APPENDIX

Linear specification of VAR model

We consider the following VAR model to investigate the relationship between female (male) employment rate (ER) and GDP growth in different economic sectors (construction, education and accommodation & food services) in the three chosen countries (Germany, Poland and Portugal):

$$Y_{j,t} = c + \sum_{i=1}^{p} A_{j,i} Y_{j,t-i} + \eta_t$$
 (1)

where Y_t is a $n \times 1$ vector of endogenous variables, c is an $n \times 1$ vector of constants, A is a $n \times n$ matrix of coefficients, and i = 1,..., p is the number of lags, η_t is $n \times 1$ vector of error terms with zero mean and the variance Ω . Subscript j refers to the particular gender group, i.e. female and male. We define the vector Y_t in (1) as first-differences of all variables, i.e. $Y_t' = [\Delta E R_t \quad \Delta G D P_t]$.

Table A3. Residual diagnostics for VAR models (linear specification of VAR models)

	GERMANY								
	Consti	ruction	Education			Accomodation			
	Female	Male	Female	Male		Female	Male		
order of VAR model autocorrelation	4	4	5		5	4		4	
LM test(1-4)	1.47 (0.17)	1.58 (0.13)	1.33 (0.25)	1.15 (0.37)		0.94 (0.54)	0.96 (52)		
normality JB test heteroscedasticity	2.12 (0.71)	2.16 (0.71)	1.76 (0.78)	1.78 (0.78)		2.39 (0.66)	2.37 (0. 67)		
(White -chi-sq)	47.4 (0.5)	48.5 (0.18)	0.72 (0.56)	71.5 (0.15)		44.0 (0.39)	44.5 (0.62)		
	POLAND								
order of VAR model	2	2	2		2	2		2	
LM test(1-4)	1.69 (0.09)	1.73 (0.08)	1.33 (0.22)	1.24 (0.28)		1.59 (0.08)	1.68 (0.09)		
normality JB test heteroscedasticity	3.87 (0.42)	5.36 (0.25)	1.14 (0.89)	1.25 (0.87)		1.87 (0.76)	1.79 (0.77)		
(White -chi-sq)	14.5 (0.94)	12.7 (0.97)	22.1 (0.58)	23.1 (0.51)		37.8 (0.04)	37.6 (0.04)		
	PORTUGAL								
order of VAR model autocorrelation	3	3	3		3	4		4	
LM test(1-4)	1.11 (0.39)	0.59 (0.87)	0.51 (0.93)	0.82 (0.66)		1.05 (0.43)	1.16 (0.34)		
normality JB test heteroscedasticity	1.57 (0.81)	1.15 (0. 88)	2.54 (0.64)	2.24 (0.69)		4.02 (0.4)	3.6 (0.46)		
(White -chi-sq)	29.9 (0.75)	30.8 (0.71)	39.6 (0.31)	37.7 (0.39)		53.9 (0.31)	54.1 (0.25)		

Table A4. Residual diagnostics for VAR models (asymmetric specification of VAR models)

	GERMANY							
	Construction			Education		Accomodation		
	Female	Male	Fem	ale Male	F	emale	Male	
order of VAR model		3	3	5	5	4	4	

autocorrelation	1.05	1.11	0.3	0.33	1.22	1.24				
LM test(1-4)	(0.45)	(0.38)	(0.99)	(0.99)	(0.32)	(0.30)				
normality	4.05	6.76	11.06	11.7	11.5	10.1				
JB test	(0.67)	(0.34)	(0.09)	(0.07)	(0.07)	(0.10)				
heteroscedasticity	107.9	107.5	188.1	188.1	141.1					
(White -chi-sq)	(0.43)	(0.50)	(0.32)	(0.32)	(0.55)	141.1 (0	.55)			
	POLAND									
order of VAR model		2	2	1	1	2	2			
autocorrelation	1.08	1.14	1.22	1.18	1.29	1.27				
LM test(1-4)	(0.40)	(0.34)	(0.24)	(0.28)	(0.21)	(0.22)				
normality	8.1	9.6	11.4	11.3	8.95	8.56				
JB test	(0.23)	(0.14)	(0.08)	(0.08)	(0.18)	(0.20)				
heteroscedasticity	71.6	66.2	31.6	33.1	82.5	82.6				
(White -chi-sq)	(0.49)	(0.67)	(0.68)	(0.61)	(0.10)	(0.10)				
				PORTUGAL						
order of VAR model		3	3	3	3	4	4			
autocorrelation	1.08	0.95	0.68	0.94	1.08	0.95				
LM test(1-4)	(0.43)	(0.57)	(0.87)	(0.57)	(0.43)	(0.57)				
normality	2.39	1.43	4.51	3.1	2.39	1.43				
JB test	(0.88)	(0.96)	(0.61)	(0.79)	(0.88)	(0.96)				
heteroscedasticity	155.2	152.9	138.3	131.2	155.2	152.9				
(White -chi-sq)	(0.25)	(0.29)	(0.03)	(0.06)	(0.25)	(0.29)				

Note: in parentheses are given p-values.