APPENDIX

Linear specification of VAR model

We consider the following VAR model to investigate the relationship between female (male) employment rate (ER) and GDP growth in different economic sectors (construction, education and accommodation & food services) in the three chosen countries (Germany, Poland and Portugal):

$$Y_{j,t} = c + \sum_{i=1}^{p} A_{j,i} Y_{j,t-i} + \eta_t$$
(1)

where Y_t is a $n \ge 1$ vector of endogenous variables, c is an $n \ge 1$ vector of constants, A is a $n \ge n$ matrix of coefficients, and i = 1, ..., p is the number of lags, η_t is $n \ge 1$ vector of error terms with zero mean and the variance Ω . Subscript j refers to the particular gender group, i.e. female and male. We define the vector Y_t in (1) as first-differences of all variables, i.e. $Y'_t = [\Delta ER_t \quad \Delta GDP_t]$.

Table A3. Residual dia	agnostics for VAR m	odels (linear speci	fication of VAR models)

			GE	RMANY			
	Construction		Education		Accomodation		
	Female	Male	Female	Male	Female	Male	
order of VAR model autocorrelation	4	6	6	6	4	4	
LM test(1-4)	1.47 (0.17)	1.58 (0.13)	1.33 (0.25)	1.15 (0.37)	0.94 (0.54)	0.96 (52)	
normality JB test heteroscedasticity	2.12 (0.71)	2.16 (0.71)	1.76 (0.78)	1.78 (0.78)	2.39 (0.66)	2.37 (0. 67)	
(White -chi-sq)	47.4 (0.5)	48.5 (0.18)	0.72 (0.56)	71.5 (0.15)	44.0 (0.39)	44.5 (0.62)	
	POLAND						
order of VAR model autocorrelation	5	4	4	6	4	4	
LM test(1-4)	1.69 (0.09)	1.73 (0.08)	1.33 (0.22)	1.24 (0.28)	1.59 (0.08)	1.68 (0.09)	
normality JB test heteroscedasticity	3.87 (0.42)	5.36 (0.25)	1.14 (0.89)	1.25 (0.87)	1.87 (0.76)	1.79 (0.77)	
(White -chi-sq)	14.5 (0.94)	12.7 (0.97)	22.1 (0.58)	23.1 (0.51)	37.8 (0.04)	37.6 (0.04)	
	PORTUGAL						
order of VAR model autocorrelation	3	3	6	6	6	6	
LM test(1-4)	1.11 (0.39)	0.59 (0.87)	0.51 (0.93)	0.82 (0.66)	1.05 (0.43)	1.16 (0.34)	
normality JB test heteroscedasticity	1.57 (0.81)	1.15 (0. 88)	2.54 (0.64)	2.24 (0.69)	4.02 (0.4)	3.6 (0.46)	
(White -chi-sq)	29.9 (0.75)	30.8 (0.71)	39.6 (0.31)	37.7 (0.39)	53.9 (0.31)	54.1 (0.25)	