Supporting Information

MXene and MoS_{3-x} coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor

Kalyan Ghosh, Martin Pumera*

Dr. K. Ghosh, Prof. M.Pumera Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic E-mail: pumera.research@gmail.com

Prof. M. Pumera3D printing & Innovation Hub, Department of Chemistry and Biochemistry, MendelUniversity in Brno, Zemedelska 1, 61300, Brno, Czech Republic

Prof. M. Pumera Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

Prof. M. Pumera Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan

Figure S1. Energy-dispersive X-ray spectroscopy of (a) $Ex-Ti_3C_2T_x$ MXene and (b) MoS_{3-x} coated 3D-printed nanocarbon framework ($MoS_{3-x}@3DnCF$), inset table shows the atomic percentages of the constituent elements.

Figure S2. Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption isotherm of Ti_3AlC_2 and $Ex-Ti_3C_2T_x$.

Figure S3. Dimensions of the 3D-printed electrodes (a) rectangular shape and (b) interdigitated shape.

Figure S4. Schematic diagram for electrodeposition of MoS_{3-x} on 3D-printed nanocarbon framework.

Figure S5. (a) Cyclic voltammetry of 3D-printed nanocarbon framework electrode (3DnCF/CC) in 1 \times H₂SO₄ and (b) comparison of areal capacitance of blank 3DnCF/CC and MoS_{3-x}@3DnCF/CC at different scan rates.

Figure S6. Schematic diagram of fabrication of solid-state asymmetric supercapacitor (a) sandwich- (b) interdigitated-configurations.

The $Ti_3C_2T_x/CC$ and $MoS_{3-x}@3DnCF/CC$ electrodes show $>10^3$ times of capacitance compared to blank CC.

Figure S7. (a) Cyclic voltammetry of blank carbon cloth (CC) in 1 M H₂SO₄ and (b) comparison of cyclic voltammetry of blank CC, Ex-Ti₃C₂T_x/CC and MoS_{3-x}@3DnCF/CC at scan rate of 100 mV s⁻¹.

 Ti_3AlC_2 to $Ti_3C_2T_x$ synthesis mechanism:

$$Ti_{3}AlC_{2} + HF \rightarrow Ti_{3}C_{2} + AlF_{3} + 3/2 H_{2}$$

$$Ti_{3}C_{2} + 2 H_{2}O \rightarrow Ti_{3}C_{2}(OH)_{2} + H_{2}$$
(S1)
(S2)

$$Ti_3C_2 + 2HF \rightarrow Ti_3C_2F_2 + H_2 \tag{S3}$$

In three-electrode test set up, the areal capacitance, $C_{electrode}^{areal}$ [F cm⁻²] of positive or negative electrode was calculated from the cyclic voltammetry (CV) study using Equation-S4:^[1-3]

$$C_{electrode}^{areal} = \frac{\int_{V_1}^{V_2} I(V) dV}{v \left(V_2 - V_1\right)A}$$
(S4)

where, I(V) is the current [mA] in the cathodic sweep of the cyclic voltammogram for positive electrode and I(V) is the current [mA] in the anodic sweep of the cyclic voltammogram for negative electrode, v is the scan rate [mV s⁻¹], A is the active geometrical area [cm²] of the electrode, and V_1 and V_2 are the potential [V] limits in the CV study. The A in the denominator of Equation-S4 is replaced with active mass m [g] of the electrode material to calculate the gravimetric capacitance, $C_{electrode}^{gravimetric}$ [F g⁻¹].

Moreover, the $C_{electrode}^{areal}$ [F cm⁻²] of the positive or negative electrode was calculated from the constant current discharging curve of galvanostatic charge-discharge (GCD) study using Equation-S5:^[2]

$$C_{electrode}^{areal} = \frac{I\,\Delta t}{\Delta V\,A} \tag{S5}$$

where, *I* is the constant discharge current [A], Δt is the total discharging time [s], ΔV is the discharge voltage [V] range and *A* is the active geometrical area [cm²] of the electrode. The '*A*' in the denominator of Equation-S5 was replaced by active mass '*m*' [g] of the electrode material to calculate the $C_{electrode}^{gravimetric}$ [F g⁻¹].

In two-electrode test set up, the areal cell capacitance, C_{cell}^{areal} [F cm⁻²] was calculated from the constant current discharging curve of GCD experiment using the Equation-S6:[3, 4]

$$C_{cell}^{areal} = \frac{I\,\Delta t}{\Delta V\,A} \tag{S6}$$

where, *I* is the constant discharge current [A], Δt is the total discharging time [s], ΔV is the range of discharge voltage [V] and *A* [cm²] is the active geometrical area of the cell. The volumetric capacitance, $C_{cell}^{volumetric}$ [F cm⁻³] and the gravimetric capacitance, $C_{cell}^{gravimetric}$ [F g⁻¹] were calculated replacing *A* in the denominator of Equation-S6 with total volume of the cell which includes electrodes, current collectors, separator and electrolyte, V_{cell} [cm³], and total active mass, *m* [g] of the two electrodes, respectively.

The areal energy density, E_{cell}^{areal} [mWh cm⁻²] was calculated from the cell capacitance using the Equation-S7.^[3,5,6]

$$E_{cell}^{areal} = 0.5 \times C_{cell}^{areal} \times \Delta V^2 \times \frac{1000}{3600}$$
(S7)

The volumetric energy density, $E_{cell}^{volumetric}$ [mWh cm⁻³] and gravimetric energy density, $E_{cell}^{gravimetric}$ [Wh kg⁻¹] were calculated replacing C_{cell}^{areal} in Equation-S7 with $C_{cell}^{volumetric}$ [F cm⁻³] and $C_{cell}^{gravimetric}$ [F g⁻¹], respectively.

The areal power density [mW cm⁻²] wad calculated using Equation-S8.^[3,5]

$$P_{cell}^{areal} = \frac{E_{cell}^{areal}}{t} \times 3600$$
(S8)

where, *t* is the discharge time [s].

The volumetric power density, $P_{cell}^{volumetric}$ [mW cm⁻³] and gravimetric power density, $P_{cell}^{gravimetric}$ [W kg⁻¹] were calculated replacing E_{cell}^{areal} in Equation-S8 with $E_{cell}^{volumetric}$ [mWh cm⁻³] and $E_{cell}^{gravimetric}$ [Wh kg⁻¹].

The real part, $C'(\omega)$ and imaginary part, $C''(\omega)$ of capacitances were calculated from Equation S9 and S10, respectively.^[7]

$$C'(\omega) = \frac{-Z''(\omega)}{\omega |Z(\omega)|^2}$$
(S9)

$$C''(\omega) = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$$
(S10)

where, $Z(\omega)$ is the impedance, $Z'(\omega)$ and $Z''(\omega)$ are the real part and imaginary part of $Z(\omega)$,

respectively. ω is the angular frequency; where, $\omega = 2\pi f$ and f is the frequency [Hz].

Table S1. High resolution core-level X-ray photoelectron spectroscopy peak fitting results of $Ex-Ti_3C_2T_x$: peak positions, peak fitting full widths at half maximum (FWHM), assigned species and their quantified composition. Bold font shows the contribution from $Ti_3C_2T_x$.

Region	Binding energy (eV)	FWHM (eV)	Peak assignment	At %
Ti 2p _{3/2} (2p _{1/2})	455.5 (461.5)	1.09 (1.48)	Core Ti as well as Ti linked to terminal groups (OH, F, O)) (Ti−C)	10.871
	456.3 (462.0)	1.56 (1.80)	Ti (II)	17.024
	457.6 (463.3)	2.02 (1.82)	Ti (III)	14.765
	459.3 (465.0)	1.50 (1.95)	$(TiO_{2-x}F_{2x})$	6.742
	460.5 (466.2)	0.93 (1.3)	TiF _{3+x} (TiF ₃)	2.105
O 1s	530.1	0.84	Oxygen on bridge site (C−Ti−O _x)	4.403
	530.9	1.71	TiO _{2-x} F _{2x}	4.535
	532.0	1.44	Hydroxyl group (C−Ti−OH)	2.133
	533.1	1.47	Adventitious oxygen (C−O)	1.603
	534.4	1.22	Adsorbed H ₂ O (Ads. H ₂ O)	0.344
C 1s	282.3	0.60	C from MXene (C-Ti-F _x)	9.427
	282.8	1.63	C from MXene (C−Ti−O _x)	4.712
	284.3	0.84	C–C (sp²)	3.08
	285.0	1.06	Amorphous C C−C (sp³)	6.547
	285.8	2.17	Adventitious C (C-O)	4.769
F 1s	685.4	1.16	F from MXene (C-Ti-F _x)	4.356
	686.0	2.39	(TiO _{2-x} F _{2x})	1.679
	686.7	2.15	Unidentified fluorinated phase ^[8] $(M-F_x)$	0.899

	Volur	netric	Gravimetric				
Current density	Capacitance (mF cm⁻³)	Energy density	Power density	Specific current	Capacitance (mF g ⁻¹)	Energy density	Power density
(mA cm⁻³)		(µWh cm⁻³)	(mW cm⁻³)	(mA g ⁻¹)		(Wh kg ⁻¹)	(W kg ⁻¹)
1.66	1067.70	379.63	1.33	14.23	9120.51	3.24	11.39
3.33	758.33	269.63	2.66	28.47	6477.79	2.30	22.78
10.00	600.00	213.33	8.00	85.42	5125.28	1.82	68.34
16.66	541.66	192.59	13.33	142.37	4626.99	1.64	113.89
23.33	437.50	155.55	18.66	199.31	3737.19	1.33	159.45
33.33	458.33	162.96	26.66	284.74	3915.15	1.39	227.79
50.00	437.50	155.55	40.00	427.11	3737.19	1.33	341.68

Table S2: Volumetric and gravimetric capacitance, energy density and power density of sandwich-configuration asymmetric cell.

References

- [1] V. Khomenko, E. Frackowiak, F. Beguin, *Electrochim. Acta.* 2005, 50, 2499.
- [2] S. Zhang, N. Pan, Adv. Energy Mater. 2015, 5, 1401401.
- [3] A. Laheäär, P. Przygocki, Q. Abbas, F. Béguin, Electrochem. Commun. 2015, 60, 21.
- [4] K. Ghosh, C. Y. Yue, M. M. Sk, R. K. Jena, S. Bi, Sustain. Energy Fuels 2018, 2, 280.
- [5] K. Ghosh, C. Y. Yue, Electrochim. Acta. 2018, 276, 47.
- [6] K. Ghosh, C. Yue, M. Sk, R. Jena, ACS Appl. Mater. Interfaces 2017, 9, 15350.
- [7] P. Taberna, P. Simon, J.-F. Fauvarque, J. Electrochem. Soc. 2003, 150, A292.
- [8] M. Benchakar, L. Loupias, C. Garnero, T. Bilyk, C. Morais, C. Canaff, N. Guignard, S.

Morisset, H. Pazniak, S. Hurand, Appl. Surf. Sci. 2020, 530, 147209.