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Abstract: Model-Driven Architecture (MDA) presents a set of layered models to sep-
arate design concerns from platform concerns. The model executability for each model
element is still challenging although MDA is currently able to cope with most syntactic
and transformation definition issues. Moreover, the importance of rigorous specification
and verification of the system is increasing, as the embedded software is more widely
used for systems closely related to our life. Thus, this paper suggests behavior modeling
views characterizing Platform-Independent Model (PIM) and Platform-Specific Model
(PSM) behaviors and formal and verifiable models for them. In this, the PIM behavior
is given from the view of the functionality of the software in Statecharts, whereas the
PSM behavior is modeled from the view of a timed and resource-constrained behav-
ior in TRoS, an extension of Statecharts in respect of time and resource constraints.
Moreover, we provide an efficient way where PIM in Statecharts is transformed into
PSM in TRoS. Using our approach, PIM and PSM behavior are captured in formal
semantics for rigorous analysis in terms of system behavior, and the PSM behavior in
TRoS is effectively and consistently obtained from the PIM behavior in Statecharts.
We present a case study, in which safety-critical software for a railway control system
is developed to show the feasibility of our approach.

Key Words: MDA, Behavior Models, Formal Models, Statecharts, Real-time Embed-
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1 Introduction

Model-Driven Development (MDD) is a development methodology that pro-

motes a variety of models to reason a problem domain and design a solution

in the solution domain[Beydeda and Volker 2005]. Model-Driven Architecture

(MDA) supported by UML is widely discussed in the software industry, as a

way to increase the quality, efficiency, and predictability of large-scale and high-

quality software development[MDA]. One of the hallmarks of MDA is the notion
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that the world of modeling can be neatly separated into different areas of con-

cern, typically called “separation of concerns.” MDA introduces a specific set of

modeling concerns, such as Computation Independent Model (CIM), Platform

Independent Model (PIM), Platform Specific Model (PSM), and Implementation

Specific Model (ISM), and it defines rules for:

– Automating many steps needed to convert one model representation to an-

other,

– Tracing between model elements,

– Analyzing important characteristics of the models.

Although MDA is currently able to cope with most syntactic and transfor-

mation definition issues, model executability is still challenging[Mohagheghi and

Dehlen 2008]. One of the main obstacles is the lack of adequate models for the

behavior of software and of mechanisms to integrate behavioral models with

structural models and with other behavioral models[Riccobene and Scandurra

2009]. Furthermore, the transformation from one representation to another is

another obstacle to be tackled for industrial adoption of MDA. In short, a cur-

rent critical issue in MDA in terms of modeling software behaviors is to provide

an effective specification and validation framework able to represent the mean-

ing or semantics of behaviors of each modeling element, analyze each element

of behavioral models thoroughly, and transform one model representation to

another.

In this paper, we address the issues of providing executability to PIM and

PSM models with Statecharts and one of its timely extensions, TRoS[Kim et al.

2010]. Our approach to PIM and PSM behavior models has the following goals:

– Provide behavior modeling views characterizing PIM and PSM behaviors,

– Provide an efficient way to transform PIM behaviors to PSM behaviors ,

– Support rigorous analysis methods for both the behavior models.

To achieve these goals, we propose here a functional behavior view inde-

pendent from platform-related concerns as behavior modeling view for PSM

and a time and resource-constrained functional behavior as behavior model-

ing view for PSM. The PIM and PSM behaviors are modeled in respectively

Statecharts and TRoS because TRoS has the ability to capture the timed and

resource-constrained behavior of the system and be transformed into Statecharts

by annotating time and resource-related information to Statecharts. Moreover,

they are all supported by formal and informal analysis tools, such as simulation,
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model checking and bi-simulation, to give formal proofs for the correctness of

their behavior.

The advantages of our MDA approach are as follows: First, Statecharts and

TRoS for PIM and PSM are formally defined in semantics to rigorously de-

fine and verify the real-time embedded software. Second, PIM in TRoS is easily

obtained from Statecharts since by adding time and resource-related informa-

tion to PSM in Statecharts. Third, the analysis for PIM and PSM behaviors

is performed by various analyzing tools, such as model simulation and formal

verifications for TRoS and Statecharts.

In this paper, the application of our approach to modeling behavior of the

software is illustrated through modeling a real-time embedded software system,

called Distance Control Module (DCM). DCM is a part of railway interlocking

control system, a safety-critical system that needs to be proven correct in the

safety. The system is first modeled in Statecharts, and then it is transformed into

TRoS by a transformation procedure we propose here. Each model in Statecharts

and TRoS was checked by simulation, model checking, and bi-simulation to

verify the correctness of their modeled behavior. Consequently, we could find

flaws inherent in the behavioral model of PIM and provide a formal proof for

the correctness of the timed PSM behavior.

The remainder of this paper is organized as follows: First, we discuss related

work in Section 2. In Section 3, behavior modeling views for PIM and PSM

to capture the real-time embedded software in MDA will be suggested, and

specification and analysis methods will be explained. We explain our experience

of modeling and analyzing real-time embedded software system to illustrate our

approach in Section 4. Finally, we will conclude this paper in Section 5.

2 Related Works

UML profiles for RTES (Real Time and Embedded Systems) and MARTE

(Modeling and Analysis of Real-Time and Embedded systems) are proposed

as foundations for the model-based description of real time and embedded sys-

tems[MARTE]. However, most UML models supported by MARTE cannot sup-

port the formality of specification for rigorous verification methods.

Until now, the research on a behavioral model for PSM still remains at

its early stage. Recently, Riccobene et al. in [Riccobene and Scandurra 2009]

provided a behavior modeling framework of MDA for PIM using State Ma-

chine [McNeile and Roubtsova 2009] that possesses all the characteristics of pre-

ciseness, abstraction, refinement, executability, and metamodel-based definition.

However, their approach is limited to providing the executability to PIM struc-

tural models. Furthermore, as more safety or mission critical software such as

automobile, nuclear power plant, and avionics, becomes increasingly prevalent,
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the more the use of precise semantics and rigorous analyzing methods, such

as formal methods, is necessary. In the context of formal behavioral models

for MDA, Snook et al. in [Snook and Butler 2006] introduced executability to

structural models via UML-B, a profile of UML that bridges from class diagrams,

informal UML structural models, to B, formal behavior specifications. However

it did not take into account “separation concerns.”

Statecharts is a widely used behavior modeling and specification language.

Many extensions and variations of Statecharts have been proposed to compen-

sate for the lack of expressiveness of Statecharts for timed behavior. Schulz et

al. in [Schulz et al. 2000], and Holger and Sven in [Giese and Burmester 2003]

proposed many other real-time extensions of Statecharts. Particularly, Eshuis in

[Eshuis and Wieringa 2000, Eshuis et al. 2002] addressed the requirements-level

Statecharts for UML to define the behavior of software from the view of func-

tionality.

Timed automata[Alur and Dill 1994] and time petri-net[Merlin 1974] and so

on were also proposed to represent and analyze the timed behavior of the system.

Timed automata describes a time-constrained behavior of the system by speci-

fying timing constraints on transitions and invariants on locations, supported by

UPPAAL, etc., as a verification tool[Larsen and Pettersson 2000]. Time petri-

net, an extension of petri-net, introduces the notion of temporal constraints,

which restrict timely triggering of a transition. Those methods take into account

a timing constraint for the system behavior, but not a resource constraint re-

stricting the system behavior. Moreover, defining a resource-constrained behav-

ior of software bound to a platform and transforming the functional behavior

of the system into platform-concerned behavior of software through those de-

scription languages still remains unresolved. Meanwhile, the timing constraint

presented in TRoS centers around a time-consuming action that is subject to the

availability of shared resources, thus the problems that can be detected by TRoS

used in our approach include a problem between the interaction between pro-

cesses or executions, such as deadlock or shared resource contamination. More-

over, the transformation from Statecharts to TRoS is not difficult. Hence, we

use Statecharts and TRoS to model the behavior of real-time embedded soft-

ware that is restricted by the limitation of resources.

3 Our Approach

The main target system of our approach is real-time embedded software that

is composed of application software and platform, such as real-time operating

system. The scope of our approach is limited to the development and analysis

of models for application software and platforms operating the application soft-

ware. Figure 1 shows our approach to behavioral models of MDA for real-time
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Figure 1: Our Approach to Behavior Models for MDA

embedded software. The behavior model of the software, we consider here, cen-

ters around PIM and PSM behaviors. First, CIM in Figure 1 defines the purpose

and boundary of the target software. The focus of CIM is on basic software re-

quirements under the environment, but not on the detail of the structure and

processing of the system are hidden or yet undetermined. The separation con-

cern between PIM and PSM behavior is about the consideration of a platform-

oriented constraint. Thus, the PIM behavior presents the functionalities of the

software in behavioral manners, being independent from platform constraints,

whereas the PSM behavior focuses on a platform-concerned behavior, particu-

larly, a time and resource-constrained functional behavior of system bound to a

platform. Our point of view to the PSM behavior is based on the fact that the

software behavior may be changed by timing constraints and the availability of

shared and limit resources[Lee et al. 1994]. Finally, ISM specifies all the infor-

mation needed to implement the PSM structural and behavioral models into a

software system[Miller and Mukerji 2003].

3.1 Modeling Behaviors of PIM and PSM

(1) PIM Behavior Model and Analysis: The platform independent view-

point focuses on the operation of a system, while hiding the details necessary for a

particular platform[Miller and Mukerji 2003]. In the same context, the software

behavior in PIM model centers around software’s functionalities for the purpose

of software, being independent from platforms. Regardless of the platforms, the

software must generate correct results according to inputs. Thus, the functional

behavior model of software also pinpoints the correct relation of inputs and out-

puts in behavioral manners. In our approach, the PIM behavior model specified

in Statecharts defines relations of inputs and outputs based on system states. In

our approach, two analysis methods, simulation and model checking, are used
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to check the correctness of functional behaviors in Statecharts for PIM behavior

models. The simulation is used to check whether the system in the model reaches

a desired state during executing its behavior and interacting with the environ-

ment. Model checking is a well-known formal verification method. It checks if

there are no undesirable states while traversing all the states. In our approach,

it is used to search an undesired situation that the system may reside in.

(2) PSM Behavior Model and Analysis: The platform specific viewpoint

includes platform-constraints into software functional behaviors in the platform

independent viewpoint. A PSM expands the specification of PIM with details

that specify how that system uses a particular type of platform[Miller and Muk-

erji 2003]. Thus, PSM structural models complement PIM structure models with

data-related information. A PSM behavior model, we propose here, focuses on

software behavior that is restricted by a platform-given constraint. The correct-

ness of the real-time embedded software is not only sensitive to time but also

subject to resource availability because the software behavior may be delayed due

to a lack of necessary resource. Generally speaking, most resources in the soft-

ware are managed by the platform that synchronizes software processes based on

the status of resources and scheduling policy. Thus, the platform-concerned be-

havior model for PSM, in our approach, centers on software behaviors bounded

to a time and resource constraint imposed by a platform. The PSM behavior

model is modeled in TRoS. This is suited to model a platform-concerned soft-

ware behavior for the following reasons: First, the TRoS model includes both

functional and timed and resource-constrained behavior of a system since it is

extended from Statecharts that can capture a functional behavior of the system.

Second, the transformation from PIM and PSM is performed efficiently because

TRoS is extended from Statecharts by only adding time and resource-related

information to Statecharts. Third, the analysis of timed behaviors in TRoS is

supported by existing formal verification tools; the time and resource-related

information in TRoS is represented in the form of a timed action adopted from

ACSR (Algebra of Communicating and Shared Resources)[Lee et al. 1994], the

information in a timed action can be transformed into an ACSR model to prove

the correctness of the timed behavior of system, and the timed behavior in ACSR

can be checked by bi-simulation in VERSA[Duncan et al 1995], a formal verifi-

cation tool for ACSR, based on the notion of equivalence in CCS[Milner 1989].

3.1.1 Statecharts

Statecharts is a popular behavior modeling languages[Eshuis and Wieringa 2000,

Eshuis et al. 2002, Harel 1987, Harel and Naamad 1996]. It is becoming more

prevalent for the development of safety or mission critical systems and software,
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as it is supported by formal verification tools, such as model checking. Recently,

it plays a role as a standard specification tool for the automobile industry. Most

constructs in Statecharts are based on finite-state automata, thus most engineers

can define the system behavior easily. The syntax of Statecharts consists of

states, transitions, events, guards, and actions; a state can be one of an OR-State,

an AND-state, and a Basic state. A transition from one state to another state

is taken if transition conditions for the transition hold. A transition condition is

expressed in the form of E[C], where E is an event expression and C a guard

expression. An action is performed along with a sequence of operations when a

transition is taken.

3.1.2 TRoS

We overview TRoS here, but we do not detail the syntax and semantics of TRoS

presented in [Kim et al. 2010]. TRoS is a time and resource-constrained exten-

sion of Statecharts from the view of constraints with which platforms restrict

the software behavior. TRoS is an extension of Statecharts as follows:

TRoS = Statecharts + Timed Actions

The behavior of TRoS is composed of functional behaviors and timed behav-

iors; the functional behavior is represented using the constructs of Statecharts

while the timed behavior is modeled using the construct of timed action. A

system in TRoS consists of a set of TRoSs that run in parallel and share lim-

ited resources. The use of resource is represented by the notion of timed action,

and the communication between parallel TRoS components is supported by in-

stantaneous events. A timed action denotes a timed and prioritized use of a

resource[Lee et al. 1994, Lee et al. 2006]. It is assumed that an execution of a

timed action takes one or more time units in respect of a global clock and con-

sumes a set of resources during that time. Moreover, it is subject to resource

availability. The notion of timed action is supported by a priority-based schedul-

ing mechanism given in the semantics, based on the semantics of ACSR. Thus,

the competition for a resource is arbitrated according to priorities of competing

timed actions. The availability of every resource is checked every time unit, and

the available resource is assigned to only one process with the highest priority.

The situation where two or more processes with the same priority access to the

same resource is not permitted in TRoS. Unlike timed action, the execution of

an event action is instantaneous and never consumes any resources and time.

In addition to the constructs of Statecharts, TRoS presents a timed action

node that implies a timed action. A timed action node is in the form of oval, and

a timed action node includes one or more timed action expressions representing

a series of timed actions. The syntax of timed action expression is as follows:
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Figure 2: Railroad Crossing Gate Controller in TRoS

A ::= {S}n | < S >n

S ::= ε | (r, ve), S

r represents a resource id, and two natural numbers, ve and n, are used to

respectively represent a priority for resource and execution time to pass during

the timed action. A timed action with a high priority number has priority over

timed actions with low priority numbers. In addition, a timed action enclosed

by “<>” denotes an non-preemptive timed action that cannot be preempted by

any other timed actions.

Figure 2 shows an example of TRoS model, a gate controller for railroad

crossing, composed of two timed action nodes and two basic state nodes. The

two basic state nodes represent that the system is in idle status, waiting for a

train’s approach or pass by. Meanwhile, the two timed action nodes represent the

execution of two operations of closing and opening the gate. The gate controller

perceives the train’s approach by receiving the event TrainApproaching when a

train approaches the gate. Then, it starts closing the gate, and the gate closing

consumes 20 time-unit using two resources, cpu and gate. During the train’s

pass by, the gate controller stays in the state GateClosed, looking forward to the

event TrainMovedOut denoting the train’s leaving. The gate controller starts

opening the gate, if it receives the event TrainMovedOut denoting the train’s

leaving. Then it uses two resources, cpu and gate, for 25 time-units to execute

opening the gate. When the opening ends, the controller notifies completion of

gate opening by sending the event OpenGate. The approach of a train can take

place even during opening the gate. Thus the OR-state node GO encloses two

states, GateOpened and GateOpening, and the exiting transition from the state

GO is linked to the state GateClosing to represent repeating the gate closing

during gate opening.
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Figure 3: Syntactic Sugar for Time and Resource-related Information

3.1.3 TRoS Construction from Statecharts

In our approach, the PSM behavior model in TRoS is extended from the exiting

PIM behavior model in Statecharts. The construction of TRoS is performed

using the following procedure:

1. Annotate time and resource-relating information using timed action expres-

sion directly on some transitions of Statecharts including an action that

needs time and resources for its execution,

2. Replace the time and resource-related information with a timed action node

including timed action expressions,

3. Split the transition tagged with the time and resource-related information

into two transitions: a guard transition entering into the timed action node,

and an action transition exiting from the timed action node,

4. Label the existing guard and condition expression on the guard transition

and the existing action expression on the action transition.

Figure 3 presents a model of Statecharts annotated with syntactic sugar in

the form of timed action expression representing time and resource-related in-

formation and its corresponding model of TRoS. For a Statecharts, the timed

action An is annotated on a transition labeled with E[C]/Act. The information

in the timed action is transformed with a timed action node in TRoS. The ex-

pression E[C]/Act in Statecharts is split into two parts, E[C] and Act, by “/”

in TRoS. Then, the event and guard expression E[C] is labeled on the entering

transition to the timed action node while the action expression Act is labeled on

the exiting transition from the timed action node. This implies that the timed

action A is serially executed for the amount n of time units after the event E oc-

curs and the guard [C] holds. In completing the timed actions, the action Act is

executed instantaneously. In this way, the syntactic sugar facilitates constructing
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(a) (b)

(c)

Figure 4: Railroad Crossing Gate Controller’s Behavior Model

TRoS from Statecharts, a functional behavior model, only by annotating time

and resource-related information.

Figure 4 shows an example of extending a Statecharts model to a TRoS

model. Figure 4 (a) depicts the gate controller in Statecharts. The construction

of TRoS starts with annotating time and resource-related information in timed

action expression upon transitions of Statecharts. In Figure 4 (b), some time and

resource-related information, such as {(cpu, 1), (gate, 1)}20and {(cpu, 1), (gate, 1)
}25, is annotated to transitions relating to the action CloseGate and OpenGate.

Next, the time and resource-related information in Statecharts is replaced with

timed action nodes including the timed action expressions. After that, the timed

action-annotated transition is split into two transitions; a guard transition enter-

ing into the timed action node and an action transition exiting from the timed

action node. The guard and condition expressions, TrainApproaching and Train-

MovedOut, are labeled on the entering transitions into respectively GateClosing

and GateOpening, and the action expressions, CloseGate and OpenGate are la-

beled on the exiting transition from respectively GateClosing and GateOpening

into GateClosed and GateOpened. Figure 4 (c) shows the gate controller of TRoS

after constructing from the Statecharts in Figure 4 (a). For this transformation,

the annotation in the first step cannot help being performed manually by the

user because there is no way to determine the exact execution time for an opera-

tion on a platform and to identify operations needing shared resources. Thus, the
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execution time of operations is assumed by the user. However, we believe that

the remaining transformation steps can be carried out by means of systematical

way we propose here.

3.2 Analysis for MDA Behavior Models

The analysis of PIM and PSM behavior models is performed using the following

methods.

(1) Positive analysis: this analysis demonstrates that a designed system

performs a necessary task or action and that a design is met by verifying it

against a requirement[Bailey and Martin 2010], i.e., from the positive view of

functional requirement, it checks whether the designed system presents desired

behaviors/functionalities required in the functional requirement. For instance,

the gate controller (GC) mentioned earlier must close the gate (down gate) if

the gate is open (gate up) and a train approaches the crossing (train approach).

The requirement specification might be as follows:

GC � (gate up ∧ train approach) → down gate

In our approach, the positive analysis is performed by simulation; scenario to

be performed is derived from functional requirements, and the designed system

is simulated one by one according to the scenario to check if the outcomes for

given inputs conform to the expected outcomes.

(2) Negative analysis: this analysis demonstrates that bugs do not ex-

ist[Bailey and Martin 2010] and exposes any flaws in the implementation of a

requirement; from the negative view of functional requirement, it checks if the

designed system should never present undesirable behaviors/functionalities. For

instance, the gate controller must not close the gate down (¬down gate) if the

gate is open (gate up) and no train approaches the crossing (¬train approach),

and the requirement specification might be as follows:

GC � (gate up ∧ ¬train approach) → ¬down gate

This specifies a prohibited action that the gate controller should never take

in its execution. This analysis is performed by model checking. Unfortunately, it

is impossible to identify all the undesirable cases from the system, thus we select

some critically undesirable cases to analyze the system.

(3) Timing analysis: this analysis demonstrates that the system responds

on time. It checks if all the functionalities completes its own execution by dead-

line. For instance, the gate controller must complete closing the gate in 25 sec-

onds, and the requirement specification might be as follows:
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GC � (gate up ∧ train approach) →≤25 down gate

The timing analysis is performed her by bi-simulation introduced in [Lee et

al. 1994], which checks if a timed behavior of a system produces no deadlock

and bi-simulates a timely infinite idle system. If the system does not results in

deadlock and bi-simulates the idle system, it is proved that all the processes in

the system are schedulable.

The positive and negative analysis are used to prove the correctness of data-

flow that the PIM behavior in Statecharts takes, whereas the timing analysis is

used to prove the correctness of control-flow that the PSM behavior in TRoS

controls i.e. schedulability.

3.3 Discussion for our MDA Behavior Models

Note a certain time or resource constraint makes a functionality of the software

in PIM change to satisfy the purpose of the system when analyzing the timed

behavior of it in PSM. For instance, the gate controller in Figure 4 (c) does not

care for the situation when a train approaches the crossing during opening the

gate. The reason is due to the model that assumes the execution of opening and

closing the gate is instantaneous. Thus, the original functionalities of the system

needs to be changed to consider a time consUMLtion of executing operations

and resource limitations. For this reason, some PIM behaviors may need to

be corrected to meet the purpose of the system through analyzing the timed

behavior of PSM models. Figure 2 is an enhanced gate controller of Figure 4 (c)

that reacts to another train’s approach during gate opening.

Particularly, the parallelism of some parallel PIM components may not be

preserved when they are transformed into some current PSM behaviors. It is

because any parallel executions may be serialized due the limitation of resources

in a platform. Thus, the PSM behavior may need to be correct to meet not

only a platform-given time and resource-constraint but also functional require-

ments during the timing analysis of PSM. However, we do not further discuss

verification of the PSM behavior in terms of functionality here.

4 Case Study: Distance Control Module of Railway
Interlocking Control System

Now, the development of a real-time embedded software system is illustrated here

to explain our approach to behavior models for MDA. The real-time software, we

provide here, is a part of the railway interlocking control system, called Distance

Control Module (DCM).

The development of DCM applies IEC 61508[IEC 61508], a standard for

safety critical embedded systems, to the development of the Korean railway con-

trol system. DCM is a part of the interlocking control system, called the mockup
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Figure 5: An Example of Permissive Moving Authority (PMA) Setting

system. The mockup system consists of a central control system, control devices

around railways, and trains simulated by Automatic Train Protection (ATP).

The control center is composed of two main controls; Automatic Train Supervi-

sion (ATS) administrating the comprehensive railway control, and Control Route

Distance (CRD) responsible for the comprehensive safety control. In particular,

CRD is composed of the Distance Control Module (DCM) and Inter-locking

Control Module (ICM). DCM supervises the movement of train to maintain a

safe train interval, and ICM controls the route and direction of the moving train.

Figure 5 shows an example of controlling the movement of trains based on

PMA that is the DCM’s main processing data. The railway, as shown in Figure 5,

is composed of a series of sections, called blocks, and every block yields a relative

permission for every train. Figure 5 shows the status of PMA values set to four

blocks where train 2 is going to run on. DCM must compute the value to PMA

for every block to prevent two or more trains from moving on the same block

at the same time. A value of PMA is one of Green, Yellow, and Red denoting

respectively normal or limited-speed running, normal stop, and no entrance or

emergency stop. The computation of the PMA value is based on information

about status of railways, position and running speed of trains, and commands

of ATS regarding a block close/open and temporary speed.

4.1 DCM Models

The model of DCM is divided into two aspects; structural aspect and behavioral

aspect. The DCM structural model is given in Activity-charts of STATEMATE,

similar to the UML class-diagram and defines the functional structure of DCM

and data-flow between functional components, whereas the DCM behavioral

model is defined in Statecharts and describes the overall functional behavior of

the DCM functionality.

The main functionalities of DCM are achieved by the following eight func-

tional components: MANAGEMENT BLC STAT computes block status,

based on block-related information from ATS, ATP, and ICM. BLC OPEN

CLOSE deals with the command of block open/close from ATS and commands

MANAGEMENT BLC STAT to apply the change of block status to PMA

for the relating blocks. SET TEMP SPEED deals with the temporary speed

command of ATS for a block and commands. MANAGEMENT BLC STAT
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(a) Set Temp Speed (b) Action Specification

Figure 6: PIM Behavior Models of DCM

to apply the temporal speed to the block. MONITOR TRAIN DIREC-

TION compares the current direction of a train to the scheduled direction, and

if two directions are different, it notifies MANAGEMENT BLC STAT of the

difference to make the related train cease movement. If the problem is resolved,

it enables the train to move to the released block. VERIFYING TRAIN

POSITION locates every train based on information from trains and reports

the information of train-occupied blocks to MANAGEMENT BLC STAT

to apply the change of block status. TRAIN DISTANCE CONTROL de-

livers PMA values to ATP, a train simulator, to control the movement of trains.

DISPLAY DCM STAT displays the status of the system including trains,

railways, and various commands from ATS and other controllers. Scheduling

controls the executions of the seven functions to achieve the functionality of

DCM, based on time and system conditions.

4.1.1 PIM Behavior Models

The platform independent behavior model of PIM for DCM describes compu-

tations of the system status and control variable values based on the current

system status, input events and data. A behavior of DCM is composed of read-

ing input data, processing control values based on the data, and delivering the

computed control values to other functions.

Figure 6 (a) depicts the behavior of the function Set Temp Speed in Stat-

echarts. Some behaviors in Figure 6 (b) are defined in an action definition lan-

guage, such as Action Specification Languages in xUML[Mellor and Balcer 2002]:

the array ATS CMD TMPSPD contains a temporal speed command from ATS.

Once a temporary speed command is given through ATS CMD TMPSPD, the

block to be restricted by the temporal speed is identified, and then the temporal

speed is applied by setting the speed value to the corresponding block status in

the array BLC STAT.
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Table 1: Time and Resource Constraints

4.2 PSM Behavior Models

The platform-specific behavior of PSM for DCM is designed based on a given

time and resource constraint as shown in Table 1, which enumerates the assumed

worst-execution time, necessary hardware and software resources and priorities

for each function in DCM. Based on these time and resource constraints, the

platform specific behaviors of DCM are defined in TRoS by complementing some

transitions of Statecharts with time and resource-related information in syntactic

sugar.

Figure 7 shows both the PIM and PSM behavioral model of Verify Train

Position; the PIM behavior in Figure 7 (a) is defined with the constructs of

Statecharts, whereas the PSM behaviors in Figure 7 (b) add time and resource-

related information in syntactic sugar to some transitions of PIM behaviors. For

instance, the entering transition into the state VERIFY THE CONNECTION

is described in the PSM model to use a series of resources composed of cpu,

BLS STAT, DCM TRN CONN OK, TRN CONN, and TTRNID at the priority

6 for 1 time-unit. The resources to be used are selected among resources and the

priority for those resources are also given by the constraint proposed in Table 1.

The sum of the execution time of Verify Train Position cannot exceed the

assumed worst-case execution time in Table 1. In this way, the PSM behavior

models can be constructed, based on time and resource constraints.

4.3 Analysis for DCM

In analyzing DCM, the PIM behavior models of DCM are analyzed by posi-

tive and negative analysis using simulation and model checking while the PSM

behavior models are analyzed by timing analysis using bi-simulation.

4.3.1 Positive Analysis using Simulation

We performed the positive analysis for DCM using simulation. In this simula-

tion, the analyzer can enter input events and values into the simulated system

2429Kim J., Choi J.-Y., Kang I., Lee I.: UML Behavior Models ...



(a) PIM Behaviors

(b) PSM Behaviors

Figure 7: PIM and PSM for Verify Train Position

(a) (b)

Figure 8: Errors in DCM Model Behaviors
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and check if the output events and values after an execution of the system are

desired against the functional requirement. Through this simulation, some flaws

in functional requirements of DCM are found. One of them is an incompleteness

error caused by the following the functional requirement:

“DCM should set to Red the value of PMA for the first rear

block where a train has left”

Unfortunately, the functional requirement may result in a deadlock situation

described in Figure 8.(a): After two trains run across, they would proceed simul-

taneously to the rear block that each other each other has left. However, DCM

changes each other’s rear block to Red based on the requirement; thus, they

both can no longer move ahead because the blocks into which they are proceed

to are set to Red, implying no entrance.

4.3.2 Negative Analysis using Model Checking

The negative analysis for DCM was performed by model checking. One property

to be proven is that there is no non-determinism in the DCM execution. The

non-determinism implies two and more executions are not determined to be

executed due to the multiple satisfactions of conditions for the executions.

Figure 8.(b) shows a non-determinism situation; if the occurrence of event

RESET and the satisfaction of guard [not DCM SYSTEM ON ] occur at the

same time, two transitions into two different the states, DCM INIT IDLE and

INITIALIZE BLC STAT, are enabled simultaneously. This non-deterministic

situation is solved by prioritizing their executions.

4.3.3 Timing Analysis using Bi-Simulation

The timing analysis of DCM checks if every functional component of DCM com-

pletes by its deadline. The constrained behavior of the system impacted by two

important parameters, the assumed worst-case execution and shared resources,

are the focused of this analysis. The action subject to the availability of resource

may be delayed if the necessary resource is not available due to other’s actions

using the resource. The worst case execution time for an action is assumed by

the assumed execution time plus delay time due to unavailable resource.

To analyze the timed behavior of DCM, only timed actions are extracted from

TRoS into ACSR, which can be verified by formal verification tools, VERSA.

Consequently, we could obtain the result of timing verification for DCM as shown

in Figure 9, where it is checked if the designed timed behavior model of DCM

denoted by DCM , is bi-similar with an infinite idle process denoted by IDLE .

The result is “‘true (by prioritized strong equivalence)”, which means that
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Figure 9: The Result of DCM’s Timing Verification

all the timed behaviors of DCM have no resource collision and missing deadline.

Thus, we could conclude that all the executions of DCM functions complete on

time, i.e., they are schedulable unless there is an interruption to the execution

of DCM.

5 Conclusions

MDA should be equipped with the ability to convert from one to another, trace

between models, and analyze important characteristics. Behavioral models for

PIM and PSM are also called for to meet the rules. This paper presented a

software behavior modeling and analysis framework that satisfies those rules for

MDA. Some contributions of our approach to MDA can be as follows:

– Suggest formal behavior models of PIM and PSM easily and efficiently ex-

tensible from one to another,

– Suggest time and shared resource as parameters characterizing PSM behav-

iors extending PSM behaviors,

– Provide analysis views for PIM and PSM behaviors.

In MDA, the platform-related concerns identify the difference between PIM

and PSM. However, it is not easy to define their behavioral characteristics. Thus,

we suggested that the PIM behavior focuses on the functionality of software in-

dependent from a platform while the PSM behavior extends the functionality of

software in terms of platform-given constraints characterized by two parameters,

time and shared resources. Thus, we proposed that the PSM behavior is defined

in TRoS and extended from the PIM behaviors in Statecharts. One reason why

we use TRoS and Statecharts for PIM and PSM behavior models is because

TRoS has the ability to describe a timed behavior of the system with the notion

of timed action for the description of real-time system. Another reason is that

TRoS has the ability to be transformed from Statecharts only by adding time
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and resource-related information to the behavior of Statecharts, and the trans-

formation satisfies the principle of MDA that MDA provides a transformation

rule from PIM to PSM. In our approach, the specifications in PIM and PSM

are supported by various analysis methods, such as simulation, model checking

and bi-simulation to provide formal proof for the development of safety-critical

software. Thus, our approach, we think, is suited for the development of safety-

critical embedded software using MDA approach.

However, we think the PSM behavior also needs to be analyzed in terms of

the functionality because the timing and resource constraints may change the

behavior of software. Therefore, the analysis of PSM in terms of timing and

functional correctness can be further research.
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