
Definition and Formal Metatheory

of the Machine Independent Language

Karl Palmskog, Xiaomo Yao, Ning Dong, Roberto Guanciale, and Mads Dam

Abstract

We define the Machine Independent Language (MIL), which captures microarchitec-
tural features such as out-of-order execution, and describe its metatheory on out-of-order
and in-order execution of microinstructions. All presented definitions and results have been
formalized and checked using the HOL4 theorem prover.

1 Introduction

The Machine Independent Language (MIL) captures microarchitectural features such as out-
of-order execution. MIL can be used as a form of abstract microcode language, e.g., as a target
language for translating Instruction Set Architecture (ISA) instructions, and for reasoning about
microarchitectural features that may cause unwanted information flows, e.g., side channels
leaking secret information.

In this supplementary material, we define MIL and its Out-of-Order (OoO), and In-Order
(IO) semantics. We then describe the metatheory of MIL. All definitions and results have been
formalized and checked using the HOL4 theorem prover [1]. The document renders some of the
formal, machine-checked HOL4 definitions and metatheory for MIL into rigorous but informal
form, using a mix of mathematical notation and English. It should thus be seen as a guide to
the HOL4 encoding rather than as a normative definition; the HOL4 theory is normative.

The document is structured as follows:

• Section 2 describes the syntax of MIL, including abstract syntax and some example pro-
grams using a basic surface syntax.

• Section 3 defines the OoO and IO dynamic semantics of MIL as transition step relations
via rules.

• Section 4 describes the metatheory of MIL, including the memory consistency of the OoO
and IO semantics.

2 Syntax

In this section, we define the abstract and concrete syntax of MIL. The syntax of expressions
is open-ended; we include the word expressions from the BIR language.

2.1 Abstract Syntax

Definition (Names). Variable t ranges over names, which are elements with decidable equality
that are totally ordered by the relation <. Variables N , C , F , and P range over sets of names.
max (N) is the partial function that returns the greatest name in N according to <, when this
name exists.

Definition and Formal Metatheory of the Machine Independent Language

Definition (Values). Variable v ranges over values, which are elements with decidable equality
drawn from a finite domain. The domain includes the special values true, false, and 0, where
true ̸= false. Values are also ranged over by the variables a and r when they are used as
memory addresses and register identifiers, respectively.

τ ::= resource
| PC program counter
| R register
| M memory

e, c ::= expression
| v value
| t name
| e1&e2 and
| e1|e2 or
| e1

∧e2 exclusive or
| e1 + e2 addition
| e1 − e2 subtraction
| e1 ∗ e2 multiplication
| e1/e2 division
| e1 :/e2 signed division
| e1 mod e2 modulo
| e1 smod e2 signed modulo
| e1 ≪ e2 left shift
| e1 ≫ e2 right shift
| e :≫ e2 signed right shift
| e1 == e2 equal
| e1 != e2 not equal
| e1 < e2 less than
| e1 :< e2 signed less than
| e1 ≤ e2 less or equal to
| e1 :≤ e2 signed less or equal to
| ∼ e complement
| !e logical negation
| (e) S parenthesized expression

o ::= operation
| e internal
| ld τ t load
| st τ t t ′ store

ι ::= microinstruction
| t ← c?o guarded assignment

Definition (Programs). Variable I ranges over sets of microinstructions. A set of microin-
structions is called a program.

2

Definition and Formal Metatheory of the Machine Independent Language

2.2 Surface Syntax

MIL programs defined by their abstract syntax are difficult to read and comprehend. To address
this problem, we define, by the grammar below, a simple C-like surface syntax for MIL that is
easier to read than the abstract syntax.

Program ::= InstructionList
InstructionList ::= ’’ | InstructionList Instruction
Instruction ::= NAME ’:=’ [Expression ’?’] Operation ’;’
Operation ::= Expression | LOAD ’(’ Resource ’,’ NAME ’)’ |
STORE ’(’ Resource ’,’ NAME ’,’ NAME ’)’
Expression ::= NAME | VALUE | TRUE | FALSE | ’!’ Expression | ...
Resource ::= PC | REG | MEM

Remark. In a ground MIL program, all names (NAME tokens) are name literals. To enable
composition of several MIL programs, names can also be variables, effectively defining a MIL
program template. To properly handle dependencies between microinstructions, translation of
a program template to a ground program can, e.g., guarantee that the syntactic instruction
order is preserved when substituting name variables for name literals.

2.3 Example Programs

This section shows the concrete and abstract syntax for several MIL programs, and explains
informally their meaning.

Assignment Program. The below program increments by one the value stored in the register
r1. In other words, it performs the assignment r1 = r1 + 1.

t0 := true ? 0 ; // zeroed name for PC loads and stores
t1 := true ? r1 ; // register identifier
t2 := true ? load(REG, t1) ; // load contents of of register
t3 := true ? t2 + 1 ; // incremented value
t4 := true ? store(REG, t1, t3) ; // store update
t5 := true ? load(PC, t0) ; // load current PC
t6 := true ? t5 + 4 ; // increment PC
t7 := true ? store(PC, t0, t6) ; // store incremented PC{

t0 ← true?0, t1 ← true?r1, t2 ← true?ld R t1, t3 ← true?t2 + 1, t4 ← true?st R t1 t3,
t5 ← true?ld PC t0, t6 ← true?t5 + 4, t7 ← true?st PC t0 t6

}
Conditional Program. The program below performs a conditional branch, i.e., it executes
the high-level instruction beq a.

t00 := true ? 0 ; // zeroed name for PC loads and stores
t11 := true ? r ; // register identifier
t12 := true ? load(REG, t11) ; // load contents of register
t21 := true ? t12 == 1 ; // check if contents is equal to 1
t31 := true ? load(PC, t00) ; // load current PC
t41 := true ? a ; // memory address
t42 := t21 ? store(PC, t00, t41) ; // store address to PC if equal
t51 := true ? t31 + 4 ; // increment PC
t52 := !t21 ? store(PC, t00, t51) ; // store incremented PC{

t00 ← true?0, t11 ← true?r , t12 ← true?ld R t11, t21 ← true?t12 == 1, t31 ← true?ld PC t00,
t41 ← true?a, t42 ← t21?st PC t00 t41, t51 ← true?t31 + 4, t52 ←!t21?st PC t00 t51

}
3

Definition and Formal Metatheory of the Machine Independent Language

Move Program. This program transfers a value from the register r1 to the register r5, i.e.,
it executes the high-level instruction mov r1, r5.

t00 := true ? 0 ;
t01 := true ? a0 ;
t02 := true ? store(PC, t00, t01) ;
t03 := true ? r5 ;
t04 := true ? v5 ;
t05 := true ? store(REG, t03, t04) ;
t10 := true ? r1 ;
t11 := true ? r5 ;
t12 := true ? load(REG, t11) ;
t13 := true ? store(REG, t10, t12) ;
t14 := true ? load(PC, t00) ;
t15 := true ? t14 + 4 ;
t16 := true ? store(PC, t00, t15) ; t00 ← true?0, t01 ← true?a0, t02 ← true?st PC t00 t01, t03 ← true?r5, t04 ← true?v5,

t05 ← true?st R t03 t04, t10 ← true?r1, t11 ← true?r5, t12 ← true?ld R t11,
t13 ← true?st R t10 t12, t14 ← true?ld PC t00, t15 ← true?t14 + 4, t16 ← true?st PC t00 t15


3 Semantics

3.1 Runtime Syntax

Definition (Stores). Variable s ranges over stores, which are finite maps from names to values.

• dom (s) is the set of names for which the store is defined.

• s(t) ↓ (s(t) ↑) is true precisely when the store s is defined for t (resp. undefined for t).

• s + [t 7→ v] is the store that maps t to v but otherwise behaves as s.

• s(t) = s ′(t ′) is true precisely when either (i) s(t) ↑ and s ′(t ′) ↑, or (ii) there is some v
such that s(t) = v and s ′(t ′) = v .

σ ::= state
| (I , s,C ,F)

α ::= action
| Exe execute
| Cmt (a, v) commit
| Ftc (I) fetch

obs ::= observation
| ϵ internal unobservable operation
| dl v load from data cache
| ds v store into data cache
| il v load from instructions

l ::= label
| (obs, α, t)

4

Definition and Formal Metatheory of the Machine Independent Language

3.2 Auxiliary Definitions

Definition (Names in Expressions and Operations). For an expression e, its set of names
n (e) is defined recursively in the obvious way, e.g., n (v) = ∅, n (t) = {t}, n (!e) = n (e), and
n (e1 + e2) = n (e1) ∪ n (e2). For an operation o, its set of names n (o) is defined similarly.

Definition (Names in Microinstructions). A microinstruction ι has a bound name, written
bn (ι), and a set of free names, written fn (ι); the set of all names in ι is written n (ι). The set
of all bound names of microinstructions in a program I is written bn (I).

• bn (t ← c?o) = t

• fn (t ← c?o) = n (c) ∪ n (o)

• n (ι) = {bn (ι)} ∪ fn (ι)

• bn (I) = {bn (ι) | ι ∈ I }

Definition (Semantics of Expressions). The semantics of an expression e is given by a partial
function taking the expression and a store s as input, and returning a value. We write [e]s ↓
when the output value is defined, i.e., [e]s = v for some value v , and [e]s ↑ otherwise. We write
[e]s = [e ′]s ′ when either (i) [e]s ↑ and [e ′]s ′ ↑, or (ii) there is some v such that [e]s = v and
[e ′]s ′ = v .

We do not designate a canonical function that defines the semantics of expressions, since it
is application dependent. However, we require such a function to have the following properties:

1. For all e and s, [e]s ↓ if and only if n (e) ⊆ dom (s).

2. For all e, s, and s ′, if s(t) = s ′(t) holds for all t ∈ n (e), then [e]s = [e]s ′.

3. For all v and s, [v]s = v .

Definition (True Guard Condition). Given a store s, an expression c evaluates to a true guard
condition, written [c]s, iff there exists v such that [c]s = v and v ̸= false. In particular, [c]s
holds if [c]s = true.

Definition (Microinstruction Translation). The function translate takes as input a value v and
a name t , and returns a set of microinstructions. The function has the following properties:

1. For all v and t , translate (v , t) is a finite set.

• MIL semantics require the maximum instruction name to be well defined.

2. For all ι ∈ translate (v , t) and ι′ ∈ translate (v , t), if bn (ι) = bn (ι′) then ι = ι′.

• Bound names of instructions must be unique.

3. For all ι ∈ translate (v , t) and t ′ ∈ fn (ι), t ′ < bn (ι).

• The graph of instruction dependencies must be a acyclic.

4. For all ι ∈ translate (v , t) and t ′ ∈ n (ι), t < t ′.

5

Definition and Formal Metatheory of the Machine Independent Language

• Instructions produced by translate must not contain t or names less than t .

• Ensures instructions produced for different values do not intermingle.

5. For all ι ∈ translate (v , t) and t ∈ fn (ι), there exists ι′ such that ι′ ∈ translate (v , t)
and bn (ι′) = t .

• The graph of instruction dependencies must be proper, without dangling edges.

6. For all t1 ← c1?o1 ∈ translate (v , t) and t2 ← c2?o2 ∈ translate (v , t), if t2 ∈ n (c1),
then c2 = true.

• If a name is used in a guard expression, the instruction with that bound name must
be trivially completable.

• For example, if the instruction with that bound name has a false guard, there is no
chance for the guard expression that contains the name to evaluate to a value.

7. For all stores s, if t1 ← c1?o1 ∈ translate (v , t), t2 ← c2?o2 ∈ translate (v , t), t2 ∈ n (o1),
[c1]s, and [c2]s = v ′, then v ′ ̸= false.

• When an instruction with a true guard depends on another instruction, and the
latter instruction’s guard expression evaluates to a value, it must not be false.

8. If t ′ ← c?st PC t1 t2 ∈ translate (v , t), then t1 ← true?0 ∈ translate (v , t).

• PC stores are always to address zero.

9. If t ′ ← c?ld PC t ′′ ∈ translate (v , t), then t ′′ ← true?0 ∈ translate (v , t).

• PC loads are always from address zero.

Remark. The requirements of translate are tailored to preserved state well-formedness, as
defined below. We do not provide any canonical complete definition of translate, since it is
application dependent.

Definition (Address of Name). The address of a name t for the program I , when it is defined,
is a tuple (τ, t ′). We define the partial function addr by case analysis.

• addr (I , t) = (τ, t ′), if t ← c?ld τ t ′ ∈ I for some c.

• addr (I , t) = (τ, t ′), if t ← c?st τ t ′ t ′′ ∈ I for some c and t ′′.

Definition (Store May). The function str-may returns the set of store microinstructions in a
state that may affect the instruction with the given bound name. For a state σ = (I , s,C ,F)
and name t , str-may is defined as follows.

str-may (σ, t) = {t ′ ← c′?st τ t1 t2 ∈ I | t ′ < t ∧ ∃t0. addr (I , t) = (τ, t0)∧
([c′]s ∨ [c′]s ↑) ∧ ((∃v . s(t1) = v ∧ s(t0) = v) ∨ s(t1) ↑ ∨ s(t0) ↑)}

Definition (Store Active). The function str-act returns the set of store microinstructions that
are active for the instruction with the given bound name. For a state σ = (I , s,C ,F) and name
t , str-act is defined as follows.

str-act (σ, t) = {t ′ ← c′?st τ t1 t2 ∈ str-may (σ, t) | ∃t0. addr (I , t) = (τ, t0)∧
¬(∃t ′′ ← c′′?st τ t ′1 t

′
2 ∈ str-may (σ, t). t ′′ > t ′ ∧ [c′′]s ∧

((∃v . s(t ′1) = v ∧ s(t0) = v) ∨ (∃v . s(t ′1) = v ∧ s(t1) = v)))}

6

Definition and Formal Metatheory of the Machine Independent Language

Definition (Semantics of Instructions). The semantics of instructions is given by a partial
function on instructions ι and states σ = (I , s,C ,F), returning a tuple of a value and an
observation. We write [ι]σ = (v , obs) and define the function by case analysis on ι.

• [t ← c?e]σ = (v , ϵ), if [e]s = v .

• [t ← c?ld τ t ′]σ = (v , dl a), if bn (str-act (σ, t)) = {t ′′}, s(t ′) = a, s(t ′′) = v , τ =M, and
t ′′ ∈ C .

• [t ← c?ld τ t ′]σ = (v , ϵ), if bn (str-act (σ, t)) = {t ′′}, s(t ′) = a, s(t ′′) = v , and either
τ ̸=M or t ′′ /∈ C .

• [t ← c?st τ t1 t2]σ = (v , ϵ), if s(t1) = v and s(t2) ↓.

Definition (Completed Microinstruction). A microinstruction ι is completed in a state σ =
(I , s,C ,F), written C (σ, ι), precisely when:

• ι = t ← c?stM t1 t2 and either [c]s = false or t ∈ C .

• ι = t ← c?st PC t1 t2 and either [c]s = false or t ∈ F .

• ι = t ← c?o otherwise, and either [c]s = false or t ∈ dom (s).

3.3 Transition Step Relations

Definition (Out-of-Order Relation). The labeled transition relation σ
l−↠ σ′ for out-of-order

steps is the least relation defined by the three rules below.

σ = (I , s,C ,F)
ι = t ← c?o
ι ∈ I
[ι]σ = (v , obs)
s(t) ↑
[c]s

(I , s,C ,F)
(obs,Exe, t)−−−−−−−−↠ (I , s + [t 7→ v],C ,F)

OoO Exe

σ = (I , s,C ,F)
s(t) ↓
t ← c?stM t1 t2 ∈ I
t /∈ C
s(t1) = a
s(t2) = v
bn (str-may (σ, t)) ⊆ C

(I , s,C ,F)
(ds a,Cmt (a, v), t)−−−−−−−−−−−−−↠ (I , s,C ∪ {t},F)

OoO Cmt

σ = (I , s,C ,F)
t ← c?st PC t1 t2 ∈ I
s(t) = v
t /∈ F
bn (str-may (σ, t)) ⊆ F
translate (v ,max (bn (I))) = I ′

(I , s,C ,F)
(il v ,Ftc (I ′), t)−−−−−−−−−−−↠ (I ∪ I ′, s,C ,F ∪ {t})

OoO Ftc

7

Definition and Formal Metatheory of the Machine Independent Language

OoO-Exe: Computes the value v of an instruction with bound name t and records the result
in the store by adding the mapping [t 7→ v].

OoO-Ftc: Fetches an already-executed PC store instruction, which potentially adds more in-
structions to the program in the state.

OoO-Cmt: Commits an already-executed memory store instruction to memory.

Definition (In-Order Relation). The in-order labeled transition relation σ l−→ σ′ is the least
relation defined by the single rule below.

σ
(obs, α, t)−−−−−−−↠ σ′

∀ ι ∈ σ.if bn (ι) < t then C (σ, ι)
σ (obs, α, t)−−−−−−−→ σ′ IO Step

IO-Step: Processes instructions according to the OoO rules, but deterministically according to
the program order.

4 Metatheory

This section describes the key semantic definitions and results in the metatheory of MIL.

4.1 List Theory

To define MIL executions, we use a standard theory of polymorphic lists. This subsection
introduces our list notations and utility functions.

Definition (Lists). The empty list is written [], while a list with k elements is written
[e1, . . . , ek]. The concatenation of two lists π and π′ is written π ++ π′. The list with head
element e and tail π is written e :: π.

Definition (Element at List Position). For a list π, the partial function nth returning the
element at position n, starting from zero, is defined as follows:

• nth(0, e :: π) = e

• nth(n+ 1, e :: π) = nth(n, π)

Definition (List Prefixes). The list prefix relation ⪯ is defined inductively.

• [] ⪯ π.

• If π ⪯ π′, then e :: π ⪯ e :: π′.

Definition (List Length). The length of a list is defined in the obvious way:

• length([]) = 0

• length(e :: π) = length(e) + 1

Definition (List Head and Last Element). Partial functions for obtaining the head and last
element of a list are defined as per below.

• hd(e :: π) = e.

8

Definition and Formal Metatheory of the Machine Independent Language

• last(e :: π) = e, if π = [].

• last(e :: π) = last(π), if π ̸= [].

Definition (Relation Based Permutations). Let R be an equivalence relation. Then, two lists
π and π′ are permutations under R, written permR(π, π

′), is the smallest relation closed under
the following rules:

• permR([], []).

• If R(e1, e2) and permR(π1, π2), then permR(e1 :: π1, e2 :: π2).

• permR(e1 :: e2 :: π, e2 :: e1 :: π).

• If permR(π1, π2) and permR(π2, π3), then permR(π1, π3).

4.2 Auxiliary Semantic Definitions

Definition (Well Formed State). A state σ = (I , s,C ,F) is well formed precisely when all the
following properties hold:

1. I is a finite set.

• MIL semantics require the maximum instruction name to be well defined.

• Infinite collections of instructions do not occur in the intended applications of MIL.

2. C ∪ F ⊆ dom (s).

• Instructions for names in C and F must have been executed.

3. dom (s) ⊆ bn (I).

• There must be an instruction for each name that has been recorded as executed.

4. For all ι ∈ I and t ∈ fn (ι), t < bn (ι).

• The graph of instruction dependencies must be acyclic.

• This property makes linear instruction execution guarantee completeness.

5. For all ι ∈ I and ι′ ∈ I , if bn (ι) = bn (ι′) then ι = ι′.

• Bound names of instructions must be unique in I .

6. For all ι ∈ I and t ∈ fn (ι), there exists some ι′ such that ι′ ∈ I and bn (ι′) = t .

• The graph of instruction dependencies must be proper, without dangling edges.

7. For all t ∈ C , there exists t1, t2, and c such that t ← c?stM t1 t2 ∈ I .

• The set C contains only bound names of memory store instructions.

8. For all t ∈ F , there exists t1, t2, and c such that t ← c?st PC t1 t2 ∈ I .

• The set C contains only bound names of PC store instructions.

9. For all t ← c?st τ t1 t2 ∈ I , if s(t) = v , then s(t1) ↓ and s(t2) = v .

9

Definition and Formal Metatheory of the Machine Independent Language

• Store instruction execution results are consistent with results for instruction depen-
dencies.

10. For all t ← c?o ∈ I , if s(t) ↓, then [c]s.

• Executed instructions have true guards.

11. If t ← c?st PC t1 t2 ∈ I , then t1 ← true?0 ∈ I .

• PC stores are always to address zero.

12. For all t ← c?o ∈ I and t ′ ← c′?o′ ∈ I , if t ′ ∈ n (c), then c′ = true.

• If a name is used in a guard expression, the instruction with that bound name must
be trivially completable.

• For example, if the instruction with that bound name has a false guard, there is no
chance for the guard expression that contains the name to evaluate to a value.

13. For all stores s ′, if t ← c?o ∈ I , t ′ ← c′?o′ ∈ I , t ′ ∈ n (o), [c]s ′, and [c′]s ′ = v ′, then
v ′ ̸= false.

• When an instruction with a true guard depends on another instruction, and the
latter instruction’s guard expression evaluates to a value, it must not be false.

14. For all t ← c?e ∈ I , if s(t) = v , then [t ← c?e]σ = (v , ϵ).

• Results for instructions with internal operations are consistent with the semantics of
instructions.

15. If t ← c?ld PC t ′ ∈ I , then t ′ ← true?0 ∈ I .

• PC loads are always from address zero.

16. If t ∈ C , then bn (str-may (σ, t)) ⊆ C .

• For all committed memory store instructions, all store instructions that may affect
those instructions are already committed.

17. If t ∈ F , then bn (str-may (σ, t)) ⊆ F .

• For all fetched PC store instructions, all stores instructions that may affect those
instructions are already fetched.

Remark. A MIL program does not have any canonical initial state. In lieu of initial states,
well-formedness collects some elementary state sanity properties. In particular, well-formedness
prevents some errors during execution, e.g., due to dangling microinstruction references. How-
ever, the properties are not necessarily exhaustive in ruling out states with unintuitive behavior.

Definition (Empty State). The empty state consists of the empty store and empty sets,
(∅, [], ∅, ∅).

Definition (Executions). Let R be a relation on triples (σ, l , σ′) where σ and σ′ are states,
and l is a label. Let π be a list of such state-label triples. Then, π is an execution precisely
when one of the following holds:

10

Definition and Formal Metatheory of the Machine Independent Language

1. π = [(σ, l , σ′)] and R(σ, l , σ′).

2. π = π′ ++ [(σ1, l1, σ2), (σ2, l2, σ3)], R(σ2, l2, σ3), and π′ ++ [(σ1, l1, σ2)] is an execution.

When π is an execution for −↠, π is called an OoO execution. When π is an execution for −→,
π is called an IO execution. We write π(i) for nth(n, π).

Definition (Triple Access Functions). We define access functions using numbers for state-label
triples used in executions.

• 1(σ, l , σ′) = σ.

• 2(σ, l , σ′) = l .

• 3(σ, l , σ′) = σ′.

Definition (Traces). An observation obs is considered visible if obs ̸= ϵ. A trace is a list of
visible observations. From an execution π, the function trace obtains a trace by first extracting
out all observations from labels in π, and then keeping only visible ones.

Definition (Commits). For an OoO or IO execution π and address value a, we define a recursive
function commits(π, a) which extracts out values in commit transitions associated with a.

• commits([], a) = []

• commits((σ, (obs,Cmt (a, v), t), σ′) :: π′, a) = v :: commits(π′, a)

• commits((σ, (obs,Cmt (a ′, v), t), σ′) :: π′, a) = commits(π′, a), if a ̸= a ′

• commits((σ, l , σ′) :: π′, a) = commits(π′, a), otherwise.

Definition (Same Action and Name Relation). The relation RAN is true for two triples
(σ1, l1, σ

′
1) and (σ2, l2, σ

′
2) whenever the names and actions in l1 and l2 are the same. RAN

is then an equivalence relation.

Definition (Ordered Execution). An execution π is an ordered execution precisely when, for
all natural numbers i and j where i < j < length(π), the name in the label at i is less than or
equal to the name in the label at j in π.

Definition (Ordered Version). The execution π′ is an ordered version of the execution π
precisely when

• 1(hd(π)) = 1(hd(π′)),

• 3(last(π) = 3(last(π′)),

• for every (address) value a, it holds that commits(π)(a) = commits(π′)(a),

• permRAN
(π, π′), and

• π′ is an ordered execution.

Definition (Initialized Resource for Values). The predicate initialized-resource-in-set(σ, τ, V)
is true precisely when, for all v ∈ V , there exists a completed store instruction for τ in σ such
that there is no earlier load instruction in σ for τ .

11

Definition and Formal Metatheory of the Machine Independent Language

Definition (Initialized Resource). The predicate initialized-resource(σ, τ) is defined by case
analysis on τ .

• initialized-resource(σ,PC) = initialized-resource-in-set(σ,PC, {0})

• initialized-resource(σ,R) = initialized-resource-in-set(σ,R,Uv)

• initialized-resource(σ,M) = initialized-resource-in-set(σ,M,Uv)

Definition (Initialized State). A state σ is initialized when all resources in σ are initialized,
i.e., when initialized-resource(σ, τ) holds for τ = PC,R,M.

4.3 Transition Step Relation Properties

Lemma 1 (OoO Well-Formedness Preservation). If σ is well formed and σ
(obs, α, t)−−−−−−−↠ σ′, then

σ′ is well formed.

Lemma 2 (OoO Determinism). Let σ be a well-formed state and suppose σ
(obs1, α1, t)−−−−−−−−↠ σ1

and σ
(obs2, α2, t)−−−−−−−−↠ σ2. Then obs1 = obs2, α1 = α2, and σ1 = σ2.

Proof. By case analysis on the possible transitions, using well-formedness properties such as
instruction name uniqueness.

Remark. This lemma shows that the only degree of freedom when performing OoO transitions
is in the choice of instruction name.

Lemma 3 (IO Determinism). Let σ be a well-formed state and suppose σ l1−−→ σ1 and σ l2−−→ σ2.
Then l1 = l2 and σ1 = σ2.

4.4 Memory Consistency of the Out-of-Order and In-Order Semantics

Lemma 4. Let σ0 = (I0, s0,C0,F0) be a well-formed state and let σ1 = (I1, s1,C1,F1) and
σ2 = (I2, s2,C2,F2) be states such that σ0

(obs1, α1, t1)−−−−−−−−−↠ σ1 and σ1
(obs2, α2, t2)−−−−−−−−−↠ σ2, with t2 < t1.

Then, there is a state σ′
2 = (I0∪ I ′2, s0∪ s ′2,C0∪C ′

2,F0∪F ′
2) such that σ0

(obs, α2, t2)−−−−−−−−↠ σ′
2, where

I2 = I1 ∪ I ′2, s2 = s1 ∪ s ′2, C2 = C1 ∪ C ′
2, F2 = F1 ∪ F ′

2, and dom (s0) ∩ dom (s ′2) = ∅. Morever,
for all a, if there exists v such that α2 = Cmt (a, v), then there does not exist v ′ such that
α1 = Cmt (a, v ′).

Proof. By case analysis on the possible transitions.

Lemma 5 (Two-Step Reordering). Let σ0 be a well-formed state and suppose σ0
(obs1, α1, t1)−−−−−−−−−↠

σ1 and σ1
(obs2, α2, t2)−−−−−−−−−↠ σ2, with t2 < t1. Then, there exists σ′, obs ′1, and obs ′2 such that

σ0
(obs′2, α2, t2)−−−−−−−−−↠ σ′ and σ′ (obs′1, α1, t1)−−−−−−−−−↠ σ2. Morever, for all a, if there exists v such that

α2 = Cmt (a, v), then there does not exist v ′ such that α1 = Cmt (a, v ′).

Proof. By Lemma 4 and case analysis on the possible transitions.

Lemma 6 (Exists Reordering). Let π be an OoO execution such that 1(π(0)) is well-formed.
Then, there is an OoO execution π′ that is an ordered version of π.

Lemma 7 (Complete Consistent). Let π be an OoO execution of length k with 1(π(0)) well-
formed, such that if i ≤ j < k, then n(2(π(j))) > t. Then, if C(3(π(k − 1)), t), we have
C(3(π(i)), t).

12

Definition and Formal Metatheory of the Machine Independent Language

Lemma 8 (Execution Result). Let π be an ordered OoO execution of length k with 1(π(0))
well-formed. Assume that if t > tmax , then there is no t in the store of 3(π(k − 1)). Then, for
all 0 ≤ i < k, we have n(2(π(i))) ≤ tmax .

Lemma 9 (Main Reordering). Let π be an ordered OoO execution with 1(π(0)) well-formed.
Assume there exists tmax such that (i) if t is in the store of 3(last(π)) and t ≤ tmax , then
C(3(last(π)), t), and (ii) if t′ > tmax , then there is no t′ in the store of 3(last(π)). Then, π is an
IO execution.

Theorem 1 (OoO-IO Memory Consistency). Let π be an OoO execution where 1(π(0)) is
well-formed and initialized. Then, there is an IO execution π′ such that 1(π(0)) = 1(π′(0)) and
for all a, commits(π, a) is a prefix of commits(π′, a).

Remark. Let π be an IO execution. Then there exists an OoO execution π′ such that 1(π(0)) =
1(π′(0)) and for all a, commits(π, a) is a prefix of commits(π′, a).

Proof. Take π′ = π, since an IO execution is also an OoO execution.

References

[1] HOL Theorem Prover, version kananaskis-14. https://github.com/HOL-Theorem-Prover/
HOL/releases/tag/kananaskis-14.

13

https://github.com/HOL-Theorem-Prover/HOL/releases/tag/kananaskis-14
https://github.com/HOL-Theorem-Prover/HOL/releases/tag/kananaskis-14

	Introduction
	Syntax
	Abstract Syntax
	Surface Syntax
	Example Programs

	Semantics
	Runtime Syntax
	Auxiliary Definitions
	Transition Step Relations

	Metatheory
	List Theory
	Auxiliary Semantic Definitions
	Transition Step Relation Properties
	Memory Consistency of the Out-of-Order and In-Order Semantics

