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Abstract: Consider the initial value problem of the first-order ordinary differential
equation

d

dt
x(t) = f(t, x(t)), x(t0) = x0

where the locally Lipschitz continuous function f : Rl+1 → Rl with open domain
and the initial datum (t0, x0) ∈ Rl+1 are given. It is shown that the solution operator
producing the maximal “time” interval of existence and the solution on it is computable.
Furthermore, the topological complexity of the blowup problem is studied for functions
f defined on the whole space. For each such function f the set Z of initial conditions
(t0, x0) for which the positive solution does not blow up in finite time is a Gδ-set.
There is even a computable operator determining Z from f . For l ≥ 2 this upper
Gδ-complexity bound is sharp. For l = 1 the blowup problem is simpler.
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1 Indroduction

Consider an initial value problem of obtaining solutions x(t) to the first-order
ODE (ordinary differential equation)

{
d
dtx(t) = f(t, x(t)), t ∈ R, (t, x) ∈ E ⊆ Rl+1

x(t0) = x0
(1)

where the initial datum (t0, x0) ∈ E ⊆ Rl+1 and the (generally non-
linear) function f : E → Rl are given. In this initial-value problem, x

is usually referred to as the space variable and t the time variable. If f

is continuous on E and locally Lipschitz continuous in space variable x,
then the problem (1) has a unique solution on a maximal time interval
(α, β). This result is commonly referred to as Picard-Lindelöf existence and
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uniqueness theorem. Various versions of the computable Picard-Lindelöf the-
orem have been studied by several authors, including Aberth [Aberth, 1970,
Aberth, 1971], Bishop and Bridges [Bishop, Bridges, 1985], Graça, Zhong and
Buescu [Graça, Zhong, Buescu, 2006], Ko [Ko, 1991], Pour-El and Richards
[Pour-El, Richards, 1989]. In this paper, we present a fully uniform version of
the Picard-Lindelöf theorem.

The Picard-Lindelöf theorem gives a very satisfactory local theory for the
existence and uniqueness of solutions to the ODE (1) for locally Lipschitz con-
tinuous f . However, there remains a difficult issue: whether the corresponding
maximal interval of existence (α, β) is bounded or not for any given initial da-
tum. When β or/and α is finite, the solution x(t) will blow up in finite time
in the sense that ||x(t)|| approaches to infinity as t → β− or t → α+. In gen-
eral, it is difficult to predict whether or not a solution will blow up for a given
initial datum, because it often requires extra knowledge on some quantitative
estimates and asymptotics of the solution over long period of time, such as
whether the solution satisfies a certain “coercive” conservation law. Indeed, it
is shown recently in [Graça, Zhong, Buescu, 2006] and [Graça, 2007] that the
blowup problem cannot be solved by any algorithm.

In this paper, we study the topological complexity of the blowup problem
for functions f defined on the whole space. We shall use the notation CBUf to
denote the set of all initial data at which the solutions to the initial-value problem
(1) are global (no blowup). The complement of CBUf , denoted as BUf , is then
the set of all initial data for which the solutions blow up. We show that the
set CBUf is a Gδ set, i.e a countable intersection of open sets, and there is an
algorithm that computes CBUf from f . Thus the blowup set BUf has Fσ as an
upper complexity bound. Moreover, for every computable Gδ-set G of Rl−1 with
l ≥ 2, we show that there exists a computable and effectively locally Lipschitz
function f : Rl → Rl such that the solution to the problem “x′(t) = f(x(t)),
x(0) = (x0, 0)” is global if and only if x0 ∈ G. In other words, the Gδ-complexity
for CBUf is sharp. It follows that the Fσ-complexity is sharp for the blowup
sets.

The paper is organized as follows. Section 2 introduces necessary concepts
and results from computable analysis. Section 3 presents a fully uniform version
of the computable Picard-Lindelöf theorem. Section 4 contains the theorems on
the complexity of the blowup problem.

2 Preliminaries

For studying computability in analysis, in this article we use the representation
approach also called type-2 theory of effectivity (TTE) [Weihrauch, 2000]. In this
theory computability on finite or infinite sequences, Σ∗ or Σω, respectively, over
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a finite alphabet Σ is defined explicitly by type-2 machines, which are Turing
machines with finite or infinite one-way input and output tapes. The elements
of Σ∗ or Σω are used as “names” of natural, rational or real numbers, of open
sets, continuous functions and so on. A representation of a set M is a surjective
partial function δ : ⊆Y → M (Y ∈ {Σ∗, Σω}), where p is called a δ-name or a
name of x ∈ M if δ(p) = x. In [Weihrauch, 2000] representations δ : ⊆Σ∗ → M

are called notations. A function on represented spaces is computable, if it can
be realized by a computable function on the names.

We also use the more general multi-representations δ : Y ⇒ M , where p ∈ Y

is considered as a name of each x ∈ δ(p) and multi-functions f : M ⇒ M ′ on
represented sets, where y ∈ f(x) can be interpreted as “y is an acceptable result
on input x”. For multi-representations γ : Y ⇒ M and γ′ : Y ′ ⇒ M ′, a function
h : ⊆Y → Y ′ realizes a multi-function f : M ⇒ M ′, if h(p) is a γ′-name of some
y ∈ f(x) whenever p ∈ Σω is a γ-name of x (see Figure 1). We call the multi-
function f (γ, γ′)-computable (-continuous), if it has a computable (continuous)
realization [Weihrauch, 2005, Weihrauch, 2008].
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Figure 1: h(p) is a name of some y ∈ f(x), if p is a name of x ∈ dom(f).

The extension to multi-functions f : M1× . . .×Mk ⇒ M ′ is straightforward.
For multi-representations γ : Y ⇒ M and γ′ : Y ′ ⇒ M ′, γ ≤ γ′ (γ is reducible to
γ′), if there is a computable function h : ⊆Y → Y ′ such that γ(p)⊆γ′ ◦ h(p) for
all p ∈ dom(γ). The representations are equivalent, if they are reducible to each
other. Equivalent representations induce the same computability and relative
continuity on the represented set.

If multi-functions on represented sets have realizations, then their com-
position is realized by the composition of the realizations. Therefore, the
computable multi-functions on represented sets are closed under composition.
Much more generally, the computable multi-functions on represented sets are
closed under flowchart programming with indirect addressing [Weihrauch, 2005,
Weihrauch, 2008]. We will apply this result repeatedly, which allows convenient
informal constructions of new computable functions on multi-represented sets
from given ones.

1303Rettinger R., Weihrauch K., Zhong N.: Topological Complexity ...



Let γ : Y ⇒ M and γ′ : Y ′ ⇒ M ′ be multi-representations. By means of
computable standard pairing and tupling functions on Σ∗ and Σω, all of which
we denote by 〈 〉 [Weihrauch, 2000], multi-representations of products can be
defined: [γ, γ′]〈y, y′〉 := γ(y) × γ′(y′) and γω〈y0, y1, . . .〉 := γ(y0) × γ(y1) × . . . .

In [Weihrauch, 2008] a multi-representation [γ ⇒ γ′] of the (γ, γ′)-continuous
multi-functions f : M ⇒ M ′ is defined by f ∈ [γ ⇒ γ′](p), if ηp realizes f (ηp = h

in Figure 1). Here η is the canonical representation of the continuous functions
h : ⊆ Y → Y ′ with open domain (for Y ′ = Σ∗) or Gδ-domain (for Y ′ = Σω)
[Weihrauch, 2000]. Their restrictions to the partial functions and total functions
are called [γ →p γ′] and [γ → γ′], respectively.

Let γ0 : ⊆Y0 ⇒ M0 be another multi-representation. For a multi-function f :
M0 ×M ⇒ M ′ define Tf(x)(y) := f(x, y). Then T is ([[γ0, γ] ⇒ γ′], [γ0 → [γ ⇒
γ′])-computable and its inverse is ([γ0 → [γ ⇒ γ′], [[γ0, γ] ⇒ γ′])-computable.
As corollaries,

f is (γ0, γ, γ′)-computable ⇐⇒ Tf is (γ0, [γ ⇒ γ′])-computable, (2)

and for every multi-representation δ of multi-functions h : M ⇒ M ′, the evalu-
ation (h, x) |⇒ h(x) is (δ, γ, γ′)-computable iff δ ≤ [γ ⇒ γ′] [Weihrauch, 2008]
(cf. the special case for single-valued representations and total functions
[Weihrauch, 2000, Theorem 3.3.15]).

Let νN and νQ be standard notations of the natural numbers and the rational
numbers, respectively. For single-valued representations γ : ⊆ Y → M , γω ≡
[νN → γ] (representation of sequences on M).

On the space Rn we use the maximum norm

‖(x1, . . . , xn)‖ := max{|x1|, . . . , |xn|}.

For x ∈ Rn and r > 0 let B(x, r) := {y ∈ Rn | ‖x − y‖ < r} be the open ball
or cube with center x and radius r. Let In be a natural notation of the set of
all rational open balls RBn := {B(x, r) | x ∈ Qn, r ∈ Q, r > 0} in Rn. Let
ρn : ⊆Σω → Rn be the representation defined by ρn(p) = x, iff p is a list of all
open balls J ∈ RBn (encoded by In) such that x ∈ J . Then ρ := ρ1 is equivalent
to the Cauchy representation of the real numbers [Weihrauch, 2000]. For the
extended real line R = R ∪ {−∞,∞}, the “lower representation” ρ< : Σω → R

and the “upper representation” ρ> : Σω → R are defined by ρ<(p) = sup{r ∈
Q | r is listed by p}. and ρ<(p) = inf{r ∈ Q | r is listed by p}.

For the set O(Rn) of open subsets and the set Gδ(Rn) of the Gδ-subsets (the
countable intersections of open subsets) of Rn we use the representations θn and
δn
G defined by θ(p) = U iff p is a list J0, J1, . . . of open balls from RBn (encoded

by In) such that U =
⋃

i Ji and δn
G〈p0, p1, . . .〉 =

⋂
j θn(pj) [Weihrauch, 2000,

Weihrauch, 1993]. The θn-computable sets are called r.e.-open.
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For the space CP(Rm, Rn) of the partial (topologically) continuous functions
f : ⊆ Rm → Rn, we use the multi-representation δm,n defined as follows: f ∈
δm,n(p) iff p is (encodes) a list (Ji, Ki)i∈N, (Ji ∈ RBm, Ki ∈ RBn), such that

f−1L = dom(f) ∩
⋃

{Ji | Ki = L} for all L ∈ RBn . (3)

This representation is equivalent to [ρm →p ρn] [Grubba, Weihrauch, Xu, 2007].
Therefore by (2), evaluation (f, x) �→ f(x) is (δm,n, ρm, ρn)-computable.

If the representations of the sets under consideration are fixed, we will simply
say “computable” instead of “(γ, δ)-computable” etc.

3 The Solution Operator Is Computable

By the Picard-Lindelöf theorem, unique local solutions of the initial value prob-
lem (1) exist. The following version is from [Heuser, 1981] slightly adjusted for
our purposes. For f : ⊆R×Rl → Rl and Z⊆dom(f) we will call M ∈ R an upper
bound of f on Z if ‖f(z)‖ ≤ M for all z ∈ Z, and we will call L ∈ R a Lipschitz
constant of f on Z, if ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖ for all (t, x), (t, y) ∈ Z .

Theorem 3.1 [Picard-Lindelöf ] Let f : B((t0, x0), r) → Rl, t0 ∈ R, x0 ∈ Rl,
0 < r ≤ 1, be continuous. Let L > 0 be a Lipschitz constant and let M ≥ 1 be an
upper bound of f (on dom(f)). Then the initial value problem (1) has a unique
solution h on [t0 − b; t0 + b] for b = min(r/M, 1/(2L)) (see Figure 2).

�

�

time

position

x0

t0

�

B(t0, x0)

�

interval J

Figure 2: A local solution h of the initial value problem (1).

We outline a classical proof [Heuser, 1981], which already shows a way how
to “compute” the local solution. Let C(J) be the Banach space of continuous
functions f : J → Rl, J := [t0 − b; t0 + b], with maximum norm ‖ ‖∞. Then
C0 := {g ∈ C(J) | ‖g(t)− x0‖ ≤ r for all t ∈ J} is a closed subset of C(J) and

1305Rettinger R., Weihrauch K., Zhong N.: Topological Complexity ...



the operator A : C(J) → C(J), defined by

A(g)(t) := x0 +
∫ t

t0

f(τ, g(τ)) dτ , (4)

maps C0 into itself and is contracting on C0, that is, ‖A(g1) − A(g2)‖∞ ≤
1
2 ‖g1−g2‖∞ for g1, g2 ∈ C0. By the Banach fixed point theorem the operator A

has a unique fixed point, and this function is the local solution h : [t0−b; t0+b] →
Rl of our initial value problem [Heuser, 1981]. The sequence h0, h1, . . . ∈ C0

defined by h0(t) := x0, hn+1 := A(hn), converges to the fixed point h of the
operator A. Since ‖h1 − h0‖∞ ≤ r ≤ 1, ‖hn+1 − hn‖∞ ≤ 2−n, and therefore,
‖hk − hn‖∞ ≤ 2−n+1 for k > n and

‖h− hn‖∞ = ‖h − An(g0)‖∞ ≤ 2−n+1 . (5)

Effectivizing this idea we get a fully uniform computable version of the
Picard-Lindelöf theorem. For convenience we consider only positive integer
bounds L and M .

Lemma 3.2 [Computable Picard-Lindelöf ] There is a (δl+1,l, ρ, ρl, δ1,l)-comput-
able operator T : (f, t0, x0) �→ h mapping each continuous function f : ⊆R×Rl →
Rl, each t0 ∈ R and each x0 ∈ Rl to some h : ⊆R → Rl such that the restriction
of h to the interval [t0−b ; t0+b] is a local solution of (1), if for some r, 0 < r ≤ 1,
and some natural numbers M, L ≥ 1,

1. B((t0, x0), r)⊆dom(f),

2. L is a Lipschitz constant and M is an upper bound of f on B((t0, x0), r),

3. b = min(r/M, 1/(2L)).

Proof. During the proof we consider the representations [ρm �→p ρn] which
are equivalent to the δm,n such that type conversion (2) can be applied easily.
Since composition (f, g) �→ (τ �→ f(τ, g(τ))) for continuous f : ⊆R × Rl → Rl

and continuous g : ⊆ R → Rl is computable and since integration (h, a, b) �→∫ b

a h(τ) dτ for continuous h : ⊆R → R (with defined value, if [a; b]⊆dom(h)) is
computable [Weihrauch, 2000], the function

(f, t0, x0, g, t) �→ x0 +
∫ t

t0

f(τ, g(τ)) dτ is computable. (6)

Applying type conversion (2) twice we obtain a computable operator T1 :
(f, t0, x0) �→ B where B(g)(t) = x0 +

∫ t

t0
f(τ, g(τ)) dτ . For x ∈ Rl let

gx(t) := x for all t ∈ N. For operators D of the functional type of B,
the function (D, x, t, n) �→ Dn(gx)(t) ∈ Rl (for t ∈ R) is computable

1306 Rettinger R., Weihrauch K., Zhong N.: Topological Complexity ...



[Weihrauch, 2005, Weihrauch, 2008], hence the operator T2 : (D, x, t) �→ (n �→
Dn(gx)(t)) into the sequences in Rl is computable. Finally the limit operator
liml : (zi)i∈N �→ limi zi on Rl which is defined if ‖zi − zj‖ ≤ 2−i+1 for j > i is
computable [Weihrauch, 2000]. Let T3(f, t0, x0, t) = liml ◦T2(T1(f, t0, x0), x0, t).
Then T3 is computable and the operator T obtained from T3 by type conversion
(2), T (f, t0, x0)(t) = T3(f, t0, x0, t), is computable.

In the proof of the classical theorem above, the operator A corresponds to
T1(f, t0, x0), and hn(t) corresponds to An(gx0)(t). Suppose that 1.-3. above are
true. Then for h := T (f, t0, x0), h(t) exists for all t ∈ [t0 − b; t0 + b], and the
restriction of h to the interval [t0 − b; t0 + b] is a local solution of (1). �

In the following we will compute the global solution of the initial value prob-
lem (1) for locally Lipschitz bounded continuous functions f : ⊆R × Rl → Rl

with open domain. Let h0 be the local solution computed in Lemma 3.2 with
initial point (t0, x0). Since t1 := t0 + b ∈ dom(f) we can extend the partial
solution h0 by a partial solution h1 obtained by Lemma 3.2 with initial point
(t1, x1) for x1 := h0(t1). This process can be iterated. For each of the points
(ti, xi) ∈ dom(f) we need a neighbourhood ball with Lipschitz constant Li and
upper bound Mi. We consider a representation δ such that a name of a function
f contains data for evaluation (a δl+1,l-name) and information about its open
domain and local Lipschitz data. Local upper bounds M can be computed from
these data (Lemma 3.4).

Definition 3.3 Define a representation δ of the locally Lipschitz bounded con-
tinuous functions f : ⊆R×Rl → Rl with open domain as follows: f ∈ δ〈p, q〉 iff
f ∈ δl+1,l(p) and q ∈ Σω is (a code of) a sequence ((B0, L0), (B1, L1), . . .), such
that Bi ∈ RBl+1, Li ∈ N, Bi⊆dom(f) and Li is a Lipschitz constant of f on Bi

for all i ∈ N, and dom(f) =
⋃

i∈N Bi.

Obviously, δ ≤ δl+1,l, hence evaluation (f, z) �→ f(z) is (δ, ρl+1, ρl)-comput-
able. For applying Lemma 3.2 to (t0, x0) ∈ dom(f) we want to find a radius r′

and constants L, M from the input data such that B((t0, x0), r′)⊆dom(f) and L

is a Lipschitz constant and M is an upper bound of f on this closed ball. Since
the sequence (Bi, Li)i is not suitable for this purpose, we introduce another
representation δ̃ that is equivalent to δ. Let B(x, r)/4 := B(x, r/4). Suppose,
L is a Lipschitz constant and M is an upper bound of f on B⊆dom(f). If
(t0, x0) ∈ B/4 then L is a Lipschitz constant and M is an upper bound of f

also on B((t0, x0), r/4) ∈ dom(f). Therefore, a name of the new representation
should also contain an upper bound of f on Bi⊆dom(f) for each i and should
satisfy the stronger condition dom(f) =

⋃
i∈N Bi/4.

Lemma 3.4 Define a representation δ̃ of the locally Lipschitz bounded continu-
ous functions f : ⊆R×Rl → Rl with open domain as follows: f ∈ δ〈p, q〉 iff f ∈
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δl+1,l(p) and q ∈ Σω is (a code of) a sequence ((C0, K0, M0), (C1, K1, M1), . . .)
of triples such that for all i, Ci ∈ RBl+1 has radius ≤ 1, Ci⊆dom(f), Ki, Mi ∈
N \ {0}, and Ki is a Lipschitz constant and Mi is an upper bound of f on Ci,
and such that dom(f) =

⋃
i Ci/4. Then δ ≡ δ̃.

Proof: Obviously, δ̃ ≤ δ.
For proving the other direction we first compute upper bounds Ni of f on the Bi.
We observe that (f, z) �→ ‖f(z)‖ is computable. By [Weihrauch, 2000, Corollary
6.2.5], which holds for partial continuous functions f as well if K ∈ dom(f), the
exact maximum max{‖f(z)‖ | z ∈ B} can be computed, hence also an integer
upper bound can be computed from f and the compact set B. Therefore, a
sequence of upper bounds Ni can be computed.

Next, we show that in general

B(x, r) =
⋃ {

B(y, s) |
y ∈ Ql+1, ‖x − y‖ < r, s ∈ Q, s ≤ 1, s < (r − ‖x − y‖)/5

}
.

(7)

For such (y, s) let z ∈ B(y, 4s). Then
‖z − x‖ ≤ ‖z − y‖ + ‖y − x‖ ≤ 4(r − ‖x − y‖)/5 + ‖y − x‖ < r. Therefore,

B(y, 4s)⊆B(x, r) for all balls B(y, s) in (7). (8)

Consequently, B(x, r) ⊇ ⋃{B(y, s) | . . .} in (7). For showing “⊆” let z ∈ B(x, r).
Choose t ∈ Q such that 0 < t ≤ 1 and t < (r − ‖x− z‖)/6, and choose y ∈ Ql+1

such that ‖z − y‖ < t. Then ‖y − x‖ ≤ ‖y − z‖ + ‖z − y‖ ≤ t + ‖z − y‖ ≤
(r − ‖x− z‖)/6 + ‖z − y‖ < r and hence z ∈ B(y, t). For (7) it remains to show
t ≤ (r − ‖x − y‖)/5. Since −‖x − z‖ ≤ −‖x − y‖ + ‖z − y‖ ≤ −‖x − y‖ + t,
t < (r−‖x−z‖)/6 ≤ (r−‖x−y‖+ t)/6 and hence t ≤ (r−‖x−y‖)/5. Therefore
(7) is true.

Now suppose f ∈ δ〈p, q〉 such that q encodes the list (B0, L0), (B1, L1), . . ..
As we have shown this list can be extended to a list (B0, L0, N0), (B1, L1, N1), . . .
containing also upper bounds Ni of f on the Bi. By (7,8), for every ball Bi we
can find a list (Bij)j∈N of balls Bij ∈ RBl+1 (j ∈ N) such that Bi =

⋃
j Bij/4

and Bij⊆Bi and the radius Bij is not greater 1 for all j (take the B(y, 4s)).
Therefore, from the list (Bi, Li, Ni)i∈N we can compute a list (Ci, Ki, Mi)i∈N

consisting of all such (Bij , Li, Ni) (i, j ∈ N). Since 〈p, q′〉 such that q′ is a name
of this new list is a δ̃-name of f , we have shown δ ≤ δ̃. �

In the following lemma, we consider the behaviour of the global solution for
for t ≥ t0. The case t ≤ t0 can be analysed similarly. Let T be the operator from
Lemma 3.2 for computing local solutions.

Lemma 3.5 Let f ∈ δ̃〈p, q〉 where q is a name of the list (Ci, Ki, Mi)i∈N. Let h

be the global solution for the initial condition (t0, x0) and suppose t0 < t. Then
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h(t) exists for t0 ≤ t ≤ t, if, and only if, there are n ≥ 0 and triples (Dk, Lk, Nk)
(k ≤ n) such that

(D0, L0, N0), . . . , (Dn, Ln, Nn) ∈ {(Ci, Ki, Mi) | i ∈ N} , (9)

(∀k ≤ n) (tk, xk) ∈ Dk/4 and (10)

t < tn+1 (11)

where the (tk, xk), 1 ≤ k ≤ n + 1, are determined as follows:

B(ak, rk) = Dk, dk = min
( rk

4Nk
,

1
2Lk

)
, (12)

tk+1 = tk + dk, xk+1 = T (f, tk, xk)(tk+1). (13)

Proof: Suppose the right hand side of the equivalence is true. We show by
induction that for all k ≤ n + 1,

h(t) exists for all t0 ≤ t ≤ tk . (14)

This is true for k = 0. Suppose (14) is true for k ≤ n. Since (tk, xk) ∈ Dk/4 by
(10), the cube B((tk, xk), rk/4) is contained in Dk and therefore, Nk is a bound
and Lk is a Lipschitz constant of f on it. By Lemma 3.2, h(t) = T (f, tk, xk)(t)
exists also for tk ≤ t ≤ tk + dk = tk+1. This ends the induction. Finally, h(t)
exists for t0 ≤ t ≤ t since t0 ≤ t ≤ tn+1.

On the other hand suppose h(t) exists for t0 ≤ t ≤ t. Since h is continuous,
the graph G := {(t, h(t)) | t0 ≤ t ≤ t} is compact. Therefore, there is a finite set
Q⊆{(Ci, Ki, Mi) | i ∈ N} such that G⊆⋃{B/4 | (B, K, M) ∈ Q. From this set
we select a sequence (Dk, Lk, Nk)0≤k≤n such that (9-11) holds.

Suppose for some k, (tk, xk) ∈ G, hence xk = h(tk). Then (tk, xk) ∈ B/4
for some (B, K, M) ∈ Q, where B =: B(ak, rk) for some ak and rk. Then
B((tk, xk), rk/4)⊆B and so K is a Lipschitz constant and M is a bound of f

on B((tk, xk), rk/4) as well. By Lemma 3.2, h(t) exists for tk ≤ t ≤ tk + dk

where dk := min(rk/4M, 1/2K). Let (Lk, Dk, Nk) := (B, K, M), tk+1 := tk + d

and xk+1 := h(tk+1). Since (t0, x0) ∈ G, starting from (t0, x0) we can define
(Lk, dk, Nk) and tk for k = 0, 1, . . . as long as tk ≤ t. Since the set Q is finite,
the dk have a common non-zero lower bound. Therefore, there is a first n such
that tn+1 > t. �

For representations δi : ⊆ Yi → Mi a set A⊆M1 × . . . × Mn is
(δ1, . . . , δn)-r.e. (recursively enumerable) iff there is a Type-2 machine, which
for any input (y1, . . . , yn) ∈ dom(δ1, . . . , δn) halts iff (δ1(y1), . . . , δn(yn)) ∈ A

[Weihrauch, 2000]. If the representations are fixed, we shall say “relatively r.e.”
or simly “r.e.”. Let γ : Y ⇒ M be a multi-representation and let ν : ⊆Σ∗ → N

be a representation with recursive domain. Let Q⊆M×N be (γ, ν)-r.e.. We state
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without proofs:

the multi-function x |⇒ y such that (x, y) ∈ Q is computable, (15)

the projection {x ∈ M | (∃y) (x, y) ∈ Q} is γ-r.e. , (16)

the multi-function x |⇒ (yi)i∈N such that (yi)i∈N is a list (17)

of all y such that (x, y) ∈ Q is (γ, νω)-computable.

By applying the above result we are now able to prove the following main
result of this section.

Theorem 3.6 1. The solution operator S : (f, t0, x0) �→ h where h : ⊆ R →
Rl is the maximal solution of the initial value problem (1) is (δ, ρ, ρl, δ1,l)-
computable.

2. The function F : (f, t0, x0) �→ U where U is the domain of the maximal
solution of the initial value problem (1) is (δ, ρ, ρl, θ1)-computable.

Proof: In the proof we use the representations δ̃, the δm,n and natural rep-
resentations for triples (D, L, N) with D ∈ RBl+1 and L, N ∈ N, for the finite
sequences and for the infinite sequences of such triples. For the other data we use
the representations that we have already introduced. By Lemma 3.4 it suffices
to prove computability w.r.t. δ̃. We use Lemma 3.5.

For 2. There is a flowchart F1 that on input 〈p, q〉 such that f ∈ δ̃〈p, q〉 where
q is a name of the list (Ci, Ki, Mi)i∈N and further inputs t0, x0, t ∈ Q (t > t0)
and (D0, L0, N0), . . . , (Dn, Ln, Nn) halts iff (9-11) are true. It first tries to verify
(9) and, if successful, using the operator T from Lemma 3.2 tries to compute the
(tk, xk) and verify (19) in turn. Finally it tries to verify (11).

By (16), from F1 a flowchart F2 can be constructed that on input 〈p, q〉
such that f ∈ δ̃〈p, q〉 where q is a name of the list (Ci, Ki, Mi)i∈N and fur-
ther inputs t0, x0 and t ∈ Q (t > t0) halts iff (9-11) are true for some
(D0, L0, N0), . . . , (Dn, Ln, Nn). By Lemma 3.5 F2 halts iff the intrval [t0; t] is
contained in dom(h).

By (17), from F2 a flowchart F3 can be constructed that on input 〈p, q〉 such
that f ∈ δ̃〈p, q〉 where q is a name of the list (Ci, Ki, Mi)i∈N and further inputs
t0, x0 computes a list of all t ∈ Q, t > t0, such that [t0; t] is contained in dom(h).

Correspondingly, a list of all t < t0 such that h(t) exists can be computed.
Therefore, F is (δ, ρ, ρl, θ1)-computable.

For 1. There is a flowchart F3 similar to F1 that on input 〈p, q〉 such that
f ∈ δ̃〈p, q〉 where q is a name of the list (Ci, Ki, Mi)i∈N and further inputs t0, x0

, t ∈ R (t > t0) and (D0, L0, N0), . . . , (Dn, Ln, Nn) halts iff (9-11) are true.
By (15), from F3 a flowchart F4 can be constructed such that on input 〈p, q〉

such that f ∈ δ̃〈p, q〉 where q is a name of the list (Ci, Ki, Mi)i∈N and further
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inputs t0, x0 and t ∈ R (t > t0) computes a list (D0, L0, N0), . . . , (Dn, Ln, Nn)
such that (9-11) are true.

From (D0, L0, N0), . . . , (Dn, Ln, Nn) and the other input data the tuples
(tk, xk, dk) such that (9-13) are true can be computed. Since there is some k such
that t ∈ (tk−dk; tk+dk) such a k can be computed. Finally h(t) = T (f, tk, xk)(t)
can be computed.

We have shown that (f, t0, x0, t) �→ h(t) for t > t0 can be computed.
Correspondingly, h(t) can be computed for t < t0. Therefore, (f, t0, x0, t) �→ h(t)
is (δ̃, ρ, ρl, ρ, ρl])-computable. By (2), (f, t0, x0) �→ h is (δ̃, ρ, ρl, [ρ →p ρl])-
computable, hence (δ, ρ, ρl, δ1l)-computable. �

For open subsets of the real line, the function U �→ sup U is (θ, ρ>)-
computable and the function U �→ inf U is (θ, ρ>)-computable. Therefore, from
f and the initial values t0, x0 we can compute α from above and β from be-
low such that (α, β) is the maximal interval of existence. If the input data are
computable, α is right-r.e. and β is left-r.e.

4 The Complexity of Blowups

We will study the blowup for the initial value problem (1) for locally Lipschitz
continuous functions f : Rl+1 → Rl defined on all of Rl+1. We consider only
“positive blowup”, that is, the behaviour of the solution for t ≥ t0. Let BUf be
the set of all initial conditions (t0, x0) such that for the maximal solution h of
(1), sup{t | h(t) exists} < ∞ (the blowup points) and let CBUf := Rl+1 \BUf be
the set of initial conditions for which there is no blowup. By the next theorem
the set CBUf is a Gδ-set which can be computed from f .

Theorem 4.1 The function B : f �→ CBUf for locally Lipschitz continuous
(total) functions f : Rn+1 → Rn is (δ, δl+1

G )-computable.

Proof: Let S and F be the functions from Theorem 3.6. Define a function
H1 by

H1(f, i, t0, x0) :=
{

1 if i < sup F (f, t0, x0)
0 otherwise.

This function is (δ, νN, ρ, ρl, ρ<)-computable: First compute the open set V :=
F (f, t0, x0) and then try to find i ∈ N in V . As long as i has not been found
print (a νQ-code of) 0 on the output tape, as soon as i has been found continue
writing 1s. By (2), the function H2 defined by H2(f, i)(t0, x0) := H1(f, i, t0, x0)
is (δ, νN, [ρl+1 → ρ<])-computable. H2(f, i) is the characteristic function of the
set

Vi := {(t0, x0) | S(f, t0, x0)(t) exists for some t > i}.
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Define the Sierpinski representation δn
Sierpinski of subsets of Rn by

δn
Sierpinski(p) = W iff [ρn → ρ<](p) is the characteristic function of W.

Then H3 : (f, i) �→ Vi is (δ, νN, δl+1
Sierpinski)-computable. Since θn ≡ δn

Sierpinski

[Brattka, Presser, 2003], the function H3 is (δ, νN, θl+1)-computable. In
particular, all the sets Vi are open. By (2), H4 : f �→ (Vi)i is (δ, [νN → θl+1])-
computable and hence (δ, (θl+1)ω)-computable. Since δn

G(p) =
⋂

i(θ
n)ω(p)(i),

the function H5 : f �→ ⋂
i Vi is (δ, δl+1

G )-computable. It remains to observe that
CBUf =

⋂
i Vi. �

Therefore, for every locally Lipschitz continuous (total) function f : Rl+1 →
Rl, the set CBUf is a Gδ-set and its complement BUf is (by definition) an Fσ-
set. If, in addition, f is computable (more precisely, δ-computable), then the set
CBUf is a computable Gδ-set.

Theorem 4.1 shows that Fσ is an upper complexity bound for the blowup
sets. Although not every Fσ-set is a blowup set, for example, if it is bounded;
this upper Fσ-complexity bound is sharp for l ≥ 2. This result is a corollary
of the following theorem in which we show that there is indeed a kind of Gδ

lower bound of CBUf for l ≥ 2, even for time independent systems. We prove a
non-uniform version. For a time independent system we may choose t0 = 0.

Theorem 4.2 Let l ≥ 2 be given. Then there exists a (δl−1
G , δ)-computable multi-

function F so that for every Gδ-set X⊆Rl−1 the function f = F (X)

1. is a locally Lipschitz continuous function f : Rl → Rl and

2. the solution u of the initial-value problem

u′(t) = f(u(t)), u(0) = (x0, 0) (18)

has a finite blowup for increasing t if and only if x0 �∈ X.

Proof. First we consider l = 2. For n ∈ N, let BIn := {(a ·2−n, (a+2) ·2−n) |
a ∈ Z} and let I be a canonical injective numbering of the set BI :=

⋃
n BIn of

“normed binary intervals”. For an open real interval (a; b) let 3(a; b) := (a− (b−
a); b + (b − a)). There is a computable function g0 :⊆ Σω × N2 → N such that
for all w ∈ dom(δl−1

G ) we have

δl−1
G (w) =

⋂
i

⋃
j

Ig0(w, i, j) .

As a first step we normalize this representation of δl−1
G (w) by an intersection of

unions of open intervals.
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Lemma 4.3 There is a computable function g :⊆ Σω × N2 → N such that for
all i, j ∈ N, w ∈ dom(δl−1

G ) and x ∈ R,

δl−1
G (w) =

⋂
i

Oi, O0 ⊇ O1 ⊇ O2 . . . for Oi =
⋃
j

Ig(w, i, j) , (19)

3Ig(w, i, j)⊆Oi , (20)

{j | x ∈ 3Ig(w, i, j)} is finite if x ∈ Oi . (21)

Proof. (Lemma 4.3) Let Oi :=
⋂

i′≤i

⋃
j Ig0(w, i′, j). Then

O0 ⊇ O1 ⊇ O2 . . . , δl−1
G (w) =

⋂
i

Oi and Oi =
⋃
j

Ig1(w, i, j)

for some computable function g1. Since every interval K ∈ BI is the union
of intervals L ∈ BI such that 3L⊆K, there is a computable function g2 such
that Oi =

⋃
j Ig2(w, i, j) and 3Ig(w, i, j)⊆Oi for all i, j. Finally, by successively

deleting for each i all g2(w, i, j) such that Ig2(w, i, j)⊆Ig2(w, i, j′) for some j′ <

j (such intervals Ig2(w, i, j) are not necessary for generating Oi) we obtain a
computable function g such that (19) and (20) and additionally

Ig(w, i, j) �⊆ Ig(w, i, j′) if j′ < j . (22)

For showing (21) consider x ∈ Oi. Hence x ∈ Ig(w, i, j0) =: (c; d) for some
j0 and some c, d. Furthermore, 2−n < min(x − c, d − x) for some number
n. Suppose, x ∈ 3Ig(w, i, j) for infinitely many j. Since for each k there
are at most 6 intervals L ∈ BIk such that x ∈ 3L, there must be numbers
j > j0 and m ≥ n + 3 such that x ∈ 3Ig(w, i, j) and Ig(w, i, j) ∈ BIm. Then
length(3Ig(w, i, j)) = 6 · 2−m < 2−n and hence 3Ig(w, i, j)⊆(c; d) = Ig(w, i, j0)
(since x ∈ 3Ig(w, i, j)). But this is false by (22), since j0 < j. �(Lemma 4.3)

Let now an δl−1
G -name ω of a Gδ-set X⊆R be given. As a next step we define

the function F (X) =: f : R2 → R2. For k ∈ N, let yk := 222k

. Then

2 ≤ yk < yk + y2
k + 2 ≤ yk+1 . (23)

For k = 〈i, j〉 let

gk(x, y) :=
{

y2 − y2
k if (x, y) ∈ Ig(w, i, j) × (yk; y2

k)
0 if (x, y) �∈ 3Ig(w, i, j) × (yk − 1; y2

k + 1) ,

and for all (x, y) between the two rectangles, gk(x, y) is defined by linear interpo-
lation such that (k, x, y) �→ gk(x, y) is a computable function that is effectively
locally Lipschitz. By (23) gk(x, y) · gk′(x, y) = 0 for k �= k′. Define the function
f by f(x, y) := (f1(x, y), f2(x, y)) where

f1(x, y) := 0 ,

f2(x, y) :=
{

1 if y < 1
y2 − ∑

k∈N gk(x, y) else .
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We study the solution u : R → R2 of the initial-value problem (18). Since
f1(x, y) = 0, all trajectories are in y-direction, hence for each initial value (x, 0)
we have a one-dimensional problem. We observe a particle starting at (x, 0)
traveling to position (x, y) with the prescribed speed f2(x, y) in y-direction.
Since f2(x, y) ≥ 1 for all x, y, the particle will reach every point (x, y) for y > 0.

Suppose x ∈ X . By (19), for all i there is some j such that x ∈ Ig(w, i, j).
Therefore there are infinitely many k (= 〈i, j〉) such that

f2(x, y) = y2 − gk(x, y) = y2
k for yk ≤ y ≤ y2

k.

Therefore, if u(tk) = (x, yk) then u(tk+1) = (x, yk+y2
k). Hence the particle needs

one time unit for traveling from yk to yk + y2
k. Since there are infinitely many

such intervals, the particle cannot approach infinity in finite time. Therefore,
there is no blowup for this initial value (x, 0).

Suppose x �∈ X . By (19) x ∈ Oi only for finitely many i. By (21) for each
of these numbers i, x ∈ 3Ig(w, i, j) only for finitely many numbers j. Therefore,
there are only finitely many k = 〈i, j〉 such that gk(x, y) > 0 for some y. Hence,
for some k, f2(x, y) = y2 for y > yk. As is well known, in this case the particle
will approach infinity in finite time. Therefore, there is a blowup for this initial
value (x, 0).

For l > 2, replace BIn by BI(l)n := {J1 × . . . × Jl−1 | J1, . . . , Jl−1 ∈ BIn},
replace the numbering I by a canonical numbering I(l) of BI(l) :=

⋃
n BI(l)n , and

define 3K accordingly for K ∈ N . The rest of the proof remains unchanged. �

In the one-dimensional case, we can say even more if we restrict ourselves
to functions f which do not depend on t. In this case the blowup sets do solely
depend on the zeroes of f .

Theorem 4.4 Let f : R → R be a locally Lipschitz continuous function.
Then the “positive” blowup set BUf of the initial value problem “x′(t) =
f(x(t)), x(0) = x0” is the union of two intervals (−∞, a) and (b,∞) for some
a, b ∈ R. If the function f is computable, then the constant a can be chosen to
be ρ<-computable and the constant b to be ρ>-computable.

Proof: If f has no zero, then there is a blowup either for all x0 or for no x0.
In the first case let a := −∞ and b := ∞, in the second case let a := b :=:= ∞.

Suppose that f has a zero. We observe that x0 �∈ BUf if there are x1, x2 such
that f(x1) = f(x2) = 0 and x1 ≤ x0 ≤ x2.

If f has no greatest zero then let b := ∞. Suppose, f has a greatest zero β.
Then there is a blowup either for all x0 > β or for no x0 > β. In the first case
let b := β , in the second case let b := ∞.

Correspondingly, if f has no smallest zero then let a := −∞. Suppose, f has
a smallest zero α. Then there is a blowup either for all x0 < α or for no x0 < α.
In the first case let a := α, in the second case let a := −∞.
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By [Weihrauch, 2000, Theorem 6.3.4] the smallest zero of a computable func-
tion (if it exists) is ρ<-computable and the greatest zero of a computable function
(if it exists) is ρ>-computable. Furthermore, −∞ and ∞ are ρ<-computable and
ρ>-computable. �
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