (Figure

1.9.1) considered here is of the form

-sT B(s)- 	C(s)- 	D(s)
Y(s) = e 	A(s)

u(s) + A(s)v(s) + A(s)
(13)

(9)

(10)

(12)

This can arise from the three types of subsystems in

Sec. 1.9. 	 THE SYSTEM EQUATION 	 L-17

~ C(s) + +
v(s)

I A(s) I I

u(s)1 	-sT B(s)I 	y(s)
->-He 	-- f —0 	 >

A(s)I

Figure 1.9.1 The system model

various ways. In particular, if

y(t) = yc(t) + yt(t) + yf(t)

then

-sT B (s)- 	Dc(s) 	Bt(s) 	Bf(s)- y(s) = e 	u(s) + 	+ 	+ -f 	v(s)
A
c
(s) 	A

c
(s) 	A

t
(s) 	A

f
(s)

This is identical to equation 1.9.1 if

A(s) = Ac(s) At(s) At(s) 	 (16)

B(s) = Bc(s) At(s) Af(s) 	 (17)

C(s) = Bf(s) Ac(s) Af(s)

(14)

(15)

D(s) = Dc(s) At(s) At(s) + Bt(s) Ac(s) At(s) 	 (19)

1-18 	 CONTINUOUS-TIME SYSTEMS
	

Chap. 1

This example makes it clear that systems written in the

form of 1.9.1 will usually contain common factors in the

numerator and denominator of the various terms. This

implies that when each term is written in controllable

state-space form it will be unobservable, and when written

in observable state-space form it will be uncontrollable.

See, for example[3].

Assumptions about the disturbance

In many cases, the disturbance component of the system

is such that we would not wish to differentiate it. Given

that v(s) contains white noise or impulsive components,

this can be modelled by making

Disturbance assumption 1

deg(C) = deg(A) - 1

An even worse case would be when we would not wish even to

use the system output directly. This can be modelled by

making

Disturbance assumption 2

deg(C) = deg(A)

Throughout this book we will assume that C(s) is known,

or rather available as a controller design parameter for us

to choose.

Disturbance assumption 3

C(s) known.

This seems at first sight to be a rather sweeping

assumption. But let us suppose for a moment that the system

is "really" given by

Fb

Fb n-t

B

Fc n

Fc n-i

C

v(s) (24)

Sec. 1.9. 	 THE SYSTEM EQUATION 	 1-19

-sT B(s)- 	C'(s)-, 	D(s) y(s) = e 	
A(s)u(s) + A(s) v (s) + A(s) 	 (20)

then this can be written in the form of 1.9.1 if

C(s)v(s) = C'(s)v'(s); 	that is v(s) - ~(s~)v'(s) 	(21)

As the precise details of the disturbance v(s) do not con-

cern us here, the fact that v(s) is different from v'(s) is

not important.

A state-space representation

The system equation can be written in observable

state-space form as

d4X° = AX° + Hbu + Hcv 	 (22)

y = UtX° =
n
	 (23)

Taking Laplace transforms

Xe 	1
— 	A(s)

u(s) + 	1
A(s)

Recalling that Fbi = s1B for i<p it follows that

Fc

Xon k 	
skA(s)u(s) + A(s) for k<p (25)

1-20
	

CONTINUOUS-TIME SYSTEMS 	 Chap. 1

References

1. Nagrath, Z.J. and Gopal, M., Systems modelling and

anaysis, Tata McGraw-Hill, 1982.

2. Dorf, R.G., Modern control systems, Addison-Wesley,

1980.

3. Kailath, T., Linear Systems, Prentice-Hall, 1980.

4. MacLane, S. and Birkhoff, G., Algebra, Macmillan, New

York, 1967.

5. Astrom, K.J., Introduction to stochastic control

theory, Academic Press, New York, 1970.

6. Gawthrop, P.J. and Clarke, D.W., "Hybrid self-tuning

control and its interpretation," Proceedings of 3rd IMA

Conference on Control Theory, Academic Press., 1980.

7. Desoer, C.A. and Vidyasagar, M., Feedback systems .

Input-output properties, Academic Press, London, 1975.

8. Vidyasagar, M., Input-output analysis of large-scale

interconnected systems, Springer, Berlin, 1981.

9. Kreysig, E., Advanced Engineering Mathematics, Wiley,

New York.

10. A.T. Fuller, "Optimal nonlinear control systems with

pure delay, 	Int. J. Control., vol. 8, pp. 145-168,

1968.

11. P.J. Reeve, "Optimal control for systems with pure time

delay," Int. J. Control, vol. 11, pp. 659-681, 1970.

12. Melsa, J.L. and Sage, A.P., An introduction to proba-

bility and stochastic processes, Prentice-Hall, 1973.

CHAPTER 2

Emulators

Aims. To introduce the concept of an emulator as

the generalisation of a predictor. To describe

particular emulators providing emulation of

improper transfer functions and derivatives, zero

cancellation and prediction. To present design

methods for a variety of emulators.

2.1. INTRODUCTION

In 1959, Smith introduced the idea of using a predictor

to overcome the problems encountered in controlling a sys-

tem with dead-time[1]. The Kalman-Bucy filter was

developed around the same time[2], followed by the state

observer[3]. (SeeC4] for a tutorial account of such state

space methods).

These are all examples of using a model of the system,

together with input and output measurements, to deduce sig-

nals which cannot be directly measured. The Smith predictor

deduces future values of the system output; the Kalman

filter and state observer deduce system states. 	The term

inferential control has been used to describe control sys-

tems containing elements which infer unmeasured

2-1

2-2 	 EMULATORS 	 Chap. 2

variables[S,b].

All these examples illustrate an _approach to control

systems design where physically unrealisable operations

such as prediction or taking derivatives can be emulated by

making use of a parametric system model. We shall call the

dynamic systems which emulate unrealisable operations emu-

lators.

[The Concise Oxford Dictionary defines the verb

'emulate' as "Try to equal or excel; rival; imi-

tate zealously". We use the last meaning in this

book. 'Emulator' is the corresponding noun.]

In this chapter we shall consider three classes of such

unrealisable operations and their corresponding emulators;

those corresponding to:

1. Derivatives

2. Zero cancellation

and

3. Prediction.

Why are such emulators useful? Derivatives are useful

to reduce the relative degree p of a system, zero cancella-

tion is useful to reduce the number of non--minimum phase

system zeros, and predictors are useful to reduce system

time delay. These aspects are considered further in chapter

3, where the emulator is put into a feedback loop.

`I'he difficulty with emulators (as with predictors) 	is

that an accurate system model is required before the emula

for can be designed. Self-tuning emulators, occ) the

corresponding self-tuning controllers, are _ ,...coo.accd in

Sec. 2.1. 	 INTRODUCTION 	 2-3

chapter b to overcome this problem.

2.2. OUTPUT DERIVATIVES

In the presence of noise, it is usually not feasible to

take derivatives of the system output. This is reflected in

our model by the disturbance assumptions 1 and 2 of section

1.9 that the relative order of the disturbance transfer

function C(s)/A(s) is either 0 or 1. The former case

implies that we would not wish to use y directly without

low-pass filtering, the latter that we could use y but

could not take any derivatives.

In this section we show that it is possible to emulate

the operation of taking a derivative without introducing

white noise and its derivative. 	The method is closely

related to the state-space observable form of section 1.7,

and hence to state observersC3,4].

As most of the development is in the Laplace domain, it

is convenient to consider s-multiplied signals in the

Laplace domain rather than signal derivatives in the time

domain. The two approaches are the same if initial condi-

tions are zero; and in any case the resultant stability

properties are the same.

The sk multiplied system output (equation 1.9.1) is

k- 	kB(s)- 	kC(s)- 	kD(s) yk(s) = s y(s) = s A(s) 	 A(s)
+ s

A(s)v(s) + s A(s)

Using the Markov parameter expansion of section 1.4, the sk

multiplied disturbance transfer function may be decomposed

into two parts

skC(s) = E 	(s) + F
ik(s)

A(s) 	ik 	A(s) (2)

(1)

where

2-4 	 EMULATORS 	 Chap. 2

Elk(s) = hosk +
hlsk-1 + 	+ hk 	 (3)

h. (i = 0..k) are the first k Markov parameters of

C(s)/A(s) and

deg(F) < deg(A) 	 (4)

The transfer function F k(s)/A(s) represents the strictly

proper part of skC(s
' and E (s) the improper remainder.

A(s) 	ik
Such a decomposition is unique (if C(s) and A(s) have no

common factors)C77.

In a similar fashion, the sk multiplied initial condi-

tion term can be decomposed as:

skD(s) - ED (s) +
A(s) 	ik

FDik(s)

A(s)
(5)

The first term EDIk(s) is a polynomial in s; the

corresponding time domain function contains impulse func-

tions and their derivatives; this term is thus not realis-

FD (s)

able. On the other hand, the second term —P,(s)
	- is a

proper transfer function.

Using this realisability decomposition,

written as the sum of an emulated value

corresponding error elk(s):

yk (s) =
k
"(s) + elk(s)

may be

and the

(6)

where

D

**(s) = skB(
s)u(s) 	Flk(s) 	

F
v(s) + 	

1){(s)

yk 	 A(s) 	A(s) 	 A(s)
(7)

and

2-5

(8)

v(s)

(9)

Sec. 2.2. 	 OUTPUT DERIVATIVES

eik(s) = Eik(s)v(s) + EDik
(s)

Equation 7 cannot be implemented as it stands as

is unknown. But from the system equation 1.9.1

v(s) = A(s)Y(s) - B(s)e -sT u(s) - D(s) C(s) 	C(s) 	 C(s)

Hence

	

**(s) = CskB(s) 	
Flk(s)

B(s)]e sT ú(s) + Fik(
s)
y(s) 	(10) yk 	 A(s) 	A(s) C(s) 	 C(s)

F
D

C lk(s) Flk(s)
D(s)

+

A(s) 	A(s) C(s)

Using the decomposition identity 2

F (s) 	E (s)B(s)

	

EskB(s)_ 	ik_ 	 B(s) 	ik
-

	

A(s) 	A(s) C(s) 	C(s)

Using the decomposition identity 5

FD
ik

 (s) 	F
ik 	
(s)

D(s) 	E 	(s)D(s) - EDik (s)C(s) 	 - 	 _ - ik
A(s) 	A(s) C(s) 	 C(s)

Hence

** 	Fik(s) 	Elk(s)B(s) -
sT - 	Iik

(s)- yk 	(s) = 	C(s)
	 Y(s) + 	C(s) 	

e 	u(s) + 	C(s)

where

Iik(s) = EDik(s)C(s) - Eik(s)D(s)

Remarks

1.
Flk(s)

C(s) 	is, by definition, proper.

(12)

(13)

(14)

2-6 	 EMULATORS 	 Chap. 2

E (s)B(s)
2. The relative degree of 	1kC(s) 	is p - k where p is

the relative degree of the controlled system transfer

function B(s) For this term to be realisable, we must
A(s)'

have k Ç p.

3. The emulator is constructed in such a way that the ini-

tial condition term FDIk
(s)/A(s) is strictly proper. It

follows that in its final form, the corresponding emu-

lator term Ilk(s)/C(s) is also strictly proper.

As, by definition, C(s) is stable, the initial condi-

tion term D(s)/A(s) corresponds to a decaying transient

term which becomes small after a time somewhat greater than

the time constants associated with C(s). For this reason,

the term may be omitted from the predictor to give the

approximate predictor (see Figure 2.2.1):

* 	Flk(s) 	Elk(s)B(s) -sT -
yk (s) = 	C(s) y(s) + 	C(s) 	

e 	u(s)

with associated error

(s) -
eik(s) = eik(s) + 	

C(s)

The auxiliary output and the emulator

Linear combinations of output derivatives can be

readily emulated using such methods. In particular, if the

auxiliary output $1(s) is defined as

(1) 1(s) = P(s)y(s) 	 (17)

= posny(s) + plsn ly(s) +

The corresponding emulated auxiliary output can be written

(15)

(16)

as

OUTPUT DERIVATIVES 	 2-7 Sec. 2.2.

	i 	y(s)
1 k I 	 k

y(s) > 	is
1 	I 	 1 e(s)

+1 k

0—>
*- 1

y(s)1
1 F 1 + k I

y (s) —> 	1 	k 	 >
I C I +

r---~
1E B I

k 	1 	
1 C 1

Figure 2.2.1 Emulating output derivatives

-** 	
n 	

-- **
(s) = E pn-kyk (s)

k=0

with corresponding error

n
ei*(s) = E p

n-kelk
(s)

k=0

Using the explicit expression 2.2.13 for yk**(t), it fol-

lows that

** 	F (s) 	E (s)B(s) 	 I (s)-
(s) = C(s) y(s) + 	1C(s)
	e sT u(s) + C(s)

where

I (s) = Ei(s)D(s) - ED (s)C(s) (21)

(18)

(19)

(20)

2-8 	 EMULATORS 	 Chap. 2

1)(s)

_ 	 I 	I 	 1
y(s) > 	IP(s) I 	 >-T >

I 	I 	 I _*
L- 	 +1 e(s)

0->
1_*
I~(s)

F
	+ 	I 1

y(s) 	 >--L>

C I +

u(s) >

EB

	

- I 	
C 	I
-~

Figure 2.2.2 Emulating the auxiliary output

with associated error

elk(s) = E1(s)v(s) + ED1(s)

E1(s), E
D (s)and F (s) are obtained from

n
E (s) = E p kEik

(s)

k=0

n
E
D
(s)= E pn-k

EDlk(s)

k=0

r,
F(s) = E pn-kFik

(s)

k=0

(22)

(23)

(24)

(25)

Sec. 2.2. 	 OUTPUT DERIVATIVES 	 2-9

Alternatively, taking a weighted sum of the Markov

decomposition 2, El(s) and F (s) may be obtained from

C(s) F (s)
P(s)A(s) = Ei(s) + A(s) (26)

This is the algebraic (s replaces z) continuous-time analo-

gue of the discrete-time generalised minimum variance

method inC8,9].

State Space Considerations

Comparison with section 1.9 shows that (assuming zero
A

initial conditions) yk (t) is the kth component of the

observable state space form for all k < p. That is

(13,* 1 (S) = -l'X°

where

p = [0,0,..,p , 	, p
o
]

np 	o

SeeC10] for further details.

Example

Consider the second order system described by

A(s) = s(s+1); B(s) = 1+bs; T = 0

C(s) = l+sc; D(s) = l+ds

C(s) Applying the Markov recursion formula to A(s) we have:

Initial values

(27)

(28)

(29)

2-10 	 EMULATORS 	 Chap. 2

E 	0 and F 	= l+sc 10 	 10

First Markov parameter

h = c

Step 1

E 	= h = c;
11 	1

F 	= sF 	- h h = s(1.+cs) - cs(l+s) = s(1-c)
11 	10 	1 1.

Defining an auxiliary output with P(s) = l+ps

	

E1 = 1.E10 + p.Ell = pc 	 (30)

F = 1.F 	+ p.Fll

= l+cs + ps(1-c) = 1 + (p+c-pc)s

In a similar fashion:

ED1(s) = pd

and so

E(s)D(s) -- ED (s)C(s) = pc(l+ds) - pd(l+cs) = p(c-d) 	(33)

Thus

-
41,*
 (s) - pc(l+bs)u(s) + 1 + (p+c-pc)

	
+ plc-d)

 l+cs 	 l+cs 	 l+cs

Note that all three transfer functions are proper.

In the particular case that

p=0.5; c=0.5; b=0.1; d = 0.1

(31)

(32)

(34)

(35)

Sec. 2.2. 	 OUTPUT DERIVATIVES 	 2-11

it follows that

-* 	0.25(1+O.ls)- 	1+0.75s- 	0.2
~ 	

(s) 	 1+0.5s 	u(s) + 1+0.5s y(s) + 1+0.5s (36)

a

2.3. ZERO CANCELLING AND OTHER FILTERS

The previous section considers an auxiliary output $

(s) which is a polynomial P(s) times the system output;

the all zero filter P(s) is not physically realisable due

to the implied derivative action. In this section we con-

sider the emulation of a different sort of non-realisable

transfer function: multiple derivative action filtered by a

possibly unstable polynomial Z(s). Such an emulator can be

used to effectively cancel right half plane zeros.

To include the derivative (or, more correctly, s multi-

plied) emulators of the previous section as a special case,

we include derivatives in this section as well. 	Thus we
define the signal -k(s) (Figure 2.3.1) by

k

k(s) - Z(s)y(s)

I 	s 	I

IZ(s)1

> 	(s)

(1)

Figure 2.3.1 Zero cancelling filter

Using the system equation 1.9.1,

2-12 	 EMULATORS 	 Chap. 2

k
sC

k
(s) = skZ(s)A(s)e-sT u(s) + skZ(s)A(s)v(s) + Z(s)A(s)

(2)

As in section 2.2, skC/ZA and skD/ZA are divided into

realisable and non-realisable parts. But first we divide

1/Z into notionally realisable and non-realisable parts by

defining the polynomials Z+(s) and Z (s) as two factors of

Z(s):

Z(s) = Z+(s)Z (s) 	 (3)

This decomposition is not unique, and particular choices of

Z+(s) and Z (s) will depend on the application. Z+(s) is

regarded as the realisable part and Z (s) the 	non-

realisable part. The following design rules are imposed:

Z design rule 1

Z+(s) contains no zeros with positive real part.

Z design rule 2

Z(s) contains no zero at s=0.

Note that the first rule implies that Z (s) contains

all the factors of Z having roots with positive real parts,

but may also have roots with negative real part.

With this notation, we can define the polynomials

Ezk(s) and Fzk(s) by

k C(s) 	Ez
k(s) + Fzk(s) 	

(4) - s A(s)Z(s) 	Z (s) 	A(s)Z+(s)

where

deg(Fzk(s)) < deg(A(s)Z+(s)) 	 (5)

In terms of polynomials, this equation becomes

Sec. 2.3. 	ZERO CANCELLING AND OTHER FILTERS 	 2-13

skC(s) = E2k(s)Z+(s)A(s) + Fzk(s)Z (s) 	 (6)

Note that when 	Z=1, 	we 	have 	Ezk(s) = Elk(s) 	and

Fzk(s) = Flk(s).

In a similar fashion, the initial condition term can be

decomposed as

k D(s) 	~zk(s) 	FDzk(s) s
A(s)Z(s) 	

Z (s) 	+ A(s)Z+(s)

where

deg(FDzk
(s)) < deg(A(s)Z(s))

We shall defer the solution of these equations for a

moment and assume that
Ezk(s), EDzk(s), Fzk(s) and FDzk(s)

have been found. Substituting into equation 2

kk(s) 	skZ(s)A(s)
e-sT

u(s)

	

F (s) 	E (s)
+
	
2k(s)

 + zk v(s)
A(s)Z+(s) 	Z (s)

	

+ FD2k(s) 	+ ED2k(s)

A(s)Z+(s) 	Z (s)

As in the previous section, this may be divided into

realisable and unrealisable parts as

k(s) _ k**(s) + elk(s) (10)

and the system equation 1.9.1 used to eliminate v(s) to

give

'1/4* Fzk
(s) 	 E2k(s)B(s)

-sT -
k (s) = + + 	- y(s) + 	e 	u(s)

Z (s)C(s) 	Z (s)C(s)

(7)

(8)

(9)

2-14 	 EMULATORS 	 Chap. C

I (s)

+ C(s)

where

Iz(s) =

and

EDzk
(s)C(s) - Ezk(s)D(s)

(12)

Z (s)

-** 	Ezk(s)- 	
ED 2,(s)

e 	(s) = 	v(s) + 	
z 	Z (s) 	 Z (s)

(13)

This error signal is never actually generated, so the fact

that it is not realisable is not a difficulty.

A particularly important case is when

B(s) = B+(S).B (s); Z (s) = B (s) 	 (14)

and B (s) contains all zeros of B(s) with positive real

part. Equation 11 then becomes

+
A* 	Fzk(s) 	Ezk(s)B (s) -sT -

F 	(s) = 	ii(S) + 	 e 	u(s)
-k 	

C(s) C(s)

I (s) z
+ (As)

The auxiliary output and the emulator

Linear combinations of filtered output derivatives can

be readily emulated using such methods. In particular, if

auxiliary output (13 2(s) is defined as

~ z(s) =
Zís)

y(s) 	 (16)

(15)

Sec. 2.3. 	ZERO CANCELLING AND OTHER FILTERS 	 2-15

the corresponding emulated auxiliary output can be written

as

-** 	n 	- **
(1) Z(s) = E pn-kk (s)

k=0

Note that if Z(s) = 1 then $2(s) = (1)1(s).

	i 	4)(s)
_ 	IP(s)I 	2
y(s) >—i 	I 	> 	>

	

IZ(s)I 	 I 	*
+I e
0—>
I_*
I¢(s)

I F I + 	1 2
y (s) 	 >

I C I +
~ J

_ 	I EB
u(s) > --{ —

1 C 1

Figure 2.3.2 Emulating the auxiliary output

Using the explicit expression for
-
 k**(s), it follows that

** 	 F (s) 	 E (s)B(s) 	 I (s)
2 (s) - 	 y(s) + 	 e sT

u(s) + C(s) z 	
C(s)Z+(s) 	C(s)Z (s)

(Figure 2.3.2 shows approximate version) with associated

error

E (s) 	ED (s)
Z*(s) - 	2 	v(s) + 	Z e

Z (s) 	Z (s)

(17)

(18)

(19)

2-16 	 EMULATORS 	 Chap. 2

Ez(s), I2(s) and F2(s) are obtained from

E2(S) = E pn- kEzk(s)
k=0

n
Iz(s) = E pn-klzk(s)

k=0

n
Fz(s) = E pn-kFzk

(s)
k=0

Alternatively, taking a weighted sum of the the Markov

decomposition, E2(s) and F (s) may be obtained from
 z

P(s)C(s) 	E2(s) + 	
F2(s)

Z(s)A(s) 	Z (s) 	Z+(s)A(s)

or in polynomial form

P(s)C(s) = Ez(s)A(s)Z+(s) + Fz(s)Z (s)

and I2(s) is obtained from

D 	 D (s)
P(s)D(s) 	

E 	 F z(s) + 	Z

Z(s)A(s) 	Z (s) 	Z+(s)A(s)

and

E2(s)D(s) - EDz
(s)C(s)

Iz(s) _

State Space Considerations

(20)

(21)

(22)

(23)

(24)

(25)

(26)
Z (s)

If Z(s) = B(s), then Co corresponds to the partial

state of the system.

Sec. 2.3. 	ZERO CANCELLING AND OTHER FILTERS 	 2-17

Thus, in this case,

-*
(1) 2(s) = pX (27)

where

p = CO,O,..,p
np' po] (28)

It follows that this special case is related to the

controllable form of section 1.6.

2.4. SOLVING DIOPHANTINE EQUATIONS

The emulator of the previous section requires the solu-

tion of the polynomial equation 2.3.24

P(s)C(s) = Ez(s)A(s)Z+(s) + Fz(s)Z (s)

This equation is an example of a linear Diophantine equa--

tionC11,12,13,7]. This section is devoted to methods of

solving such equations.

This Diophantine equation has a solution if, and only

if, 	the greatest common divisor (GCD) of Z (s) and

(Z+(s)A(s)) is also a factor of C(s)C11,12,13,7]. 	However,

we will avoid this problem by arguing as follows. Firstly,

we will choose Z+(s) and Z (s) so that they have no common

factors. 	Secondly, the purpose of the filter is to cancel

zeros of B(s) using the polynomial Z(s). There is no point A(s)
in cancelling zeros of B(s) which are already cancelled by

A(s), so we choose Z(s) so that it has no factors in common

with A(s). Hence we would never wish to choose Z(s), Z (s)

and Z+(s) in such a way that Z (s) and (Z+(s)A(s)) had com-

mon factors. Nevertheless, we require a method of checking

that this is so, preferably without needing to factorise

the polynomials.

(1)

2-18 	 EMULATORS 	 Chap. 2

This leads to the following three step algorithm for

solving equation 1 (that is, equation 2.3.24) for E2(s) and

F (s) (this approach is essentially that ofC7], page 159;
z

alternative approaches appear inC11,12,13]):

A

	

	Use Euclid's algorithm to calculate the GCD (g(s)) of

Z (s) and (Z+(s)A(s)). Compute Z (s) - g(s))

B 	Use Euclid's algorithm to solve the polynomial equation

e(s)a(s) + f(s)b(s) = 1 	 (2)

where

a(s) = A(s)Z+(s); b(s) = Z (s) 	 (3)

C 	Use e(s) and f(s) to solve

EZk(s)a(s) + FZk(s)b(s) = C(s) (4)

The three steps A-C are considered in the following sub

sections.

A. Finding the GCD

The classical Euclidian algorithmC7] for finding the

GCD of two polynomials is to be found in many textbooks on

algebra, for exampleC7]. Euclid applied the algorithm to

integers; it also applies to polynomials, as integers and

polynomials possess a similar algebraic structureC7,13].

The algorithm is as follows:

1. Set ao = a(s) = A(s)Z+(s) and set al = b(s) = Z (s).

2. Recursively compute the remainder ri and the quotient

q. from

Sec. 2.4. 	SOLVING DIOPHANTINE EQUATIONS 	 2-19

a. 	= g.a.. + r .
i-1 	i i 	i

and set

ai+1 	ri 	 (6)

3. The degree of a
i decreases as i increases, so eventu-

ally for some i=n+1, rn+1
= 0, and so

an gn+1n+1 	 (7)

It follows that an+l = rn is a factor of an. From equa-

tion 4 with i = n it follows that r
n
is also a factor of

an-1. Repeating this argument, rn is a factor of both ao
and a .

i

Thus the GCD g(s) of a(s) and b(s) is the last non-zero

remainder rn of the above algorithm. That is,

g(s) = rn (8)

B. Solving the Diophantine Equation

Having found the GCD g(s), we are in a position to com-

pute Z (s) - Z (s)
g(s) '

1. If degree(g(s))>0 then the previous algorithm is exe-

cuted but with Z (s) replaced by Z (s).

2. Equation 4 with i=n can be rewritten as:

S
n
a

 n

+-a
n-1

= 1 (9)

where

Pn
	qn: Yn = 1

(5)

2--20 	 EMULATORS 	 Chap. 2

Using equations 4&5 with i=n-1, it follows that

an
= rn-1 = an-2 	qn-1an-1

(10)

Hence we can write

13n-1an-1 + yn-lan-2 	
1

where

en-1 	yn 	13ngn-1' yn-1 	°n

Proceeding in this way the following equations for

and yi are recursively computed from the following:

Recursive algorithm

p
i-lai-1 + yi-tai-2 = 1
	 (13)

~i 1 	yi 	ii l yi 1 	°i
	 (14)

0 = f(s) and -y=e(s) then solve

e(s)a(s) + f(s)b(s) = 1
	 (15)

C. Diophantine recursion

From the previous equation, we have

e(s) + f(s) 	1
b(s) 	a(s) 	b(s)a(s)

In other words

e(s) + f(s) 	 1 	q(s)

Z (s) A(s)Z+(s) Z (s)Z+
(s)A(s) A(s)Z(s)

(12)

(16)

(17)

Sec. 2.4. 	SOLVING DIOPHANTINE EQUATIONS 	 2-21

and multiplying by sk

k e(s) _ 	k 	f(s)
- k q(s)

s 7 (s) + s A(s)Z+(s) 	
s

A(s)Z(s)

Following the arguments in section 1.3, we can use the

Diophantine recursion algorithm to divide the transfer

function

sk 	f(s)

A(s)Z+(s)
(19)

into a realisable (derivative free) part, F'(s)/A(s)Z+(s),

and unrealisable E'(s) parts as

sk 	f(s)= E'(s) + 	F'(s)

A(s)Z+(s) 	 A(s)Z+(s)

Substituting into equation 1 (or 2.3.24) then gives

k q(s) 	E2k(s) 	Fzk(s)

s A(s)Z(s) 	
Z (s) 	+ A(s)Z+(s)

where

EZk(s) = ske(s)g(s) + E'(s)Z (s)

FZk(s) 4 F'(s)

Finally, following the arguments of sections 2.2 & 2.3:

F2k(s) 	E2k(s)B(s) s
k
*(s) - y(s) + 	 e

C(s)Z+(s) 	C(s)Z (s)
u(s) 	 (24)

Remark

(18)

(20)

(21)

(22)

(23)

Common factors of B(s) and Z (s) should be cancelled

before implementation of equation 23.

2-22 	 EMULATORS 	 Chap. 2

Example

As in section 2.2, consider the second order system

described by

A(s) = s(s+l); B(s) = l+bs; T = 0 	 (25)

C(s) = l+sc; D(s) = i+ds

We wish to derive a zero-cancelling emulator for:

$z(s) 	Z(s)
y(s)

where Z(s) is given by:

Z(s) = Z (s) = l+zs

We shall not specify P(s) at the moment.

As discussed in section 2.4, the corresponding Diophan-

tine equation may be solved in three steps as follows:

A. Find the GCD of Z (s) and A(s)

Using the algorithm of section 2.4, subsection A, the

following equations result:

ao = A(s)Z
+
(s) = s(l+s); al = Z (s) = l+zs

Using the recursive formula

ai
-1(s) = gi(s)ai(s) + ri(s)

and setting

ai
+l (s) = ri(s)

the following sequence of polynomials results:

(26)

(27)

(28)

(29)

(30)

Sec. 2.4. 	SOLVING DIOPHANTINE EQUATIONS 	 2-23

1 L a
i-1 j gi 1 ai

1 	s(l+s) 	s/z 	1+zs

2 	1+zs 	 z2/(z-1) ; s(z-1)/z

3 	s(z-1)/z 	s(z-1)/z 	1

B. Solving the Diophantine equation

Following the algorithm in section 2.4, we have

f3-2
_ z z

q2 	z-1' YZ = 1

Using the recursion equations

°i-1 	Yi 	~ii l' Yi 1

with i=2 gives

f(s) _ p
1

_
Y2 	2q1

(33)

e(s)

= 1 	z S= 1 -
ZS

1-z z 	1-z

z
(34)

It can be verified by partial fraction expansion that

indeed

e(s) + f(s) 	1 	z2 + 1-z-zs _ 	1
- b(s) 	a(s) 	1-z 1+zs 	s(s+1) 	b(s)a(s)

C. Diophantine recursion

(31)

(32)

(35)

Ezk(s)

z2/(1-z)

-z/(1-z)

1/(1-z)

3 i 	-1/(1-z) i 	s - 1/(1-z)

Fzk(s)

1 - sz/(1-z)

s/(1-z)

-s/(1-z)

s/(1-z)

k

0

1

2

L

2-24 	 EMULATORS 	 Chap. 2

Using the recursive equations of section 2.4,

Ezk(s) = sEzk 1 + h
lkZ (s)

Fzk(s) = sFzk-1
- hlkA(s)Z+(s)

where

hlk = first Markov parameter of 	
zk-1

A(s)Z+(s)

we get the following sequence of polynomials:

In is now possible to compute emulators of various

choices of P(s) and C(s) without having to recompute solu-

tions to Diophantine equations. For example

P(s) = (1 + 0.55)2 = 1 + s + 0.25s2; C(s) = 1+0.5s 	(39)

so

P(s)C(s) = (1 + 0.5s)3 = 1 + 1.5s + 0.7552 + 0.125s3 	(40)

Using equations 2.3.20&22 and the entries in the Table,

E2(s) and Fz(s) are given by

E2(S) =
llzCzz - 1.5z + 0.75 - 0.125] + 0.125s

F

(36)

(37)

(38)

(41)

= llzCzz - 1.5z + 0.625) + 0.125s

Sec. 2.4. 	SOLVING DIOPHANTINE EQUATIONS 	 2-25

F (s) = 1 + -z -z + 1.5 - 0.75 + 0.125] 	 (42)

1 + 1+zC0.875 - z]

Example: B(s) = 1+0.1s

In this case

E (s) = 0.125s + 0.539; F (s) = 0.861s + 1 	 (43)
2 	 2

giving

h 	0.1255+0.539- 	0.861s+1-
02 (s) 	

0.5s+1 --u(s) 	0.5s+1-Y(s) (44)

Note that the factor

Z (s) = B (s) = B(s) = 1+0.1s 	 (45)

has been cancelled from the u(s) term of the emulator equa-

tion.

This example can be compared with the example of sec-

tion 2.2.

Example: B(s) = 1-5

In this case

E (s) = 0.125s + 1.562; F (s) = 0.938s + 1

giving

* 	0.125s+1.562- 	0.938s+1-
~2(s) 	

0.5s+1 	
u(s) +

0.5s+1 y(s)

Note that the factor

(46)

(47)

Z (s) = B (s) = B(s) = 1-s 	 (48)

2-26 	 EMULATORS 	 Chap. 2

has been cancelled from the u(s) term of the emulator equa-

tion.

2.5. PREDICTORS

We now turn to systems with pure time delay which can

be written as equation 1.9.1, repeated here as

y(s) = e
-sT B(s)u(s) + C(s)v(s)

A(s) 	A(s)
(1)

The question of initial conditions becomes difficult in

the presence of time delays; so, for simplicity, we will

assume zero initial conditions (D(s)=0) in this case.

As pointed out by SmithEl] one approach to designing

feedback controllers for such systems is to incorporate a

predictor into the feedback loop. This method has been dis-

cussed in detail by Marshall[14].

The use of predictors in discrete-time minimum variance

c_onrrol was considered by Astrom in his book[l5]; in par-

ticular he pioneered the polynomial approach to designing

predictors. The presentation in this book is a

continuous-time analogue of this method.

Prediction of random functions has a long history. The

Weiner filter has a predictive version (see, for example,

the book[16] by Kailath). Other relevant books

are[17,15,18,19]. 	The statistical approach is not used in

this book.

The purpose of a predictor is to deduce the system out-

put a time T (the system delay) into the future. Putting

this together with the previous section suggests an auxili-

ary function (133(s) of the form

Sec. 2.5. 	 PREDICTORS 	 2-27

sT P(s)
413(s) = e 	

Z(s) (2)

But firstly, we consider the predictor alone and consider

yT(t) = y(t+T) 	 (3)

or in Laplace transform terms

-
yT(s) = esT y(s)

Using equation 2.5.1

sT y (s) = e 	y(s) - B(s)u(s) + esT C(s)v(s) T 	 Â(s) 	 A()

The first term of the right-hand side is known. This

could, by itself, form a predictor giving

-* 	B(s)-
(s) -

A(s)
u(s)

é*(s) = esT C(s)v(s)
A(s)

Due to its open-loop nature this would not usually make a

satisfactory predictor.

To obtain a closed-loop predictor we must somehow

include the disturbance term esT C(s) in the predictor.
A(s)

But, due to the exponential factor, this term is not causal

and hence not realisable. In the same way as in previous

sections, this disturbance term is divided into realisable

and non-realisable parts; but in this case realisability is

associated with causality rather than with properness.

Let the impulse response of e
sT C(s)

A(s) be denoted by

ho(t), that is

Lap{ho(t)1 = Ho(s) = esT A(s)
	 (8)

(4)

(5)

(6)

(7)

2-28 	 EMULATORS 	 Chap. 2

C(s)
As A(s) is causal

h o
(t) = 0 	t<-T
	

(9)

It follows that h o
(t) can be written as the sum of two

functions

h (t) = h (t) + h (t)
o 	 1 	2

where

h (t) = 0; t>0 and hz(t) = 0; t < 0

Thus setting

H1(s) ~ Lap{hl(t)1; HZ(s)
	
Lap{h Z(t)1

the disturbance transfer function can be decomposed as

e
sT A(s) - Ho(s) = H

1(s) f HZ(s)

Example (Unit integrator)

Suppose that

C (s) 	1
A(s) 	s

Then

11 t > -T
ho(t) = ÌO elsewhere

11 -T < t < 0

hi(t) 10 elsewhere

11 t > T
h(t) = Ì O elsewhere

(10)

(12)

(13)

(14)

(15)

Sec. 2.5. 	 PREDICTORS 	 2-29

These functions of time are displayed in Figure 2.5.1.

h (t)
0

-T 0 	 t

h (t)
1

-T 	 0

h (t)
2

I 	>
0 	 t

Figure 2.5.1 Realisability decomposition - unit integrator

The corresponding Laplace transforms are:

t

-T

2-?0
	

EMULATORS
	

Chap. 2

H (s) =
esT 1H (s) = R

O S 1

sT
(s) 	 (16)

Note that both transfer functions are proper.

❑

Example (Rational transfer function)

Suppose that
Ç(—) is rational and A(s) has n distinct
A(s)

roots a.. Then a partial fraction decomposition is:

H (s) = e
sT C(s) = E esT 	ri

Â(s) 	
i 1 	

s - ai

The corresponding impulse response is

n 	a.t+T
h
o
(t) = E rie 	; t>-T

i=1

Hence

(s - a.)T

n sT 1-e
s

and

a.T
1

H (s) = E ri s` a.
i.=1 	 1

Continuous-time FIR Transfer Functions

In each of the above examples, the realisability decom-

position is of the form

C(s) 	 -sT
F
T
(s)

A(s) - ~'(s) + e 	
A(s)

H (s) = E e
i=1

(17)

(18)

(19)

(20)

(21)

Sec. 2.5. 	 PREDICTORS 	 2-31

where

sT 	 F
T(s) Hi(s) = e 	E,l 	z (s); H(s) - A(s)

Having performed the decomposition, the unrealisable

quantity yT(s) can be rewritten as

-A 	-*
T
(s) = yT(s) + e (s)

where

* 	 F (s) - B(s)- yT(s) =
A(s)

u(s) + A
T
s) v(s)

e

- *

(s) = H1(s)v(s) = esT E
T(s)v(s)

Finally, substituting for v(s) in equation 24 and using the

decomposition 21, the predictor can be written as

F ,(s)B(s) 	F (s) - A 	'1 	F
T
(s)

 = 	
C(s) 	u(s) + C(s) y(s) (26)

The transfer function ET(s) = e sT H(s) has an impulse

response which is zero for all time t>T. For this reason it

will be called a CFIR or continuous-time finite impulse

response system. CFIR transfer functions based on rational

transfer functions with distinct poles have the following

properties:

1. The impulse response is zero for all time greater than

a finite value T.

2. The transfer function has no poles.

3. The transfer function is not rational.

Properties 1 and 3 are obvious; property 2 may be

(22)

(23)

(24)

(25)

2-32 	 EMULATORS 	 Chap. 2

derived as follows:

Property 2

ET(s) = e
sT H1(s) comprises n terms of the form

-(s-a.)T

r.
i 	s 	ai
1 - e 	 (27)

At first sight, this term has a pole at s=m.. But substi-

tuting s=mi into the numerator gives 1 - eò = O. Thus each

of the n apparent poles has zero residue; that is, the

function has no poles.

Property 3 is important as it means that H (s) cannot

be realised using a rational transfer function; however,

H1(s) can be approximated by a rational transfer function.

One way of doing this is described in a following section.

The auxiliary output and the emulator

Based on the results of the previous sections, we are

in a position to define an auxiliary output cli3(s) as

$3(s) = esT $Z(s) = esT Z(sTY(s)
(28)

From the results of section 2.3, it follows that in the

presence of a pure time delay (and zero initial condi-

tions):

F * 	_ 	 P(s)B(s) -sT
(s) - 	 v(s) + 	 e 	u(s) Z 	

A(s)Z+(s) 	A(s)Z (s)

hence

~ 	sT F
z(s)

$ 	
P(s)B(s)-

(s) = e 	 v(s) + 	 u(s) 3 	
A(s)Z+ (s) 	 A(s)Z (s)

(29)

(30)

The first term is unrealisable, so decompose it into

Sec. 2.5. 	 PREDICTORS 	 2-33

realisable and unrealisable parts as

sI 	
Fz(s) 	 F (s)

e 	=
esT 	 3

EF(s) + 	+
A(s)Z

+(s) 	 A(s)Z (s)

*
We can then define (03(s) as the realisable part of

z
s)

~
 F (s)

Q)3(3) = --
3
+ 	v(s) +

P(S)B(S)u(s)

A(s)Z (s) 	A(s)Z (s)

Finally, combining the system equation 1.9.1 with the two

identities 21 and 31

F (s) 	 E (s)B(s)
* 	

3
(S) = 	

3 	
y(s) + ~ 	U(S)

C(s)Z+(s) 	C(s)Z (s)
(33)

where

E3(s) = EF(s) + Z (s)E (s) 	 (34)
2

Alternatively, E3(s) and F3(s) can be directly

expressed as:

esT
E3(s) + 	F3(s)

	

- esT P(s)C(s)
	

(35)

	

Z(s)A(s) 	
Z (s) 	Z+(s)A(s)

2.6. APPROXIMATE TIME DELAYS

The problem with designing controllers for systems with

a pure time delay is that the resultant controller is not

rational and thus cannot be realised using rational

transfer functions. One approach to this problem is to

design a controller for a rational system which contains a

rational approximation to a time delay.

(31)

(32)

2-34 	 EMULATORS 	 Chap. 2

Time-delay approximation

One class of approximations to time delays have the

all-pass transfer function

sT 	T(-s) 	 (1)
e 	Y T(s)

where T(s) is a finite order polynomial in s. A particular

choice of T(s) is the Pade polynomial of order nT given by

by

n, 	n - 1
T(s) = tos r

+ tls
T 	+ 	+ tn

T
(2)

where

t ,r = 1 n

and

tn,-i 	i(nT-i+1)(2nT-i+1) tnT-i+1

SeeCl4] for details.

System approximation

(3)

(4)

Using this approximation for the time delay, the system

can be approximately written as

Y(5' =
T(-s) B(s)u(s) + C(s)v(s)
T (s) A(s) 	A(s)

D_(s)
+ A(s)

(5)

B (s) 	C

T

(s) 	D (s)
AT(s)u(s) + A (

s)v(s) + AT(s)

where

AT(s) = T(s)A(s); BT(s) = T(-s)B(s) 	 (6)

(12)
ZT(s)

Sec. 2.6. 	APPROXIMATE TIME DELAYS 	 2-35

CT(s) = T(s)C(s); DT(s) = T(s)D(s)

The auxiliary output and the emulator

In a similar fashion, we define the auxiliary function

$4(s) by:

PT(s) - 	sT P(s) - ~4(s) 	
ZT(s) y(s) 	e 	Z(s) y(s)

where

PT(s) 0 T(s)P(s); ZT(s) = T(-s)Z(s)

The rational system is now of the form considered in

section 2.3. Noting that the Pade polynomial T(s) has all

roots within the stability, the polynomial T(-s) has all

roots without the stability region. Thus the polynomial

ZT(s) is decomposed as:

ZT(s) = ZT(s)ZT(s); ZT(s) = Z+(s); ZT(s) = T(-s)Z (s) (9)

With the above approximations, the polynomial identity

2.4.1 (or 2.3.24) becomes

	

T(s)P(s)C(s) 	E4(s) 	+ 	F4(s)

	

T(-s)Z(s)A(s) 	T(-s)Z (s) 	Z+(s)A(s)

where deg(FT(s)) < deg(Z+(s)A(s)). The corresponding emu-

lator equation then becomes:

** 	 F (s) 	 E (s)B(s) 	 I (s)
4) 4(s) _ —

4
+ 	y(s) + 	4 	

u(s) + T(s)C(s) (11)
C(s)Z (s) 	T(s)C(s)Z (s)

where

ED4(s)C(s) - E4(s)D(s)
I ís) -

4

(7)

(8)

(10)

-AA
(s) =

-AA
11) 	3(s)

according to context 	 (2)

-
~
AA

z(s)

2-36 	 EMULATORS 	 Chap. 2

with corresponding error

E (s) 	ED (s)
** 	

4
(s) -

4 	
v(s) + e

' 	Z (s) 	Z (s)

2.7. LINEAR-IN-THE-PARAMETERS FORM

One particular structure which can be used for realis-

ing the emulators of this section is the linear-in-the-

parameters form. In transfer function form, each emulator

can be written as

-AA 	G(s)- 	F(s)- 	I(s)
~ (s) -

CT(s)
uz(s) + C(s)yz

(s) + CT(s)
(1)

where

(13)

-AA
(1) 	

4(S)

and

G(s) 	Q E(s)B(s) 	 (3)

C(s)Z
-+
(s) 	C(s)Z (s)

with common factors of Z (s) and B(s) cancelled out. 	In

the case of **4(s), using equations 2.6.6,

CT(s) = T(s)C(s)
	 (4)

otherwise

CT(s) = C(s)
	 (5)

(10) X (s)
~

—e

LINEAR-IN-THE-PARAMETERS FORM 	 2-37 Sec. 2.7.

The filtered signals Oz(s) and yz(s) are given, in the

case of c 	1(s), by

uz(s) ~
e

sT u(s); yz- (s) ~ y(s)

in the case of c Z(s) by

-sT

úZ(s) 0 e
+ 	

ú(s); ÿZ(s) ~ +l 	ÿ(s)

Z (s) 	 Z (s)

and in the case of m

-

	(s) and cp 	(s) by 3 	 4

u (s)
~ 	

1 u(s); y (s) 0
	

1 	y(s)- z 	Z-+(s) 	
z
	Z+(s)

This emulator equation may be rewritten as

I)**(t) = XeT(t)E3 e

where the data vector Xe(t) and the parameter vector ee are

given, in Laplace transform terms, by

(6)

(7)

(8)

(9)

Where

X (s) = 	
C(s)

sn

s
n-1

s

1

uZ(s); Xy(s) =
C(s)

sn

s
n-1

1

yZ (s)

X.(s) = 	1
-1 	C(s)

n
s

sn-1
(12)

2-38

and H

transforms

1.6).

The

e 	
is

go
g

The

given
-

vectors

of

time-domain

by

f.
0

f i

f
n

X 	(s),

vectors

X T (s)

in

versions

EMULATORS

i o
i

•
i
n

controllable

and 	X.(s) are

form

the

(see

be

Chap.

(13)

Laplace

section

computed may 	therefore

from the differential equations 1.6.1.

This particular form provides a convenient means for

implementing an emulator. In particular, the data vector

X (t) is clearly distinguished from the parameter vector

6 . This form will used in chapter 6 when self-tuning emu-

lators are discussed.

REFERENCES 	 2-39

References

1. Smith, O.J.M., "A controller to overcome dead-time,

ISA transactions, vol. 6, no. 2, pp. 28-33, 1959.

2. Kalman, R.E., "A new approach to linear filtering and

prediction problems," ASME Journal of Basic Engineer-

ing, vol. 82, pp. 35-45, 1960.

3. Luenberger, D.G., "Observing the state of a linear sys-

tem," IEEE Trans., vol. MIL-A, 1964.

4. Kwakernaak, H, and Sivan, R.,, Linear optimal control

systems, Wiley, 1972.

5. Joseph, B., Brosilow, C.B., and Tong, M., "Inferential

control of processes: Parts I-III," AIChE Journal, vol.

25, pp. 485-509, 1978.

6. Parrish,J.R. and Brosilow, C.B., 	"Inferential control

algorithms," Automatica, vol. 21, no. 5, pp. 527-538,

1985.

7. MacLane, S. and Birkhoff, G., Algebra, Macmillan, New

York, 1967.

8. Clarke, D.W. and Gawthrop, P.J., "Self-tuning con-

troller," Proceedings IEE, vol. 122, no. 9, pp. 929-

934, 1975.

9. Clarke, D.W. and Gawthrop, P.J., "Self-tuning control,"

Proceedings IEE, vol. 126, no. 6, pp. 633-640, 1979.

10. Gawthrop, P.J. and Clarke, D.W., "Hybrid self-tuning

control and its interpretation," Proceedings of 3rd IMA

Conference on Control Theory, Academic Press., 1980.

11. Kucera, V., Discrete linear control: The polynomial

equation approach., Wiley, Prague, 1979.

2-40 	 EMULATORS 	 Chap. 2

12. Kailath, T., Linear Systems, Prentice-Hall, 1980.

13. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice Hall, 1984.

14. Marshall, J.E., Control of time-delay systems, Peter

Peregrinus Ltd., 1979.

15. Astrom, K.J., Introduction to 	stochastic 	control

theory, Academic Press, New York, 1970.

16. Kailath, T., Lectures on Weiner and Kalman Filtering,

Springer, 1981.

17. Whittle, P., Prediction and regulation, English Univer-

sities Press, 1963.

18. Yaglom, A.M., Stationary random functions, Dover, 1973.

19. Solodovnikov, V.V., Introduction to the statistical

dynamics of automatic control systems, Dover, 1960.

CHAPTER 3

Emulator-Based Control

Aims. To introduce and illustrate the use of

emulators in a feedback loop. To introduce the

notional feedback loop and its use in investigat-

ing the closed--loop properties of the emulator-

based control. To show that well-known control

strategies such as model-reference, pole-

placement and predictive control are limiting

cases of particular emulators in a feedback loop.

To discuss the choice of emulator-based control

design parameters.

3.1. INTRODUCTION

Self-tuning controllers are based on many different

non-adaptive control design techniques. The purpose of this

chapter is to present a selection of such design approaches

in a unified fashion. The unifying concept is the emulator

considered in the previous chapter. We shall see that, by

incorporating such an emulator in the feedback path of an

otherwise classical control scheme, many types of algo-

rithms can be considered in a common framework. The classes

of algorithms include: model-reference (pole/zero place-

ment), pole placement, steady-state linear-quadratic, and

3-1

Symbol

u(s)
_*
$ (s)

W(s)

Q(s)

LR(s)

Quantity

Control signal

emulator output

setpoint

control weighting

setpoint filter

L

3-2 	 EMULATOR-BASED CONTROL 	 Chap. 3

predictive control.

An important concept to be covered is that of control

weighting or detuninq of control algorithms. This will be

shown in a later chapter to be crucial in giving a robust

adaptive algorithm.

3.2. THE CONTROL LAW

The single-input single-output feedback controllers

considered in this book can all be written in a common

form; as classical feedback controllers but with an emula-

tor in the feedback path. The control law can be written

in two equivalent forms:

u(s)
1 	 - *(s)7 (1) - 	Q(s)CR(s)w(s) 	-

and

-*
¢ 	(s) + 	Q(s)u(s) 	- 	Rw(s) = 	0 (2)

where

--
1/Q(s) and R(s) are proper transfer functions. (I) (s) is the

emulator output corresponding to one of the emulators

Sec. 3.2. 	 THE CONTROL LAW 	 3-3

described in chapter 2. That is

-A
0 1(s)

-A
(s) = according to context 	 (3)

and can be written in transfer function form as in section

2.7 as

*(s) - C(s)uZ(s) + C(s)yZ(s) (4)

This would typically be implemented in linear-in-the-

parameters form as in section 2.7.

-AA 	 -A
Alternatively, we could use 0 (s) in place of 0 (s).

However, in this chapter, we shall ignore the effect of

initial conditions; that is, we concentrate on the system

setpoint response and the system disturbance response. This

emulator-based control law is given in Fig 3.2.1.

Limiting the control signal

In many contexts, it is appropriate to limit the con-

trol action of a feedback controller, typically to avoid

actuator saturation. This can readily be done here by

interposing a suitable non-linearity between the 1/Q(s)

transfer function and the control signal as follows:

-A 	 -A
(s) - Q(s)CR(s)w(s) - ~ u (s)] (5)

A
u(t) = SatCu (t)} 	 (6)

3-4 EMULATOR-BASED CONTROL Chap. 	3

I
w(s) 	I 	1 I B I y(s)

> > 	o----I F– —1 h—>

I 	Q I I 	I A I I
1 1

*
f(s)

I
I 	I
L–)___I

EB
,
1
Fn

I 	I
I 	I
H

1
F 	I

f--o->-i

Cz C 	I 	I 	I I I 	I I I I 1 ----' 	I I
) 	' I

(
~ I

Figure 3.2.1 The Emulator in the Feedback Loop.

where "Sat" indicates the appropriate non-linear saturation

function.

The crucial point here is that the emulator should

operate on the signal u(t) reaching the plant, not the sig-

nal u (s) before the saturation. See[l,2] for a discussion

in the discrete-time context.

3.3. THE NOTIONAL FEEDBACK LOOP

To obtain the properties of emulator-based feedback

control laws, the idea of a notional feedback loop is

introduced in this section. To obtain general equations,

we consider the emulator for ~3(s) which includes all the

other emulators as special cases. Recall that:

-A 	 _*
4)3(S) = t1)3(S) + e3(s)

and that

$3(s) = e
sT P(s)

Z(s)

(1)

(2)

Sec. 3.3. 	THE NOTIONAL FEEDBACK LOOP 	 3-5

In this chapter, the controller output is assumed to be

the nominal system input:

u(s) = u(s) 	 (3)

The consequences of this assumption being false are exam-

ined in chapter 4.

Combining these equations gives the block diagram of

Figure 3.3.1. 	This notional feedback system provides an

easier way of deriving system equations than using Figure

3.2.1.

C(s)I
v(s)--H 	 F >

I A(s)I

	

_ i 	 i __ 	I
w 	I 	I + 	I 	1 	I u(s) I 	-sT B(s)I 	 y(s)

—> -----I R (s) F—O 	> ----I 	 1--->--I e 	-- }----0 	->

	

I 	 I - I 	 I 4(s) I 	 A(s)I

	

l 	 I 	 I 	 1 	 I

+sT P(s)11

e ~—<—

Z(s)I

Figure 3.3.1 The notional feedback system

This block diagram is a correct representation of the

preceding equations; and is useful for giving insight into

the control laws and their relationships. However, it does

not, by itself, give any information about sensitivity to

modelling error, as the error equation 3.3.1 assumes no

3-6 	 EMULATOR-BASED CONTROL
	

Chap. 3

modelling error. 	We will return to the study of sensi-

tivity in the next chapter, but for the moment we assume no

modelling error.

As discussed by Horowitz[3,4], controllers for single-

input single-output systems have two degrees of freedom

available to the designer: a transfer function multiplying

the setpoint w and one multiplying the measured system out-

put y. The controllers considered in this chapter are no

exception to this rule: Figure 3.3.1 is one of the many

ways of representing such a controller. In later chapters,

the non adaptive emulator generating ¢* (s) will be replaced

by a self-tuning version. In such circumstances, the

transfer function P(s) becomes a third degree of freedom
Z(s)

available to the designer. This idea is pursued further in

chapter 8.

Combining the equations displayed in Figure 3.3.1, the

following expressions for closed-loop system quantities are

obtained:

Notional loop-gain

L(s)
A
	

1 P(s)B(s)
Q(s) Z(s)A(s)

This is the product of all the transfer functions within

the loop displayed in Figure 3.3.1.

Closed-loop system output

)
y(s) 	1+Lss) e

sT p(s)CR(s)w(s) +(s)] - (5)

+ 	1 	C(s)-
1+L(s) A(s)

(4)

Sec. 3.3. 	THE NOTIONAL FEEDBACK LOOP 	 3-7

sT 	B(s)Z(s) 	
CR(s)w(s) + e*(s)] 	(6) = e

	
P(s)B(s) + Q(s)Z(s)A(s)

Z(s)C(s)
+ Q(s) P(s)B(s) + Q(s)Z(s)A(s)v(s)

Closed-loop system input

u(s) - L(s) Z(s)A(s) z(s) 1+L(s) P(s)B(s)

where the equivalent setpoint z(s) is given by

z(s) = R(s)w(s) - esT P(s)C(s)- 	+ e*(s) Z(s)A(s)

	

= R(s)w(s) + C E(s) 	esT P(s)C(s)]v(s)

	

Z (s) 	Z(s)A(s)

- = R(s)w(s) - F(s) v(s)
AZ+(s)

This equivalent setpoint may be regarded as the net influ-

ence of disturbances and setpoint on the control signal

referred to the same point on the block diagram as the fil-

tered setpoint R(s)w(s).

It will sometimes be convenient to decompose this

equivalent setpoint into the part e* (s) due to the emula-

tion error and the rest as

Z(S) = z(s) + é* (s) 	 (10)

where

z(s) = R(s)w(s) - esT P(s)C(s)~(s)
Z(s)A(s)

(7)

(8)

(9)

3-8 	 EMULATOR-BASED CONTROL
	

Chap. 3

The closed-loop characteristic equation

Before taking a detailed look at the various controller

options available, these two equations can be used to give

an overview of the aims and characteristics of the

emulator-based control laws. The following commments can

be made:

1. As discussed in section 2.3, an important special case

is to choose

B(s) = B+(s)B (s); Z(s) = Z+(s)Z (s); Z (s) = B (s) 	(12)

In this case, the nominal loop-gain L(s) is

L(s) - 	
P(s)B+(s)

Q(s)Z+(s)A(s)

2. The stability of the closed-loop system is dependent on

the zeros of the transfer function 1+L(s); thus the

equation

P(s)B+(s) + Q(s)A(s)Z+(s) = 0
	

(14)

must have no zeros with positive real parts.

Parallel transfer functions

An alternative viewpoint, based onC5], is to regard

Q(s) as a transfer function in parallel with the system.

Define

~
Q
(s) 0 $(s) + Q(s)u(s) (15)

as the auxiliary output corresponding to the system in Fig-

ure 3.3.2 comprising Q(s) in parallel with P(s) cascaded

with the system. The transfer function of the augmented

plant relating (TQ(s) to u(s) is

(13)

Sec. 3.3. 	THE NOTIONAL FEEDBACK LOOP 	 3-9

+ 	 +
P(s)B (s) + Q(s)A(s)Z (s)

(16)
A(s)Z+(s)

The zeros of this augmented plant are precisely the roots

of the characteristic equation (3.3.14).

The control law 3.2.1 may be rewritten as:

cp Q(s) = R(s)w(s) + e (s) (17)

In the absence of any disturbance (e (s)=0), this control

law sets the auxiliary output 0Q(s) exactly equal to the

filtered setpoint R(s)W(s); this is only possible if the

augmented plant is invertible. In particular, the augmented

system must have stable zeros.

Thus Q(s) may be reinterpreted as a means of moving

plant zeros to give an invertible augmented plant. A dis-

cussion along these lines (but in the discrete-time con-

text) appears in[5,6] and[7].

_ 	I C(s)I

I A(s)I

	

i 	 t 	 i 	I

	

u(s)I 	-sT B(s)I 	y(s) 	P(s)I
–)T–He 	1-0 	{ 	1---Ii(s)

	

I 	A(s)I 	 I Z(s) I 	I Q

	

I 	 I 	 0–>
I 	~ 	I
I 	 I 	I 	I

Q(s)1--)

Figure 3.3.2 The auxiliary output

3-10
	

EMULATOR-BASED CONTROL 	 Chap. 3

3.4. CHOOSING P(s) AND Z(s)

Let us first of all consider the case with no time

delay (T=0), no control weighting (Q(s)=0) and no setpoint

filter R(s):

Q(s) = 0; R(s) = 1; T = 0; B(s) = B+(s)B (s); 	 (1)

In addition Z(s) is chosen as

Z(s) = Z+(s)Z (s); Z (s) = B (s) 	 (2)

The closed loop equations then become:

Notional loop-gain

L(s) = 00 	 (3)

Closed-loop system output

Z(s) -
y(s) = P(s)Cw(s) + e (s)7 (4)

The closed loop system output y(s) has two terms: the

setpoint response Z(and the disturbance response P(s)

Z(s)*(s). Both terms are of the form of a Z(s) multiplied
P(s)e 	 P(s)
by a signal. Thus the closed-loop system output is deter-

Z(s)
 by the reference-model Z(s) 	The reference model P(s)'

zeros are the roots of Z(s); the reference model poles are

the roots of P(s).

The closed-loop transfer function generating the system

output is stable iff P(s) has all zeros within the left-

half s-plane.

Sec. 3.4. 	 CHOOSING P(s) AND Z(s) 	 3-11

As we would usually require that there be no steady-

state offset due to the setpoint, we shall choose P(s) and

Z(s) such that

P(s) design rule

P(0) = 1 	 (5)

Z(s) design rule

Z+(0) = Z (0) = 1

Closed-loop system input

u(s) - Z(s)A(s) z(s) - Z+(s)A(s) z(s) P(s)B(s) 	P(s)B+(s)

where the equivalent setpoint z(s) is given by

- z(s) = w(s) - 	F(s) 	v(s)
A(s)Z+(s)

The closed-loop transfer function generating the system

input is stable iff P(s)B+(s) has all zeros within the

left-half s-plane.

Three special cases of this control strategy are

❑ Model-reference control

❑ Pole-placement control

❑ Steady-state linear-quadratic control

These will be treated in turn.

(6)

(7)

(8)

3-12 	 EMULATOR-BASED CONTROL 	 Chap. 3

Model-reference control

Model-reference control is a special case of the above

algorithm defined by

B (s) = Z (s) = 1 	 (9)

thus the closed-loop system model is not related to the

open-loop system. It is clear that the control signal will

only be stable if

B(s) is stable 	 (10)

Example

Consider the example of section 2.2 where the system is

given by

A(s) = s(s+l);B(s) = 1+O.ls 	 (11)

and the design polynomials by

P(s) = 1+0.5s; Z(s) = 1; C(s) = 1+0.5s 	 (12)

As in section 2.2, the corresponding emulator (without ini-

tial conditions) is:

-A 	-A _ ~ 	(s) * 	
0.25(1+0.1s)~(s) + 1+0.75sy(s)

1+0.5s 	 1+0.5s
(13)

Combining this with the control law 3.2.1 with Q(s)=0 and

R(s)=1,

~*(s) = Rw(s) 	 (14)

gives:

- 4 1+0.ssy(s) +
1+0'Ssw(s) 	 (15)

1+0.1s 	1+07ls u(s) =

Sec. 3.4. 	 CHOOSING P(s) AND Z(s) 	 3-13

This is of the classical two degree of freedom formC3:] and

the transfer function relating u(s) to y(s) is of the stan-

dard phase-advance form of classical control to be found in

any elementary textbook, for exampleCB].

Note that the system zero at s=-10 is cancelled by the

controller. This is an inevitable result of specifying a

reference model with different zeros to those of the open

loop system.

Pole-placement control

Pole-placement control is a special case of the above

algorithm defined by

B (s) = 2-(s) = B(s); Z+(s) = 1 	 (16)

thus the closed-loop system model is related to the open-

loop system; the zeros of the open-loop system

B(s) are

Z(s) A(s)
identical to those of the closed-loop system p(s). 	It is

clear that the control signal will be stable even if B(s)

is not.

Example

Consider the example of section 2.4 where the system is

given by

A(s) = s(s+l);B(s) = 1-s 	 (17)

Note that the system has a zero at s=1 with positive real

part. This can be regarded as an integrator in series with

a time delay of 2 units represented by the (very crude)

first order Pade approximation (section 2.6):

e
-2s 1_s
 -

1+s (18)

3-14 	 EMULATOR-BASED CONTROL
	

Chap. 3

The design polynomials in the second example of section 2.4

are

P(s) = 1+5+0.2552; Z(s) = Z (s) = 1-s; C(s) = 1+0.5s 	(19)

Note that Z (s) = B(s) in this case to remove the offending

zero. As in section 2.4, the corresponding emulator

(without initial conditions) is:

~
(s)

-* 	0.125s+1.562- 	0.938s+1-
 +

0.938s+1~(s)
0.5s+1 	 0.5s+1

(20)

Combining this with the control law 3.2.1 with Q(s)=0 and

R(s)=1,

4) (5) = w(s) 	 (21)

gives:

u(s) = - 0.6402 1+0.938s-
	+ 1+0.5 (s)

1+0.0800s 	1+O.ls
(22)

This is of the classical two degree of freedom form[3] and

the transfer function relating u(s) to y(s) is of the stan-

dard phase-advance form of classical control to be found in

any elementary textbook, for example[8].

Note that the system zero at s=1 is not cancelled by

the controller. The controller has lower steady-state gain

and larger phase advance than the model-reference con-

troller designed in section 2.2 for the system with a zero

at -0.1.

Steady-state linear-quadratic control

This is not the place to go into a full discussion of

linear quadratic control[9,10,11]. Roughly speaking, the

Sec. 3.4. 	 CHOOSING P(s) AND Z(s) 	 3-15

essential result is that linear quadratic control is a spe-

cial case of pole-placement control where P(s) is obtained

as the stable spectral factor of

P(s)P(-s) = B(s)B(-s) + aA(s)A(-s) 	 (23)

with the restriction that B(s) and A(s) must have no common

factors[l2,91.

3.5. CHOOSING R(s)

From equation 3.3.5 or 3.3.6 it follows that R(s)

merely acts as a setpoint filter. Thus if R#1, we can

replace w(s) by wR(s) in the previous section where

wR(s) = R(s)w(s)

R(s) has no effect on the feedback loop itself; it merely

acts as another degree of freedom for manipulating the set-

point response without affecting the system loop-gain or

response to disturbances.

The importance of R(s) lies in the second degree of

freedom it gives in manipulating closed-loop performance.

Model-reference control

If the model-reference controller of section 3.3 is

extended so that R#1, then the resultant closed-loop set-

point response is determined by

R(s)-
y(s) - P(S a(s) (2)

In this equation, R(s) and P(s) play identical roles, and

as far as the setpoint response is concerned the following

design choices are equivalent:

1 	 - desired model; R(s) = 1 P(s)

(1)

(3)

3-16 	 EMULATOR-BASED CONTROL
	

Chap. 3

and

1 - 1; R(s) = desired model

However, when disturbances and sensitivity to parameter

variation are considered, these two approaches are very

different. Indeed the latter approach leads to an infinite

gain controller; thus choosing P(s) = 1 is not practical.

(SeeC13] for a discussion of this point in a discrete-time

context).

In practice then, both P(s) and R(s) have their uses;

in particular R(s) specifies the setpoint response, whereas
P(s)

P(s) alters the disturbance response and closed-loop sensi-

tivity.

As we normally require a unity steady-state system gain

from setpoint to output we impose the

R(s) = 1 	 (5)

3.6. CHOOSING Ds)

It seems intuitively obvious (and we shall prove this

later) that it is not a good idea to have a system with

loop gain L(s) = co. Of course, this is only a notional loop

gain and the system is not implemented in this form. But

nevertheless, the implication of L(s) = co is that we ask

for exact matching of our desired closed loop-system at all

frequencies. It is clearly unnecessary to specify system

performance precisely at high frequencies; we shall see

later, in the self-tuning context, that it is also very

unwise.

We have already noted (equation 3.3.14) that the sta-

bility of the closed-loop control system is dependent on

the roots of the characteristic equation:

P(s)
(4)

Sec. 3.6. 	 CHOOSING Q(s) 	 3-17

P(s)B+(s) + Q(s)A(s)Z+(s) = 0 	 (1)

We emphasise that this equation does not necessarily give

rise to a stable closed-loop system. It has been sug-

gested[5,14,2] in the discrete-time context and in the spe-

cial case where B+(s) = B(s) that Q(s)#0 can be used to

give stability when B(s) is not stable. In this book, we

do not regard this as being a very useful approach to sta-

bilise a nominal system with unstable zeros: the zero can-

celling (pole-placement) approach is more appropriate. We

believe that the role of Q(s) is make a feedback controller

more robust in the face of neglected dynamics.

If the notional feedback system is stable, then for

those frequencies w where L(jw) is large the ratio of the

closed-loop output y to the set point w is:

y(jw) x e-jwT Z(jw)R(w)
(jw) 	

P(jw)
w 	

~

Under such circumstances, the closed-loop setpoint fre-

quency response approximates that of the reference model:

e-sT Z(s)
R(s)

P(s)
(3)

In particular, if Q(s)=0 (for all s), exact model matching

is achieved for all frequencies; and if Q(0)=0 this is

achieved at zero frequency.

To give zero weighting at zero frequency we impose the

Q(s) design rule

(2)

Q(0) = 0 	 (4)

Thus Q(s) will be regarded as a device for reducing the

exact matching requirement at high frequency. The use of

3-18 	 EMULATOR-BASED CONTROL 	 Chap. 3

Q(s)#0 leads to detuned or control-weighted versions of the

control laws derived with Q(s) = O. In particular, we now

have three control-weighted algorithms:

❑ Control weighted model-reference control

❑ Control weighted pole-placement control

❑ Control weighted linear-quadratic control

In practice, we would usually require exact model

matching at zero frequency to avoid steady-state offset. In

such circumstances we would choose Q(s) such that

Q(0) = 0 	 (5)

3.7. CHOOSING T

In the above discussion, we have implicitly equated the

"T" appearing in the emulator with "T" corresponding to the

assumed system time-delay. This is in fact quite general as

in a later chapter we shall discuss the effect of incorrect

system modelling.

The crucial result of the predictive (esT) component of

the emulator is to eliminate the system time-delay from

both the nominal loop-gain and the closed-loop characteris-

tic equation. This idea was proposed by SmithC157 and is

discussed in detail in the following section. 	The purely

predictive emulator of section 2.5 is in fact a generalised

version of that proposed by Smith.

3.8. SMITH'S PREDICTOR

The idea that control of systems with time-delay can be

simplified by making use of a predictor was suggested by

Smith in the late '50sC15,167. 	His predictor can be

described by the following Figure. 	Like the emulator

SMITH'S PREDICTOR 	 3-19

w + 	1 	
l
u(s) r 	~ 	i 	 y(s)

	 - 0- i Control ler ~->T-~ Delay f—>— 'Plant' 	 , 	>

ACTUAL

MODEL
r 	1 	i 	i 	 *

~Plantl-->~ IDelayF—~ 	+ y(s)
1 	I t 	1 0 O—T->T

I

	 ~ 	

Figure 3.8.1 Smith's Predictor

discussed in the previous section, Smith's predictor can be

regarded as a method of realising the unrealisable transfer

function esT. In particular, it generates the quantity

yT(s) given by

-* 	 -sT B(s)
y(s) = y(s) + C1 - e 	

]A(s)u(s) (1)

In the absence of disturbances, substitution of the system

equation gives

_*
yT(s) = A(s)u(s) = e 	y(s) = yT(s) 	 (2)

where yT(s) is the Laplace transform of yT(t)=y(t+T). That

is, in the absence of disturbances, the effect of the Smith

predictor is the same as including an inverse time delay

(esT) in series with the system output.

How does this relate to the emulators derived here?

The purely predictive emulator of section 2.5 is in fact a

generalised version of that proposed by Smith. To see this

Sec. 3.8.

3-20 	 EMULATOR-BASED CONTROL
	

Chap. 3

we take the special case

P(s) = 1; Z(s) = 1; C(s) = A(s) 	 (3)

and

Q(s) = inverse cascade compensator 	 (4)

The decomposition identity can be written as

sT
FT(s)

1 = EZ(s) + e 	A(s) 	
(5)

If, in addition, we break the rule that F(s) is strictly A(s)
proper, this my be solved by

ET(s) = 1 	e sT ; FT(s) = A(s) (6)

giving the Smith predictor.

Smith's predictor has the advantage that it can be

implemented with rational transfer functions and a pure

delay; it has the disadvantage that the predictor poles are

identical to the system poles, giving poor transient

response unless the open-loop system poles have fast time

constants.

3.9. CHOOSING C(s)

At first sight, the polynomial C(s) is part of the sys-

tem; but, as discussed in section 1.8, this is not so as V

(s) is not specified in detail. To see this, set

C'(s - v(s) - C(s))v'(s)
	 (1)

where C'(s) is a polynomial of the same degree as C(s). An

alternative system equation to 1.9.1 is then given by

replacing C(s) by C'(s) and v(s) by v'(s) to give

B(s)- 	C'(s).-\-7,(s) 	D(s)
y(s) =

A(s) 	A(s) + A(s) 	+ A(s)

(2)

Sec. 3.9. 	 CHOOSING C(s) 	 3-21

Using this equation to deduce the closed-loop system equa-

tions gives

Closed-loop system output

y(s) -
L(s) 	

Ce sT Z(s)
(R(s)w(s) + C'(s)P*(s))7 1+L(s) 	P(s) 	 C(s)

(3)

1 	C'(s)-,
+ 1+L(s) A(s) v (s)

B(s)Z(s) 	
Ce -sT R(s)w(s) + C'(s) * e(s)7 	(4) P(s)B(s) + Q(s)Z(s)A(s) 	 C(s)

Z(s)C'(s) Q
+ (S) P(s)B(s) + Q(s)Z(s)AT-S-71'(5)

Closed-loop system input

L(s) Z(s)A(s) -
u(s) = 1+L(s) P(s)B(s) z(s)

where the equivalent setpoint z(s) is given by

- z(s) = R(s)w(s) - 	C'(s)F(s) 	v(s)
C(s)A(s)Z+(s)

It follows that the design polynomial C(s) affects the

poles and zeros of the closed-loop response to distur-

bances, but has no effect on the setpoint response. It

plays a similar role to the observer pole-polynomial in

state-space theory[l7,9].

(5)

(6)

To give unique solutions to the emulator design, we

usually impose the

3-22
	 EMULATOR-BASED CONTROL 	 Chap. 3

C(s) design rule

C (0) = 1 	 (7)

3.10. INTEGRAL ACTION

As stated inC18,19], the large number of PI (propor-

tional + integral) and PID (proportional + integral +

derivative) controllers used routinely for process control

applications may be regarded as experimental evidence for

their usefulness.

As PI and PID controllers are so common, there must be

something about the dynamics of many systems which makes

such control appropriate. It follows that it should not be

necessary to force an adaptive controller to have a PI or

FID structure, but rather this structure should arise

naturally from reasonable assumptions about the dynamics of

the controlled process. It is shown in this section that

this is indeed so: suitable modelling of non-zero mean dis-

turbances leads to an algorithm with integral action, and

the additional assumption of a first (second) order system

gives rise to a PI (PID) controller.

This approach of letting the integral action arise

naturally from the specification of a suitable disturbance

model rather than forcing integral action into the con-

troller distinguishes the algorithms of this book from some

previous methods. As will be shown, this approach automat-

ically removes offsets from both the controller and the

estimator.

An extensive discussion of the method (but resticted to

the model-reference case) appears inC19]. Details of the

self-tuning version appear in chapter 6.

Sec. 3.10. 	 INTEGRAL ACTION 	 3-23

Two common forms of disturbance in control systems are

constants and piecewise constant signals with random jumps.

As discussed in sections 1.8 and 1.9, each form of distur-

bance corresponds to a transfer function

Bt(s) 	Bf(s) 	k

At(s) 	Af(s) 	s
(1)

the former corresponding to the initial condition response

of an integrator, the latter to the forced response of an

integrator to a random sequence of impulses. In either

case, the results of section 1.9 indicate that A(s) and

B(s) will have a common factor s; as C(s) is chosen, this

common factor need not appear in C(s). This gives rise to

the following design rule:

PI design rule 1

A(s) and B(s) have a common root at s=0:

A(s) = Ao(s)s; B(s) = Bo(s)s 	 (2)

In addition, we make the following design rule:

PI design rule 2

Z (s) has no root at s=0: Z-(0)#0. This implies that,

in this case, B+(s) contains the factor s in B(s) = sBo(s).

To see the implications of these design rules consider

the defining identity leading to (1)3(s) (equation 2.5.33):

	

sT P(s)C(s) 	si E3(s) 	F3(s)
e-

	

Z(s)A(s) 	e 	
Z(s) + Z+(s)A(s)

(3)

evaluated at s=0. As, by assumption, A(s) has a factor s

and Z+(s) hasn't, it follows that:

3-24 	 EMULATOR-BASED CONTROL
	

Chap. 3

P(0)C(0) 	P(0)C(0)
F (0) =
	1
-

3 	
Z(0)

Z (0)

Where the last equality follows from the P(s), Z(s) and

C(s) design rules. 	Hence, in this case, F3(s) can be

rewritten as

F3(S) =
l+sF 30(s)

Turning to equation 3 (2.5.33), (1)3(5)
can be written

as

1+sF (s) 	sE (s)B (s)
-

* 	 30 	
3

(S) - 	 y(s) + (1) 3(5)
° 	u(s)

3 	
C(s)Z+(s) 	C(s)Z (s)

PID control

As discussed in detail elsewhere[19,18] certain forms

of assumed system give rise to PI and PID controllers. We

give two examples based on the model-reference and pole --

placement examples given in previous sections.

Example (Model-reference PID)

Consider the example of section 2.2 and section 3.4 but

a cancelling s term is included to model offset. The aug-

mented system is given by

A(s) = s2(s+l);B(s) = s(1+O.ls) (7)

The design polynomials are as before except that C(s) is

now second order:

P(s) = 1+0.5s; Z(s) = 1; C(s) _ (1+0.5s)2 	 (8)

(4)

(5)

(6)

As in section 2.2, the corresponding emulator (without ini-

tial conditions) is:

Sec. 3.10. 	 INTEGRAL ACTION 	 3-25

-
(4) (s) = ~*1(s) 	0.125s(1+0z1s)

u(s) + 1+1.5s+0.6225s2Y(s)(9)
(1+0.55)2 	 (1+0.5s)

Combining this with the control law 3.2.1 with Q(s)=0 and

R(s)=1

-*
(s) = Rw(s) 	 (10)

gives:

u(s) = 	8 ~w(s)-y(s)
1+0.1s 	s

+ (w(s)--1.5y(s)) + s(0.25w(s)-0.625y(s))]

This has the structure of a PID controller with filtering

and modified proportional and derivative setpoint terms.

Example (Pole-placement PID)

Consider the example of section 2.4 and section 3.4 but

a cancelling s term is included to model offset. The aug-

mented system is given by

A(s) = s2(s+l);B(s) = s(1-s)

The design polynomials are as before except that C(s) is

now second order:

P(s) _ (1+0.5s)2; Z(s) = 1-s; C(s) _ (1+0.55)2

As in section 2.4, the corresponding emulator (without ini-

tial conditions) is:

s(2.460+0.0625s) 	 2
m*(s)=~*(s)= 	 u(s)+

1+3.Os+2.0313s
y(s)

(1+0.53)2 	 (1+0.5s)2
(14)

(12)

(13)

3-26 	 EMULATOR--BASED CONTROL 	 Chap. 3

Combining this with the control law 3.2.1 with Q(s)=0 and

R(s)=1

~* (s) = Rw(s) 	 (15)

gives:

	

0.405 	w(s)-y(s)
u(s) 	

1+0.0254s~ 	s
(16)

+ (w(s)-3.00y(s)) + s(0.250w(s)-2.033y(s))]

This has the structure of a PID controller with filtering

and modified proportional and derivative setpoint terms.

Note that the proportional gain is lower, and the deriva-

tive gain much higher, than for the model-reference example

- the system is much harder to control.

3.11. A DETUNED MODEL-REFERENCE CONTROLLER

In the sequel (chapters 7&8 in particular), we shall

analyse a particular form of detuned model-reference con-

troller, introduced in[20].

This controller is defined by the Table:

Parameter

P(s)
+
(s)

ú ' s)

Q(s)

C(s)

T

Value

Desired closed loop pole polynomial

1

P(Es); O(E<l
q(s)

 deg(q) = deg(P)
Z (s)
Desired disturbance closed-loop poles

0

Sec. 3.11. A DETUNED MODEL-REFERENCE CONTROLLER 	3-27

Note that Z (s) is not used for zero cancellation here.

This particular emulator based controller is unusual in

that the notional feedback loop is realisable. At first

sight, it would seem that there is no purpose to be served

in implementing the emulator or its self-tuning version.

However, as discussed in detail in chapter 8, the high-

frequency gain of the transfer function
P(s)

 is: Z(s)

	

P(m) _ P(m) 	1 n = deg(P)

	

-
Z(m) 	P(Em) 	n'

E

(1)

This may be excessive for small E and lead to amplification

of unwanted high-frequency sensor noise. The replacement of

the realisable transfer function by a suitable emulator can

remove this undesirable effect - see chapter 8 for a

detailed discussion of the relative merits of implementing

the notional feedback loop and the self-tuning emulator.

The corresponding closed-loop system is defined by:

Notional loop-gain

L(s) 	
P(s)B(s)
q(s)A(s)

(2)

3-28 	 EMULATOR-BASED CONTROL 	 Chap. 3

Closed-loop system output

L(s) 	 *
y(s) 	1+L(s)

 P(s))(R(s)w(s) + e (s))]

+ 	1 	C(s) ----v(s)
1+L(s) A(s)

B(s)Z(s) 	 * CR(s)w(s) + e (s)]
P(s)B(s) + q(s)A(s)

C(s)
+ q(s) P(s)B(s) + g(s)A(s)v(s)

Closed-loop system input

L(s) Z(s)A(s)
u(s) - 1+L(s) P(s)B(s) z(s)

This controller can be thought of as an approximate

model-reference controller in the sense that as Q(s)-0 the

control law approaches that discussed in the model-

reference section. The importance of these particular algo-

rithms is that can be made into an implicit self-tuning

controller with global robustness properties. It is a

continuous-time generalisation of the discrete-time gen-

eralised minimum variance control law[2,5]

Example

Consider the example in section 2.4, where the system

is given by

A(s) = s(s+l);B(s) = 2s 	 (6)

(3)

(4)

(5)

Thus the system is now first order and has a constant

:3ec. 3.11. A DErUNED MODEL-REFERENCE CONTROLLER 	3-29

disturbance. 	This example is to be used later to investi-

gate robustness. The example is that of Rohrs[21]. 	The

corresponding design parameters (see chapter 7) are

P(s) = 1+0.3s; C(s) = 1+0.3s (7)

Choosing E = 0.1 then gives

2(s) = Z (s) = 1+0.03s 	 (8)

Using the results from the example of section 2.4 with

P(s)C(s) = (1+0.3s)` = 1 + 0.6s + 0.0952; z = 0.03 	(9)

lives

E (s) = E 	+ 0.6E 	+ 0.09E 	 (10)
= 	 20 	 21 	 22

and

1
1-J(,. - 0.6z + 0.09) = 0.07515

F (s) = F 	+ 0.6F 	+ 0.09F
2 	 20 	 7_ 1 	 22

= 1 + lsz(-z + 0.6-0.09) = 1 + 0.4948s

The corresponding emulator is then

-k 	 -*
!fi 	's 1 	= !~~ (s) 	-

E (s)B(s)_ 	F (s)
	,_l(5) 	+
3).7., (S) 	 F1(s),L,(S)

(12)

!i.1503s ui~> + 1+n.4948s~(si
(1+0.3s)(1+0.03s) 	1+0.3s

Combining this with the control law 3.2.1

-* 	 -* 	 q(s)
(s) + ;l(s)u(s) - PW(S) = $ (s) + w(s) = 0 	(13)

(s)

EMULATOR-BASED CONTROL 	 Chap.

1+0.4948s 	-
sC(0.07515 + q) + 0.3gs77(5)

3-30

gives:

u(s) _ (14)

+ 	(1+0.3s)(1+0.03s) 	w(s)
sC(0.07515 + q) + 0.3gsJ

Note that this controller has integral action, and its gain

may be varied using the scalar weighting factor q.

REFERENCES 	 3-31

References

1. Goodwin, G.C., "An Amplitude constrained minimum vari-

ance controller," Electronics Letters, vol. 8, p. 181,

1972.

2. Clarke, D.W. and Gawthrop, P.J., "Self-tuning control,"

Proceedings IEE, vol. 126, no. 6, pp. 633-640, 1979.

3. Horowitz, I., Synthesis of feedback systems, Academic

Press, 1963.

4. Horowitz, I. and Sidi, M., "Synthesis of feedback sys-

tems with large plant ignorance for prescribed time-

domain tolerances," International Journal of Control,

vol. 16, pp. 287-309, 1972.

5. Clarke, D.W. and Gawthrop, P.J., "Self-tuning con-

troller," Proceedings IEE, vol. 122, no. 9, pp. 929-

934, 1975.

6. Kumar, R. and Moore, J.B., "On adaptive minimum-

variance regulation for non-minimum phase plants,"

Automatica, vol. 19, p. 499, 1983.

7. Clarke, D.W. and Gawthrop, P.J., "Comments on: 'On

adaptive minimum variance regulation for nonminimum

phase plants'," Automatica, vol. 20, no. 2, p. 261,

1984.

8. Dorf, R.G., Modern control systems, Addison-Wesley,

1980.

9. Kwakernaak, H, and Sivan, R.,, Linear optimal control

systems, Wiley, 1972.

10. Kucera, V., Discrete linear control: The polynomial

equation approach., Wiley, Prague, 1979.

3-32 	 EMULATOR-BASED CONTROL Chap. 3

11. Astrom, K.J., Introduction to 	stochastic

theory, Academic Press, New York, 1970.

control

12. Kailath, T., Linear Systems, Prentice-Hall, 1980.

13. Goodwin, G.C. and Sin, K.S., Adaptive filtering predic-

tion and control, Prentice-Hall, Englewood Cliffs, New

Jersey, USA, 1984.

14. Gawthrop, P.J., "Some interpretations of the self-

tuning controller," Proceedings IEE, vol. 124, no. 10,

pp. 889-894, 1977.

15. Smith, O.J.M., "A controller to overcome dead-time,"

ISA transactions, vol. 6, no. 2, pp. 28-33, 1959.

16. Marshall, J.E., Control of time-delay systems, Peter

Peregrinus Ltd., 1979.

17. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice Hall, 1984.

18. Gawthrop, P.J., "Self-tuning PI and PID Controllers,"

in Proceedings of the IEEE conference on "Applications

of Adaptive and Multivariable Control", Hull, 1982.

19. Gawthrop, P.J., "Self-tuning PID controllers: Algo-

rithms and implementation," IEEE Transactions on

Automatic Control., vol. AC-31, no. 3, 1986.

20. Gawthrop, P.J., "Robustness of self-tuning controllers.

Partl: Single-input single-output systems.," Report

CE/T/13, School of Engineering and Applied Sciences,

Univ. of Sussex., 1985.

21. Rohrs, C.E., Valavani, L., Athans, M., and Stein, G.,

"Robustness of continuous-time adaptive control in the

presence of unmodeled 	dynamics," Trans. IEEE, vol.

AC-30, pp. 881-889, 1985.

CHAPTER 4

Non-Adaptive Robustness

Aims. To investigate the effect of neglected

system dynamics on the stability of (non-

adaptive) emulator-based controllers. To relate a

number of stability criteria. To provide the

background for the robustness analysis of self-

tuning controllers.

4.1. INTRODUCTION

In the previous section, it was assumed that the nomi-

nal system exactly represented the actual system to be con-

trolled. This is an unrealistic assumption in practice.

This chapter presents an analysis of the robustness of the

controllers designed in the previous chapter to neglected

system dynamics; that is, the extent to which the closed-

loop system remains satisfactory in the presence of

neglected system dynamics is investigated. 	The system

dynamics are assumed to be linear, but it is possible to

extend the results to non-linear systems[l]. The

corresponding analysis for self-tuning control is presented

in chapter 7, where it will be found that the adaptive and

non-adaptive results are closely related. 	This relation-

ship is explored further in chapter 8.

4-1

4-2 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

Three approaches to the robustness problem are

presented:

1. A classical Nyquist approach.

2. A method based on a discrete-time analysis of

Astrom[2,3].

3. A method based on the discrete-time analysis of

Gawthrop and Lim[l].

The advantage of 2 and 3 is that the results are expressed

directly in terms of the controller design parameters and

the neglected dynamics; the advantage of 3 is that the

results are directly applicable to the analysis of certain

self-tuning versions. We shall be concerned to relate these

three methods as they all provide different insights into

the robustness problem.

4.2. NEGLECTED PLANT DYNAMICS

A 	i 	i 	r 	 i
u 	I 	1 	u 	1 -sT B(s)1 	y

—>--I N(s) F-->--1 e 	 I-->
I 	I 	I 	A(s)I

Figure 4.2.1 Neglected plant dynamics

In the previous chapter, it was tacitly assumed that

the system was exactly modelled. This assumption is not

practically realistic. In this chapter we retain the

linearity assumption but account for possible errors in

plant modelling. Thus the system equation 1.9.1 is replaced

by:

Sec. 4.2. 	NEGLECTED PLANT DYNAMICS 	 4-3

y(s) = H(s)u(s) + C(s)v(s)
A(s)

where H(s) is a proper transfer function representing a
A

linear time-invariant system and u(s) is the controller

output. This true system equation may be rewritten in

terms of the nominal system as (see Figure 4.2.1):

u(s) = N(s)u(s) 	 (2)

where the neglected dynamics N(s) are given by:

N(s) = esT A(s)H(s)
B(s)

4.3. ROBUSTNESS BLED UN THE ACTUAL FEEDBACK SYSTEM

The standard way of analysing the robustness properties

of a feedback loop is in terms of the Nyquist diagram based

on the actual system loop-gain (seeC4], for example).

Although this method will not be used very much here, it is

introduced to provide a link between such classical methods

and the methods discussed later in this chapter.

As an exampla, consider the emulator-based controller

using the signal 43(s). The emulator is of the form (see

chapter 2, section 5):

* 	 F (s) 	 E (s)B(s)
0 3 (3) - 	

3
+ 	y(s) +

3 	
U(s)

C(s)Z(s) 	C(3)Z (s)

The corresponding control law can, from section 3.2, be

written as

-* 	 n
0 (s) + Q(s)u(s) - Rw(s) = 0 	 (2)

hence

F (s) 	E (s)B(s)
3 	 - 	 -

y(s)[_ 	+ Q(s)]u(s) = R(s)w(s)
C(s)Z+(s) 	C(s)Z (s)

(3)

(1)

(3)

(1)

4-4 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

We can ignore the setpoint when treating stability; the

feedback transfer function relating u(s) to y(s) is then

ú(s) 	
F3(s)Z (s)

i(s) 	E3(s)B(s)Z+(s) + Q(s)C(s)Z (s)

The actual system loop-gain is then given by the pro-

duct of this transfer function and the system loop-gain as

F (s)Z (s)
La(s) 0 N(s)e-

sT
A(s) 	 +3

E3(s)B(s)Z (s) + Q(s)C(s)Z (s)
(5)

The well-known theorem of Nyquist (as extended by

Desoer[5] to the time-delay case) 	gives the following

robustness criterion:

Non-adaptive criterion 1

The (non-adaptive) closed-loop system is stable iff the

Nyquist locus

La(jw)
	

(6)

obeys Nyquist's criterion.

4.4. THE ERROR FEEDBACK SYSTEM

The analysis of both non-adaptive and adaptive control

is simplified by rewriting the relevant equations to form

an error feedback system which exhibits how errors, rather

than actual signals, are propagated.

The neglected dynamics give rise to two extra error

signals in the notional feedback system, the first due to

the system input not being the controller output, the

second due to the emulator being no longer exact. These two

(4)

Sec. 4.4. 	THE ERROR FEEDBACK SYSTEM 	 4-5

error sources are considered in turn.

The Control Signal Error

The neglected dynamics can be represented by the

equivalent expression

,. 	 -
u(s) = u(s) - u(s)

where the control signal error u(s) is given by

,.,
u(s) = [N(s) - 1]u(s) 	 (2)

The Emulator Approximation Error

The emulator based on the nominal system cannot be used

directly in the presence of unmodelled dynamics as the

input 6(s) to the nominal system is not available. An

approximate emulator can, however, be easily obtained by

replacing the unknown nominal system input ú(s) by the

known controller output u(s). The resultant error depends

on the deviation of the neglected dynamics N(s) from unity.

The approximate emulator (with output $a(s)) is thus

given by:

-
$a(s) = 	F(s) y(s) + E(s)B(s)u(s)

C(s)Z+(s) 	C(s)Z (s)

The emulator approximation error introduced by replacing u
A

(s) by u(s) is given by

-a 	-A
= m* e 	(s) - $a(s) - E(s)B(s)u(s)

C(s)Z (s)
(4)

(1)

(3)

4-6 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

The modified notional feedback system

These two errors arising from the neglected dynamics

N(s) modify the properties of the notional feedback system

of the previous chapter by forming two additional input

signals as in Fig 4.4.1.

I C (s) I

V --I - I---)i
1 A(s)I

u >
I

i 	i 	i " I _i 	 t 	-
w 	l 	I+ 	I 	1 	lu 	+l ul 	-sT B(s)1 	Y
->--1 R(s) 1 	0 	>—I 	 1-0-1 e 	F-0 ---T—>

I 	I - I 	I Q(s) I + 	I 	A(s)I 	I
I 	I 	1 	1 	 i

I

	

I 	_a 	_ 	 i 	 i 	I

	

I 	o 	+ o 	 i 	+sT P(s)1

	

' 	< 	0 	 l e 	— 1—<--I

I - 	 I 	Z(s)I
_*I _a 	 1

e + e

Figure 4.4.1 The modified notional feedback system

From this block diagram, the control signal can be

written in terms of the notional loop-gain as:

u(s) = L(s) 	C 	u(s) +
A(s)Z(s)(i(s) + éd(s)) 1+L(s) 	 B(s)P(s)

where the equivalent setpoint i(s) is given by equation

3.3.8 as

z(s) = R(s)w(s) - e
sT P(s)C(s)v(s) + e(s)

Z(s)A(s)
(6)

= R(s)w(s) +
C E(s) - esT P(s)C(s)7v(s)
Z (s) 	

Z(s)A(s)

(5)

THE ERROR FEEDBACK SYSTEM 	 4-7 Sec. 4.4.

The error feedback system

The equations for u(s) and ea (s) are combined with

those of the modified notional feedback system in Figure

4.4.1 to give Figure 4.4.2.

<

r-~ I 1
A
^ r~

z + 	IZ A I - I 	I 	L 	I 	u 1 	I
>-0-1 	1 	0-1 	1-->--{ N-1 1 	
I+ IF B 1+ 	I 1+L I 	I 	I
I 	 ~ 	~ 	 i 	i

I
_al
e 1 	 I EB I
< 	' 	< 	 I 	I 	 < 	

1 CZ 1

Figure 4.4.2 The error feedback system

This Figure shows a two-loop feedback system which can be

transformed to a number of equivalent single-loop systems

using standard techniques. Each such equivalent single loop

leads to a stability criterion for the non-adaptive feed-

back systems. Two such criteria are considered here. 	Both

criteria have been given previously in a discrete-time con-

text: the first is due to Astrom[2] (see[3] section 10.6,

Theorem 10.3), and the second is similar to that given by

Gawthrop and LimEl]. The second criterion is important

because, unlike the first, it extends to the adaptive case.

4.5. ROBUSTNESS - ASTROM'S CRITERION

_ 	Looking at the feedback system of Fig 4.4.2 in terms of

u(s), it can be written as a single loop system in terms of

the intermediate variable u as:

u
>

u
>

4-8 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

u(s) = CN(s) - 13Cu0(s) - 1+L(s) u] 	 (1)

E(s)A(s)Z+(s) - 	 (2) - = (1 	P(s)C(s))u(s)

=
 -sT F(s)Z (s)-
e 	C(s)P(s) u(s)

where u0(s) is the control signal corresponding to no

neglected dynamics and is given by

AL(s) Z(s)A(s)z(s)
u0(s) 	1+L(s) P(s)B(s)

(3)

This feedback system appears in Figure 4.5.1.

A

u
o 	I 	I
	0--1 N(s) - 1 F---> 	
- 	I 	I 	 I

I 	I 	I
I 	 I

I 	I 	L(s) 	II 	V 	I F Z- 	I

	

L---I 	 1—(—I 	 I--_I

	

1 	1+L(s) I 	I P C 	I

	

i 	I 	: 	i

Figure 4.5.1 The single loop error feedback system

From Fig 4.5.1, Nyquist's theorem gives the following

robustness criterion:

Non-adaptive criterion 2

The (non-adaptive) closed-loop system is stable iff the

Nyquist locus

Sec. 4.5. 	ROBUSTNESS - ASTROM'S CRITERION 	 4-9

-sT
M'(s) n 1+LeP(s)C~s)s)C1
	N(s)] (4)

obeys Nyquist's criterion.

A more conservative criterion is that the modulus of

the loop gain is less than unity at all frequencies. Noting

that le-JWTI = 1, this gives the following robustness cri-

terion:

Non-adaptive criterion 3

The non-adaptive feedback system of Figure 4.5.1 is

stable if:

1. M'(s) is stable, and

2. 1 M '(jw)I < 1 for all w.

Astrom's formulation

In the special case that the actual system is given by:

-sToBo(s)
H(s) = e

then

-s(To-T) Bo(s)A
N(s) = e 	 A (s)B

o

The relevant Nyquist locus is then given by:

L(s) 	F(s)A(s)Z (s) Ce 	-sT B(s)

	

M'(s) - 1+L(s) P(s)B(s)C(s) Ce 	Ao(s) 	
e 	

A(s)] 	
(7)

Part 2 of the conservative criterion then may be rearranged

as:

IsToBo(s)
-sT B(s)I 	I1+L(s) 	B(s)P(s)C(s) ~ le
	

Ao(s) 	e 	A(s)
I

< I L(s) 	 - 	 I 	(8)
I 	A(s)Z (s)F(s)I

Ao (s) (5)

(6)

4-10 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

for all s = jw.

In the particular case that L(s) = 00, and so

L(s) =1
1+L(s)

(9)

and both the nominal and actual systems are stable, this

reduces to the criterion derived by Astrom[2] Theorem 1,

and reproduced in[3] section 10.6 as Theorem 10.3.

4.6. ROBUSTNESS - THE M-LOCUS

An alternative way of analysing the error feedback sys-

tem of Fig. 4.4.2 is in terms of ea (s). Solving for the

upper feedback loop:

ea(s) 	
Z+(s)A(s)E(s) L(s)CN(s)-1][Z(s) + ea(s)]
P(s)C(s) 	1+L(s)N(s)

Combining this with the rest of the block diagram:

eaís) _ - M(s)Cz(s) + ea(s)] 	 (2)

(see Figure 4.6.1) where the transfer function M(s) is

M(s) -
Z+(s)E(s)A(s) 	N

1 (s)-1
P(s)C(s) 	l+L -1 	-11(s)

B(s)E(s) 	1-N(s)

Z (s)Q(s)C(s) 1+L(s)N(s)

This leads to an alternative robustness criterion:

Non-adaptive criterion 4

The (non-adaptive) closed-loop system is stable iff the

Nyquist locus

(1)

(3)

M(jw) 	 (4)

The system

H(s)

Rohrs' system, in our notation,

200 =
(s+1)(s2 + 8s + 	100)

is described by:

(1)

Sec. 4.6. 	ROBUSTNESS - THE M-LOCUS 	 4-11

r—~ e

	

z + 	I 	I 	a
-> 	

- I 	I 	I 	I

Figure 4.6.1 The single loop error feedback system

obeys Nyquist's criterion.

Once again, a more conservative criterion is:

Non-adaptive criterion 5

1. M(s) represents a stable system (all poles have nega-

tive real parts)

2. Vi M(jw)1 < 1 for all w

4.7. ROHRS EXAMPLE

In a celebrated paper[6], Rohrs and his colleagues

illustrated the poor robustness properties of a particular

model-reference adaptive control algorithm by examining its

performance on two particular example systems. In this sec-

tion, the second of these example systems is used to illus-

trate the non-adaptive robustness properties of the detuned

model-reference adaptive controller of section 3.10.

Actual loo• •ain Notional 100• •ain

2 -1 0 1 2
11' (jw) locus

2

-2 -2 -1 0 1 2

11(jw) locus
2

	

0 	

	

-1 	
~

~

-2 -2 -1 0 	1 	2

4-12 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

Figure 4.7.1 Example 1

One possible decomposition into nominal (B(s)/A(s)) and

neglected dynamics (N(s)) is

B(s) _ 2b N(s) 	1 	100
A(s) 	l+s' 	b

s2 + 8s + 100
(2)

Thus the actual system is third order; we are assuming for

design purposes that it is first order. The neglected

dynamics are second order with natural frequency lOrad

sec-1 and damping ratio 0.4. There are clearly an infinite

number of possible decompositions having the property that

H(s) = N(s)B(S)
A(s) (3)

Sec. 4.7. 	 ROHRS EXAMPLE 	 4-13

2

1

0

-1

_ -t

Actual 	loo • 	•ain

2

2

i

0

-i

-1

Notional 	loo• 	•ain

2
1

..-./ 	

_1
/

r
-2 	-i 	0 	i -2 	-1 	0 	1

2

1

0

-1

W,jw) 	locus

2

2

1

0

-1

-2

M'(jw) 	locus

2

	 %~ 	 0

-2 -2 -1 	0 	1 -2 	-1 	0 	1

Figure 4.7.2 Example 2

The design parameters

Rohrs and colleagues attempt to match the reference

model

3 	1
s+3 	1+0.3s (4)

For consistency with this requirement, choose

P(s) = 1 + 0.3s 	 (5)

As, for practical reasons, we would like integral action,

choose

A(s) = s(l+s); B(s) = 2s 	 (6)

4-14 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

Actual 	loo. 	•ain Notional 	loo. 	•ain

1 1

0
.-----s).

0
/■----■

\

-1 -1

-2- -1 	0 	i 2 -2 -2 	-i 	e 	i 2

2
M(,jw) 	locus 2 M' (,jw) 	locus

1 1

0 ~- 	.̀ J 0 ~

-1'~---.
~ ~

-1 	 \'''---
.....) 	

\,_ 	-J:

-2-2 -1 	0 	1 2 -2-2 -1 	0 	1 2

Figure 4.7.3 Example 3

This leaves C(s), Q(s) and Z(s) to choose. To achieve the

right sort of disturbance response, choose

C(s) = P(s) = 1 + 0.3s 	 (7)

To make $(s) realisable, choose 1/Z(s) to be the first

order low-pass filter:

Z(s) = 1 + 0.03s 	 (8)

Finally, make Q(s) zero at s=0 by choosing

Q(s) _ —g— C15 C15
Z(s) 	1+0.03s (9)

Note that q=0 would give exact model following; q>0 detunes

the controller at high frequencies.

Sec. 4.7. 	 ROHRS EXAMPLE 	 4-15

2

1

-2

Actual 	100• 	•ain

2

2

0

-1

-2

Notional 	loo• •ain

2

0 	 ~

1 	

-2 	-1 	0 	1 -2 	-1 	0 	1

2

0

-1

-2

M(jw) 	locus

2

2

0

-1

-2

M'(,ju) 	locus

2

1 	

	 0

1 	

-2 	-1 	0 	1 -2 	-1 	0 	1

Figure 4.7.4 Example 4

Robustness analysis

To exemplify the use of the various criteria presented

in this chapter, we will consider four examples (Figures

4.7.1-4) based on that of Rohrs.

The four examples have the following in common:

1. Four frequency loci are plotted for values of w>0:

a) The actual loop gain: La(jw) (equation 4.3.5)

b) The notional loop gain (with neglected dynamics

included): N(jw)L(jw)

c) The M-locus M(jw) (equation 4.6.4)

Example b q

1 	1.0 	0.05

2 	1.0 	0.2

3 	0.5 	0.05

4 	I 	0.51 	0.2

4-16 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

d) The M'-locus M'(ja) (equation 4.5.4)

2. The actual system H(s) is as given in equation 4.7.1.

3. The emulator and controller design parameters are as

given in equations 4.7.4-9.

The four examples are different in the following ways.

The parameter b determining the decomposition of equation

2, and the control weighting factor q of equation 9, are

varied as in the following table (see Figures 4.7.1-4):

Remarks

1. As both the nominal and actual systems are stable, the

loci corresponding to La(s) and M'(s) imply stability

if there are no encirclements of the -1 point. Both

these loci predict stability for examples 1,2&4 and

instability for example 3.

2. In this example, stability of the transfer function

M(s) depends on the stability of

L(s)N(s)
1+L(s)N(s)

In examples 1 and 3, the N(s)L(s) locus encircles the

-1 point, indicating instability; in examples 2 and 4

it does not, indicating stability. In examples 2 and

4, the M-locus does not encircle the -1 point, indicat-

ing stability. In example 1, the M-locus encircles -1

Sec. 4.7. 	 ROHRS EXAMPLE 	 4-17

the requisite number of times in an anti-clockwise

sense, indicating stability; whereas in example 3 the

M-locus does not encircle the -1 point, indicating ins-

tability.

3. As criteria 1,2 and 3 are all necessary and sufficient,

it is not surprising that they all give the same sta-

bility predictions. The conservative criteria, however,

do not always agree.

4. The N(s)L(s) locus is the same for examples 1 and 3,

and for 2 and 4. This locus is not affected by the

choice of the decomposition of H(s) into N(s) and B(s)
A(s).

4-18 	 NON-ADAPTIVE ROBUSTNESS 	 Chap. 4

References

1. Gawthrop, P.J. and Lim, K.W., "On the robustness of

self-tuning controllers," Proc. IEE, vol. 129 ptD, pp.

21-29, 1982.

2. Astrom, K.J., "Robustness of a design method based on

assignment of poles and zeros," Transactions IEEE, vol.

AC-25, pp. 588-591, 1980.

3. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice-Hall, 1984.

4. Dorf, R.G., Modern control systems, Addison-Wesley,

1980.

5. Desoer, C.A., "A general formulation of the Nyquist

criterion," IEEE Trans. on Circuit Theory, vol. CT-12,

pp. 230-234, 1965.

6. Rohrs, C.E., Valavani, L., Athans, M., and Stein, G.,

"Robustness of continuous-time adaptive control in the

presence of unmodeled 	dynamics," Trans. IEEE, vol.

AC-30, pp. 881-889, 1985.

CHAPTER 5

Least-Squares Identification

Aims. To discuss linear-in-the-parameter system

models. 	To introduce and derive the continuous-

time least-squares method and to analyse its pro-

perties. To show that discrete-time least-squares

methods can be used to identify continuous-time

parameters.

5.1. INTRODUCTION

Least-squares parameter identification has been used in

self-tuning control for a long time[1,2,3,4]. However this

has usually been in a discrete-time context. 	A notable

exception is the work of Young[5] who combined digital

least-squares with analogue components to give estimates of

continuous time transfer function parameters and hence to

control a system. In a survey paper[6], Young points out

that as well as discrete-time estimation of discrete-time

system parameters, discrete-time and continuous-time esti-

mation of continuous-time system parameters is also possi-

ble. These two latter approaches to the identification of

continuous-time 	parameters 	are 	considered 	here:

continuous-time identification of continuous-time parame-

ters and discrete-time identification of continuous-time

5-1

5-2 	 LEAST-SQUARES IDENTIFICATION 	Chap. 5

parameters. The former is of theoretical interest as a

limiting case; the latter is more appropriate to practical

application. In each case, we require a linear in the

parameters system representation; so this is considered

first.

5.2. LINEAR IN THE PARAMETERS SYSTEMS

The standard linear in the parameters model to be used

in this book is

T(t) = XT(t)e + e(t)

where P(t) is the scalar system output, X(t) is a column

vector of measured variables, a is a column vector of

parameters and e(t) is the linear in the parameters error.

Thus the scalar output of a linear in the parameters model

is composed of two terms: the sum of products of measure-

ments and parameters, and an error term. Particular cases

will be derived in detail in chapter 6; for the purposes of

this chapter the linear in the parameters model is

motivated with a simple example.

Example: Linear in the parameters model

Consider the first order system:

-
y- (s) - s-b~u(s) + sd+a + 5+a

(s) (2)

where d represents the effect of initial conditions.

Choosing a polynomial Cs(s) = s+c (c>0), this may be

rewritten as

s+~y(s) - sbcu(s) + s+c + s+c (s)

Rearranging gives

p(s) = c-a
s+c-) + b s+c-) + d s+c + s+~v(s)

(1)

(3)

(4)

Sec. 5.2. 	LINEAR IN THE PARAMETERS SYSTEMS 	 5-3

This is in the linear in the parameters form with

`Y(s) = i(s); e(s) = s+cv(s) 	 (5)

and

I 	I

Ic al 	 ly(s)I
e = I b I; xT(s) =

i l
u(s) I I d I 	 s+ci 1

i

The data vector X(t) is formed from the output of three

low-pass filters with transfer function s+c, one driven by

y(t), one driven by u(t) and the other with no input. The

first two filters have zero initial condition; the third

has unit initial condition. See[7] for more details.

Example: The effect of offset

Consider the same first order system but with a unit

constant added:

-
y(s) = sbau(s) + sd+a + s+â (s) + s (7)

sb - 	(sd+s+a) s - s(s+a)u(s) + s(s+a) + ss+â (s)

Where d represents the effect of initial conditions and 1/s

represents a constant. Choosing a polynomial C(s) = (s+c)2

(c>0), this may be rewritten as

s(s+a)-y(s) 	sb u(s) + s(l+d)+a + 	s v(s)
(s+c)z 	(s+c)2 	(s+c)z 	(s+c)z

Rearranging gives

Cl 	
cZ]y- (s) _ (2c-a) 	sy(s) + b su- (s)

(s+c)Z 	 (s+c)Z 	(s+c)Z

+ l+d 	s 	+ 	a + ------v(s)
(s+c)Z 	(s+c)Z 	(s+c)Z

(6)

(8)

(9)

5-4 	 LEAST-SQUARES IDENTIFICATION 	Chap. 5

This is in the linear in the parameters form with

z 	 2
T(s) = C1 - 	c] y(s) - s+2cs Y(s)

(s+c)Z 	 (s+c)z

e(s) = + 	s v(s)
(s+c)2

and

(10)

12c-al

6 = I b 	1• XT(s) - 	1
idâl I' _
	

(s+c)2

si(s)

su(s)
s
1

(12)

This model has the important property that the filtering of

y(s) and u(s) removes constant components.

5.3. CONTINUOUS-TIME LEAST-SQUARES CRITERION

Suppose we have a linear-in-the parameters system as in

equation 1 of the previous section, with output Y'(t),

parameter vector 6 and data vector X:

T(t) = X(t)6 + e(t) 	 (1)

Assume that 'Y(t) and X can be measured but that the nominal

parameter vector 6 is unknown. Suppose that we choose an

estimate 6(t) of 6. Then we can deduce an estimate Ÿ'(T) of

Ÿ'(T) at a time T (less that the current time t) based on
A

the current estimate 6(t) from the equation

A
T(T) = XT(T)6(t) (2)

The resultant estimation error e(t,T) is then defined as

e(t,T) = 'Y(T) - T(T) 	 (3)

Sec. 5.3.CONTINUOUS-TIME LEAST-SQUARES CRITERION 	5-5

For convenience, we shall write the estimation error based

on the current parameter estimate as

A 	A ^
e(t) = e(t,t) = `Y(t) - T(t)

The aim of least-squares estimation is to choose the

current estimate 0(t) to minimise a weighted average esti-

mation error over all measurements from time 0 to time t.

The choice of the particular criterion leading to the

weighted average is somewhat arbitrary. As is usual, a qua-

dratic form with exponential weighting ('least-squares') is

used in this book. 	This method (particularly in its

discrete-time version) has a long track record of success-

ful application. It will also be shown in the sequel that

using the least-squares approach endows an self-tuning

algorithm with desirable robustness properties.

The exponentially weighted least-squares cost function

which we will use here is

J(g(t),t) = le-"(g(t) - 6o)TSo(0(t) - 00) (5)

t 	 2
+ lfe-0(t-T)

e(t,T) dT 20

where 0 is a non-negative scalar:

So is a positive definite matrix:

—So > 0 (7)

(4)

The first term in the cost allows us to include a prior

estimate in the algorithm; often we would wish to start a

5-6 	 LEAST-SQUARES IDENTIFICATION 	Chap. 5

self-tuning controller off with a known 'safe' set of coef-

ficients, and this feature allows this. The second term

brings the measured data into the criterion; it is a

weighted average of the square of past estimation errors

based on the current parameter estimate. The exponential

weighting coefficient a acts as a forgetting factor. As

time t increases, the effect of old data at time T < t is

discounted exponentially with the elapsed time t - T; the
/..

initial parameter estimate 00 is discounted in a similar

way. S(0) varies the weight given to the initial parameter

estimate.

Note that J is a function of two variables: time t and

parameter estimate e(t).

The least-squares estimate is that value of 0(t) which

minimises this cost for each time t > 0. 	At such a

minimum, the partial derivative of J(6(t),t) with respect

A

to 6(t) is zero:

J1(6(t),t) Q aJ(e(t), t) = 0

ae

(8)

Note that J(6(t),t) is a vector of the same dimension as e 1

(t).

5.4. MINIMISATION OF THE COST FUNCTION

We consider the minimisation of the cost function in

three stages:

1. Existence and uniqueness of a minimum.

2. A non-recursive (integral) form of the solution.

3. A recursive (differential equation) form of the solu-

tion.

Sec. 5.4. 	MINIMISATION OF THE COST FUNCTION 	 5-7

Existence of solutions

Before performing the minimisation, it is important to
A

know if a minimum (with respect to O(t)) exists. The cost
A

function is quadratic in 0(t), so existence depends on the

second derivative:

z

J (O(t),t) = a 	J(0(t),t) = S(t) z 	 382

where

t
S(t)

o
e -Bt + fe

-~(t-T)X(T)XT(T)dT
0

So is, by definition, positive definite; hence so is

e OtSo. The second term S(t) depends on the data but,

because of its form, is non-negative definite. Thus

A

S(t) = J2(0(t),t) > 0 (3)

This condition is sufficient to ensure existence and

uniqueness of the solution of the minimisation problem.

There is one global minimum and it occurs when the first

derivative of J(0(t),t) with respect to 0(t) is zero.

However, for practical purposes, this is not good

enough, as J2(O(t),t) may become nearly singular. Not only
/X

must Jz(0(t),t) be non-singular, but it must be numerically

non-singular. Also, for later theoretical reasons, we

require that S(t) be uniformly positive definite (even when

pO) in the sense that

S(t) > E 	 (4)

(1)

(2)

where E is a constant positive definite matrix.

5-8 	 LEAST--SQUARES IDENTIFICATION
	

Chap. 5

In practice, then, the data-dependent persistent exci-

tation condition

S(t) > E > 0
	 (5)

is often required.

Non-recursive solution

Taking the partial derivative of J(0(t),t) with respect

to 9(t)

J(8(t),t) = le
p
tSo(6(t) - 8s) (6)

+ fe
0(t

-T)X(T)(XT(T)8(t) - T(T))dT

0

= Ze
-pt

So (A(t) - 0_0)

+ Cfe
13(t

T)X(T)XT(T)dT]8(t)

0

-0(t-T)
- Je 	X(T)Y'(T))dT

0

Setting J(n(t),t)=0, it follows that the value O (t)

corresponding to the minimum of J(0(t),t) is given by

t
S(t)8(t) = e ptS~eo +

fe-S(t T)
X(T)~`(T)dT

0
(7)

This equation, together with that for S(t) (5.4.2),

forms the non-recursive solution of the least-squares

Sec. 5.4. 	MINIMISATION OF THE COST FUNCTION 	 5-9

estimation problem. This solution is unique at time t iff

S(t) is non-singular, and is then given by

0(t) = S 1(t) e
-st

e + Je-s(t-T)X(T)T(T)dT -o—o 0

Recursive solution

To get a recursive solution, we first convert the

integral form of the cost (5.3.2) to a differential form by

taking partial derivatives with respect to time. 	Taking

partial derivatives with respect to time

2

atJ(0(t),t) + f J(0(t),t1 = ,lze(t)

and then taking i partial derivatives with respect to 8(t)

2

at
Ji(e(t),t) + ~Ji(0(t),t) _ 	li 	

ai„
ie(t)

30

where

J.(0(t),t) = —a J(0(t),t) ~ 	 aei --

The total derivative with respect to time is then given by

the formula

aaJi(0(t),t) = a Ji(0(t),t) + aJi(0(t),t).dd8(t) (12)

ae

(8)

(9)

(10)

= atJi(0(t),t) + Ji+1(0(t),t).da0(t)

5-10 	 LEAST-SQUARES IDENTIFICATION 	Chap. 5

A formula for the optimum value 8(t)

Recalling that our condition for the optimal value 8(t)

is J1(O(t),t) = 0, it follows from 12 with 1=1 that

J2(8(t),t)dd8(t) =

2

i ae(t)
2 A

ae

(13)

= X(t)e(t)

Noting from equation 5.4.1 that J2(8(t),t) = S(t), it fol-

lows that

dd8(t) = S-1(t)X(t)e(t) 	 (14)

A

A formula for J2(8(t),t)

As J is quadratic in 8(t), it follows that

Ji(8(t),t)=0 for i>2. Thus J2(8(t),t)=S(t) is given by:

dts(t) + pS(t) = X(t)XT(t)
	

(15)

(note that atS(t) = dtS(t) as S(t) is independent of 8(t).

This formula can also be obtained by differentiating

the non-recursive formula 5.4.2.

Initial conditions

A

Considering J(0(t),t) at time t=0, it follows from the

Sec. 5.4. 	MINIMISATION OF THE COST FUNCTION 	 5-11

non-recursive solution that

(16)

and also that

JZ(0(t), 0) = So (17)

5.5. THE RECURSIVE LEAST-SQUARES ALGORITHM

We are now in a position to state the continuous-time

recursive-least-squares algorithm.

Recursive least-squares - inversion

The recursive least-squares algorithm is, from equa-

tions 14&15, defined by the pair of differential equations:

S(t)16(t) = X(t)e(t) 	 (1)

ddS(t) + pS(t) = X(t)XT(t) 	 (2)

and the algebraic equation

e(t) = `Y(t) - T(t) = T(t) - XT(t)0(t)

with initial conditions:

A

0(0) = Oo; S(0) = So

A disadvantage of this approach is that O(t) does not

appear explicitly; essentially S(t) must be inverted to

obtain a solution. This problem is removed by the follow-

ing reformulation.

(3)

(4)

5-12 	 LEAST-SQUARES IDENTIFICATION 	Chap. 5

Recursive least-squares - no inversion

Assuming S(t) is non-singular, the equations can be

expressed directly in terms of S-1(t) as

dt6(t) = S 1(t)X(t)e(t) 	 (5) ^
	 A

ddS 1 lt) + ~S-1(t) = s-1(t)X(t)XT(t)S 1(t) 	 (6)

Note that, for numerical reasons, it is better to update

the square root of S(t) rather than S(t) itself[8].

5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES

The continuous-time recursive least-squares algorithm

has some important properties which lead to robust self-

tuning control. These properties are now derived.

The 'ideal' cost

For the purposes of this section, we shall define the

ideal conditions for the estimator by having zero error

e(t) and by having the correct initial estimate:

e(t) = 0; A o = 0 (1)

Such ideal conditions do not reflect a practical situation,

but rather provide a basis for analysing the recursive

least-squares algorithm operating under non-ideal condi-

tions. 	With ideal conditions, the estimation error is

given by:

e(t,T) 	T(T) - `Y(T) = X(T)6(t) 	 (2)

where the error in the parameters 6(t) is defined as

Sec. 5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 	 5-13

é(t) °= 0 - ê(t)

Under these conditions, the ideal cost (which will be

called J (6(t),t)) is given from 5.3.5 by

*(6(t),t) = le -~t(6(t) - 6)T 	 6 J 	 S (6(t) -)
2 	 —o -o 	—o

t
+

z!e -
0(t-T)

(XT(T)6(t))2dT
0

= 16(t)TS(t)6(t)

Under these conditions, the ideal cost J (6 (t),t) is

given by the quadratic form 26(t)TS(t)6(t). Its minimum

value is clearly zero, corresponding to 6(t) = 6.

Guided by this result, we define the quadratic function

V(t):

V(t)
~ z

6(t)TS(t)6(t)

As we have shown, under ideal conditions J (6(t),t) = V(t).

In the sequel, the behaviour of V(t) under non-ideal condi-

tions, but using the least-squares algorithm, will be found

to be of interest.

To obtain a differential equation for V(t), we first

differentiate with respect to time to give:

ddV(t) = 26(t)TddS(t)6(t) + 6(t)TS(t)dd6(t) (6)

Using the least-squares algorithm 5.5.1&2 and noting that

(3)

(4)

(5)

5-14 	 LEAST-SQUARES IDENTIFICATION 	 Chap. 5

- ddê(t) 	 (7)

this becomes

ddV(t) =
1-

-
d

+ X(t)XT(t)16(t) (8)

- 6(t)TX(t)e(t)

At this stage, it is convenient to define the parameter-

induced error

e6(t) 0 6(t)TX(t) 	 (9)

This gives

dt
(t) + eV(t) = ze6(t)z - e6(t)e(t)

Now

e(t) _ T(t) - T(t) 	 (11)

= (T(t) - XT(t)8) + (XT(t)6 - XT(t)6(t))

= e(t) + e6(t)

So we can replace e6(t) by e(t) - e(t) to give

ddV
+ pV = -(e(t) - e(t))z - (e(t) - e(t))e(t)

z

= 1Ce(t)
2
 - e(t)]

z

(10)

(12)

V(s)

>

Sec. 5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 	 5-15

This gives the following property of the ideal cost

2

ddV + SV = 2(e(t)2 - e(t))

This is discussed in the following section.

Properties

The equation

2

daV + pV = Z(e(t)2 - e(t))

can be interpreted as follows: the (positive) ideal cost V

is the output of the low-pass filter FLP(s) (Figure 5.6.1)

with transfer function

A 1
FLP(s) - s +

p

2

with input ZCe(t)2 - e(t)] and initial condition V(0).

2
e 	—>---1 	i 	i

	

+ 1 	I 	I
0-->--IF (s) I

^ 2 	- 1 	1 LP 	I
e 	—>____I 	t 	 '

Figure 5.6.1 The low-pass filter

If the two signals e(t) and e(t) are exponentially multi-

plied (as in section 1.5) by eat to give ea(t) and ea(t):

A 	
A

ea(t)
0

e 	 a e(t); ea(t)
~ e
	e(t) (16)

(13)

(14)

(15)

5-16 	 LEAST-SQUARES IDENTIFICATION 	 Chap. 5

then

2 	 2
A 	 A

ea2(t) = ezat e(t)2 	 2a ; ea (t) = e 	e(t)

Similarly define

Va(t) = e2mt V(t)

It follows from chapter 1, section 5, that the (positive)

exponentially multiplied ideal cost Vm(t) is the output of

the low-pass filter FLp(s - 2m) with transfer function

1
FLP(s - 2m) - s + 8-2m

(19)

2

with input Z(ea2(t) - ea (t)) and initial condition V(0).

In particular, if

~
oc 	0= 2

The low-pass filter becomes an integrator and

t 	
2

Va(t) = V(0) + Zf (ea2(T) - ea (T))dT
0

(20)

(21)

The small gain property

The estimator can be regarded as a single input single

output system R with input e(t) and output e(t) (Figure

5.6.2). We now derive a simple property of this system.

Noting that Vm(t) > 0, it follows that

t„ 2 	 t

Z a fe (T)dT < Zfe 2(T)dT + V(0)
0 	 0

a

(17)

(18)

(22)

Intuitively, this expresses the fact that the integral over

Sec. 5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 	 5-17

e 	t 	 e
St 	 >

Figure 5.6.2 The estimator 'system'

time of the exponentially multiplied estimator squared

'output' e(t) is less than, or equal to, the integral over

time of the exponentially multiplied estimator squared

'input' e(t) plus a constant.

Noting that

tt 	 t
Ife p(T)dT+V(0) < Ife

2
	p(Y)dT.J2V(0) (23)

20 a 	 20 a 	 0 a

t
=

2[Jfem2(Y)d' + J2V(0)]2 0

it follows that

t„ 2 	 t
JfOea (T)dT < Jffeap(Y)dT + 42V(0) 	 (24)

In this sense (see[9,10] for details) the gain of the esti-

mator system St is unity.

Ideal behaviour - estimates

Suppose that the external system is such that the sig-

nal e(t)=0, that is there are no neglected dynamics and no
2

disturbances. As e (t) > 0, it follows that

5-18
	

LEAST-SQUARES IDENTIFICATION 	Chap. 5

Vm(t) < V(0)
	

(25)

hence

V(t) < e zat V(0) (26)

That is, the ideal cost V(t) is proportional to the initial

cost V(0) and decays at least exponentially with time.

Recalling that the quadratic function V(t) is

V(t) ~ 16(t)TS(t)6(t)

it follows that this result does not say much about the

parameter estimate error 8(t) unless the matrix S(t) is

non-singular. However, if we assume the data-dependent

persistent excitation condition

S(t) > E > 0 	 (28)

it follows that

1. 8(t) is bounded.

2. 8(t) converges to zero exponentially.

Ideal behaviour - estimation error

If e(t) = 0, the sole input to the lowpass filter
2

FLP(s) is the signal 	- e(t) . Hence the filter output

V(t) can be written in terms of the filtered signal e Lp(t)

representing the contribution of e(t) to the filter out-

put:

z.

ddeLp(t) + aeLp(t) = e(t) ; eLp(0) = 0 	 (29)

(27)

2

as

Sec. 5.6. ANALYSIS OF RECURSIVE LEAST-SQUARES 	 5-19

2

V(t) = V(0) - eLP(t)

As the output V(t) of the filter must remain positive, it

follows that the low-pass filtered signal eLP(t) must be

bounded by V(0):

2
A

eLP(t) 	Ç V(0)

This is not sufficient to ensure that e(t) is bounded (for

example, passing a S function into a low-pass filter gives

a bounded output).

5.7. DISCRETE-TIME PARAMETER ESTIMATION

Digital implementation of the continuous-time estimator

implies a sample rate similar to that of the corresponding

digital controller. In this section, it is shown that

discrete-time estimation of continuous-time parameters is

possible[5,6] without introducing any sampling error. This

allows 	the estimation sample rate to be divorced from the

controller sample rate.

The-linear-in-the parameters model

The linear-in-the parameters model

T(t) = XT(t)e + e(t) (1)

is non-dynamic; it is just an algebraic relation. It may

thus be sampled at any time tm to give

Y' = X
T
O + e m 	Jm — 	in

where

T
m

~ Y'(tm);
XmT n XT(tm); em = e(tm)

(30)

(31)

(2)

(3)

5-20 	 LEAST-SQUARES IDENTIFICATION 	Chap.

Note that this relation holds whether or not the samples tm

are equispaced or indeed in the correct order.

The Least-Squares Algorithm

The discrete-time least-squares algorithm appropriate

to the discrete-time linear in the parameters model is well

known and will not be derived here. See any of the text-

books[11,12,13,14,15] for details.

The parameter update algorithm is

%+1- em
+ Sd

1)mXmC`Ym - XTm6m]

where the matrix Sd is given by

T
S _
dm

p
d~m-1 + XmXm

As discussed in the references ([8] in particular), the

inverse, or the square-root of the inverse, of Sd is

updated in practice. These exact discrete-time equations

may be regarded as an approximation to the continuous-time

equations. Assuming a constant sample interval A, the equa-

tions can be rewritten as

A

~ e«+lA Jm - (ASdm) 1XmC`Ym - XmT6m]

where the matrix ASd is given by

AS
dm 	ASdm-1 - (Sd 	1) AS 	+ X X T

A 	 A —dm-1 —m—m

Regarding the left-hand side of each equation as an approx-

imate time derivative, and comparing with equations

5.5.1&2, shows that:

6m ~ 6(tm), Sdm s5 pS(tm) ; ~d ~ 1 	Ap (8)

(4)

(5)

(6)

(7)

Sec. 5.7. 	DISCRETE-TIME PARAMETER ESTIMATION 	 5-21

References

1. Kalman, R.E., "Design of a self-optimizing control sys-

tem," Trans. ASME, vol. 80, p. 468, 1958.

2. Astrom, K.J. and Wittenmark, B., On self-tuning regu-

lators," Automatica, vol. 9, pp. 185-199, 1973.

3. Clarke, D.W. and Gawthrop, P.J., "Self-tuning con-

troller," Proceedings IEE, vol. 122, no. 9, pp. 929-

934, 1975.

4. Clarke, D.W. and Gawthrop, P.J., "Self-tuning control,"

Proceedings IEE, vol. 126, no. 6, pp. 633-640, 1979.

5. Young, P.C., "Process parameter estimation and self-

adaptive control," in Theory of self-adaptive systems,

ed. P.H. Hammond, Plenum Press, New York, 1966.

6. Young, F.C., "Parameter estimation for continuous-time

models - A survey," Automatica, vol. 17, no. 1, pp.

23-39, 1981.

7. Gawthrop, F.J., "Parametric identification of transient

signals," IMA Journal of Mathematical Control and

Information, vol. 1, pp. 117-128, 1984.

8. Bierman, G.J., Factorization methods for discrete

sequential estimation, Academic Press, New York, 1977.

9. Desoer, C.A. and Vidvasagar, M., Feedback systems .

Input-output properties, Academic Press, London, 1975.

10. Vidyasagar, M., Input-output analysis of large-scale

interconnected sLstems, Springer, Berlin, 1981.

11. Harris, C. and Billings, S., Self-tuning and adaptive

control - theory and applications, Peter Peregrinus,

London, 1981.

5-22 	 LEAST-SQUARES IDENTIFICATION
	

Chap. 5

12. Liung, L. and Soderstrom, T., Parameter identification,

MIT Press., London. 1983.

13. Eykhoff, P., System identification, Wiley, 1974.

14. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice-Hall, 1984.

15. Goodwin, G.C. and Sin, K.S., Adaptive filtering predic-

tion and control, Prentice-Hall, Englewood Cliffs, New

Jersey, USA. 1984.

CHAPTER 6

Self-Tuning Control

Aims. To introduce a class of self-tuning con-

trollers based on self-tuning emulators in a

feedback loop. To distinguish between implicit

and explicit methods. To distinguish between

off-line and on-line emulator design. 	To show

that some standard self-tuning methods, such as

model-reference, generalised minimum variance,

pole-placement and PID, are special cases of the

more general class. 	To illustrate some self-

tuning controllers using simulation.

6.1. INTRODUCTION

Self-tuning controllers (in the sense of this book)

have two parts: a tunable feedback controller and a parame-

ter identification based tuning method. Emulator-based

feedback control has been considered in chapter 3 and

least-squares identification has been considered in chapter

5. Putting these two ingredients together gives a self-

tuning controller.

6-1

In chapter 3, it was found that the notion of an emula-

tor embedded in a feedback loop unifies a number of

6-2 	 SELF-TUNING CONTROL
	

Chap. 6

apparently diverse control laws; they are all examples of

an emulator within a feedback loop. In the same way, the

notion of a self-tuning emulator in a feedback loop unifies

a number of self-tuning controllers.

Astrom and WittenmarkCl] make the distinction between

two types of self-tuning algorithm:

1. Explicit algorithms which explicitly identify the sys-

tem parameters and then deduce the corresponding emula-

tor parameters. These have also been called indirect

methods.

2. Implicit algorithms which identify the emulator parame-

ters directly; system parameters are implicit in the

identified emulator parameters. These have also been

called direct methods.

Implicit self-tuning control in a continuous-time setting

has been considered by Egardt[2,3,43. In particular, he

unifies a number of algorithms and gives relations between

self-tuning control and the classical model-reference

approaches[5]. This chapter deals with implicit methods in

the same spirit as Egardt; in particular, the intention is

to unify a number of methods. The difference is that a

wider class of algorithms is considered here and the self-

tuning is based on recursive least-squares. The approach

extends and amplifies that given in[6].

This twofold division of algorithms is not sufficient

for the purpose of this book. We make the further distinc-

tion between on-line and off-line emulator design:

1. Off-line design. The emulator design parameters P(s),

Z(s), C(s) and T, the control weighting Q(s) and the

setpoint filter R(s) are chosen off-line, that is

before the self-tuning algorithm starts.

Sec. 6.1. 	 INTRODUCTION 	 6-3

2. On-line design. Some, or all, of the emulator design

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically

varied during self-tuning. There is two-level tuning

taking place: both emulator parameters (G(s), F(s)

etc.) and emulator design parameters are automatically

tuned. The adjectives 'implicit' and 'explicit' refer

to the former tuning process.

Examples of on-line emulator design in a discrete-time

context are the algorithm of Allidina and Hughes[7] where

P(s), Q(s) and R(s) are chosen on-line; and the discrete-

time LQ method of Grimble[8] where the continuous-time

equivalent is to choose the polynomial P(s) on-line via a

spectral factorisation of the form:

P(s)P(-s) = B(s)B(-s) + xA(s)A(-s) 	 (1)

where the system polynomials A(s) and B(s) are estimated

on-line.

Organisation of the chapter

Section 2 considers feedback control in a self-tuning

context and relates the algorithms to those of chapter 3.

Section 3 considers system identification; that is a method

of deriving system parameters using least-squares methods

is given. Section 4 considers explicit self-tuning con-

trol; the system identification algorithms of section 3 are

combined with the design methods of chapter 2. Section 5

introduces implicit self-tuning methods where emulator

parameters are identified without identifying system param-

eters or using the design methods of chapter 2. The section

is subdivided into off-line approaches where the emulator

design parameters P(s), Z(s) and T, and the controller

parameters Q(s) and R(s), are chosen a-priori, and on-line

design methods where the emulator design parameters P(s),

6-4 	 SELF-TUNING CONTROL
	

Chap. 6

Z(s) and T, and the controller parameters Q(s) and R(s),

are chosen on-line using an additional system identifica-

tion stage. Section 6 provides some simulations.

6.2. FEEDBACK CONTROL

In chapter three, a range of non-adaptive feedback con-

trol algorithms is described and discussed. The feature

common to all these controllers is that they may be

described as an emulator in a feedback loop. The disadvan-

tage of these non-adaptive controllers is that the system

parameters (coefficients of A(s), B(s) and T) must be known

if the desired performance is to be achieved. The aim of

self-tuning control is to remove this restriction. In par-

ticular, the fixed emulator of chapter 3 is replaced by a

self-tuning emulator.

The self-

identical

(equation

replaced

tuning controller is described

to 	the 	non-adaptive 	controller

1) except 	that 	the 	emulator

by an estimated value 0(s):

by an 	equation

of 	section 3.2

A
output 	0 	(s) 	is

u(s) 	= 	

where

Q(s)CR(s)w(s) - 	0(s)] (1)

Symbol Quantity

,.
u(s) Control signal
,.
0(s)

w(s)

Q(s)

R(s)

self-tuning emulator output

setpoint

control weighting

setpoint filter

1/Q(s) and R(s) 	are proper transfer functions. 	4(s) 	is 	the

self-tuning 	emulator 	output 	corresponding to one of the

Sec. 6.2. 	 FEEDBACK CONTROL 	 6-5

emulators described in chapter 2. That is,

(1)
1(s)

(t) Z (s)

Os) =

(1) 3(s)

(1)4 (s)

A

according to context 	 (2)

where 	(s) is the Laplace-transformed output of the

appropriate self-tuning emulator

~
(I)(t) = Xe (t)6e(t) (3)

and Xe(t) and 9e(t) are the appropriate emulator data vec_

for and parameter estimate vector respectively.

6.3. SYSTEM IDENTIFICATION

Explicit self-tuning methods require estimates of the

system parameters. The approach taken here is to write the

system as its own emulator; the coefficients arising from

the corresponding self-tuning emulator give the required

system parameters. Most systems are subject to disturbances

containing a constant component. If not properly accounted

for, such disturbances can give rise to very poor parameter

estimation; so this subject is given a section of its own.

This section is organised into the following subsec-

tions:

1. An emulator for the system

2. A self-tuning emulator

3. Non-zero mean disturbances.

6-6 	 SELF-TUNING CONTROL 	 Chap. 6

An emulator for the system

Consider the particular case where the emulator is

designed to emulate the system itself and that the delay T

is zero; that is

i)(s) = y(s) 	 (1)

The identity 2.2.2 then becomes

C(s)_ E(s) + F(s)
A(s) 	 A(s)

If we make the choice deg(C) = deg(A)-1, the identity gives

E(s) = 0; F(s) = C(s) 	 (3)

giving

-*
~ (s) = y(s) 	 (4)

which is not useful. If, however, we choose

C(s) = Cs(s)

deg(Cs(s))=deg(A(s)) and, in addition, choose the highest-

order terms of A(s) and Cs(s) to be 1,

c
o

= a 0
= 1 (6)

(this may always be done by suitably rescaling the distur-

bance), then the identity gives

E(s) = 1; F(s) = Cs(s) - A(s)

and so

B(s)- 	
Cs(s) - A(s) 	I(s)

(1) (s) = Cs(s)
u(s) + 	Cs(s) 	-y

(s) + Cs(s)

(2)

(5)

(7)

(8)

Sec. 6.3. 	 SYSTEM IDENTIFICATION 	 6-7

-*
Thus the system can be written as its own emulator; 0 (s)

can be regarded as the system output p(s) minus the distur-

bance term T(s).

An example appears in chapter 5, section 2.

If the delay T is not zero but is known, the control

signal u(s) can be replaced by a delayed version:

UT(s) = e
 sT

 u(s)

in the above equations. As in section 2.5, we assume that

the time-delay initial conditions are zero.

A self-tuning emulator

The system, rewritten as an emulator and including ini-

tial conditions associated with the rational part, can be

written in the linear-in-the-parameters form of chapter 5

as

y(t) = Xs(t)6s + es(t) (10)

where the data vector Xs(t) and the parameter vector 6s are

given, in Laplace-transform terms by

(9)

(s) —s

where

1 Xu(s) = Cs(s)

s
n-1

s
n-2

1

e sT ú(s); Xy(s) = Cs(s)

s
n-1

s
n-2

1

i(s) 	(12)

eu = 8y

b
i

b2

bn

i
i
i

2
6i = (14) •

in

6-8 	 SELF-TUNING CONTROL 	 Chap. 6

n-1
s

(s) = 	1 Cs(s)

and 8s is given by

c - a
i 	i

cz - a2

cn - an

The vectors Xu(s), Xy(s) and Xi(s) are the Laplace

transforms of vectors in controllable form (see section

1.6). The time-domain versions may therefore be computed

from the differential equations 1.6.1.

This linear-in-the-parameters model is suitable for the

least-squares estimation algorithms of chapter 5:

'Y(t) = XT(t)8 + e(t) (15)

if we set

T(t) = y(t); X(t) = Xs(t); 8 = 8s; e(t) = es(t) 	(16)

The coefficients bi of B(s), and ii of I(s) are identified

directly; the coefficients ai of A(s) are obtained by sub-

tracting the appropriate entries of 8 from the known coef-

ficients c
i
of C

s
(s).

The advantages of including initial condition terms in

parameter estimation is discussed in detail else-

whereC9,101.

(13) s
n-2

1

SYSTEM IDENTIFICATION 	 6-9 Sec. 6.3.

Non-zero mean disturbances

As pointed out in chapters 1 and 3, the almost inevit-

able non-zero mean component of a disturbance can be

included in the system model by assuming that

A(s) = sAo(s); B(s) = sBo(s)

With this assumption, the system emulator becomes

sB (s) 	s(C (s) - A (s)) + c

~*(s) - C(s)
	 u(s) + 	o 	C(s) 	n y(s)
s 	 s

I(s)
+ Cs(s)

where

Cs(s) = cn + sCo(s)

This can be written in linear-in-the-parameters form as

yo(t) = Xor(t)eso + eso(t)

where yo(s) is the high-pass filtered system output

C (s)
yo(s) ~ sCo(s)y(s)
	 (21)

s

the data vector Xo(s) and the parameter vector 6so are now

given by

X (s) -4). —o

Xuo(s)

Xyo(s)

Xio(s)

(22)

where

(17)

(18)

(19)

(20)

Suo(s) = Cs
1
(s)

s
n-1

sn-2

s

e
sT ú(s); Xyo(s) - C (s)

s

s
n-1

sn-2

s

y(s)(23)

s
n-1

s
n-2

1

c - al

c2 - a2

cn-i 	an-i

8yo = (24)

b i
b2

bn-i

—U O
8 =

6-10 	 SELF-TUNING CONTROL 	 Chap. 6

(s) = 	l —LO 	C s(s)

and 8 is given by

The vectors Xu(s), Xy(s) and X.(s) are the Laplace

transforms of vectors in controllable form (see section

1.6). The time-domain versions may therefore be computed

from the differential equations 1.6.1. This linear-in-

the-parameters model is of the correct form for the least-

squares estimation algorithms of chapter 5:

T(t) = XT(t)8 + e(t)

if we set

'Y(t) = yo(t); X(t) = Xso(t); 8 = 8so; e(t) = eso(t)

where

C (s)
- yo(s) = sCo(s)y(s) s

Both sides of this equation comprise high-pass filtered

quantities, but note that the same system parameters are to

be found in 8
 s as in O. The importance of using this

zero-gain emulator in practice cannot be overstated.

See[ll] for a discussion of this point from a discrete-time

point of view andC12,6] for a discussion from the

continuous-time point of view.

(25)

(26)

(27)

Sec. 6.3. 	 SYSTEM IDENTIFICATION 	 6-11

It is also emphasised that the use of high-pass filter-

ing in this context, because it arises naturally from the

system model, does not involve any approximation.

An example appears in chapter 5, section 2. The simula-

tion examples 7 and 9 of section 6.6.2 illustrate the

advantages of the zero-gain method.

6.4. EXPLICIT SELF-TUNING CONTROL

The adjective 'explicit' implies that the system param-

eters corresponding to A(s) and B(s) are estimated on-line,

and these estimates (together with the polynomials P(s),

Z(s) and C(s) are then used to design the emulator on-line.

The self-tuning system emulator provides these system

parameters. There are two types of explicit algorithm:

1. Off-line design. The emulator design parameters P(s),

Z(s), C(s) and T, the control weighting Q(s) and the

setpoint filter R(s) are chosen off-line, that is

before the self-tuning algorithm starts.

2. On-line design. Some, or all, of the emulator design

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically

varied during self-tuning.

These are considered in separate subsections. 	Each

type of algorithm has two phases of operation:

1. The off-line (a-priori) design phase. 	This occurs

before tuning starts.

2. The on-line tuning phase.

6.4.1. Off-line design

6-12 	 SELF-TUNING CONTROL 	 Chap. 6

The off-line (a-priori) design phase

1. Choose the emulator polynomials P(s), Z+(s), Z (s),

C(s) and the delay T.

2. Choose the weighting filter Q(s).

3. Choose the setpoint filter R(s).

4. Choose the system order.

The on-line tuning phase

1. Update the system data vector X5(t) (or Xso(t)) as in

section 6.3.

2. Update the system parameter estimate vector 05(t) of Os

(or O so (t) of 8) using either the continuous or
discrete algorithms of chapter 5.

3. Use an appropriate emulator design algorithm from

chapter 2 to generate the parameters of the required

emulator from the estimated system parameters. 	These

are placed in the the vector 0e(t) as an approximation

to the ideal emulator vector 0e.

4. Generate the emulator data vector Xe(t) as in section

2.7. If the same denominator polynomial is used for

both the system emulator and the emulator

(C(s) = Cs(s)) and so Xe(t) = Xs(t), this step may be

omitted.

5. Generate the emulated signal q(t) using (see equation

2.7.9) 0(t) = XeT(t)0e(t).

6. Generate the control signal as in section 6.2. 	In

Laplace-transform terms, this is:

Sec. 6.4.1. 	 Off-line design 	 6-13

u(s) = Q(s)CR(s)w(s) - Cs)]

6.4.2. On-line design

The off-line (a-priori) design phase

1. Choose a design rule giving the emulator design polyno-

mials P(s), Z+(s), Z (s), C(s) and the delay T in terms

of the system parameters. For example, a pole-placement

design rule would be to choose

Z(s) - B(s) B(0) (1)

and to choose the other polynomials a-priori.

2. Choose a design rule weighting filter Q(s) in terms of

system parameters.

3. Choose a design rule giving the setpoint filter R(s) in

terms of system parameters.

4. Choose the system order.

In practice, some of these rules can be purely a-

priori. Thus, for example, Q(s) and R(s) could be chosen

a-priori. If all the rules are, in fact, a-priori, then the

on-line design reduces to the off-line design.

The on-line tuning phase

1. Update the system data vector X
s
(t) (or X

—so
(t)) as in —

section 6.3.

A

(1)

2. Update the system parameter estimate vector 6s(t) of As

(or 6~so(t) of Aso) using either the continuous or

6-14 	 SELF-TUNING CONTROL 	 Chap. 6

discrete algorithms of chapter 5.

3a. From the estimated system parameters, derive 	the

corresponding emulator design parameters P(s), Z+(s),

Z (s), C(s) and the delay T in terms of the estimated

system parameters.

3b. From the estimated system parameters, derive 	the

corresponding control weighting transfer function Q(s)

in terms of system parameters.

3c. From the estimated system parameters, derive 	the

corresponding setpoint filter transfer function R(s) in

terms of system parameters.

3d. Use an appropriate emulator design algorithm from

chapter 2 to generate the parameters of the required

emulator from the estimated system parameters. 	These

are placed in the the vector 8e (t)as an approximation

to the ideal emulator vector 8e.

4. Generate the emulator data vector Xe (t) as in section

2.7. If the same denominator polynomial is used for

both the system emulator and the emulator

(C(s) = Cs(s)) and so Xe(t) = X5(t), this step may be

omitted.

5. Generate the emulated signal 0(t) using (see equation

2.7.9) 0(t) = XeT(t)8e(t).

6. Generate the control signal as in section 6.2. 	In

Laplace-transform terms, this is

u(s) = Q(s)CR(s)w(s) - (1)(s)7 (2)

This differs from the off-line design in that the addi-

tional on-line steps 3a-3c are added; 3d is as step 3 of

Sec. 6.4.2. 	 On-line design 	 6-15

the off-line design.

6.5. IMPLICIT SELF-TUNING CONTROL

Implicit self-tuning control avoids the separate design

phase by identifying the emulator parameters directly.

Tuning the emulator

As discussed in chapter 2, the emulator can be written

in linear-in-the-parameters form as:

0(t) = XeT(t)8e + e* (s)

In many emulators, cp(t) is not a realisable quantity, but

can be made so by appending a realisability filter A(s) to

give a realisable signal cA(t):

On(s) = A(s)(T)(s) 	 (2)

such that

esT P(s)
A(s) is realisable and proper Z(s)
	

(3)

As will be seen in chapter 7, we will also require that the

inverse be proper:

e
sT

P~s~A(s) 1 is realisable and proper
	

(4)

(As this filter is under our control, we may choose the

initial conditions associated with A(s) to be zero; this

will be assumed in the sequel).

One possibility is to choose

A(s) = e-sT Z(s)
P(s)

(5)

(1)

giving

6-16

ctiA(t) = y(t)

SELF-TUNING CONTROL 	 Chap. 6

(6)

The corresponding linear-in-the-parameters model is then

0A(t) = XAT(t)8 + eA(t)

where

XA(s) 0 A(S)R(s); éA(s) 4 A(s)é(s)

Note that RA 	can be generated in the same way as Xe(s)

except that the signals u(s) and y(s) are prefiltered by

A(s).

Example 1

If P(s) = Z(s) = 1, and equation 5 is used, then

A(s) = e
 sT

XA(s) =
e-sT . 	 X(s)

so

XA(t) = X(t-T)

This corresponds to many discrete-time algorithms, includ-

ing the self-tuning regulatorCl3].

Example 2

If Z(s) = 1 and T=0, the filtering effect of A(s) 	is

closely related to the filtering approach discussed by

Egardt in chapter 3 of his book[2].

This linear-in-the-parameters model is suitable for the

least-squares estimation algorithms of chapter 5:

`Y(t) = X
T
(t)8 + e(t)

(7)

(8)

(9)

(10)

if we set

Sec. 6.5. 	IMPLICIT SELF-TUNING CONTROL 	 6-17

¶(t) = mA(t); X(t) = XA(t); e(t) = eA(t) 	 (12)

There are two types of implicit algorithm:

1. Off-line design. The emulator design parameters P(s),

Z(s), C(s) and T, the control weighting Q(s) and the

setpoint filter R(s) are chosen off-line, that is

before the self-tuning algorithm starts.

2. On-line design. Some, or all, of the emulator design

parameters P(s), Z(s), C(s) and T, the control weight-

ing Q(s) and the setpoint filter R(s) are automatically

varied during self-tuning.

These are considered in separate subsections. 	Each

type of algorithm has two phases of operation:

1. The off-line (a-priori) design phase. 	This occurs

before tuning starts.

2. The on-line tuning phase.

6.5.1. Off-line design

The off-line (a-priori) design phase

1. Choose the emulator polynomials P(s), Z+(s), Z (s),

C(s) and the delay T.

2. Choose the weighting filter Q(s).

3. Choose the setpoint filter R(s).

4. Choose the system order.

5. Choose the realisability filter A(s) according to equa-

tions 6.5.3&4. Typically we would use equation 6.5.5:

A(s) = e-sT Z(s)
P(s) (1)

6-18 	 SELF-TUNING CONTROL 	 Chap. 6

Steps 1 and 5 may not always be possible. For example,

if pole-placement is to be used and FO Z(s) = B(s), these

steps are not possible unless B(s) is known a-priori.

The on-line tuning phase

1. Generate the quantity (1)A(t), where (pA(s) = A(s)$(s).

2. Filter the control signal u(t) and the system output

y(t) by A(s).

3. Generate the emulator data vector XA(t) using the fil-

tered signals from step 2 together with differential

equations 1.6.1.

A

4. Update the emulator parameter estimate vector 8 e(t)

using either the continuous or discrete algorithms of

chapter 5 and based on the linear-in-the-parameters

model of equations 5.2.9&10.

A

5. Generate the emulated signal c(t) using (see equation

2.7.9) cp(t) = XeT(t)8e(t).

6. Generate the control signal as in section 6.2. 	In

Laplace-transform terms, this is

u(s) - Q(1)ER(s)w(s) - Os)]
	

(2)

6.5.2. On-line design

The off-line (a-priori) design phase

1. Choose a design rule giving the emulator design polyno-

mials P(s), Z+(s), Z (s), C(s) and the delay T in terms

of the system parameters. For example, a pole-placement

Sec. 6.5.2. 	 On-line design 	 6-19

design rule would be to choose

Z(s) = B(s)
B(0) (1)

and to choose the other polynomials a-priori.

2. Choose a design rule weighting filter Q(s) in terms of

system parameters.

3. Choose a design rule giving the setpoint filter R(s) in

terms of system parameters.

4. Choose the system order.

5. Choose a design rule giving the realisability filter

A(s) in terms of the system parameters and the emulator

design parameters according to equations 6.5.3&4. Typi-

cally we would use equation 6.5.5:

A(s) = e
-sT Z(s)

P(s)

In practice, some of these rules can be purely a-

priori. Thus, for example,Q(s) and R(s) could be chosen a-

priori. If all the rules are, in fact, a-priori, then the

on-line design reduces to the off-line design.

The on-line tuning phase

1. Update the system data vector Xs(t) (or Xso(t)) as in

section 6.3.

2. Update the system parameter estimate vector 6s(t) of es
A

(or 6
so
	of 6

—so
	using either the continuous or

discrete algorithms of chapter 5.

(2)

3. From the estimated system parameters, derive the

corresponding emulator design parameters P(s), Z+(s),

6-20 	 SELF-TUNING CONTROL 	 Chap. 6

Z (s), C(s) and the delay T in terms of the estimated

system parameters.

4. From the estimated system parameters, derive the

corresponding control weighting transfer function Q(s)

in terms of system parameters.

5. From the estimated system parameters, derive the

corresponding setpoint filter transfer function R(s) in

terms of system parameters.

6. Deduce the realisability filter A(s) in terms of the

estimated system parameters and the derived values of

P(s) and Z(s).

7. Generate the quantity 4A(t), where $A(s) = A(s)(-0(s).

8. Filter the control signal u(t) and the system output

y(t) by A(s).

9. Generate the emulator data vector XA(t) using the fil-

tered signals from step 2 together with differential

equations 1.6.1.

10. Update the emulator parameter estimate vector 8 e(t)

using either the continuous or discrete algorithms of

chapter 5 and based on the linear-in-the-parameters

model 5.2.6&7.

11. Generate the emulated signal cp(t) using

^ 	T ^
0(t) = Xe (t)8e(t).

12. Generate the control signal as in section 6.2. 	In

Laplace-transform terms, this is

u(s) = Q(s)CR(s)w(s) - 0(s)] (3)

Sec. 6.5.2. 	 On-line design 	 6-21

This differs from the off-line design in that the addi-

tional on-line steps 1-6 are added. At first sight, this

looks to be more complex than an explicit algorithms. But

in fact it is simpler in that the emulator polynomials G(s)

and F(s) are not deduced on line but are rather identified

directly.

6.6. SOME SIMULATED EXAMPLES

In this section, a number of simulated illustrative

examples are given. The simulations are divided into two

sections: algorithms using the realisability filter A(s)

and those which do not.

6.6.1. Using realisability filter

A number of versions of self-tuning algorithms using

A(s) - Z(s) P(s)

were simulated using the SIMNON 1anguaqe[14,15]. 	All the

examples in this section have the following in common:

1. Four emulator parameters are identified.

2. The initial S 1(t) matrix is, in each case, given by:

1100 	0 	0 	0 1

S
-1(0) = 1 0 	100 	0 	0 1

1 0 	0 	100 	0 1
1 0 	0 	0 	1001

(2)

3. C(s) = 1+0.5s.

4. All examples are detuned versions of the underlying

algorithms with Q(s) = 0.01s 1+0.1s*

5. A(s) = s(l+s).

6. The realisability filter is given by A(s) - Z(s)
P(s).

(1)

6-22
	

SELF-TUNING CONTROL
	

Chap. 6

Gvtput, etpoint, Model output.

Emvt3tor p3r3m8ter5

4.5

0 . 	
12'.5 	"25. 	 37'.5 	5d.

Figure 6.6.1.1 Example 1

7. The algorithms are simulated with a noise-free system

having no neglected dynamics for 50 time units.

8. The upper graphs in Figures 6.6.1.1-5 show the setpoint

(a square wave between +1 and -1 with a period of 25

units), the actual system output, and the model output.

The model output ym(s) corresponds to

Z(s)-
ym(s) - p(s)w(s) 	 (3)

9. The lower graph of Figures 6.6.1.1-5 shows the evolu-

tion of the four emulator parameters with respect to

time.

Sec. 6.6.1. 	Using realisability filter 	 6-23

_output, .etpoint, Model output.

'~.

Q ,

12.5 25. 37'. 5 50',

Figure 6.6.1.2 Example 2

10. In each case, the presence of the non-zero Q(s) control

weighting prevents the system output following the

model-output exactly. But note that the discrepancy is

zero at zero frequency (constant setpoint) and only

appears at high frequencies (changing setpoint).

Figures 6.6.1.1-5 correspond to examples 1-5 of this

section. 	The differences between the five examples are

summarised in the following Table:

-1.5
12'. 5 sd. 37,.5 25. o.

1.5_

6-24 	 SELF-TUNING CONTROL 	 Chap. 6

Output, ,etpoint. Model output.

Emvi,ator par3meter5

p,

Figure 6.6.1.3 Example 3

SIMULATION SUMMARY

No. Method P (s) Z(s) B(s) Design
1

1 Model reference 1+0.5s 1 1+0.1s Off-line

2 Model reference 1+0.5s 1 l+s Off-line

3 Pole placement (1+0.5s)2 B(s) 1+0.1s On-line

4 Pole placement (1+0.5s)2 B(s) l+s On-line

5 	Pole placement 	J 	(1+0.5s)2 	B(s) 	1-s 	I 	On-line

See chapter 3 for a discussion of these examples in a

non-adaptive context.

Sec. 6.6.1. Using realisability filter 	 6-25

:? t p ' nt

-4.

E (;*':r

Figure 6.6.1.4 Example 4

Remarks

1. Examples 1 and 2 can use off-line design, as P(s) and

Z(s) are both chosen a-priori. Examples 3, 4 and 5 can-

not, as Z(s) = B(s) is not known a-priori.

2. The systems in examples 1-4 are minimum phase and so

either model-reference or pole-placement design is

appropriate. The system in example 5 has a zero at

s=1; model-reference control is not possible in this

case, but pole-placement is. Note the characteristic

non-minimum phase step response of the closed-loop sys-

tem in example 5.

6-26
	

SELF-TUNING CONTROL
	

Chap. 6

Qutpvt, ;etpaint, Mc.Jel output.

E mvi3tor Pdrameter5

U. 	 1•2'.5 	25. 	 3i.5 	5Ú.

Figure 6.6.1.5 Example 5

3. The system in examples 2 and 4 is

l+s 	i
s(l+s) 	s

(4)

Thus the apparently second-order system is in fact

first order. It can be represented as a second-order

system with a first order cancelling factor of the

form:

a+s
a+s

(5)

for any values of a. (Note that the coefficient of s

is unity, as it is assumed that the coefficient of the

highest-order s term is unity as in equation 6.2.6)

Thus, in each case, the estimated parameters do not

1.25

ii

II II ,

-1.85
25. 12.5

Sec. 6.6.1. 	Using realisability filter 	 6-27

have a unique "true" value. This is revealed in the

estimated parameters. In example 4, the desired closed

loop system is not unique, as Z(s) = B(s)/B(0) = l+s/a.

In fact the estimator ends up with

a = 0.55 	 (6)

in this particular simulation. Note that the model out-

put in this case assumes that B(s) = Z(s) = l+s and so

is different from what is actually achieved.

6.6.2. Not using realisability filter

_Uutp,;t; SétF: i rt; M:dé l v utput,

Figure 6.6.2.1 Example 6

A number of versions of self-tuning algorithms using

E~)vi.3tar nram:t_ r:

`

~

6-28
	

SELF-TUNING CONTROL
	

Chap. 6

Q.0

0. 4

O.

0 . 12'. 5 	 :J7.5 	 Y.

Figure 6.6.2.2 Example 7

A(s) = 1 (1)

were simulated using the SIMNON language[l4,15]. All exam-

ples have the following in common:

1. Two emulator parameters are identified.

2. The initial S 1(t) matrix is, in each case, given by:

S 1(0) = 1100 	0 1
1 0 	1001

3. In each case, the emulator design parameters are:

P(s) = 1+0.3s; Z(s) = Z (s) = 1+0.03s 	 (3)

(2)

Sec. 6.6.2. 	Not using realisability filter

:_+p= ì n±

6-29

18.: 	 é:. 	 _. .: 	 50.

EmO3tor p3r3met_r:

O.6,

0 ,

0

~ 12.5 	 ~1. 	 3r.5 	 50.

Figure 6.6.2.3 Example 8

See section 3.11 for a discussion of the ideas behind

this strategy. 	Note that P(s) is realisable and so Z(s)
A(s) = 1 may be used here.

4. All examples are detuned versions of the underlying

model-reference algorithm with Q(s) - +.2s
1+O.ls'

5. The algorithms are simulated using a system having no

neglected dynamics for 50 time units. Examples 7 and 9

have a unit output step disturbance occurring at

time=15 units; that is, one is added to the system out-

put from time 15 onwards.

6. The upper graph of Figures 6.6.2.1-4 shows the setpoint

(a square wave between +1 and -1 with a period of 25

t
I 	II

6-30 	 SELF-TUNING CONTROL 	 Chap. 6

, =iutp,jt .,:etG, 4 i rit 	M:,de 	9utput.,

12'. C 	 25. 	• 	 Cf•

EI»u l3tor R_3r3metEr:.

r
r■■■ 	

) P

r

\ r~

ìi,4

-- 	- 	 -••••■._ 1•■•••••1■6,
1

t

Figure 6.6.2.4 Example 9

units), the actual system output, and the model output.

The model output corresponds to

Z(s)-
ym(s) - p(s)w(s) (4)

7. The lower graph of Figures 6.6.2.1-4 shows the evolu-

tion of the two emulator parameters with respect to

time.

Figures 6.6.2.1-4 correspond to examples 6-9 of this

section. 	The differences between the four examples are

summarised in the following Table:

Sec. 	6.6.2. 	Not using realisability filter 	 6-31

SIMULATION SUMMARY

No. A(s) B(s) C(s) Disturbance

6 s(l+s) 2s 1+0.3s No

7 s(l+s) 2s 1+0.3s Yes

8 l+s 2 1 No

19 l+s 2 1 Yes
1

See chapter 3 for a discussion of these examples 	in 	a

non-adaptive context.

Remarks

1. In each case, the presence of the non-zero Q(s) control

weighting prevents the system output following the

model-output exactly. But note that the discrepancy is

zero at zero frequency (constant setpoint) and only

appears at high frequencies (changing setpoint).

2 The self-tuning emulators used in examples 6 and 7 are

designed on the basis of a system with a cancelling s

term - they have integral action. This does not make

much difference between examples 6 and 8 which have no

step disturbance. Example 7 illustrates the superior

performance when non-zero mean disturbances are assumed

a-priori as compared with example 9. A similar effect

may be observed when using the realisability filter.

3. Despite the different controller structure, examples 6

and 8 end up with the same closed-loop setpoint

response, though the disturbance response is different,

as discussed in remark 2.

6-32 	 SELF-TUNING CONTROL 	 Chap.

References

1. Astrom, K.J. and Wittenmark, B., "Self-tuning controll-

ers based on pole-zero placement," Proceedings IEE

Pt.D., vol. 127, pp. 120-130, 1980.

2. Egardt, B., Stability of adaptive controllers,

Springer, 1979.

3. Egardt, B., "Unification of some continuous-time adap-

tive control schemes," IEEE Trans. Autom. Control, vol.

AC-24, p. 588, 1979.

4. Egardt, B., "Stability analysis of continuous-.time

adaptive control systems," SIAM J. Control & Optimiz.,

vol. 18, p. 540, 1980.

5. Landau, I.D., Adaptive control: The model reference

approach, Marcel Dekker, New York, 1979.

6. Gawthrop, P.J., "A continuous-time approach to

discrete-time 	self-tuning control," Optimal Control:

Applications & Methods, vol. 3, no. 4, pp. 399-414,

1982.

7. Allidina, A.Y. and Hughes, F.M., "Generalised self-

tuning controler with pole assignment," Proc. IEE, vol.

127 Pt.D, pp. 13-18, 1980.

8. Grimble, M.J., "Implicit and explicit LQG self-tuning

regulators," Automatica, vol. 20, pp. 661-670, 1984.

9. Gawthrop, P.J., "Parametric identification of transient

signals," IMA Journal of Mathematical Control and

Information, vol. 1, pp. 117-128, 1984.

10. Gawthrop, P.J., "Parameter identification from non-

contiguous data," Proceedings IEE, vol. 131 pt. D, no.

6, pp. 261-265, 1984.

REFERENCES 	 6-33

11. Clarke, D.W., Hodgson, A.J.F., and Tuffs, P.S., "Offset

problem and k-incremental predictors in self-tuning

control," Proceedings IEE, vol. 130, Pt D., no. 5, pp.

217-225, 1983.

12. Gawthrop, P.J., "Self-tuning PID controllers: Algo-

rithms and implementation," IEEE Transactions on

Automatic Control., vol. AC-31, no. 3, 1986.

13. Astrom, K.J. and Wittenmark, B., On self-tuning regu-

lators," Automatica, vol. 9, pp. 185-199, 1973.

14. Elmqvist, H., "SIMNON: An interactive simulation pro-

gram for nonlinear systems," Proceedings of Simulation

77, Montreux, 1977.

15. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice-Hall, 1984.

CHAPTER 7

Robustness of
Self Tuning Controllers

Aims. To analyse the behaviour of continuous-

time self-tuning controllers in the presence of

neglected system dynamics. To introduce the con-

cept of an error feedback system and its role in

robustness analysis. To introduce the M-locus

approach to analysis and design of robust self-

tuning controllers. To illustrate the results

using simulation.

7.1. INTRODUCTION

The robustness of non-adaptive emulator based control

systems was considered in chapter 4. The purpose of this

chapter is to extend those results to include implicit

off-line design self-tuning algorithms; that is, the non-

adaptive emulators are replaced by self-tuning emulators.

The problem is analysed with the realisability filter A(s)

included, but the the results are only complete for the

case A(s) = 1. This chapter is based on an internal

report[l].

7-1

There is a considerable amount of literature concerned

with the stability of adaptive controllers. A common thread

7-2 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

running through much of this work is the idea of an error

feedback system[2]. This error feedback system is a

single-loop feedback system composed of two blocks: one a

linear transfer function, the other a time varying system

representing the effect of the estimator. 	Although not

specifically about adaptive control, many textbooks have

been written about the stability of such feedback systems,

includingC3,4,5,6]. 	This body of literature provides a

valuable source of mathematical tools applicable to the

adaptive robustness problem. In particular, Landau[2]

applied the hyperstability techniques of Popov[3] to solve

a number of adaptive control and estimation problems.

More recently, attention has focused on the input-

output approach (as opposed to the state-space Liapunov and

Hyperstability approaches). Early work is reported

inC7,8,9,10]. Some methods are compared in a discrete-time

context 	in[ll]. 	More 	recent 	work 	appears

in[12,13,14,15,16]. 	An advantage of the input-output

approach is that standard textbookC4,5,67 proofs are avail-

able for use.

A simpler problem than that considered here arises from

the analysis of adaptive algorithms where, unlike in this

chapter, neglected dynamics are excluded (N(s)=1). 	Impor-

tant results (in the discrete-time context) were obtained

by Goodwin, Ramadge and CainesC17]. A compendium of

results in this area appears in the book by Goodwin and

Sin[18].

This chapter provides an analysis of implicit off-line

design self-tuning controllers. Complete robust stability

results are given when the realisability filter A(s)=1 and

Sec. 7.1. 	 INTRODUCTION 	 7-3

partial results when A(s)#l.

7.2. THE ERROR FEEDBACK SYSTEM

In the same vein as chapter 4, an error feedback system

describing the evolution of various errors associated with

the self-tuning controller can be derived. This has two

advantages: an intuitive idea as to what factors are impor-

tant in determining stability is given; and, in some cir-

cumstances, precise robustness criteria may be derived.

The emulation error

The self-tuning emulator gives an output 0(s) which is

an approximation to the emulated value (0(s). Define the

corresponding emulation error ee(t) by

e

- e

(s) Q ~(s) - 0(s) 	 (1)

As in chapter 4, this can be divided into a number of terms

which can be written (in terms of Laplace transforms) as

- e() = 0)-a(s)-0(s)] + COC~(s)-~a e 	 (s)] + Lift(s)-0 *(s)] (2)

=t(S) + ea (s) + e* (s)

where the approximation error ea (s) = 0
-A
(s) - 0

A
(s) has

been introduced in chapter 4 and the error e* (s) in chapter

2. The new term due to the tuning et (s) will be called the

tuning error and is given by

et(t) = 0a(t) - 0(t) = XT(t)6(t) 	 (3)

where the error in the parameters 0(t) is given by

7-4 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

0(t) 	0 - 0(t) 	 (4)

If initial conditions are included in the estimation and

design, then equation 2 is replaced by

ee(s) = 10
a
(s)-(1)(s)] + CO**(s)-$a(s)] + C~(s)-0**(s)] 	(5)

-t 	-a
+ ea 	 ** (s) + e = e 	 (s)

The approximation error

Following the same analysis as in chapter 4 (section

4.6 in particular), and noting the effect of the additional

error term due to tuning ét(s), it follows that

-a 	 -a
= - M(s)[z(s) + e
	-t
(s) + e e 	 (s)]

_ 	- M(s)Cz(s) + ée(s)]

where, as in chapter 3, equation 3.3.11,

z(s) = R(s)w(s) - e
sT P(s)C(s)

v(s)
Z(s)A(s)

The estimation error

The emulation error ee(s) is closely related to the

estimation error, which was defined in chapter 5 as

e(s)
o

T(s) - T(s) (8)

where 'F(s) is the scalar output of the linear-in-the-
A

(6)

(7)

parameters model and 'F(s) its estimate. In the particular

Sec. 7.2. 	THE ERROR FEEDBACK SYSTEM 	 7-5

case of implicit off-line design algorithms, e(s) is given

by

e(s) = (1)A(s) - 0A(s) = A(s)0(s) - 0A(s) 	 (9)

where A(s) is the realisability filter. At first glance,

e(s) appears to be just a A(s) filtered version of ee(s);
A

but this is not so,as 0A(s)#A(s)0(s) (unless A(s) = 1 or

0(t) is constant). So we define the filter-induced error

e(s) by

e(s) 0 A(s)0(s) - mA(s) (10)

This error is zero in two cases:

1. A(s) = 1

2. e(t) is constant

Combining these equations gives

e(s) = A(s)-(13(s) - 0A(s) 	 (11)

A

= A(s)((ii(s) - 0(s)) - (A(s)0(s) - 0A(s))

= A(s)C(13(s) - 0(s)7 - e(s)

= A(s)ée(s) - e(s)

Rearranging the last equation gives the emulation error

ee(s) in terms of the estimation error e(s) as:

e(s) = A(s) e 	 Ce(s) + e(s)7
	

(12)

7-6 	ROBUSTNESS OF SELF-TUNING CONTROLLERS
	

Chap. 7

e(s) = A(s) l e 	 Ce(s) + e(s)] 	 (12)

Example

Suppose that A(s) = e sT . Then

e(t) = XT(t)C6(t) - 6(t-T)] 	 (13)

and

ee(t) = e(t+T) + XT(t)C6(t+T) - 6(t)] 	 (14)

The filter induced error e(s) is zero if either T=0 or 6(t)

is constant.

The filter induced error e(t) is then closely related

to the difference between the a-priori and a-posteriori

errors discussed in a discrete-time context by Landau[2]

and others.

The estimator input

In chapter 5, it was shown that the least-squares

parameter estimator could be viewed as a single-input

single-output system a with input e(t) and output e(t). In

particular, the estimator input e(t) is given by (5.5.3):

e(s) = A(s)ii(s) - XT (s)6 	 (15)

A 	 A

= A(s)(iii(s) - (r(s)) = A(s)(e*(s) + ea(s))

Using equation 6 to replace the approximation error ea(s),

Sec. 7.2. 	THE ERROR FEEDBACK SYSTEM 	 7-7

-A
e(s) = A(s)e (s) 	 (16)

- A(s)M(s)Cz(s) + ee(s)]

And using equation 12 to replace the emulation error ee(a),

e(s) = A(s)e* (s) 	 (17)

- A(s)M(s)Cz(s) + A(s)
-1
 (e(s)+ e(s))]

-* 	 ti 	 H 	 n

= A(s)Ce (s) - M(s)z(s)] - M(s)e(s) - M(s)e(s) 	(18)

Writing the disturbance and setpoint induced error ed (s) as

d(s)
A A(s)Ce -A e 	 (s) - M(s)z(s)] 	 (19)

the estimator input error e(s) is seen to contain three

components, the disturbance and setpoint induced error

ed(s), the filter induced error e(s) filtered by 	- M(s),

and the estimator output error filtered by the transfer

function - M(s). That is,

e(s) = ed (s) - M(s)e(s) - M(s)e(s) 	 (20)

The error feedback system

Equation 20 gives the estimator input e(s) in terms of

the estimation error e(s), the filter-induced error e(s)

and the disturbances induced error ed (s). 	Combining this

linear system with the time-varying estimator system a

relating e(t) and e(t) gives the error feedback system

7-8 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

displayed in Figure 7.2.1.

d
e 	e I 	I 	e
	0 	
- 	I 	I 	I 	1

	

I 	 I

	

I 	r 	~ 	I 	-

	

I 	I 	I 	l 	e

	

< ' 	I M(s) I 	0<

Figure 7.2.1 The error feedback system

The output error

As well as being of interest in its own right, the

effect of the emulation error ee(t) on the system output

is of interest. This effect can be studied on the basis of

the notional feedback system considered in chapters 3 and

4. One difference here is that the difference between the

emulator output and the emulated signal is now

e 	 * (s) _ 	- e(s) + ea (s) + et 	 * (s) rather than 	- e e 	 (s) in

chapter 3 and 	- e (s) + ea (s) in chapter 4. Another

difference is that the neglected dynamics N(s) now appear

explicitly. The corresponding block diagram appears in Fig-

ure 7.2.2. Define dr(t) to be the component of the system

output due to the emulation error

e 	 e y(s) - L(s) e
-sT Z(s)

e(s) 1+L(s) 	P(s) (21)

Using equation 12 this then gives the output error j(s) in

THE ERROR FEEDBACK SYSTEM 	 7-9 Sec. 7.2.

_ 	I C (s)1

I A(s)I

w 	l 	I+ 	I 	1 	I I 	I 	I 	-sT B(s)I
-> -{ R(s)F--0 --> -1 	 I-- I N(s) I---I e 	— L-

I 	I - I 	I Q(s) I I 	I I 	A(s)I
L 	I 	1 	I 	i 	i 	l 	 I

+sT P(s)I
e

Z(s)1

Figure 7.2.2 The notional feedback system

terms of the estimation error e(s) and the filter-induced

error e(s) as

ey(s) -
L(s) 	

e sT Z(s) A(s) lCe(s) + e(s)] 1+L(s) 	P(s)
(22)

Exponential weighting

As in chapter 5, exponentially weighted signals are

useful in deriving stability results. In chapter 5, it was

shown that e(t) and e(t) could be replaced by exponentially

weighted versions:

~
ea(t) = ea e(t); ea(t) = eat e(t)

and £) still has a gain of one as long as m < 0/2.

y
>

L-< 0

-
I_e
e

(23)

7-10 	ROBUSTNESS OF SELF-TUNING CONTROLLERS
	

Chap. 7

Moreover, pre- and post- exponentially multiplying the

linear transfer function M(s) gives M(s - a). The gain of

this transfer function is called Ya and, if M(s - a) is

stable, is given by

= sup l M(j
a 	

w - a)I
w

This is considered further in the next section.

7.3. THE M-LOCUS

The error feedback system (Figure 7.2.1) for the adap-

tive case is similar to that in chapter 4 for the non-

adaptive case. In particular, the transfer function M(s)

M(s) - Z+(s)E(s)A(s) 	N
-1 (s)-1

P(s)C(s) 	1+L-1(s)N-1(s)
(1)

still appears in the feedback loop. The differences are:

1. The unit feedback loop appearing in chapter 4 is

replaced by the system a, which has a gain of one.

2. The filter induced error e(s) appears as a disturbance.

Not surprisingly, the transfer function M(s) is crucial in

analysing the stability of the feedback system. Roughly

speaking(details will appear in the next section), a stan-

dard Theorem applicable to this sort of feedback

loop[4,5,61 says that the feedback loop will be stable if

the loop-gain is less than one. As we have already decided

that the gain of a with exponential weighting is less than

one when making

Assumption 1

the exponential weighting coefficient a and the

exponential forgetting factor p (section 5.3) are related

by

(24)

Sec. 7.3. 	M-LOCUS 	 7-11

1~ ,
a = -2t3

we get the rather simple result that stability of the feed-

back loop follows from the gain of M(s - a) being less than

one.

There are two parts to this condition:

1. M(s) must be stable. As P(s) and C(s) are chosen to be

stable, this condition becomes that the transfer func-

tion:

-1
N (s)-1 	L(s)11-N(s)7

1+L-1(s)N-1(s) - 1+L(s)N(s)

be stable. This condition is satisfied if two assump-

tions are true:

Assumption 2

N(s - a) is stable.

Assumption 3

L(s - a) 	
is stable. 1+L(s - a)N(s - a)

2. The gain of M(s - a) is less than 1. This can be writ-

ten as:

Assumption 4

Ya = sup ~ M(jw - a)~
W

Note that assumptions 2 and 4 depend on the choice of

N(s) in the decomposition of equation 4.2.3, repeated here

as

H(s) = e-sT B(s) N(s)
A(s) (5)

(2)

(3)

(4)

7-12 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

It is important to realise that, in the adaptive context,

the nominal system B(s) and the resultant neglected dynam-A(s)
ics N(s) are not chosen. Thus all that is required is that

such a choice exists satisfying the above criteria.

Finally, to deduce that the signals are bounded, we

must also assume that the exogenous signals due to the set-

point and disturbance are bounded:

Assumption 5

edZ < K D

where K
0
is a constant.

The importance of control weighting

Typical neglected dynamics are low-pass. That is,

Lt N(jw) = 0

Hence, at high frequencies,

~ Z+(s)E(s)A(s)
M(s) 	

P(s)C(s) 	
L(s)

Without control weighing, L(s) = co at all frequencies and

thus the small gain condition cannot be satisfied. It fol-

lows that control weighting is essential when low-pass

neglected dynamics are present.

Although nothing has been proved so far in this

chapter, it seems at this stage that M(s) is crucial in

determining the stability of the self-tuning controller

when neglected dynamics are present. As shown in the next

section, stability can be shown (in terms of M(s)) for the

case when e(s)=0, that is A(s)=1. Although not proved,

simulations suggest that these results may be extended to

(6)

(7)

(8)

Sec. 7.3. 	 THE M-LOCUS 	 7-13

include A(s)#1.

7.4. ADAPTIVE ROBUSTNESS

In this section, it is assumed that

A(s)=1, that is e(s) = 0 	 (1)

The error equations developed in the previous sections

reveal that the robustness problem reduces to examining the

single-loop feedback system of Figure 7.4.1. Note that as

A(s) = 1 the filter induced error eA(s) is zero.

e

M(s)

Figure 7.4.1 The exponentially multiplied system

Outline of proof

The proof proceeds as follows:

1. In Lemma 7.1, the exponentially multiplied error

This section involves some technical mathematics. It
may be omitted on a first reading.

7-14 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

feedback system is shown to be L2 stable using the

standard small-gain theorem[5] and the formula for the

gain ya (7.2.24).

2. In Lemma 7.2, it is shown how L. results about the

error feedback system can be derived from the L2

results about the exponentially multiplied error feed-

back system.

3. Theorem 7.1 combines the two Lemmas to give input-

output stability results for the self-tuning controller

in terms of the neglected dynamics N(s) and the emula-

tor design polynomials P(s), C(s) and Q(s).

4. Theorem 7.2 (section 7.5) extends these results to

include parameter boundedness and estimation error e(t)

boundedness. This requires a persistent excitation con-

dition to be imposed on the signals affecting the sys-

tem.

Lemma 7.1 (L2 stability of the exponentially weighted sys-

tem)

If assumptions 1-4 of section 7.3 are true, that is

M(s - a) is stable, m = 10 and ya<1. Then the exponen-

tially weighted system of equations displayed in Figure

7.4.1 is L 2 stable in the sense that the estimation error e

e(t) and the estimator input error e(t) are bounded by

~ óe2aT
e2(T)dT < 1- l

a 4oe2aTed2
(T)dT + K1

y
(2)

t
J fe2aT

e2(T)dT < 1_
1, 4fe2mTed2(T)dT + K2 	 (3)

0 	 ya 0

where K1 and K2 are finite constants and ya is the gain of

M(s - a) (see 7.2.24).

Sec. 7.4. 	 ADAPTIVE ROBUSTNESS 	 7-15

Proof

This follows from the small gain theorem III.2.1 on

page 41 ofC5] and the fact that the gain of £) < 1 (see

chapter 5). o

Remarks

1. Setting a = 0, this theorem gives L2 stability of the

system. This holds even with no forgetting (0 = 0).

2. Using assumptions 2 and 3 and assuming that the distur-

bance 	and the setpoint 	are uniformly bounded, the

signal ed(t) is uniformly bounded.

3. If the quantity ed(t) is exponentially decreasing fas-

ter than e-at, then so is e.

Lemma 7.2 (Bounds on low-pass filtered signals)

If the error system input ed(t) is bounded (assumption

4), then the low-pass filtered estimation error:

eF(t) ~ 4fe za(t 2)e (T)dT
0

is bounded by:

n 	 K

l eF(t) < 1 	y [J(2a) + e
atKl]

a

Proof: From assumption 4, the integral in the righthand

side of equation 2 of Lemma 7.1 is bounded by:

4fe2aTed2
(T)dT < K 4fe2m2dT

0 	 ° 0

1 = 4(Z1Ce2mt-1] <
4(2a)eat

t 	 2
(4)

(5)

(6)

7-16 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

Substituting this into equation 2 of Lemma 7.1 and multi-

plying by e
at gives the result.

This Lemma gives conditions such that the signal

„2
obtained by passing the squared emulator error (e) through

the low-pass filter s +1
2a is bounded. Of course, this does

not imply that the emulator error is bounded. A lemma due

to Vidyasagar[6] (section 9.1) shows that this result does

imply that the output signal obtained by passing the emula-

tor error e into any low-pass system whose impulse response

decays faster than e
zat (in particular that generating

ey(s)) is in L~.

This result is used to prove the main robustness

theorem of this book.

Theorem 7.1(Adaptive robustness)

If assumptions 1-4 of section 7.3 are satisfied, then

the output error ey(t) is bounded.

Proof

Let m(t) be the inverse Laplace transform (impulse

response) of M(s). Then:

t
ey(t) = fm(t - T)e(T)dT

0

= jea(t T)
m(t - T)e 	m(t-T)e(T)dT

0

Using Schwartz's inequality:

eyZ(t) Ç
fe2a(t-T

)m
2
(t - T)dT.fe

-2m(t-T)e
2
(T)dT

O 	 O

(7)

(8)

Sec. 7.4. 	 ADAPTIVE ROBUSTNESS 	 7-17

Using assumptions 2 and 3 of section 7.3, it follows that:

2a(t-T) 2
Je 	m (t - T)dT < K (9)
0

where K is a constant. The result then follows from Lemmas

7.1 and 7.2, and assumptions 1-4.

Remarks.

1. The adaptive and non-adaptive results are both based on

the Nyquist locus of M(s). In the adaptive case, the

locus must lie within the unit circle, and in the non-

adaptive case, must not encircle the -1 point.

2. In the adaptive case, it is required only that there

exist a nominal system
	such that the condition on

M(s) is satisfied. If the orders of B and A correspond

to those of the numerator and denominator of the actual

system G(s), then such a system always exists, namely

= G(s) which gives N(s) = 1 and thus M(s) = O. A

In the non-adaptive case, the condition on M(s) must be

satisfied for the particular nominal system chosen by

the designer. Even if the orders of B and A are

correct, parametric error can give a non-zero M(s) for

the chosen system.

3. This result may be related to that of Kosut, Johnson

and Friedlander[12,13] by

M(jw - a) < 1 <_> Re{HeV(jw - a)} >
z

where

1 H
ey

= C1+M(s)]

7-18 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

4. The results differ from those of Kosut, Johnson and

Friedlander[12,13] in that we consider an algorithm

with control weighting which makes it possible to

satisfy assumptions 3 and 4 of section 7.3.

7.5. INTERNAL STABILITY

Section 6 deals entirely with input-output stability;

it does not directly give information about the properties

of the parameter error 8 or about the data vector X. This

section considers this problem, again for the special case

of A(s)=1, that is cp(t) is realisable.

This section shows that both the data vector X and the

parameter error 6 are bounded. 	Not surprisingly, the

latter result requires a persistent excitation condition on

the data vector X.

The properties of the data vector X are treated in the

following Lemma:

Lemma 7.3 (Boundedness of the data vector X)

Under the same conditions as Theorem 7.1, all elements

of the data vector X (equation 6.5.12) are uniformly

bounded.

Proof

From Theorem 7.1, the system output y is uniformly

bounded.

The control signal is obtained from

u(s) = Q(s)
LR(s)w(s) - c(s)7 	 (1)

This section involves some technical mathematics. It
may be omitted on a first reading.

Sec. 7.5. 	 INTERNAL STABILITY 	 7-19

Q(s)CR(s)w(s) -
Z(s)

y(s) - e(s)]

1/Q(s) and P(s)/Z(s) are proper in the case considered

here. 	The corresponding components of the data vector X

are obtained by filtering u (s) by the low-pass filter

1/Z(s). 	This filtered signal has three components driven

by w(s), y(s) and e(s). w(t) is, by assumption, bounded. y

(s) has been shown to be bounded. The component due to
A 	 A

e(s) is also bounded,as we have shown that e(s) is bounded

when passed though a low-pass filter.

The elements of the X vector are obtained by passing y

(s) or u(s)/Z(s) through proper transfer functions of the

form sl/C(s); so these elements are also uniformly bounded.

The boundedness result for the parameter error 6 is

contained in the following Theorem:

Theorem 7.2 (Bounded parameter error)

If, in addition to the conditions of Theorem 7.1, the

data vector X is persistently exciting in the sense that

Assumption 6

S(t) = Je 0(t T)X(T)XT(T)dT > E 	 (2)
0

where E is a positive definite matrix, then the parameter

error 6 is uniformly bounded.

Note that S(t) is the output of the low-pass filter

used in the parameter estimator (equation 5.5.2).

7-20 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

Proof

Equation 5.6.21 can be rearranged as

V(t,a) = V(O,a) + fe
2aT

e2(T)dT - fe2ocTe2(T)dT
0 	 0

Multiplying each side of the equation by e zat gives:

2

TS6(t) = e
2atV(0,a) + eF(t) A(t) 	 (t) - eF(t)

where eF(t) and eF(t) are the filtered error signals

defined as in equation 7.4.5 (Lemma 7.2). Lemma 7.2 then

shows that the right-hand side of equation 4 is bounded and

so:

6(t)TS0(t) < K 3 (5)

where K 3 is a constant. The result follows 	from assump-

tion 6.

o

7.6. ROHRS EXAMPLE

In a celebrated paperC19], Rohrs and his colleagues

illustrated the poor robustness properties of a particular

model-reference adaptive control algorithm by examining its

performance on two particular example systems. In chapter

4, the non-adaptive robustness properties were examined; in

this section, the second of these example systems is used

to illustrate the robustness results for the detuned

model-reference adaptive controller analysed in the previ-

ous section together with some related controllers. 	Simu-

lations appear in the next section.

(3)

(4)

ROHRS EXAMPLE 	 7-21 Sec. 7.6.

The system and the design parameters

These have already been considered in the example con-

sidered in section 4.7.

Robustness analysis

As discussed in section 7.3, the basic requirement

(assumption 2) is that the exponentially multiplied

notional feedback loop (with neglected dynamics) should be

stable.

I 	 i" 	I 	i 	i 	 t 	I
I 1+0.03s1 u 1 	l u 1 2s 	I+I

0—i 	1-----1N (s)1 	I 	 1-0
I 	I 	qs 	I 	I 	I 	I s(l+s) I +

0 	<
1
le

1+0.3s

1+0.03s

Figure 7.6.1 The notional feedback system

From Figure 7.6.1, the notional loop gain L(s) is

L(s) = 2(1+0.3s) qs(l+s) (1)

We can get a rough estimate of the value of q required for

stability as follows. At high frequencies:

L(jw) 9'-- 0_6
jwq

w

>

(2)

7-22 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

and in particular the argument of L is about 	- 7/2 radi-

ans. 	At a frequency of 10 radians sec-1, the argument of

N(jw) is also - 7/2 radians and its gain is 100/80. 	Thus

for the L(jw)N(jw) locus to pass though the -1 point:

0.6 100 _ 1
lOq'80

that is

6 ~ 0.1 q n 80

To exemplify the use of the various criteria presented in

this chapter, we will consider four examples based on that

of Rohrs. These four examples are identical to those con-

sidered in chapter 4 except that we now consider adaptive

control.

The four examples have the following in common:

1. Four frequency loci are plotted for values of w>0 in

Figures 4.7.1-4:

a) The actual loop gain: La(jw) (equation 4.3.5).

b) The notional loop gain (with neglected dynamics

included) N(jw)L(jw).

c) The M-locus M(jw) (equation 4.6.3).

d) The M'-locus M'(jw) (equation 4.5.4).

2. The actual system H(s) is as given in equation 4.7.1.

3. The emulator and controller design parameters are as

given in equation 4.7.4-9.

The four examples are different in the following ways:

The parameter b determining the decomposition of equation

4.7.2, and the control weighting factor q of equation

4.7.9, are varied as in the following Table:

(3)

(4)

Sec. 7.6. 	 ROHRS EXAMPLE 	 7-23

Example 	b 	q

1 	1.0 	0.05

2 	1.0 	0.2

3 	0.5 	0.05

4 	I 	0.5) 	0.2

Remarks

1. The loci for La and M'(s) are not relevant to adaptive

control.

2. In each case, N(s) is stable and so assumption 2 of

section 7.3 is satisfied for sufficiently small a.

3. In examples 1 and 3, the N(s)L(s) locus encircles the

-1 point indicating instability; in examples 2 and 4 it

does not, indicating stability. Thus examples 2 and 4

satisfy assumption 3 of section 7.3 for sufficiently

small a; examples 1 and 3 do not.

4. In examples 2 and 4, the M(jw) locus has magnitude less

than one at all frequencies. Thus assumption 4 of sec-

tion 7.3 is satisfied for sufficiently small values of

a.

5. The L(jw)N(jw) locus does not depend on b. Thus it is

the same for examples 1 and 3 and for 2 and 4.

6. In the adaptive context, all that is required is that a

suitable nominal system B(s) together with N(s), exist A(s)'
satisfying 4.2.3:

H(s) = e-sT B(s) N(s)
A(s) (5)

Thus in this context it is merely required that the

criteria be satisfied for some value of b. In fact, the

7-24 	ROBUSTNESS OF SELF-TUNING CONTROLLERS
	

Chap. 7

criteria are satisfied for both of examples 2 and 4.

To summarise, if q=0.2, the adaptive controller is

stable, but if q=0.05 it has not been shown to be stable

and may be unstable.

7.7. SIMULATION RESULTS

1.::%Qutput, .etpQ i nt, Mcd2l Qvtpvt,
n 	 ,

r ~ ~

Emvi,.yt:r e3rim:tâ r c.

0.4

.r,

50

Figure 7.7.1 Example 1

The simulation results of this section illustrate the

results of this chapter and indicate that the results also

seem to apply to a wider class of self-tuners than actually

analysed. 	To enable comparisons to be made to the results

of other workers, the example of Rohrs[l9] discussed in the

previous section is considered.

1.'25 	 2.5e 0.

_ Emvtat:r Raramrter5

~'.

I I 1 L

Sec. 7.7. 	 SIMULATION RESULTS
	

7-25

~. E __; utGut 	:?t p: Int. M cd~l coutput.

Figure 7.7.2 Example 2

As in chapter 6, the self-tuning algorithms were simu-

lated using the SIMNON languaqeC2O,217 (Figures 7.7.1-6).

All examples have the following in common:

1. Two emulator parameters are identified.

2. The initial S 1(t) matrix is, in each case, given by:

S-1(0) = 1100 	0 1
I 0 	1001 (1)

3. The emulator design parameters are chosen according to

the various strategies.

4. All examples are detuned versions of the underlying

algorithm. Q(s) is given in Tables 7.1 and 7.2 (pages

7-26 	ROBUSTNESS OF SELF-TUNING CONTROLLERS Chap. 7

, ÌI V t.p,J t., 	_Pt.pc i rt , 	 jiJ t.pt„I t..

C

Q. ia'.5

Q.$

1.1 .4

Q.

Figure 7.7.3 Example 3

7-29&30).

5. The algorithms are simulated using a system having the

neglected dynamics

N(s) -
sZ + Bs + 100

dynamics for 50 time units. All examples have a unit

output step disturbance occurring at time=l5 units;

that is, one is added to the system output from time 15

onwards.

6. The upper graph of Figures 7.7.1-6 shows the setpoirit

(a square wave between +1 and -1 with a period of 25

units), the actual system output, and the model output.

100 (2)

Emvl3t~ r pa ramete r:

1.5

E.5

Sec. 7.7. 	 SIMULATION RESULTS
	

7-27

Qutput, :etpoint, Mode(outFut,

Figure 7.7.4 Example 4

The model output corresponds to:

Z(s)- ym (s) - P(s) (3)

7. The lower graph of Figures 7.7.1-6 shows the evolution

of the two emulator parameters with respect to time.

The differences between the six examples are summarised

in Tables 7.1 and 7.2 (pages 7-29&30). In Table 7.1, MR

means model reference and PP pole placement.

Remarks

1. Despite the diversity of algorithms treated here, they

7-28 	ROBUSTNESS OF SELF-TUNING CONTROLLERS Chap. 7

Q. Qutput SetG4int MQdet Qutput.

0 ,

18.5

Emvtnr Rar3m?ter5

1.85

-1,25

Figure 7.7.5 Example 5

all have a common notional loop-gain:

L(s) - 	
P(s)B(s) 	2(1+0.3s)

Z(s)Q(s)A(s) 	qs(l+s)
(4)

Thus the L(s)N(s) locus of Figure 4.7.1 (for q=0.05) is

appropriate to examples 2, 4 and 6; and Figure 4.7.2

(for q=0.2) is appropriate to examples 1, 3 and 5.

2. Examples 1 and 2 are as discussed in the previous sec-

tion. The self-tuning controller of example 1 is stable

as predicted; that of example 2 was not predicted to be

stable and is, in fact, unstable. Simulations starting

off at the correct (that is, based on the correct nomi-

nal system) parameters and with a reduced initial vari-

ance did, however, give stability in both examples 1

—1.25
Q,

~!

1.'25 	2.5

Figure 7.7.6 Example 6

5'.

1.25.

~ r -,~ 	• f

~ •~ ~,~

ii

LNo. Method A(s) B(s)

1 MR s(l+s) 2s

2 MR s(l+s) 2s
3 MR s(l+s) 2s

4 MR s(l+s) 2s

5 PP (l+s)Z 2(1-s)

16 PP (l+s)Z 2(1-s)

SUMMARY

P(s) Z(s)
__L

1+0.3s 1+0.03s

1+0.3s 1+0.03s
1+0.3s 1

1+0.3s 1

(1+0.3s)(1+s) 0.5B(s)

(1+0.3s)(1+s) 0.5B(s)1

Table 7.1 SIMULATION

SIMULATION RESULTS 	 7-29 Sec. 7.7.

qutput, (At F ,: i nt: M:,jo I, : ut put .

'

1.'25 2.5

EmVl,3t.or pa r_3mèt?r5

and 2.

3. Examples 3-6 were not analysed in the previous section.

But, as pointed out in remark 1, the L(s)N(s) loci are

Table 7.2 SIMULATION SUMMARY

Q(s)
	

A(s)

0.2/(1+0.03) 1

0.05/(1+0.03) 1

0.2 Z(s)/P(s)

0.05 Z(s)/P(s)

0.2 Z(s)/P(s)

0.05 Z(s)/P(s)

L

1

2

3

4

5

16

No.

	 L

Design

Off-line

Off-line

Off-line

Off-line

On-line

On-line

7-30 	ROBUSTNESS OF SELF-TUNING CONTROLLERS
	

Chap. 7

appropriate. Thus M(s) is stable in examples 3 and 5

and unstable in examples 4 and 6. It was suggested, but

not proved, that stability of M(s) was essential for

global stability of all the algorithms treated here. As

shown in the appropriate Figures, this tentative pred-

iction is realised; the self-tuning controller in exam-

ples 3 and 5 is stable but unstable in examples 4 and

6.

4. The importance of the control weighting Q(s) was

emphasised in section 7.3. In these simulations,

Q(0)=0 in each case giving no low-frequency weighting.

The weighting in examples 1, 3 and 5 is four times that

in examples 2,4 and 6; as predicted, the robustness of

the algorithms is improved by the control weighting.

REFERENCES 	 7-31

References

1. Gawthrop, P.J., Robust continuous-time self-tuning con-

trol of single-input single-output systems, University

of Sussex, School of Engineering and Applied Sciences,
1986.

2. Landau, I.D., Adaptive control: The model reference

approach, Marcel Dekker, New York, 1979.

3. Popov, V.M., Hyperstability of control systems,

Springer-Verlag, 1973.

4. Willems, J.C., The analysis of feedback systems, MIT

Press, 1971.

5. Desoer, C.A. and Vidyasagar, M., Feedback systems .

Input-output properties, Academic Press, London, 1975.

6. Vidyasagar, M., Input-output analysis of large-scale

interconnected systems, Springer, Berlin, 1981.

7. Egardt, B., Stability of adaptive controllers,

Springer, 1979.

8. Egardt, B., "Stability analysis of continuous-time

adaptive control systems," SIAM J. Control & Optimiz.,

vol. 18, p. 540, 1980.

9. Gawthrop, P.J., On the stability and convergence of a

self-tuning controller," Int. J. Control, vol. 31, no.

5, pp. 973-998, 1980.

10. Gawthrop, P.J. and Lim, K.W., 	On the robustness of

self-tuning controllers," Proc. IEE, vol. 129 ptD, pp.

21-29, 1982.

11. Gawthrop, P.J., Some properties of discrete adaptive

controllers," in Self-tuning and adaptive control -

7-32 	ROBUSTNESS OF SELF-TUNING CONTROLLERS 	Chap. 7

theory and applications, ed. Harris and Billings, Peter

Peregrinus, 1981.

12. Kosut, R.L. and Johnson, C.R., "An input-output view of

robustness in adaptive control," Automatica, vol. 20,

no. 5, pp. 569-582, 1984.

13. Kosut, R. and Friedlander, B., "Robust adaptive con-

trol: Conditions for global stability," IEEE Transac-

tions on Automatic Control, vol. AC-30, no. 7, pp.

610-624, 1985.

14. Ortega, R., Praly, L., and Landau, I.D., "Robustness of

discrete-time direct adaptive controllers," IEEE Tran-

sactions on Automatic Control, vol. AC-30, no. 12, pp.

1179-1187, 1985.

15. Gawthrop, P.J., "Robustness of self-tuning controllers.

PartI: Single-input single-output systems.," Report

CE/T/13, School of Engineering and Applied Sciences,

Univ. of Sussex., 1985.

16. Gawthrop, P.J., "Robustness of self-tuning controllers

PartII: Two-input two-output systems.," Report CE/T/12,

School of Engineering and Applied Sciences, Univ. of

Sussex., 1985.

17. Goodwin, G.C., Ramadge, P.J., and 	Caines, 	P.E.,

"Discrete-time multivariable adaptive control," IF.FE

Trans., vol. AC-25, pp. 449-456, 1980.

18. Goodwin, G.C. and Sin, K.S., Adaptive filtering predic-

tion and control, Prentice-Hall, Englewood Cliffs, New

Jersey, USA, 1984.

19. Rohrs, C.E., Valavani, L., Athans, M., and Stein, G.,

"Robustness of continuous-time adaptive control in the

presence of unmodeled 	dynamics," Trans. IEEE, vol.

AC-30, pp. 881-889, 1985.

REFERENCES 	 7-33

20. Elmqvist, H., "SIMNON: An interactive simulation pro-

gram for nonlinear systems," Proceedings of Simulation

77, Montreux, 1977.

21. Astrom, K.J. and Wittenmark, B., Computer controlled

systems, Prentice-Hall, 1984.

CHAPTER 8

Non-Adaptive and
Adaptive Robustness

Aims. To compare and contrast adaptive and non-

adaptive approaches to sensitivity reduction by

feedback. To suggest a three degree of freedom

approach to the design of self-tuning controll-

ers.

8.1. INTRODUCTION

It is now over 20 years since Horowitz[1,2] discussed

the relationship between adaptive and non-adaptive feedback

systems used for removing the effects of plant uncertainty.

(Some readers may prefer the terms "passive-adaptive"

or "ordinary feedback" to the term "non-adaptive" and the

terms "active-adaptive", "plant adaptive" or "parameter-

adaptive" to the term "adaptive". Perhaps they could make

the necessary translations themselves.)

In his book[2] he gives a detailed discussion of some

of 	the limitations of non-adaptive feedback and how these

might be overcome using adaptive methods. In section

8.21[1], he discusses the "inflexible relationship between

sensitivity over system response bandwidth and sensitivity

8-1

8-2 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 	Chap. 8

to rate of parameter variation". In particular, he says

that

suppose that in practice the parameter vari-

ations are slow. It therefore seems that the

design is wasteful in its ability to cope with

faster parameter variations than actually occur.

It would be extremely desirable to exchange this

unrequired benefit of feedback for something

else, specifically for reduced system sensitivity

to feedback transducer noise."

He goes on to consider a particular example and con-

cludes that

Some other kind of feedback data-processing

is therefore required."

In his book, however, no specific method of adaptive

control is treated, and it is left as an open question

whether an adaptive controller can, in fact, improve

matters.

Since 1963, there has been much work on adaptive con-

trol; but much of this work has been isolated from the fun-

damental issues of feedback control theory. 	Indeed, all

too often, adaptive control has been justified by the

erroneous assumption that processes with uncertain dynamics

require adaptive control. A recent critique of the field

by Kidd[3] states:

"Many researchers have jumped on the adaptive

control bandwagon, but none seem to have publicly

taken any trouble to to look deeply at the jus-

tifications for using adaptive control."

Another crucial point raised by Kidd[3] is that, too

often, adaptive control is used as an alternative to think-

ing about a control problem in terms of the fundamental

Sec. 8.1. 	 INTRODUCTION 	 8-3

principles of feedback control.

This chapter makes a start on bringing together the

apparently opposing disciplines of adaptive and non-

adaptive control. In particular, we examine the suggestion

of Horowitz, mentioned above, that adaptive control can

provide a means of reducing the effect of sensor noise when

controlling plants with large but slow parameter varia-

tions. We use the particular self-tuning controller (gen-

eralised minimum variance) for which robustness results

have been found in chapter 7.

Following[4], a plant with parameters which, though

constant, are uncertain within a prescribed domain is con-

sidered. It is assumed that a two degree of freedom[2] high

gain controller can be designed to satisfy performance cri-

teria in terms of the system response to setpoint changes,

in the face of the plant uncertainty, using the methods of

Horowitz and SidiE2,4], of Ashworth[5] or as simplified by

East and Longdon[6,7,8]. It is assumed that these perfor-

mance criteria are of, or have been converted to[4], the

form that the frequency response relating system output to

setpoint changes lies between specified bounds for all fre-

quencies w < wc. Above wc, the loop gain is assumed to be

reduced as fast as possible consistent with an adequate

phase margin[2,4,6,7,8]. 	Based on this design, a self-

tuning algorithm is presented which, by actively reducing

uncertainty via parameter estimation, allows the high-

frequency loop gain to be reduced, thus reducing the effect

of high-frequency sensor noise. Using the robustness

results of chapter 6, the design implications of the self-

tuning approach are discussed and interpreted as a three

degree of freedom design.

8-4 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS
	

Chap. 8

This chapter is based on a conference paper[9]

8.2. TWO DEGREE OF FREEDOM DESIGN

In chapter 6 of his book[2], Horowitz shows that, with

non-adaptive control, any linear feedback controller for

single input-single-output systems

p(s) = H(s)u(s) 	 (1)

based on only two measurements (the system output and the

setpoint) is equivalent to the two degree of freedom con-

trol law:

u(s) = H1(s)w(s) - HZ(s)y- (s) (2)

displayed in Figure 8.2.1,

- ;
w 	I 	I 	+ 	u

	

—>--1 H (s) I 	0 	> 	
I 	1 	1 	-I

I
1
1

H(s)

I 	 I 	1
	< 	I H (s)

2 	1

Figure 8.2.1 A two degree of freedom controller

where H(s) is the system to be controlled, H1(s) and H2(s)

are the two controller transfer functions (giving the two

degrees of freedom), u(s) is the control signal, y(s) is

the system (plant) output, and w(s) is the setpoint. It is

important to realise that any linear control system with

these constraints (for example, conditional feedback) may

Sec. 8.2. 	TWO DEGREE OF FREEDOM DESIGN 	 8-5

be written in this form[l].

With these two degrees of freedom, there are at least

three objectives to be achieved by the control system:

1. Desired response of the system to the setpoint.

2. Insensitivity of the closed-loop system to plant param-

eter variation.

3. Satisfactory response to plant disturbances and meas-

urement noise.

Sometimes, it is possible to satisfy all three sets of

requirements, sometimes it isn't. In particular, require-

ments 2 and 3 may be conflicting: 2 may require a feedback

element H2(s) with high gain at high-frequencies which

could give problems with high-frequency measurement noise,

and so conflict with requirement 3.

_ 	r 	r 	r 	r 	_ 	r 	r 	 _
w 	I R(s) I 	+ 	I Z(s)I u l 	I 	y
—>—I 	 I 	o-1 	I—>---1 H(s) I 	, >

	

I Z(s) I 	-I I g(s)I 	I 	I 	I
1 	 1 	I 	1 	1 	I 	 1 	I

I
I 	 _ 	r 	r
I 	 o 1 P(s) I 	I
' 	 < 	1 	 I—J

Z(s) 	I

Figure 8.2.2 Another two degree of freedom controller

The two degree of freedom controller can be rewritten

(Figure 8.2.2) as:

u(s) = q(s))C R(s)w(s) - cp(s)]
Z (s)

(3)

8-6 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 	Chap. 8

_ 	f 	I 	 _ 	I 	I 	_
w 	I R(s) I 	+ 	u 	I 	I 	Y
—>H 	 I— O 	> 	I H (s) I 	, >

1 q(s) I 	-I 	 I 	I 	I
i 	1 	1 	 I

1
I

	

I 	 I P(s) I 	I

	

' 	 < 	
I q(s) I

Figure 8.2.3 A further two degree of freedom controller

ii(s) - (4) P_(s)
Y(s)

Z (s)

where u(s) is the control signal P(s), q(s) and Z (s) are

polynomials in the operator s; R(s) is a transfer function.

This can be reorganised as in Figure 8.2.3, from which it

follows that

P(s) q(s) = Hz 	R(s) q(s) 	
H(s> (5)

To avoid ambiguity, P(s) is chosen to have unit zero-

frequency gain:

P(0) = 1 	 (6)

P is thus the suitably normalised numerator of HZ(s) and Q

the corresponding denominator. The polynomial Z (s) is, at

this stage, redundant, but it will be used in the next sec-

tion. It is chosen to have unit zero-frequency gain and

poles further away from the imaginary s-plane axis than

those of the system. It follows that both P(s)/Z (s) and

Z (s)/q(s) are proper:

Z (0) = 1; degree(P) < degree(Z (s)) < degree(Q) 	(7)

5(52 + 2Spwps + wp2)
H(s) - 	 1250K

(8)

Sec. 8.2. 	TWO DEGREE OF FREEDOM DESIGN 	 8-7

This control scheme corresponds to the notional feed-

back loop associated with the detuned model-reference con-

trol of section 3.11. In this particular case, the notional

feedback loop is realisable.

Example (Horowitz)

The example used in this chapter is drawn from chapter

6 of[2]. The system is of the form:

where K may vary from 1 to 4 and the two complex system

poles can vary over a wide range with real parts between 0

and -6 and with imaginary parts between j2 and j10.

A design objective is that the closed-loop setpoint

response has a dominant pole-pair within circles of radius

1.2 centred at -10+j10. A number of design solutions are

given by Horowitz[2]; one of these is

H (s) = 6.2 109 s + 18s + 167.5
2 	

(s2 + 1040s + 5902)2
(9)

This corresponds to the alternative form where:

P(s) = 1 + 1.07o + 0.59702 	 (10)

q(s) = q(1 + 0.0299a + 0.0002870)2

where

q = 0.1167
	

(12)

and the definition 0 = s/10 has been made for clarity of

presentation. 	P(s) has roots at about s=-9+j9.3, and q(s)

has roots at about s=-520+j280. 	Roughly speaking, the

8-8 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS
	

Chap. 8

compensator H(s) is chosen as follows. The compensator

zeros are near to the desired closed-loop poles. The com-

pensator has high enough gain to keep the two complex

closed-loop poles close to the compensator zeros despite

plant parameter variation, and to move the remaining plant

pole far to the left. The compensator poles are chosen far

enough away from the zeros to avoid stability problems with

the far-off closed-loop poles.

The feedback compensator has a gain of just under 20dB

at low frequencies, rising to over 70dB. Horowitz comments

(section 8.21[2]) that:

.. suppose that the system .. has exceedingly

slow parameter variations, such that a year may

elapse before the poles move from +j2 to -6+j10.

The final design is very sensitive to high-

frequency feedback transducer noise .. but it

seems ridiculous that it should be so, in view of

the extremely slow parameter variations. Common

sense tells us that the feedback data may be

evaluated more slowly .. such that high-frequency

noise has negligible effect. However .. slower

evaluation by means of linear time-invariant net-

works cannot ensure the desired insensitivity."

The purpose of this chapter is to suggest that the

self-tuning emulator-based approach of this book is one

possibility to implement the sort of control implied by

Horowitz.

8.3. THE EMULATOR

A particular emulator was given in section 3.11 with

Z (s) = P(es); Q(s) = q(s)
	 (1)

Z (s)

and so -z(s) is realisable and given by:

Sec. 8.3. 	 THE EMULATOR 	 8-9

P(s)
4)z(s) - P(e s)

This choice corresponds to the two degree of freedom struc-

ture in equations 8.2.3&4.

If the control law

u(s) = 	1 [W(s) 	
P(es)- 	 P(s)

Q(s) 	
~(s)] =

q(s) w(s) - P(es)y(s)

is applied (corresponding to the notional feedback system),

the disturbance v(s) together with a high gain

H2(s) = P(s)/P(es) (as in the Example) can lead to unac-

ceptably large control signals when the high-gain control

law of the previous section is used. 	To see this, the

notional closed-loop system may be written as

L(s) 	1 	- 	g(s)C(s)-
Y - 1+L(s) EP(s)R(s)w(s) + P(s)B(s)v(s)] 	 (4)

C- u(s) = 1+L(s) fBPR(s)w(s) - Bv(s)] 	 (5)

where the nominal loop gain L(s) is

L(s) = H
z
(s)

A(s) = P(s)B(s)
 B(s) 	q(s)A(s) (6)

This approach corresponds to implementing the notional

feedback system directly; in this particular case, this is

possible as P(s) is realisable. Z(s)

Over the range of frequencies for which L(s) is large,

v(s) is amplified by the transfer function C(s)/B(s),

which will be improper for a system with at least two more

poles than zeros - this leads to large control signals.

As a first step in solving this problem, the high gain

design is converted into a low gain design via the emula-

tor. This low gain design no longer amplifies the high-

frequency noise, but is, of course, sensitive to plant

(2)

(3)

8-10 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 	Chap. 8

variation. As discussed in the following sections, the

long-term sensitivity due to replacing P(s)/Z(s) by the

emulator may be overcome by using a self-tuning emulator.

Noting from chapter 2 that $(s) is the sum of the emu-

-* 	 -*
lator output 0 (s) and the error e (s):

if)(s) = (T)*(s) + e*(s) 	 (7)

u(s) -
Z (s)C R(s

~a(s) - 0*(s)] 	 (8)
q(s) Z (s)

Of course, this only works if the nominal system parameters

A and B and the nominal input u(s) are available to imple-

ment the emulator. In practice, this method is sensitive to

parameter uncertainty and the unknown quantity u(s) has to
A

be replaced by the known control signal u(s), so the advan-

tage of the high gain control is lost. Effectively, another

two degree of freedom structure has been created and, as

such, has no particular advantages over that of equation 1.

8.4. THREE DEGREE OF FREEDOM DESIGN

The input-output predictor structure removes high-

frequency noise at the expense of sensitivity to parameter

variation. If, however, plant parameters vary slowly, a

self-tuning emulator can be used.

This adaptive algorithm has two additional free polyno-

mials C and Z (s) in addition to the P(s), q(s) and R(s)

already fixed by the two degree of freedom design. These

appear in the identity 2.3.4 as a transfer function

C(s)/Z (s) and thus give rise to one more transfer function

degree of freedom, making three in all.

Sec. 8.4. 	THREE DEGREE OF FREEDOM DESIGN. 	 8-11

As discussed in section 3.11, one possible choice of

2-(s) is:

Z (s) = P(es) 	0 < e < 1 	 (1)

e=l gives Z (s) = P(s) and i(s) = y, and thus the algorithm

corresponds to the original two degree of freedom design.

On the other hand, e 	0 gives the maximum noise reduction

via the self-tuning emulator. Intermediate values allow a

trade-off between the two extremes.

Thus the self-tuning approach can be interpreted as a

three degree of freedom design method. The additional

degree of freedom allows an additional trade-off to be made

in the design process.

8.5. ROBUSTNESS

To examine the robustness of controllers to plant

uncertainty the uncertainty must be modelled. For simpli-

city, the disturbances will not be included in the analysis

of this chapter. As in chapter 4, the plant is assumed to

be linear, and thus can be represented as the nominal plant

B(s)/A(s) in series with the neglected dynamics N(s):

B(s)-
= y 	A(s)u(s); u(s) = N(s)u(s)

where N(s) (see chapter 4) is a transfer function given by

	

N(s) = actual system 	H(s) A(s)

	

nominal system 	B(s)
	 (2)

and u(s) is the control input. As in chapter 4, this sys-

tem equation can be rewritten in terms of an additive dis-
turbance u(s) as

y(s) = ÂCú(s) + u(s)] (3)

where (in the absence of disturbances):

(1)

8-12 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 	Chap. 8

u(s) = (1 - N(s) 1)By

Two degree of freedom design

Using the two degree of freedom control law (either 2

or 3&4), the closed-loop system response can be written

as:

y(s) = yo(s) + y(s) (5)

where y(s) is the output error (compare with ey(s) in

chapter 7). The nominal system output is

L(s) 	1
yo(s) 	1+L(s) P(s~

L is the nominal loop gain and y(s) is given by

y(s) = A 1+L(s)u(s) = Z
o(s) y

where

1 - N(s)-1 _ Ao(s) 	1+L(s)

The two degree of freedom design method[2] as simplified by

East[6,7,8] is based on making 7s0(s) sufficiently small at

each frequency w within a frequency band 0 < w < we to

satisfy design specifications. 	For w > wc, the nominal

loop gain is reduced as rapidly as possible.

Alternatively, the output error can be expressed as

y(s) = ii(s) o
(S) (9)

where

A(s) _ 	
(s) 	1 - N(s) 1

1-Z
0
(s) 	L(s) + N(s)-1

(4)

(6)

(7)

(8)

(10)

Sec. 8.5. 	 ROBUSTNESS 	 8-13

Typically, the design will ensure that D0(s) is small for

w < wc; in addition, if N(s) represents low-pass dynamics,

N 1 will be large at high-frequencies and so

L1(s) 	-1 for sufficiently large w > we 	 (11)

Three degree of freedom design.

There is an additional source of error when applying
^ 	 ^

self-tuning control: e(s) = i(s) - 4(s)#0. It is shown in

chapter 5 that

e(s) = SZe(s) 	 (12)

where SZ is a time-varying system representing the tuning

algorithm. In addition , as discussed in chapters 4 and 7,

the estimator input error is related to the estimation

error, the setpoint and disturbances by

e(s) = ed (s) - M(s)e(s)

where

M(s) _
E(s)A(s)

L(s)~(s) -
Z+(s)E(s)A(s)CN 1(s)-1]

P(s)C(s) 	
p(s)C(s)C1+L -1 	-11(s)]

These equations form a feedback system. It is shown in

chapter 7 that a sufficient condition for stability is that

the gain of the linear transfer function M(s) be less than

one at all frequencies.

The system output is given by

L(s)
y(s) = yo(s) 	y(s) + 1+L(s)e(s) (15)

(13)

(14)

As well as requiring y(s) to be small, we require e (s) to

8-14 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS
	

Chap. 8

be small. This implies that M should be small at the

relevant frequencies.

8.6. COMPARATIVE ROBUSTNESS

The aim of each design method is to make the system

output y sufficiently close to the nominal system output y0

to satisfy the design objectives within the frequency range

0 < W 	W.

It is important to distinguish between the methods used

by the non-adaptive and adaptive controllers to reduce the

effect of plant uncertainty. In the non-adaptive case, the

nominal plant B(s)/As is chosen by the designer, and this

implies the value of N(s) = H(s)A(s)/B(s). In the adaptive

case, however, all that is required is that a suitable nom-

inal plant B/A exist so that, together with the correspond-

ing value of N, the robustness conditions are satisfied.

If B/A had the same structure as H(s), such a nominal sys-

tem 	would be B(s)/A(s) = H(s) and N=1 and so the robust-

ness conditions would be satisfied. But, in practice, this

would not normally be the case. Indeed, for the purposes of

this discussion, it will be assumed that the neglected

dynamics are low-pass:

Lt N(jw) = 0
W-■00

(1)

and hence that

Lt A(jW) = -1 	 (2)
W-oco

Two degree of freedom design

The two basic design rules for two degree of freedom

non-adaptive design are (roughly speaking)C4,5,6,7,87:

Sec. 8.6. 	 COMPARATIVE ROBUSTNESS 	 8-15

NA1. A (s)(jw) must be sufficiently small for w < we to

satisfy the design constraints.

NA2. L(jw) must be reduced as fast as possible (consistent

with adequate phase margin) for w > w .
c

The first rule gives insensitivity to plant variation; the

second reduces the effect of high-frequency sensor noise as

much as possible.

Three degree of freedom design

The self-tuning method also requires that the underly-

ing design method be insensitive to plant variations,so the

first adaptive design rule is the same as the first non-

adaptive design rule:

Al. NA1

In addition, it is required that M(jw) be small at all fre-

quencies. 	The two frequency ranges above and below we are

considered separately.

w<wcHere L(s) is large, so LD(s) s' 1-N 1. The adaptive con-

troller must thus be capable of reducing the uncer-

tainty N(s) in this frequency range. Hence the second

design rule is:

A2. The structure of the adaptive emulator must be such

as to capture all significant plant dynamics at fre-

quencies w < wc:

w>wcdegree(EA) = degree(PC), so 	for 	high frequencies

EA/PC-K, where K is a non-zero constant. In addition,

s(s) 	land so M 	- KL. Hence, L(s) must be small

at high frequencies and thus the third adaptive design

rule is the same as the second non-adaptive design

8-16 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS
	

Chap. 8

rule:

A3. NA2

As pointed out by Horowitz and Sidi[4], minimum phase

systems can, in principle, support a feedback control

design with infinite loop-gain at all frequencies; but this

is undesirable for reasons of sensor noise. Hence, design

rule NA2 is used in practice. 	The arguments leading to

design rule A3 show that, for the adaptive case, such an

infinite notional-loop gain approach is not merely undesir-

able but leads to a design which cannot satisfy A3. Thus a

pure model-reference approach with 1/P as the desired model

and Q=0 is not feasible in practice. Although the algo-

rithms are different, this conclusion is in accordance with

those of Rohrs and colleagues[l0] concerning the impracti-

cality of model-reference adaptive control.

8.7. SUMMARY

An initial attempt has been made to unite the non-

adaptive and adaptive approaches to feedback control for a

particular, but important, case: a single-input single-

output system with constant but uncertain parameters where,

although non-adaptive control can yield the desired insen-

sitivity, the resultant amplification of sensor noise is

unacceptable. It is suggested that the non-adaptive design

is a prerequisite to the adaptive design; this is in dis-

tinction to the commonly held view that the use of adaptive

control avoids design. In particular, the pure model-

reference version of the algorithm in this chapter, which

attempts to match the closed-loop system to the reference

model 1/P at all frequencies,is not a practical algorithm.

Much work remains to be done in this area. Detailed

design examples are required to refine the broad outline

presented in this chapter. It would seem that a similar

Sec. 8.7. 	 SUMMARY 	 8-17

approach could be applied to the multivariable and cascade

controller configurations of the following chapters.

An interesting extension of these ideas would be to

consider significantly non-minimum phase systems (with

time-delay or right half-plane zeros) where these charac-

teristics are removed from the notional system by the emu-

lator.

8-18 	NON-ADAPTIVE AND ADAPTIVE ROBUSTNESS 	Chap. 8

References

1. Harris, C. and Billings, S., and Horowitz, I., "Plant

adaptive systems versus ordinary feedback systems," IRE

Trans, vol. AC-7, no. 1, pp. 48-56, Peter Peregrinus,

London, 1962.

2. Horowitz, I., Synthesis of feedback systems, Academic

Press, 1963.

3. Kidd, P.T., "Comments on: 	Self-tuning and stable

adaptive control of a batch polymerization reactor',"

Automatica, vol. 20, no. 4, p. 481, 1984.

4. Horowitz, I. and Sidi, M., "Synthesis of feedback sys-

tems with large plant ignorance for prescribed time-

domain tolerances," International Journal of Control,

vol. 16, pp. 287-309, 1972.

5. Ashworth, M.J., Feedback design of systems with signi-

ficant uncertainty, Research Studies Press, Lechworth,

Herts, U.K., 1982.

6. East, D,J., "A CAD procedure for optimum loop syn-

thesis," Report RT 146/83, RMCS, Shrivenham, 1983.

7. East, D.J. and Longdon, L.W., "Sensitivity synthesis of

systems subject to large parameter variations," in

Proceedings of the IEE conference 'Control and its

applications', University of Warwick, U.K. (IEE confer-

ence publication 194), 1981.

8. East, D.J., "Passive adaptive control of systems with

large plant uncertainty," in Proceedings of the IEE

workshop on ' The theory and applications of adaptive

control', University of Oxford, U.K., 1983.

9. Gawthrop, P.J., "Comparative robustness of non-adaptive

and adaptive control," in Proceedings of the IEE

REFERENCES 	 8-19

conference "Control '85", Cambridge, U.K., 1985.

10. Rohrs, C.E., Valavani, L., Athans, M., and Stein, G.,

"Robustness of continuous-time adaptive control in the

presence of unmodeled 	dynamics," Trans. IEEE, vol.

AC-30, pp. 881-889, 1985.

CHAPTER 9

Cascade Control

Aims. To consider the cascade control of

single-input single-output systems with a number

of measurable signals available. To introduce a

recursive emulator approach to cascade control.

9.1. INTRODUCTION

If self-tuning methods are to be widely used in real

applications, it must be possible to use self tuning con-

trollers as components within a larger multi-loop control

system. The current practice in the process control indus-

try is that a control scheme for a multi-loop process is

built up out of a number of simple modules rather than from

one complex multi-loop algorithm. The philosophy behind

this chapter is to develop a similar approach for self-

tuning algorithms - they should be a simple component out

of which complex control schemes may be created.

As part of this process, simple standard multi-loop

configurations are under investigation. This chapter con-

siders a standard configuration: cascade control; the next

chapter considers decoupling control of two-input two-

9-1

9-2 	 CASCADE CONTROL
	

Chap. 9

output systems. With the exception ofEll, cascade control

has received little attention in the context of self-

tuning. Derivative generating (model-reference) type emu-

lators (section 2.2) in cascade control are discussed

in[2]; this chapter extends the results to cover all of the

emulators of this book.

9.2. CASCADE SYSTEMS

u 	 y =u 	y =u 	y 	u , 	i y
1 113112181 2 31B 1 3 NIB I N

—>—{ — I____>___I — f—>—__I — f—. . . >--I — i___>
I A I 	I A I 	I A I 	I A I
~ 	 1 	I 	1 	i

Figure 9.2.1 Cascaded systems

A class of systems to which cascade control is

appropriate is given by the series connection of a number

of systems of the form (Figure 9.2.1):

-sT. B.(s)
yi- (s) = e 	i A1(s)ui(s) + vi- (s) i

(For simplicity, initial conditions will be ignored in this

chapter). The series interconnection is specified by:

ui- (s) = y
i 1

(s); i = 2..N (2)

The (single) output to be controlled is yN; the (single)

input available for control is ul(s). The disturbances are

as described in section 1.9.

It is common in the process industry to have a number

of measurements pertaining to various stages of a given

process; current self-tuning methods cannot use such

(1)

Sec. 9.2. 	 CASCADE SYSTEMS 	 9-3

information. The algorithm presented in this chapter goes

some way to filling this gap.

9.3. POSSIBLE CASCADE METHODS

There are a number of ways of extending the single-loop

methods of earlier chapters to control the cascade systems

of equations 9.2.1&2. Some of these will now be con-

sidered. For simplicity, assume vi(s)=0 for the rest of

this section. For each method, advantages are indicated by

"(+)" and disadvantages by "(-)"

Single-loop control

One possible strategy is to ignore the intermediate

signals ÿi(s) i = 1..N-1, and just have a single-loop

self-tuning controller using yN as output and y0 = u(s) as

input.

(+) This requires no special algorithm.

(-) The single self-tuner must correspond to a system with

order equal to the sum of the subsystem orders. This

may be large.

(-) When ignoring the additional information provided by

the intermediate outputs, the system is more difficult

to control in terms of both phase lag and disturbance

rejection.

Ignoring inner loops

A common way to implement cascade control loops is to

ignore the dynamics of loops inside the one being designed.

That is, having closed i-1 cascaded loops to give a system:

1-1(s) = Si-1(s)w
1-1

(s) (1)

9-4 	 CASCADE CONTROL 	 Chap. 9

(where w. is the setpoint to the ith controller); the ith

loop is designed as if Si_1(s) = 1. The approximation is

thus that the input to the ith system (the output of the

i-lth system) follows the i-lth setpoint exactly:

wi-1

- 	

(s) `` yi-1

- 	

(s)

(+) Each individual self-tuner has structure corresponding

to the relevant subsystem. The order of the subsystem

may be much less than that of the overall system. Thus

control is easier and disturbance rejection improved.

(+) By using the additional information provided by the

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion.

(-) The result will only be satisfactory if the individual

subsystems are ordered 	in terms of increasing time

constant. If the dynamics of the i-lth loop are not

negligible with respect to the ith loop, poor perfor-

mance and even instability may result.

Taking account of inner loops

The problems encountered in the previous section may be

overcome by including the dynamics of inner loops in the

design of the outer loops. That is, using the notation of

the previous section, the ith loop is designed on the basis

of:

B.(s) -
yi(s) - A1(s)Si

1(s)wi 1(s)
i

(3)

(2)

(+) Dynamics are not neglected; the dynamics of the inner

loops do not affect the accuracy or stability of the

Sec. 9.3. 	POSSIBLE CASCADE METHODS 	 9-5

final design.

(+) By using the additional information provided by the

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion.

(-) The compexity of the design increases with the loop

index i. Indeed, the outer loop is of the same complex-

ity as that of single-loop control.

The recursive emulator method

In view of the above methods, there seems to be a need

for a method which will handle cascaded systems with simi-

lar time-constants while retaining a simple structure based

on N 	self-tuners operating on the N measured outputs.

This algorithm is introduced in the next seccion; here its

merits in with respect to the other methods are outlined:

(+) Each self-tuning emulator operates on a subsystem and

is thus simple.

(+) The effect of inner loops is exactly allowed for.

(+) By using the additional information provided by the

intermediate outputs, the system is made easier to con-

trol in terms of both phase lag and disturbance rejec-

tion.

(-) The reference model for each loop must be identical.

This implies that each subsystem have similar dynamics.

(-) An additional level of coordination is required when

compared to the cascade method ignoring inner loops.

The method presented is not the only possible, but it

is felt that it strikes a balance between complexity and

9-6 	 CASCADE CONTROL 	 Chap. 9

flexibility of use.

9.4. THE RECURSIVE EMULATOR METHOD

The aim of this method is to give a closed-loop system:

-sNT
pN(s) = e 	

ZN(s)-N(s)
P (s)

with the restrictions that:

deg(P) = deg(Aj(s)) - deg(Bj(s)); T = Tj

for all j = 1..N.

To achieve this, define:

=
I sT P(s)li

~i,j 	l e 	Z(s)I yj

The emulator with i=1 corresponding to each individual sys-

tem is given by:

F.(s) 	G1(s)

ml,j 	Cj(s) yj + C.
3
(s) yj-1

where:

P(s)C (s) 	 F.(s)

Aj(s) - E
j(s) + A~

and:

Gj(s) = Bj(s)E(s) 	 (6)

Once again, Cj(s) is chosen for each subsystem. The

corresponding error is then:

A The subscripts refer to the loop index, not to the
emulator version

(1)

(2)

(3)

(4)

(5)

Sec. 9.4. 	THE RECURSIVE EMULATOR METHOD 	 9-7

e1 j = Ej(s)z

A recursive expression for of .may be obtained from these

definitions as follows:

(pi,j = P1(s)(1)1 j 	 (8)

= P1(s)¢*
1,j + P

1(s)e
1,j

Using the above definitions, this can be further expanded

as:

F.(s) 	 G.(s)
_ 1 	 1

i,j 	Cj(s)i-1,j + Cj(s)0i-1,j-1 (9)

+ Pie. .
1,]

There are many possible approximations to 0ij but to
,

be useful they must have the following properties:

a) The approximation error must depend only on distur-

bances, not on the control signal. That is, the approx-

imation does not affect closed-loop stability.

b) The approximation must be realisable; it must not con-

tain derivatives of disturbance terms.

F.(s) 	G.(s)
As both C1(s) and C1(s) are proper, a realisable emula-

tor * 	> i,j may be defined as:

F.
-I
(s) * 	 G1 (s)

i,j 	C.(s)C i-1,1 + C.(s)® i-1,j-1 	
(10)

The corresponding error e. 	is defined as: 1,3

*
e.
1,j - i,j i ,j

(7)

9-8 	 CASCADE CONTROL
	

Chap. 9

The recursive formula for the error is then:

P
i 	

Fj(s)

ei,j =
P (s)e

l,j + Cj(s)e í-1,j
(12)

G.(s)
1

+ Cj(s)ei-1,j-1

The recursive emulator for a 3-loop cascade system

appears in Figure 9.4.1.

9.5. SELF-TUNING CASCADE CONTROL

To implement the recursive emulator for an N-loop cas-

cade control system, the N polynomial pairs {F1(s), G1(s)1

are required. It is proposed that these be generated

(together with estimates for m l
j
) using N self-tuning

emulators of 	each operating on one of the N

systems of equation 9.1.1. The control signal u(s) (=y0)

may be generated in two stages:

1. Compute the emulator outputs: 	which have no direct

link to the control signal u, that is for i<j. This

gives the N values 0
i-1'i for i=1..N.

2. Letting ~N'N = w, compute cpl'1 for i = N-1..0 using
A

equation 9.4.9. The control signal is then u = 0
0,0

9.6. EXAMPLES

To illustrate the two non-adaptive cascade control

methods, consider a double integrator system (see Figures

9.6.1&2) where the output of each integrator can be

Sec. 9.6. EXAMPLES 9-9

Y ~ 	4
3 	1 F I 	I F I I 	3,3

F—o>-
C

->-1
I C,

u

I

I I
,

3 	I G
, 	I

I 	I
i
I G, I 	I 	I G,

I
I 	I
~J r> I~ 	I

1 C _ 1 	I 	I Cì 1 C; I

Y
2

—,
I

P
2,2 I

L> I
F`

i 	,
I 	I F,

-,

I—p '
I Cs I 	I 	I , I C< I 	I , I

_
u
2

I I
,
1 G.:

, 	I 	I
I 	I 	I G;

~ 	I
I 	I

C,
r->1

I C, I I I

Y
1 1

> 	I
F, I

I—p-~
1,1

C, I 	I
' ' I

_
u
1

I

->

,
I G,

	

, 	I

	

I 	I
F---'

C, I

Figure 9.4.1 The recursive emulator

measured. That is:

Z(s) =
s

l 	l 	1,1 (S) (1)

For each control method, the objective is to give a

9-10 	 CASCADE CONTROL, 	 Chap. 9

setpoint tracking response corresponding to a critically

damped system given by:

Z(s) 	1
P(s) 	(l+ps)2

i.e.

Z(s) = 1; P(s) _ (l+ps)2 	 (3)

Single-loop ccntrol

w

OH 	 F—>--i 	 I--->—I 	 F— r-->

1 	 I Y

- I

	I 	Y

- I

	I 	Y
1 1+cs 	1 	0 1 	1 	1 	11 	1 	I 	3

1 p+2pc+pc I 	I 	s 	I 	I 	s 	I
I 	 i 	1 	I 	I 	1

1
1 1+(2p+c)s 1

	

<—~ 	 F<

	

I 	l+cs

	

1 	

Figure 9.6.1 Single-loop control

If the intermediate variable is not used, a filter

polynomial C(s) = l+cs must be used to give a realisable

control law (without derivatives). The left-hand side of

identity 9.4.5 becomes:

P(s)C(s)
A(s)

(4)

1 + (2p+c)s + (2pc+p2)s2 + p2cs3
2

s

(2)

Sec. 9.6. 	 EXAMPLES 	 9-11

This gives:

E = (2pc+p2) + pZcs 	 (5)

F = 1 + (2p+c)s 	 (6)

The resultant feedback control law appears in 	Figure

9.6.1, and may be written as:

u (s) -
1 	(2pc+pZ) + pZ Cs

Cw(s) 	1 + (2p+c)s y(s)]
l+cs

Ignorinq inner loops

w 	i 	1 	 r 	1 1 	1 Y 1 	1 	Y

	

I 	1 	I 	Ill 	I 	1 	I 	ll 	1 	I 	2

	

—>0---I 	 F-0--1 	F---i 	 I 	r I 	 I—r—>

	

I 	P 	I 	I 	I 	PI 	 II 	I 	s 	l

	

1 	1 	I 	L 	i 	1 	I 	1 	i 	I
1 	 < 	 1

Figure 9.6.2 Ignorinq inner loops

Choose both the inner loop controller and the outer

loop controller (ignoring inner loop) to give a setpoint

response:

(8) P(s) 	l+ps

l+cs (7)

In this case, a filter C is not required and the left-hand

side of identity 9.4.5 becomes:

9-12 	 CASCADE CONTROL 	 Chap. 9

P(s)C(s) 	l+ps 	 (9)
A(s) 	s

This gives controller polynomials:

E(s) = p; F(s) = 1 	 (10)

If the dynamics of this inner loop are ignored, the

outer loop dynamics are, in this case, identical to the

open-loop inner loop dynamics. Thus the outer loop con-

troller is the same as the inner loop controller. This

gives:

u 	= ZCw(s) - yz(s)] - py(s)
P

This is shown in Figure 9.6.2. 	The closed-loop setpoint

response is, of course, not correct. It is given by:

y2(S) - 	1 z 	zw(s)
l+ps+p s

Taking account of inner loops

The design of the inner loop is the same as in the pre-

vious section.

The system response, with the inner loop closed, from

the inner loop setpoint to Y2(s) is then:

1
s(l+ps)

As in the previous section, the outer loop controller

requires a filter C, again chosen as C(s) = l+cs. The

left-hand side of identity 9.4.5 becomes:

P(s)C(s) _ (l+ps)z(l+cs)
A(s) 	(l+ps)s

(14)

(12)

(13)

EXAMPLES 	 9-13 Sec. 9.6.

w Y i Y Y 	i
1 	l+cs 1 01 1 	1 	I 1 	1 1 	1 	1 	1 	2

H-7—>
I 	p+c+pcs I

F—> —i
PI

I

F—>
si list I

I I

1 1+P 	1
I 	 I 	
1 1+c 1
	,

Figure 9.6.3 Taking account of inner loops

1 + (p+c)s + pcs
s

It follows that:

E = (p+c) + pcs; F = l+ps 	 (15)

The resultant feedback control law appears in Figure 9.6.3

and may be written as:

ul(s) = ~ p+cl+cpcsCw(s) -
l+ps yz(s)] (16)

The recursive emulator method

As the two cascaded systems are identical, the

corresponding polynomial identities are the same and given

by:

P(s)C(s) 	l+ps
A(s) 	s (17)

9-14 	 CASCADE CONTROL 	 Chap. 9

Y
2

F--r—>

w 	 r
+ 	1 	1 	1 	1

—>—O—I 	F---0--I
1

,y
1 	0 	1 1

Y
1 	1 	1
1—r-->d

1 1

	

-tipi 	1 	I

	

I______, 	L 1 	 1
P

F—>--{
I 	I
I 	I

s I 	I 	I
1 	l

s I
I

1 <

I

--1

p<
I

1

H 	 I
p

I
O I
I+ 	 I I
I
I

Figure 9.6.4 The recursive emulator method

This gives:

E1 (s) = EZ (s) = p; F1 (s) = FZ(s) = 1

The three emulators are thus given by:

A
(I) 1,1 = 57 1 (s) + pul(s)

A
(0

1,2 = y
Z(s) + 1:).r 1(s)

ic 	 ,F 	 ic
0 2,2 	(I) 1,2 + Pm 1,1

The resultant control law appears in Figure 9.6.4 and may

be written as:

ul(s) = ZCw(s) - 2py1(s) - y Z(s)]
P

(22)

This may be compared with the single-loop controller of

Figure 9.6.2. 	In equation 22 (in the absence of distur-

bances), yl(s) = sy2(s). This equation becomes the same as

(18)

(19)

(20)

(21)

Sec. 9.6. 	 EXAMPLES 	 9-15

7 if, in that equation, C=1. However, in practice, such

differentiation is inadmissible.

These examples illustrate that the recursive emulator

method leads to the simplest control law giving the desired

closed-loop system. Moreover, the two corresponding self-

tuning emulators operate on first-order systems; the first

and third each require a self-tuning emulator operating on

a second—order system. Finally, unlike the third example,

the controller parameters for the outer loop do not depend

on those for the inner loop.

9-16 	 CASCADE CONTROL 	 Chap. 9

References

1. Anbumani, K., Sarma, I.G., and Patnaik, L.M., Self-

tuning cascade control of non-linear systems, IFAC Sym-

posium on Theory and Applications of Digital Control,

New Delhi, 1982.

2. Gawthrop, P.J., "Multi-loop self-tuning control: Cas-

cade systems," in Preprints of the 9th IFAC triennial

world congress., ed. K.J. Astrom, vol. VII, pp. 127-

132, Budapest, 1984.

CHAPTER 10

Two-Input Two-Output Systems

Aims. To consider the control of two-input two-

output systems using two self-tuning controllers

with feedforward. To analyse the robustness of

the self-tuning control in the presence of

neglected loop-interaction dynamics.

10.1. INTRODUCTION

A typical process control system will involve many con-

trol loops. Often, some of these loops will involve mutu-

ally interacting systems. It follows that if self-tuning

methods are to be of use in large process control systems,

they must be able to perform satisfactorily in such an

interactive environment. One approach to the control of a

number of interacting loops forming an n-input n-output

system is to use a single multivariable self-tuner. Such

approaches have been reported in the literatureC1,2,3J.

Of course, the distinction between the two approaches

is vague. 	Borisson[l] has shown that a multi-loop self-

tuning regulator may be viewed as a number of single-loop

controllers with a shared database, Morris, Nazer and

Wood[3] and Peel, Morris and Tham[4] also make this point.

10-1

10-2 	 TWO-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

Nevertheless, an advantage of the one-loop philosophy is

that from the start it implies that a multiloop process

should be controlled using a number of autonomous (from

both the hardware and software points of view) one-loop

modules. This is in keeping with the current trend towards

decentralised distributed control systems based on

microprocessor units connected via a local area network.

The particular algorithm used here is the detuned model-

reference controller of section 3.10; but it would seem

that the results extend to other emulator-based self-tuning

controllers. 	As noted in chapters 3 and 6, this algorithm

has PI and PID versions[5,6].

This latter approach gives rise to two distinct prob-

lems addressed in this chapter:

a) Do self-tuners, designed as if there were no loop

interaction, behave satisfactorily if interaction is

present?

b) Can self-tuners be modified to account for interaction

and, if so, do they then behave satisfactorily?

This chapter is limited to a two-input, two-output sys-

tem. The extension to n-input n-output systems with

neglected dynamics in the forward path is given else-

where[7]. 	For such a system, this chapter provides a

theoretical analysis of each question. 	Both design and

analysis are based on methods introduced in earlier

chapters of this book in the context of single-loop con-

trol. In this chapter the detuned model-reference con-

troller of section 3.10 is discussed; however, the main

idea would seem to apply to other algorithms. The design

follows a three-stage process: a notional feedback loop

design, a corresponding emulator-based design and finally a

self-tuning emulator design; the analysis uses the input-

output methods of chapter 7. This chapter concentrates on

the additional design and analysis required in the two-loop

Sec. 10.1. 	 INTRODUCTION 	 10-3

case. 	In the single-input single-output case (Chapter 7),

the robustness problem arises from unmodelled dynamics in

the transfer function relating input to output; here it

arises from unmodelled, or partially modelled, interaction

terms.

The analysis of the two-input two-output adaptive and

non-adaptive decoupling methods of this chapter is much

simplified by the use of a representation whereby interac-

tion is modelled by system outputs being coupled to system

inputs. This approach is found in certain works on the

analysis of large-scale systems, for example[8,9]. This is

in contrast to the usual transfer function matrix approach

where interaction arises from coupling from inputs to out-

puts. In this chapter, the former representation is called

the feedback interaction model, and the latter representa-

tion is called the feedforward interaction model. 	In the

the case of two-input, two-output systems, these models are

related via the relative gain array of Bristo1110]. 	These

two alternative models have been discussed in the chemical

engineering literature: the feedforward model has been

called the P-canonical structure and the feedback model the

V-canonical structure[4,11,12,13].

Robustness results are derived for four cases: with and

without decoupling and with and without adaptation. This

chapter is based on an internal report[l4].

The chapter is organised as follows. Section 2 presents

the feedback interaction model of two-input two-output sys-

tems and examines the relationship of this model to other

representations. Three illustrative examples are given.

Section 3 describes non-adaptive and self-tuning methods

for the control of two-input two-output systems. As this

self-tuning method has been discussed in earlier chapters,

section 3 mainly considers the additional detail required

for the two-loop case. In section 4, it is shown that the

10-4 	 TWO-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

two-loop self-tuning control method is associated with a

single-loop error feedback system. Section 5 presents the

non-adaptive robustness results, and section 6 the

corresponding adaptive results. Section 7 concludes the

chapter.

10.2. THE SYSTEM

The interactive two-input two-output system considered

here is displayed in Figure 10.2.1, and is described by:

yl(s) = S11(s)Cul(s) + S12(s)y2(s)] 	 (1)

y2(s) = S22(s)Cu2(s) + S21(s)y1
(s)] 	 (2)

u 	 r 	 r 	 Y
1 	 I 	 I 	 1

> 	0 	I S (s) I 	, 	>

	

I 	I 	11 	I 	I

	

I 	' 	 ' 	 i

	

I 	 I
r 	 ~ 	 ~

■
r

I 	 I 	 I 	 I

	

S (s) I 	 I S (s) I
I 	12 	I 	 I 	21 	I

	

~ 	~

_ 	 I 	 I 	_
Y 	I 	r 	 r 	 I 	u
2 	I 	I 	 I 	I 	2

< 	 I S (s) I - 	0 	<
I 	22 	I

Figure 10.2.1 The open-loop system

Disturbances may be included in the algorithms and in

the subsequent analysis, but for clarity and simplicity,

Sec. 10.2. 	 THE SYSTEM 	 10-5

this aspect is ignored in this chapter. Similarly, initial

conditions are not treated here.

The two interacting systems have outputs y1(s) and

y2

-

(s). The interaction is a consequence of the transfer

functions S (s) and S (s).
21 	 12

Equations 2.1 and 2.2 may be rewritten in matrix form

as:

y = S1(u + S2y) 	 (3)

where

IS 	(s) 	0 	I 	1 	0

	

11 	

S 	(s)I

sl = I 	0 	S(s)I; S2 - I S 	(s) 	
1 02
	I

	

22 	1 	 I 21 	 I

and

i
yl(s) I 	~ ul(s)i

Y = l
y2(S)i , u 	i u 2 (s)i

S1 is a diagonal transfer function matrix, S2 is an off-

diagonal transfer function matrix and y and u are vectors

of outputs and inputs respectively. Equation 2.3 will be

called the feedback interaction model in this chapter.

This structure seems quite general (for a linear two-input

two-output system), as other structures (such as coupling

from input to input) can be incorporated by suitably rede-

fining the various transfer functions.

For example, a common system model is:

yl

-

(s) = R11(s)u1- (s) + R12(s)u2- (s)

y2- (s) = R22(s)u2- (s) + R21(s)ul- (s)

10-6 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

This may be written in the usual transfer-function

matrix form as:

y = Ru 	 (6)

Equation 2.6 will be called the feedforward interaction

model. 	In this two-input two-output case, R is given in

terms of S by:

R = Cl - S S12] 1 S-1 	 (7) —

or, in terms of the individual elements, by:

R11(s) = Cl-LI(s)] 1511(s) 	 (8)

R12(s) = Cl-LI(s)] 1LI(s)S21(s)
1 	

(9)

where the interaction loop-gain L1(s) is given by:

LI(s) = S11(s)S12(s)S22(s)S21(s) 	 (10)

R22(s) and R21(s) are given by similar equations.

Similarly, S is given in terms of R by:

S (s) = R (s) - R (s)R (s)-1R (s) 	 (11)
11 	—11 	—12 	—22 	—21

S
12
(S)= S11(s)-1R12(s)R22(s) 1
	

(12)

The former representation (using the S1 and 2

matrices) gives the simplest results for the analysis given

here. It also arises naturally in some physical systems as

demonstrated by the following example.

Sec. 10.2. 	 THE SYSTEM 	 10-7

Example 1: Output coupled tanks

u 	 u

	

1 	 2
—>-1 	 r-<—

II 	I 	I 	I I
F--i y 	I 	I
I 	I 1 	I 	I y
I 	I 	I 	I 	2

r<--i 	I--> -I 	f--> 7
I 	' 	' 	' 	' 	I

k y 	k(y -y) 	k y

	

1 1 	 1 2 	2 2

Figure 10.2.2 Output coupled tanks

The system of two coupled tanks displayed in Figure

10.2.2 will be used for motivating and illustrating the

results presented here. It has been used previously by

Owens[l5].

Assuming each tank has unit cross-sectional area, and

that the flow out of each tank is proportional to the

heights and the flow between the tanks proportional to the

difference in heights, it follows that:

y1 = ul(s) - kly1(s) - k2(y1(s) - y2(s))

In terms of the feedback interaction model 10.2.3, this

gives:

S11(s) = S22(s) = s+a' S12(s) = S21(s) = k

where: a = k1 + k2 and k = k2. The interaction loop gain

is:

k2

(s+a)2
(15)

(13)

(14)

10-8 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

In terms of the feedforward interaction model:

R (s) = R (s) = 	
s+a

-11 	-22 	(s+a)2 - k2

R 	(s) = R 	(s) -
12 	 21 	(s+a)2 - k2

o

The feedback interaction model may, as shown by the

following example, be used when a feedforward interaction

model arises directly from the physical problem.

Example 2: Input coupled tanks

ku 	ku u u
1 2 1 2
—>-i r-<- ->-1 <—

II II II II
I
I

I
I 	1
 I

I I, y
I I I I 	2

r<-i I I i->~
I 	' 	' 	 ' 	1

	

k y 	 k y
1 1 	 2 2

Figure 10.2.3 Input coupled tanks

Consider the two-input coupled tanks in Fiçrure 10.2.3.

The input to tank 1 is u (s) + ku (s) and vice versa. It
1 	 2

is readily shown that the dynamics of tank 1 are given by:

yl(s) = s+a(ui- (s) + ku 2
- (s)) (18)

k

(16)

(17)

and similarly for tank 2. Thus in feedforward interaction

form:

Sec. 10.2. 	 THE SYSTEM 	 10-9

R (s) = R 	(s) = 	
1 	

(s) = R (s) = k
-11 	-22 	Si-d; 12 	-21 	s+a

Using equations 10.2.11&12, the feedback interaction model

becomes:

k
2

S11(s) = S22(s) =
l
s+ak , S12(s) = S21(s) = 1(s+kz

and the interaction loop-gain is k2.

In this case, the feedback interaction model involves

improper terms S12(s) and S21(s).

Example 3: Postlethwaite & MacFarlane

Example 5.6 of[16] uses the transfer function matrix

(G(s) in their notation):

R(s) = 	
1 	Is-1 	s I

1.25(s+l)(s+2)I-6 	s-2I

After some manipulation, the feedback interaction form is

described by:

1 S (s) - 11 	1.25(s-2) (22)

S (s) = 1.25s
12

S (s) = -7.5 21

1 S (s)
22 	1.25(s-1)

(19)

(20)

(21)

This example illustrates a system in feedforward

interaction form with stable diagonal elements having zeros

10-10 	TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

in the right half-plane. However, in feedback interaction

form, the diagonal elements are unstable with no right

half-plane zeros. A small perturbation to the 1212(s) term

would, however, give S11(s) and S22(s) with right half-

plane zeros. More detailed analysis of the underlying phy-

sical system would be required to determine whether such a

perturbation was physically possible.

Relative gain array

One measure of interaction found in the process control

literature is the relative gain array of Bris-

tol[10,17,18,19]. This provides an interesting relation
between the feedback and feedforward interaction forms.

For a two-input two-output system, the relative gain array

is:

1 a 	1-a1
11-a 	a 1

Where

y
— with u2 constant

a -
 Y
ul with y2 constant
1

Using the feedback interaction model of eqn. 10.2.3, and

the feedforward interaction model of equation 10.2.6, it

follows that:

R11(0) 	1

A 	S11(0) 	1 - L1(0)
(25)

(23)

(24)

Sec. 10.2. 	 THE SYSTEM 	 10-11

Example

The output coupled tank has a relative gain array with

~ - 	a 2

a2 - k2

and the output coupled tanks have

A
- 	1

1 - k2

o

10.3. A SELF-TUNING ALGORITHM

In previous chapters, a continuous-time self-tuning

controller arose via the following three design methods:

1. A method based on the notional feedback loop (Chapter

3) with a possibly unrealisable element in the feedback

loop to cancel out undesirable system characteristics.

2. An emulator-based design method which replaces the

unrealisable feedback element in 1. by the correspond-

ing emulator (chapter 3).

3. A self-tuning design method based on 2. which attempts

to reduce sensitivity to modelling error by replacing

the emulator in 2. by a self-tuning emulator (chapter

6).

In this chapter, the additional details required to apply

such methods to a two-loop system are discussed.

In the single-loop design, the basic requirement was

that the notional design method gave a stable closed-loop

system; this required that significant system zeros 	were

in the left half-plane. In the two-loop case, it will be

(26)

(27)

10-12 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

seen that the feedback interaction model provides a

straightforward basis for the notional feedback loop

design. In particular, the zeros of the two transfer func-

tions S11(s) and S22(s) will be found to be important. As

example 3 (section 10.2) shows, these zeros may be quite

different from those of the feedforward transfer functions

R11(s) and R2 2(s). To emphasise the importance of S11(s)

and S22(s), an analogy with the single-input single-output

case is made by defining the polynomials A1(s) and B1(s)

by:

B (s) 1 	 *
	 -
A (s) 	

S11(s)
1

(1)

Notional design

The single-loop notional feedback loop design (chapter

7) is applied directly to each loop ignoring the interac-

tion. Thus for loop 1:

Z (s)
ul(s) = Q 1(s)fZ(s)w

l(s) - $1(s)]

where

P (s) 	-
$1(s) = Z1(s)

y(s)

Note that the polynomial Z1(s) plays no role at this

stage; it is merely included to provide compatibility with

later sections. As in chapter 3 (3.11 in particular), the

A Here and hereafter, repetition of similar equations
is avoided by writing only the equation for the first
loop. Equations for the second loop are found by
changing subscript "1" to '2" and vice versa.

(2)

(3)

Sec. 10.3. 	A SELF-TUNING ALGORITHM 	 10-13

following design rules are used:

Dl. degree (P1(s)) = degree (A1(s)) - degree (B1(s))

D2. Z (s) = P (es)
1 	 1

D3. P (0) = 1. 1

Q1(s) is a proper stable 'compensator' with proper

stable inverse, w(s) is the desired value of the output of

loop one and P1(s) is the desired closed-loop system.

The closed-loop output of loop 1 is

y(s) =
Sc11

(s)LZ 	
(s)

w(s) + eQ(s)]

where the closed-loop transfer function Sc11(s) is given
by:

c 	L1(s) Z1(s)
S

1
(S) = 1 	1+L (s) P1(s)

where

P (s)
L1(s) = S

11(s)Q(s)1

and the detuninq error eQ(s) by:

Q1(s) 	_
eQ(s) -

The first assumption is that the two loops are stable when

the interaction is zero. As in the earlier chapters, it is

further assumed that the systems have sufficient stability

margin for the exponentially multiplied systems to be

stable.

(4)

Z1(s)S1zyZ(s)

(5)

(6)

(7)

Al. Scll(s a) and 5c22(s-a) have no right half-plane poles.

10-14 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

Q1(s)=0 corresponds to model-reference control; in this

case the usual model-reference condition that B1(s) be

stable would replace condition Al. Al is thus a less

stringent condition for the suggested detuned control where

Q1(s)#0.

The two closed loops are displayed in Figure 10.3.1.

I 	P(s) I
r-i < 1
1 	I Z,(s) I

y ' — 	I .—
w 	I 	i iu 	 i i

11 	I Z,(s) I 	1 	 I 1 1
—>0-1 S 	(s) 1--> > 1—>-0—>-1

I , Q,(s) I 	1 	1
I 	 I

11 I
1 I

I

	

S (s) I 	 I S (s) I
12 	I 	 I 	21

I 	 I
i 	

u 	
w

I 	21 Z~s) I 	2

	

<-1 S (s) 1—<-0—<-1 	 1-0<—
I 	22 	I 	 I Q (s) I I
, 	 ~ 	 ~ 	- 	1 	1

	, 	I
P(s) I I

	 > I--3
Z,(s) I

y
2

< 	

Figure 10.3.1 The notional feedback loop

If Q1(s) is small, and the resulting system is stable, the

loops are approximately decoupled and:

1 	-
y1(s) °` P (s) w1(s) 	 (8)

1

A SELF-TUNING ALGORITHM 	 10-15 Sec. 10.3.

Also, it is assumed that the coupling terms S (s) and
12

S21(5) have no right half-plane poles, and in addition:

A2. S (s-m) and S (s-m) have no right half-plane poles.
12 	 21

Using Nyquist's theorem, this two-loop notional system

will be stable if the Nyquist locus of:

Q (s) 	Q (s)
- S 11(S).S 22(S).Z1

(S)S12(5).Z2(3)S21(S)

does not encircle the -1 point. If this underlying

notional feedback loop is unstable, the adaptive system

cannot be stable, so it is assumed that this notional feed-

back loop is stable:

A3. The two-loop notional feedback loop system is stable.

Example: Coupled tanks

For both input and output coupled tanks:

S11(s) = S22(s) = sba

where b=1 for output coupled tanks and b=1-k2 	for input

coupled tanks. If the design parameters P and Q are chosen
as:

P(s) = l+ps; Z(s) = Z (s) = l+zs; Q(s) = qs 	 (11)

then the loop gains are given by:

L1(s) = L2(s) - sba (1+ps)
qs (12)

The notional closed-loop transfer function Scii(s) is then

Sc
(s)

 - 	l+zs
11 	

1 + (p+b)s + bs2

(9)

(10)

(13)

10-16 	 TWO-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

D

The emulator

As in the single-loop case (chapter 6), the self-tuning

controller is based on a low-gain emulator-based version of

the notional design of the previous section. 	In particu-
P (s)

lar, the notional feedback loop transfer function 	is Z1(s)

replaced by an emulator-based version using state-variable

filters. 	In the two-loop context, loop interaction must

be accounted for in the emulator design; this section con-

centrates on this aspect of the emulator.

`Phe first loop of the system may be rewritten as:

B (s)
yl(s) = A1(s)Cu1(s) + S12(s)p2

(s)]
1

where

B (s) 1
S11(s) - A

1(s)

Following the analysis of chapter 2, and replacing u by u

1(s) + S12(s)yz- (s), an emulator may be written as:

F (s) 	 G (s)
~1(S) 	C1(s)y l

(S) +
C1(s)Z1(s)Cu

1- (S) + S12(s)yz(s)] * (16)

where

P1(s)C1(s) 	E1(s) 	F1(s)

Z1(s)A1(s) 	Z1 (s) + A1(s)

deg(E 1
(s)) = deg(Z 1

(s))-1; deg(F 1 (s)) = deg(A 1
(s))-1

A The subscript 1 refers to the loop index, not to the
emulator version.

(14)

(15)

(17)

(18)

where

S12(s) =

Sec. 10.3. 	A SELF-TUNING ALGORITHM 	 10-17

For practical reasons, it may not be possible to implement

this emulator: the order of the various transfer functions

may make it too complex or S12(s) may be improper. 	So

three alternative design rules are proposed:

D4a The emulator is fully implemented

D4b The emulator is implemented with an approximate decou-

pling term B12(s)/A1(s):

B (s) 	 B (s)

A1 (s)S 12 (s) ,-̀ A1(s) 	 (19)
i 	 i

D4c The emulator is implemented with S12(s) replaced by

zero.

The latter cases give an approximate emulator which

will be denoted by (I)a(s). The approximation error is given

by:

G (s)
ea(s) 	

C (s)Z (S) 12
1 	1

(20)

(21)

0 	 for D4a

B (s)
S12(s) - Blls) 	 for D4b

1

S12(s) for D4c

In all cases, the control law is given by:

Z (s)
ul(s) = Q1(s)fS (s)wl(s) - ~a(s)]

1 	 1

The closed-loop system then becomes

L (s) Z (s)
1 	1 y(s) 	

1+L (s) P1(s)
	 Z1(s)w(s) + eQ(s) + ea(s)]

(22)

(23)

10-18 	 TWO-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

Example: coupled tanks

Continuing the example of the previous section:

A = s+a; B = b; C(s) = 1 	 (24)

Identity 17 becomes:

(l+ps)
(s+a)(l+zs) 	(l+zs) 	(s+a)

where:

E1(s) = E2(s) = e = lpad• F1(s) = F
2(s) = f = 1—aP

Thus, ignoring the coupling terms,

~a(s) = lb+ 	1(s) + fyl- (s)

0-a 	be
 - 1b+zsu2(s) + fy2- (s)

The adaptive controller

A continuous-time detuned model-reference self-tuning

controller was considered in an earlier chapter. The sim-

plest approach is to use design rule D4c and thus ignore

coupling. 	The two-loop self-tuning controller is then

merely two single-loop self-tuning controllers, one for

each loop. Although this approach is simple, the presence

of coupling terms not accounted for in the algorithm leads

to possibly poor performance and even instability. This

will be analysed in section 10.6.

(25)

(26)

(27)

(28)

Sec. 10.3. 	A SELF-TUNING ALGORITHM 	 10-19

The self-tuning method considered here relies on a

linear-in-the-parameters representation of the emulator

equation. In general, the emulator equation cannot be

easily put into such a form due to the unknown denominators

of S12(s) and S21(s),so design rule D4a cannot be directly

used in the adaptive context. This section concentrates on

design rule D4b.

Recalling the approximation in D4b, define the polyno-

mial

G (s) = B (s)E (s) 	 (29) 12 	12 	1

The approximate emulator equation becomes:

F (s) 	 G (s) 	 G (s)
ma(S) -

C1(s)y1(S) + C1(s)Z1(S)ul- (s) + C1(S)Z1(3)y2(S) (30)

This may be rewritten as:

01
a
 (s) = XT (s)0

where:

XT(s) = C (s)Cul(s), su1- (s), . .; y1(s), sy l- (s), . 	; 	(32)
1

y2(s), sy
z(s), ...]

and

- -
A
T

= Cgo, g 1. .. . fo, fl, ...; g'o, g'1, ...] (33)

where gi is the ith coefficient of Gi(s), fi is the ith

coefficient of F1(s) and g'i is the ith coefficient of

G12(s).

(31)

10-20 	 TWO-INPUT TWO--OUTPUT SYSTEMS
	

Chap. 10

A
As in the single-input single-output case, 0 is

replaced by the output of the emulator with estimated

parameters:

= XT (s)6 (34)

The algorithm for generating 0 is identical to that given

in chapter 5.

The resultant error:

-A
e(s) 	 (35) e(s) = m (s) - ~

leads to the closed-loop system of equation 10.3.23 but

with e replacing éa(s):

yl(s) = S
c

11
(s) C

Z
(s)wl(s) + e4 (s) + e]

i

(36)

As in the single-input single-output case, the exponen-

tially multiplied estimation error ente (s) can be con-

sidered to be the output of a system il with input

at a e
e (s).

10.4. ERROR EQUATIONS

In this section, the various equations describing the

error equations resulting from the three design methods

(notional, emulator-based, and self-tuning) are gathered

together. These equations appear in Figure 10.4.1.

The output of the first loop may be written as:

1
y(s) = Scil(s) Z (s) w(s) + y

i

(1)

The first term represents the system output with no error

Sec. 	10.4. ERROR EQUATIONS

Y
1
>

10

w

-21

2

w 	,

1 	I

—>-1
1 r

1

,

I

1-0

r

I
I s

c

11

r

1
F-->

Z I 	le ' I I1 ^
e
il
I ~

I ' I ,
Q

e
1

r
I
0 r

I ~

0

r
S),
1

I

,
I
I

r 	,
I 	T 	1
I 	22 	I

,

IT 	I
1 	21 	I

I
I
I

r--1-----1
In 	I
I 	2 	I I 	I

Q
e

2

i
I
I
r

'
T
il

i
I
1
,

r
I
I

T
`

12
r

I
1

Y
2

~

I
'

I
,

~

'' 	I
i e

2 l e
I
I
I2 r ~

I ~
r

I
~

I 	1 	1

22

Figure 10.4.1 The error feedback system

due to interaction or estimation; the second term will be

called the output error and is given by:

yl 	Scll(s)ei(s) (2)

where the interaction error is the sum of the 	detuning

error and estimation error:

ei(s) = eQ(s) + e(s) (3)

The aim is to find stability conditions such that yl (and

y 2) are small relative to the setpoints w1 and w 2.

10-22 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

The detuning error, representing the effect of control

weighting, is

Q(s) = T11(s)y2(s)

where

Q1(s)
T11(s) - Z (s)S12(s)

1

A

The expression for e(s) depends on which of the three

design methods is used. The three expressions are combined

into one by defining:

Ì O for the notional design

Al = 11 for the emulator-based design

Thus

e = A "-a(s)
1 	1 1

and

ea(s) = T12(s)y2(s)
1

where

E (s)B (s)„,
1 	1 T12
1 	1

(s) - C(s)Z(s)S1z
(s)

(4)

(5)

la
1 for the self-tuning design

(6)

(7)

(8)

(9)

The equations of this section appear in block-diagram

Sec. 10.4. 	 ERROR EQUATIONS 	 10-23

form in Figure 10.4.1.

10.5. NON-ADAPTIVE ROBUSTNESS

The stability of the notional feedback loop design

method has already been considered in section 3; so this

section concentrates on the other non-adaptive method: that

based on emulator-based control. Thus here:

St = 1 (1)

Hence the relation between the interaction error el (s) and

the system output p2(s) is given by:

ei(s) = ea (s)1 + eQ(s) = CT11(s) + T12(s)7y2(s) (2)

The equations of section 10.4, and Figure 10.4.1, reveal

that there is a single feedback loop describing the two-

loop system. This may be analysed using Nyquist's theorem

as follows:

Theorem 10.1 (non-adaptive robustness)

The two-loop system (eqns. 10.2.1&2) controlled using

the non-adaptive controller is stable if assumptions Al and

A2 hold and if the shifted Nyquist locus of:

Sc11(s)Sc12(s)Sc21(s)Sc22(s) where s = - m + jw
	(3)

where

Sc12 = T11(s) + T12(s)

does not encircle the -1 point.

Proof

(4)

10-24 	 TWO-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

From assumptions Al and A2, and the fact that Q(s) and

Z(s) are stable polynomials, all transfer functions in eqn.

10.5.3 are stable. The result then follows from Nyquists

theorem. The use of m>0 gives a certain stability margin

and is included here for comparison with the results of the

next section.

Remark

In fact, as discussed in chapter 4, it is not necessary

(in the case of non-adaptive control) that assumptions Al

and A2 are true. But in such circumstances, the more gen-

eral version of Nyquist's criterion must be used.

10.6. ADAPTIVE ROBUSTNESS

In the self-tuning case, the same set of equations as

in the non-adaptive case describes the evolution of the

error, except that:

al = al 	 (1)

As S), is not a linear time-invariant system, Nyquist's

theorem cannot be used. However, from chapter 5, i? has a

gain in the L 	sense of unity. Hence, the small gain

theoremL20] may be applied. But first, the error equations

must be written in a suitable form. 	Unlike the non-

adaptive case, the presence of RI means that the para-lel

transfer functions cannot be amalgamated into one transfer

function Sc12(s). Instead, the error ei(s) is rewritten as

follows:

e(s) = SZ ea(s) + 6Q(s) 1 	11
(2)

where:

Sec. 10.6. 	 ADAPTIVE ROBUSTNESS. 	 10-25

eQ (s) 	
T

1 1(s)Sc 22(s)Ce i(s) + w2(s).]
1

and

ea(s) = T 	(s)Sc 	(s)Cel(s) + w (s)] 1 	12 	22 	2 	 2

Similar expressions give e 2(s) in terms of e(s) and w1 (s).

This feedback system appears in Figure 10.4.1.

As in the earlier chapter, the first step is to show

that the exponentially multiplied feedback system with

inputs w (s) and w (s) is L stable. As y is related to
1 	 2 	 2 	 1

e(s) by a low-pass transfer function, L. stability is

shown for the system with w1(s) and w2(s) as inputs and y1
and y2 as outputs.

These ideas lead to the following theorem:

Theorem 10.2 (Adaptive robustness)

If the adaptive controller is designed according to

design rules Dl-D3 and D4b, assumptions Al-A3 are true

and:

1. The forgetting factor of the self-tuning algorithm is

positive: po

2. For some a>0:

(Y11(a) + Y12 (a.)).(Y22 (a.) + Y21(a)) < 1

where:

Y11(a) = suplTli(w - a)Sc22(w - a)I w

(3)

(4)

(5)

(6)

and

10-26 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

Y12(a) = suplTlz(w - a)SC22(w - a)I
w

then the resultant closed-loop system is stable in the

same sense as described in chapter 7.

Proof

Firstly, each block in 	Figure 10.4.1 is premulti-

plied by e -
at and postmultiplied by eat. As the gain of

a1
< 1, then the gain of l TLZ 	22

(s)S
c

(s) < the gain of

T (s)SC (s). As T (s)SC (s) and T (s)Sc (s) are
12 	22 	 11 	22 	 12 	22
linear transfer functions, then their gain (in the L2

sense) is given by the expressions for N11
 and y12. The

same statement holds with 1 and 2 interchanged. 	As in

chapter 7, the L2 stability of the exponentially multiplied

system follows from the small gain theorem[20].

Using the results of chapter 7, the fact that the

exponentially multiplied system with inputs w1(s) and w2(s)

and outputs ei(s) and e12 is L2 stable, together with the

fact that y1 and y2 are related to e2(s) and e12 via low-

pass transfer functions, give the required result.

To illustrate these results, the transfer functions Tib

are derived for the two coupled tank examples.

Example: Output coupled tanks

Using the same control parameters as in section 3, it

follows that in the case of output coupled tanks b=1 and

Q (s)
T11(s)SC22(S) = T22(S)SC11(S) - Z(s)S12

(3)SC22(3) 1
(8)

(7)

ADAPTIVE ROBUSTNESS. 	 10-27 Sec. 10.6.

kqs

1 + (p+qa)s + qs2

If the coupling term is estimated (as it can be here), then

T12(5)5C22(s) = T21(s) = 0 (9)

On the other hand, if no attempt is made to identify the

coupling term, then S12(s) = S12(s) and:

T12(s)SC22(s) = T21(s)Sc11(s) 	 (10)

E (s)B (s)_

C1(s)Z1(s)S12(s)SC22(s)
1 	1

ek

1 + (p+qa)s + qs2

Example: Input coupled tanks

Using the same control parameters as in section 3, it

follows that in the case of input coupled tanks b=1-k2 and

T (s)Sc 	(s) = T (s)Sc 	(s) 11 	22 	22 	11

(s)

1
S(s)SC (s)

	

Z (s) 12 	22 1

kgs(s+a)

1 + (p(1-k2) + qa)s + qs2

The coupling term cannot be estimated so that

S12(5) = S12(s) and:

10-28 	 TW0-INPUT TWO-OUTPUT SYSTEMS
	

Chap. 10

T (s)Sc 	(s) = T (s)Sc 	(s)
12 	22 	 21 	11

(12)

E (s)B (s),,.

C1(s)Z1(s)Siz(s)Sczz(s)
1 	1

ek(s+a)

1 + Lip + qa/(1-k2)]s + Cq/(1+k2)]s2

The robustness conditions are harder to satisfy for the

input coupled tanks, as the improper interaction terms

(S12(s) and S21(s)) lead to T11(s)Sc22(s) and T22(S)Sc11(s)

having non-zero gain (k) at high frequencies, and this gain

is independent of the weighting factor q if q#0.

10.7. SUMMARY

Using a particular representation for two-input two-

output systems, standard input-output methods have been

used to derive frequency-domain conditions to ensure that a

continuous-time least-squares based self-tuning algorithm

is stable in the face of unmodelled 	interaction dynamics.

Because of the particular structure chosen, the stability

analysis is based on a single-loop feedback system. As in

the single-input single-output case, both adaptive and

non-adaptive stabilities are based on the frequency-domain

properties of certain transfer functions.

The n-input n-output case is discussed elsewhereC7].

However, as the error equations no longer form a single-

loop feedback system, this results in a more complex cri-

terion. 	The two-input, two-output system considered in

this chapter is thus an important special case which

deserves separate analysis.

REFERENCES 	 10-29

References

1. Borisson, U., "Self-tuning regulator for a class of

multivariable systems," Automatica, vol. 15, pp. 209-

215., 1979.

2. Koivo, H.N., "A multivariable self-tuning controller,"

Automatica, vol. 16, pp. 351-366, 1980.

3. Morris, A.J., Nazer, Y., and Wood, R.K., "Multivariate

self-tuning process control," Optimal control: applica-

tions and methods, vol. 3, no. 4, pp. 363-388, 1982.

4. Peel, D., Morris, A.J., and Tham, M.T., Univariate

self-tuning control in a distributed control environ-

ment, 2, pp. 563-568, IEE (Conference publication 232),

International conference 'Control 85', Cambridge, 1985.

5. Gawthrop, P.J., "Self-tuning PI and PID Controllers,"

in Proceedings of the IEEE conference on "Applications

of Adaptive and Multivariable Control", Hull, 1982.

6. Gawthrop, P.J., "Self-tuning PID controllers: Algo-

rithms and implementation," IEEE Transactions on

Automatic Control., vol. AC-31, no. 3, 1986.

7. Gawthrop, P.J., "Robust self-tuning control of n-input

n-output systems," in Preprints of the 7th IFAC Sympo-

sium on Identification and System Parameter Estimation,

York, U.K., 1985.

B. Vidyasagar, M., Input-output analysis of large-scale

interconnected systems, Springer, Berlin, 1981.

9. Huseyin, 0, Sezer, M.E., and Siljak, D.D., "Robust

decentralised control using output feedback," IEE

Proceedings, vol. 129 Pt.D., no. 6, pp. 310-314, 1982.

10-30 	 TWO-INPUT TWO-OUTPUT SYSTEMS 	Chap. 10

10. Bristol, E.H., On a new measure of interaction for

multivariable process control," IFF' Transactions, vol.

AC-10., 1966.

11. Bhalodia, M. and Weber, T.W., "Feedback control of a

two-input, two-output interacting process," Ind. Eng.

Chem. Process Des. Dev., vol. 18, pp. 599-607, 1979.

12. Waller, K.V.T., "Decoupling in distillation," AIChE J.,

vol. 20, pp. 592-594, 1974.

13. Yang, C-H. and Ward T.J., "Decoupling control," AIChE

J., vol. 20, pp. 1215-1217, 1974.

14. Gawthrop, P.J., "Robustness of self-tuning controllers.

PartII: Two-input two-output systems.," Report CE/T/12,

School of Engineering and Applied Sciences, Univ. of

Sussex., 1985.

15. Owens, D.H., Multivariable 	and 	optimal 	systems,

Academic, 1981.

16. Postlethwaite, I. and MacFarlane, A.G.J., A complex

variable approach to the analysis of linear multivari-

able systems, Springer, Berlin, 1979.

17. Shinskey, F.G., Process control systems, McGraw-Hill,

1979.

18. Deshpande, P.B. and Ashe r R.H., Elements of computer

process control with advanced control applications,

Instrument Society of America, 1981.

19. Wang, S. and Munro, N., "A complete proof of Bristol's

relative gain array," Trans. Inst. M C, vol. 4, no. 1,

pp. 53-56, 1982.

20. Desoer, C.A. and Vidyasagar, M., Feedback systems .

Input-output properties, Academic Press, London, 1975.

K1

Keyword Index

A
all-pass 2-34
analysis of recursive least-squares 5-12
approximate emulator 4-5
approximate predictor 2-6
approximate time delays 2-33
approximation error 4-5,7-3,7-4
assumptions about disturbance 1-18
Astrom's formulation 4-9
augmented plant 3-8,3-9
auxiliary output 2-6,2-14,3-8
auxiliary output and the emulator 2-6,2- 14,2-32,2-35

C
C(s) 	design rule 3-22
cascade control 9-1
cascade methods 9-3
cascade systems 9-2
CFIR 2-31
choosing C(s) 3-20
choosing P(s) 	and Z(s) 3-10
choosing Q(s) 3-16
choosing R(s) 3-15
choosing T 3-18
closed-loop characteristic equation 	 3-8,3-18
closed-loop system input 	 3-7,3-11,3-21,3-28
closed-loop system output 	 3-6,3-10,3-21,3-28
common factors 	 1-4,1-18,6-26
companion matrix 	 1-10
continuous-time self-tuning control 	 0-1
continuous-time systems 	 1-1
continuous-time approach 	 0-3
continuous-time design 	 0-3

K2 	 Keyword Index

continuous-time finite impulse response
	

2-31
continuous-time FIR transfer functions

	
2-30

continuous-time least-squares criterion
	

5-4
continuous-time systems
	

0-10
control law
	 3-2

control signal error
	

4-5
control weighting
	 0-11,0-3,0-9,3-2,3-18

control weighting - importance of
	

7-12
controllable
	

1-18,2-17
controllable form
	

1-10,2-38,6-8,6-10
controlled system
	

1-2,1-14
controlled system equation
	

1-14

D
data vector 	 2-37,2-38,6-5,6-7,6-9
derivatives 	 2-3
design parameters 	 4-13
design rules 	 2-12
detuned 	 0-11,3-18,6-21,6-29,7-25
detuned model-reference 	 3-26,8-7
detuning 	 3-2
detuning error 	 10-13
difference equation 	 0-3
differential equation 	0-3,1-1,1-2,2-38,6-10,6-18,6-20,6-8
Diophantine equation 	 2-17,2-19,2-20,2-21,2-23
Diophantine recursion 	 2-20,2-21,2-23
Dirac d 	 1-5
discrete-time design 	 0-3
discrete-time parameter estimation 	 5-19
disturbance and setpoint induced error 	 7-7
disturbance assumptions 	 1-18,2-3
disturbance response 	 3-3

E
elementary subsystems 	 1--2
emulation error 	 7-3,7-4
emulator 	 0-3,0-7,2-1,2-2,3-1,3-2,8-8,10-15
emulator and the auxiliary output 	 2-6,2-14,2-32,2-35
emulator approximation error 	 4-5,7-3,7-4
emulator for system 	 6-6
emulator output 	 3-2
emulator-based control 	 0--11,3-1,6-1,10-11
emulators 	 0-5,0-11,2-2
equivalent setpoint 	 3-7,3-11,3-21,4-6
error feedback system 	 0-12,4-4,4-7,7-2,7-3,7-7,10-20
error in parameters 	 5-12,7-3
estimation error 	 5-4,5-5,7-4
estimator input 	 7-6
existence of solutions to least-squares estimation 	5-7
explicit algorithms 	 6-2
explicit self-tuning 	 6-3,6-11
exponential weighting 	 1-9,5-5,5-15,7-9
extended state vector 	 1-11,1-12

Keyword Index 	 K3

T
feedback control
feedback interaction
feedforward interaction
filter-induced error
forced disturbances
forced response
forgetting factor
formula for J
formula for optimum value of J
frequency-response

G
gain
greatest common divisor

H
hybrid
hyperstability

3-2,6-4,8-4
10-3,10-5,10-7
10-3,10-6,10-7

7-5,7-6
1-2,1-15

1-5
5-6

5-10
5-10
1-4

1-9,5-17,7-9,7-10
2-18,2-22

0-1
7-2

I
ideal behaviour - estimates 	 5-17
ideal behaviour - estimation error 	 5-18
ideal conditions 	 5-12
ideal cost 	 5-12,5-13
ignoring inner loops 	 9-3,9-11
implicit self-tuning 	 6-2,6-3,6-15,7-2
improper 	 1-6,2-4,10-9
impulse response 	 1-5
index 	 0-9
inferential control 	 2-1
initial conditions 	 1-4,5-10
integral action 	 3-22
interaction 	 10-6
interaction error 	 10-21
internal stability 	 7-18

K
Kalman-Bucy filter 	 2-1

L
Laplace transform
least-squares algorithm
least-squares cost function
least-squares estimate
least-squares identification
limiting the control signal
linear
linear-in-parameters
loop-gain
low-pass

1-2
5-20
5-5
5-6

0-11,5-1
3-3

1-1,1-2
2-36,5-2,5-4,5-19

3-6,3-10,3-16,3-27,7-27,10-6
7-16,10-25

M
M-locus
Markov parameters
Markov parameters and impulse response
Markov recursion algorithm
minimisation of cost function
model-reference control
modified notional feedback system

K4 	 Keyword Index

N
neglected dynamics
nominal loop-gain
nominal system
non-adaptive criterion 1
non-adaptive criterion 2
non-adaptive criterion 3
non-adaptive criterion 4
non-adaptive criterion 5
non-adaptive robustness
non-adaptive and adaptive robustness
non-realisable
non-recursive
non-recursive solution
non-zero mean disturbances
notional design
notional feedback loop
notional feedback system
notional loop-gain
numerically non-singular

1-6,1

4-

4-10,7-10
-7,1-12,2-3,2-4

1-5
1-7,1-13

5-6
3-12,3-15

4-6

2,4-3,4-12,8-11

0- 9,3

3-18,8-9
4-3,7-12,7-23

4-4
4-8,4-9

4-9
4-10
4-11
4-1
8-1
2-12
5-6
5-8
6-9

8-9,10-12
-4,3-27,8-7,10-11
0-11,3-5,7-8,8-9

3-6,3-10,3-16,3-27,7-27
5-7

0
observable 	 1-18
observable state-space form 	 1-12,1-19,2-3
off-line a-priori design phase 	 6-12,6-13,6-17,6-18
off-line design 	 6-2,6-11,6-11,6-17,6-17,6-2,7-2
on-line design 	 6-2,6-11,6-13,6-17,6-18,6-3
on-line tuning phase 	 6-12,6-13,6-18,6-19
organisation of book 	 0-9
outline of proof 	 7-13
output derivatives 	 2-3
output error 	 7-8,8-12,10-21

P
P(s) design rule
Pade approximation
Pade polynomial
parallel transfer functions
parameter vector
parameter-induced error
partial state
persistent excitation
PID control
PID design rule 1
PID design rule 2

3--11
2-34,3-13

2-34
3-8

2-37,2-38,6-7,6-9
5-14

1-12,2-16
5-8,5-18,7-14

3-24
3-23
3-23

Keyword Index 	 KS

pole-placement control 	 3-13
poles 	 1-4
predictor 	 2-1,2-26
proper 	 1-4,1-6
property of ideal cost 	 5-15

Q
Qls) design rule
	

3-17
quotient
	

2-1B

R
rational approximation 	 2-33
realisability 	 2-4,2-13,2-29,6-21
realisability decomposition 	 2-4
realisability filter 	6-15,6-17,6-19,6-20,6-27,7-1,7-2,7-5
realisable 	 2-12,3-27
recursive 	 5-6
recursive algorithm 	 2-20
recursive emulator method 	 9-5,9-13
recursive least squares - inversion 	 5-11
recursive least squares - no inversion 	 5-12
recursive least-squares algorithm 	 5-I1
recursive solution 	 5-9
reference model 	 3-10,3-17
reference model poles 	 3-10
reference model zeros 	 3-10
relative gain array 	 10-10
relative order 	 1-3
relatively prime 	 1-4,1-6
remainder 	 2-18
robust 	 0-2,0-3,0-8
robustness 	 0-8,0-12,4-1,8-11
robustness - actual feedback system 	 4-3
robustness - adaptive 	 7-13,10-24
robustness - adaptive and non-adaptive 	 0-13
robustness - Astrom's criterion 	 4-7
robustness - assumption 1 	 7-10
robustness - assumption 2 	 7-11
robustness - assumption 3 	 7-11
robustness - assumption 4 	 7-11
robustness - assumption 5 	 7-12
robustness - assumption 6 	 7-19
robustness - comparative 	 8-14
robustness - global 	 0-8
robustness - local 	 0-8
robustness - M-locus 	 4-10
robustness - non-adaptive 	 0-11,4-1,10-23
robustness - self-tuning controllers 	 7-1
robustness analysis 	 4-1,7-1
Rohrs's example 	 4-11,7-20

9-8
0-12,6-1

6-2,6-4,6-5,6-7
6-4
3-3

6-21,7-24
1-1

9-3,9-10,10-28
1-1
8-3
5-16
3-18

2-17,2-19,2-23
1-16
3-15
1-8
1-8

2-9,2-16
1-19
3-14
1-6

1-2,1-16
1-4,1-10

2-34
1-3

1-14
6-5
1-3

1-16
1-3
1-3
1-4

9-4,9-12

1-6
3-6

8-3,8-10,8--11,8-13,8-15
1-13,3-13

2-34
1-1,1-2

1-2
1-2,1-14

1-5
7-3

3-e,8-4,8-12,8-14,8-4
0-13,10-1

6-3

K6 	 Keyword Index

S
self-tuning cascade control
self-tuning control
self-tuning emulator
self-tuning emulator output
setpoint response
simulated examples
single-input
single-loop control
single-output
slow
small gain property
Smith's predictor
solving Diophantine equations
spectral density
spectral factor
stability
stability and gain
state space considerations
state-space representation
steady-state linear-quadratic control
step response
stochastic
strictly proper
system approximation
system coefficients
system equation
system identification
system input
system model
system order
system output
system transfer-function
taking account of inner loops

T
Taylor series
third degree of freedom
three degree of freedom
time delay
time-delay approximation
time-invariance
transfer functions
transient disturbances
transient response
tuning error
two degree of freedom
two-input two-output systems
two-level tuning

U
uncontrollable
	

1-18
unique
	

5-9
unobservable
	

1-18

Keyword Index 	 K7

unrealisable 0-5,0-6,2-2,3-19

white noise 1-2

Z
Z(s) 	design rule 2-12,3-11
zero cancelling filters 2-11
zero-gain emulator 6-10

Symbol Index

A'(s)

Ao(s)

A1 (s)

1-3,1-4

3-23

10-12

Bf(s)

Bi(s)

B(s)

1-15

9-2

1-14,1-16

A 	(s) 10-12 Bt(s) 1-14
2

A 1-10 CT(s) 2-35

AT(s) 2-34 C(s) 1-14,1-16,3-20

Ac(s) 1-14 DT(s) 2-35

Af(s) 1-15 Dc(s) 1-14

A.(s) i
9-2 D(s) 1-14,1-16

A(s) 1-14,1-16 Elk(s) 2-3

At(s) 1-14 E1(s) 2-8

B'(s) 1-3,1-4 E2k(s) 2-12

B+(s) 2-14 E2(s) 2-16

B 	(s) 2-14 E3(s) 2-33

Bo(s) 3-23 E 	(s) 2-35

B1(s) 10-12 Et51k(s) 2-4

B2(s) 10-12 E
D 1(s) 2-8

B 1-10 ED2k(s)
2-13

BT(s) 2-34 ED2(s) 2-16

B
c
(s) 1-14 ED4(s) 2-35

S1

S2 Symbol Index

EF(s) 2-33 LI(s) 10-6

E(s) 2-36 L a(s) 4-4

Flk(s) 2-3 L.
7-14

F 	(s) 2-8 L(s) 3-6
1
Fzk(s) 2-12 M'(s) 4-9

F 	(s)
z

2-16 M(s) 4-10,7-10

F 	(s) 2-33 N(s) 4-2,4-3
3

F 	(s) 2-35 PT(s) 2-35

Fblk(s) 2-4 P(s) 2-6,2-14,2-32,3

F
D
1
(s) 2-8 Q(s) 3-2,3-16

F
D 	

(s) 2-13 R(s) 3-2,3-15

F 	(s)
z

2-16 S
—o

5-5

FD 	(s) 2-35 S 	(s) 10-4
4

P
FrP(s) 5-15,5-16 S 	11(s) 10-13
~

1 	19 S 	(s) 10-4
12

F(s) 2-36 T 1-13,1-14,3-18

G 	(s) 10-16 T 	(s) 10-22
1 11

G(s) 2-36 T 	(s) 10-22
12

H'(s) 1-4 U 1-11

H o (s) 2-30 V
a(t)

5-16

H 	(s)
i

2-30 V(t) 5-13

H
z(s) 2-30 X 5-2,6-8,6-17

H 1-12 X_ 	(t) 6-9

H(s) 4-3,7-23,8-4 X 1-10

Ilk(s) 2-5 Xe(s) 2-37

I 	(s) 2-7 X. 	(s) 6-10
1 —io

Izk(s) 2-14 X.(s) 2-37

Iz(s) 2-16 Xn(t) 6-16

I4(s) 2-35 Rn(s) 6-16

I(s) 2-36 X 5-19

J1(6(t),t) 5-6

-3:
1-12

A X(s) 6-7
J2(8(t),t) 5-7 X 	(s) 6-7

„ —u
J.(6(t),t) 5-9 Xyo(s) 6-9

J(6(t),t) 5-5
X 	(s)

ZT(s)

6-7

L L
2

1 	9
2-12,3-10

Symbol Index 	 S3

Z (s) 	 2-12,3-10 	
* u (s) 	 3-3

Z-+(s) 	 2-36 	 u1- (s) 	 10-4
Z (s) 	 10-12 	

u2(s) 	 10-4
ZT(s) 	 2-35 	 „

ZT(s) 	 2-35 	
u(s) 	 3-2
_

ZT(s) 	 2-35 	
u(s) 	 1-14
-

Z(s) 	 2-11,2-10 	
u(s) 	 4-5
_

** 	 v(s) 	 1-14
elk(s) 	 2-4 	 wl- (s) 	 10-12

e

- l

*(s) 	 2-8 	 w(s) 	 3-2
c

**(s) 	 2-15 	
x 	 1-11

e

A2 	 x° 	 1-12
e4 (s) 	 2-36 	 y%(s) 	 1-3

e

- l

k(s) 	 2-6 	 yo(s) 	 b-10,8-12

ee(s) 	 7-3 	
yl(s) 	 10-4

e,(t) 	 7-15 	
2(s) 	 10-4

e t 	
*

 1-9 	 yT(s) 	 2-31

ea(s) 	 4-5,7-4 	
yT(s) 	 2-27

2

ea(s) 	 10-22 	 y
a
(s) 	 1-9

ed(s) 	 7-7 	 ÿc (s) 	 1-14

e(s) 	 7-5 	
pf(s) 	 1-14

ei- (s) 	 10-21 	 yk(s) 	 2-3

eA(s) 	 6-16 	 y(s) 	 1-14

e4(s) 	 10-22 	 yt(s) 	 8-12

ee(t) 	 5-14 	 z(s) 	 4-6

e

- t

(s) 	 7-3 	
~o(s) 	 8-12

A(s) 	 8-12
ey(s) 	 7-8 	 A(s) 	 6-15
h'(t) 	 1-5 	

SZ 	 5-16
ho(t) 	 2-27 	

Y 	 7-10
h (t) 	 2-27 	 a
i

h (t) 	 2-27 	 ~ (s) 	 2 36
2

q(s) 	 3-27 	 $** 1(s) 	 2-7

tm 	 5-19 	
0,(s) 	 6-5

y
e(s) 	 5-5 	 - **(s) 	2-4

k

54 	 Symbol Index

4)
i(s) 	 2-6

-~~
Z (s) 	 2-15

0 z (s) 	 6-5

$
z (s) 	 2-14

4)*
3

(s) 	 2-32

0 3 (s) 	 6-5

(1) 3 (5) 	 2-32

~*
*4

(s) 	 2-35

(1)4(s) 	 6-5

13
4 (s) 	 2-35

(1) 4
(s) 3-8

Ma (s) 	 4-5

(1)(s) 	 6-5

i
n (s) 	 6-15

T(s) 	 5-4

5-19

ir(s) 	 5-2

5-2

0-o 	
6-10

2-37
—e

0(t) 	 5-4

2-37

2-14

2-12

2-16

