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Abstract: Individuals vary in survival chances due to differences in genetics, environmental 
exposures, and gene-environment interactions. These chances, as well as the contribution of 
each factor to mortality, change as individuals get older. In general, human physiological 
systems are constructed by collecting more than one part to perform either single or multiple 
functions. In addition, the successive times between failures are not necessarily identically 
distributed. More generally, they can become smaller (an indication of deterioration). However, 
if any critical deterioration is detected, then the decision of when to take the intervention, given 
the costs of diagnosis and therapeutics, is of fundamental importance. At the time of the 
decision, the degree of future physiological system deterioration, which is likely to be 
uncertain, is of primary interest for the decision maker. This paper develops a possible Web-
based decision support system by considering the sensitivity analysis as well as the optimal 
prior and posterior decisions for aging chronic diseases. The proposed design of Bayesian 
decision support systems facilitates the effective use of the computing capability of computers 
and provides a systematic way to integrate the expert’s opinions and the sampling information 
which will furnish decision makers with valuable support for quality decision making. 
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1 Introduction  

Demographic shifts in the population will lead to a further increase in the proportion 
of elderly and consequently of people with chronic diseases. For example, almost 75 
percent of the elderly (age 65 and over) have at least one chronic and about 50 percent 
have at least two chronic diseases [Calkins et al., (99)]. In addition, aging is a strong 
socially appealing issue with many implications for human as well as providers of 
healthcare. In general, human physiological systems are constructed by collecting 
more than one part to perform either single or multiple functions. However, the 
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successive times between failures are not necessarily identically distributed. More 
generally, they can become smaller (an indication of deterioration). If any critical 
deterioration is detected, then the decision of when to take the intervention, given the 
costs of treatments and failures, is of fundamental importance. At the time of the 
decision, the degree of future physiological deterioration, which is likely to be 
uncertain, is of primary interest for the decision maker (e.g., determining the 
prevalence of disease, doing a population survey, or measuring the level of a toxin). 
Naturally, gathering additional data will not always be economical. It is of special 
interest to determine analytically or numerically the conditions under which it will be 
worthwhile to collect additional information. Therefore, we propose a Bayesian 
decision process to provide a significantly improved methodology for dealing with the 
decision problems of human physiological systems which can determine the 
conditions for taking the different actions, and thereby help the decision maker 
maximize expected profit (or minimize expected loss). This paper reviews several 
plausible approaches and develops a Web-based decision support system (DSS) for 
carrying out the complex computations involved in the decision process to determine 
the conditions for taking different actions, and thereby provides guidelines for 
decision-making and furnishes decision makers with valuable support for making 
reliable and robust decisions.  

2 Bayesian Decision Model for Aging Physiological System  

In many studies in the reliability, engineering, public health, medical, actuarial, and 
economic settings, the event of primary interest is recurrent, so that for a given unit 
the event could be observed more than once during the study [Zenia et al., 99]. For 
example, the breakdown of electromechanical systems (e.g., motor vehicles, 
computers, nuclear power plants) are recurrent events in the reliability and 
engineering setting. Example of recurrent events in public health and medical settings 
include outbreak of diseases (e.g., encephalitis), repeated hospitalization of end-stage 
renal disease patients, recurrence of tumors, and angina pectoris in patients with 
chronic coronary disease [Byar, (80)], [Gail et al., 80], [Klein et al., 89], [Lawless, 
87], [Thall and Lachin, 88], and [Wei et al., 89]. Recurrent events pervade many 
studies in variety of fields, and hence it is of paramount importance to have 
appropriate models and methods of statistical analyses for such data [Chang and 
Cheng, 06].  

2.1 The Failure Intensity Functions 

In many longitudinal studies of chronic diseases, the diseases are modeled by either 
renewal processes or nonhomogeneous Poisson processes. A renewal process is based 
on the assumption that the system will be “as good as new” after repair (e.g., Hip 
replacement) [Cox, 62], [Lawless, 82], [Nelson, 82], [Aalen and Husebye, 91], [Cook 
et al., 99], and [Abouammoh and Qamber, 03]. A nonhomogeneous Poisson process is 
based on the assumption that the system will be “as good as old” after repair. For 
example, [Cook et al., 96] developed a robust test for kidney transplant based on 
recurrent event responses. [Wang et al., 00] used a nonhomogeneous Poisson process 
to analyze the times between failures to determine the optimum first metastases. 
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[Dewanji and Moolgavkar, 00] present a position process formulation for chronic 
respiratory disease in relation to air pollution indices. [Aggarwal et al., 05] also 
investigated the mean time between failures for dorsal cochlear nucleus neurons. In 
practice, the former assumption may be reasonable for only one part, while the latter 
assumption seems more plausible for complex human physiological systems 
consisting of many organs, each of which has its own failure mode.  

In this study, we assume an aging physiological system behaves according to a 
nonhomogeneous Poisson process and that the physiological system failure process is 
time-dependent. The intensity function of the failure process is usually assumed to be 
of the form λ(x)=λ0h(β;x), where λ0 is the scale factor, β is the aging rate, x is the 
elapsed time, and h(.) can be any function that reflects the aging process. Several 
different failure intensity functions have been proposed. The three commonly used 
models are linear, exponential, and power law failure models.  
z The linear model is of the form )1()( 0 xx βλλ += . This model assumes that the 

failure rate increases (or decreases) linearly over time, with an initial failure rate 
of λ0 and a linear aging rate β. Where β, measured in units of 1/time, may be 
negative, corresponding to survivability growth; however, it must be large 
enough that λ(x) does not become negative in the time period of interest.  

z The exponential model is of the form λ λ β( ) ( )x x= 0 exp . This model assumes 

that the failure rate increases (or decreases) exponentially over time, with an 
initial failure rate of λ0 and an exponential deterioration rate β. If β is negative, 
the survivability growth is indicated, while β is positive, then the physiological 
system is deteriorating over time.  

z The power-law model is of the form 1-
0)( ββλλ xx = , where β is effectively unit 

less and must be positive to ensure that λ(x) does not become negative. For β<1 
the failure intensity is decreasing (corresponding to survivability growth), and 
for β>1 the failure intensity is increasing (corresponding to deterioration).  

 
One of the other models studied by [Cox and Lewis, 66], called the log-linear 

model, )(exp)( xx βαλ += , is essentially the same as the exponential model if we let 

)(exp0 αλ = . Some other models have also been proposed to model deterioration, but 

in more complicated ways. Unlike the three models given above, these models often 
have more than two parameters.  

2.2 Bayesian Decision Model 

Suppose that human being has a lifetime (i.e., time horizon) T and the decision has to 
be made at time t. The crucial two-action decision is whether at time t, the failure rate 
will be too high (in which case some risk reduction action needs to be taken), or 
whether it will still be within an acceptable range (in which case we can according to 
the status quo). Another option is to gather additional information before the final 
decision is made. The basic elements of the Bayesian decision process are as follows 
[Huang and Chang, 04]: 
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z  Parameter space Θ :{(λ0,β)| λ0>0}, where  λ0 is the initial factor and β is the 
aging rate. Both parameters are uncertain and can be estimated through experts’ 
opinions. 

z  Action space A:{a1,a2}, where a1 is the status quo, and a2 is the risk reduction 
action. (We eventually expand this to consider a third possible action, the 
collection of additional information). 

z  Loss function L: a real function defined on Θ×A. If we decide to keep continuing 
the status quo, then the loss we face is L(θ,a1); if we decide to take the risk 
reduction action, then the loss we face is L(θ,a2). 

z  Sample space S: the additional information available to be collected. For 
example, the successive failure times till the nth failure can be denoted as the 
likelihood function of the form 

)]((exp)]([),,,(
1=21,,, 21 n

n

i inXXX xxxxxf
n

Λ−= ∏ λLL
         (1) 

where Λ( ) ( )x u dux= ∫ λ0
is the mean number of failures by time x in the NHPP. 

The cost of collecting this additional information should also be reflected in the 
decision process. The following terminology will be used throughout this paper: 

z CA: the cost of a failure if it occurs. 
z CR: the cost of the proposed risk reduction action. 
z CI: the cost of collecting additional information. 
z ρ: the reduction in failure rate that would result from the proposed risk reduction 

action (0<ρ<1). 
z M: the expected number of failures during the time period [t,T] under the status 

quo. 
The decision variable we are dealing with is then the expected number of 

failures during the time period [t,T], i.e., 

M≡M(T,t,λ0,β)= ∫
T
t dss)(λ                          (2) 

Note that the expected number of failures M is itself a random variable, since it 
is a function of the two uncertain parameters λ0 and β, and this is the case where 
Bayesian analysis can be effectively performed. Suppose that the risk reduction action 
will reduce the failure intensity by a fraction ρ , where 0 < < 1ρ , then the expected 
number of failures in [t ; T], if the risk reduction action is taken is given by 

  λ ρ( )( )s dst

T 1 −∫ =(1-ρ) M.                        (3) 

On the basis of the assumptions given above, we therefore have a two-action 
problem with a linear loss function, where the loss for taking action a1 (i.e., 
continuing with the status quo) is CAM and the loss for taking action a2 (i.e., 
undertaking the risk reduction action) is C M CA R( - ) +1 ρ . The expected loss for 
the status quo is simply CAE{M}, and the expected loss for the risk reduction action is 
C M CA R( - ) { }+1 ρ E . Since the prior and posterior density functions for M are 
functions of λ0 and β, some prior and posterior mean values of M can be derived by 
the bivariate transformation technique. For example, the prior mean value of M for 
the power law failure model, with the assumptions that λ0 and β are independent and 
their prior distributions are Gamma( α ; γ ) and Uniform (a,b), respectively. 
However, closed forms for the prior and posterior means of M are not always 
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available which are the typical cases for the Bayesian analysis. Nevertheless, 
Bayesian prior and posterior analyses can still be performed by computing the prior 
and posterior mean values of M using the numerical integration technique and 
comparing them with the cut of value MC=CR/(CAρ) (i.e., the cutoff value of E{M} for 
taking the risk reduction action). If the relevant mean is smaller than MC, then we 
should keep the status quo; if not, then we should perform the risk reduction action.   

2.3 The CGD Case 

We have used the chronic granulomatous disease (CGD) case study to illustrate the 
use of the models developed in the previous sections. Real failure data from a trial of 
immunotherapy for the CGD are studied [International Chronic Granulomatous 
Disease Cooperative Study Group, 91]. CGD is an inherited disease caused by defects 
in superoxide-generating nicotinamideadenine dinucleotide phosphate (NADPH) 
oxidase of phagocytes. Impairment of oxygen-dependent intracellular killing 
mechanisms results in severe bacterial or fungal infections with catalase-producing 
Staphylococcus aureus, Burkholderia cepacia, or Aspergillus Species. Antimicrobial 
prophylaxis is efficient in reducing the incidence of severe bacterial infections 
[International Chronic Granulomatous Disease Cooperative Study Group, 91]. The 
birthdate of the studied subject was 1-May-1973, and the observation period was from 
24-August-1988, to 1-September-1989. The failure dates for the subject during the 
observation period were:  {26-Sep-88, 26-Oct-88, 25-Nov-88, 25-Dec-88, 24-Jan-89, 
23-Feb-89, 25-Mar-89, 24-Apr-89, 5-May-89, 24-May-89, 23-Jun-89, 23-Jul-89, 15-
Aug-89, 22-Aug-89}.  

 
Table 1 summarizes the results of the results for EVPI (Expected Value of 

Perfect Information). Prior and posterior analyses can be performed by comparing the 
prior and posterior mean values of λ0 with the cutoff value τC. If the relevant mean is 
smaller than τC, then we should keep the status quo; if not, then we should perform 
the risk reduction action (e.g., gene therapy). As can be seen from that table 2, the 
effect of incorporating the observed data is to switch the optimal decision from the 
status quo to the risk reduction action for linear failure models. This is because the 
increasing cost of the risk reduction action is justified for the large failure rates 
assumed in the prior distributions. However, in the exponential and power law failure 
model, the observed data generally support the adoption of the risk reduction action.      
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 Linear Model Power Law Model Exponential Model 

Prior E{M} 6.1428 11.0327 26.4416 
Range of E{M} for 

Collecting Information 
5.327~10.152 2.538~27.968 3.622~55.860 

EVPI 19046.56 32231.42 28224.74 
Prior E{λ0} 0.1 0.1 0.1 

Posterior E′{λ0} 0.1694 0.1422 0.1793 
Prior E{β} 0.5 1.57 0.17 

Posterior E′{β} 0.7849 1.8488 0.1809 
Cutoff Value of E{M} 

for Risk Reduction 
7.2 7.2 7.2 

Prior Decision Status Quo Risk Reduction Risk Reduction 
Posterior E′{M} 9.9132 10.2495 23.4724 

Posterior Decision Risk Reduction Risk Reduction Risk Reduction 

Table 1: Summary Table for the Case of CGD 

3 The Decision Support System 

Decision support systems provide practitioners with patient-specific assessments or 
recommendations to help them make decisions about treatment. According to 
[Watson and Spragure, (93)], a general notion about a DSS is that it is an interactive 
computerized system consisting of three major components: a dialog subsystem, a 
database subsystem, and a model base subsystem. With the knowledge and other 
capabilities embodied in these components, a DSS is intended to help a decision 
maker interactively solve managerial decision problems. However, the three 
component architecture is capable of managing data; fitting data into models; and 
providing methods to reach decisions. By manipulating models and data, the decision 
maker is able to examine various scenarios and their consequences. Therefore, these 
three components, as a whole, contribute to the quality of decisions that are taken by a 
decision maker.  

Nevertheless, a system which provides passive decision support barely achieves 
its design objectives as the user’s experiences, knowledge, and expertise change 
[Chuang and Yadav, 98]. The Bayesian decision process mentioned in the previous 
section is capable of not only dealing with the uncertainties but also taking into 
account prior knowledge. In such a case, the decision is based only on the 
uncertainties quantified by decision makers. Also, the DSS has to notify the decision 
maker whether collecting additional information is desirable or not. Therefore, the 
DSS has the ability to allow decision makers change each uncertain entity (e.g. aging 
rate), and therefore a range of such uncertain entities within which the optimal 
decision remains unchanged should be derive. It is of important interest for decision 
makers to learn what the resulting decision will be once they change some 
parameters. 

 

120 Chang C.-C., Cheng C.-S., Huang Y.-S.: A Web-Based Decision Support System ...



According to the discussion above, the inputs to the DSS would be the 
uncertainties mentioned previously and the failure data (if available), and the outputs 
would be the optimal prior decision, the optimal posterior decision, and the results of 
the sensitivity analysis and what-if analysis [Erto, 82]. In order to perform the 
required complicated numerical integration for the decision process, the specifications 
of hardware and software should be closely considered. The hardware should have the 
ability to correctly and quickly respond to decision makers before they get impatient 
and the software should be easily and reliably programmed and maintained. Figure 1 
and 2 show the follow chart and the framework of the DSS, respectively. The DSS 
has input, output, and process three major parts. The detailed information descriptions 
of each part are as follows: 
z Prior information part: the prior information has eleven elements and there are: 

(1) Lifetime: the expected lifetime of the physiological system. (2) Initial date: 
the birthdate. (3) Decision time: the actual time for decision makers to make the 
decision of whether maintaining the status quo or undertaking a risk reduction 
action. (4) Cost of failure: the cost or loss once the failure actually occurs. (5) 
Cost of risk reduction action: the cost for undertaking the risk reduction action. 
(6) Risk reduction factor: the fraction of the original function of the 
physiological system that the risk reduction action can retrieve. (7) Cost of 
collecting information: the cost of collecting the failure data. (8) E{Scale 
Factor}: the expected value of the initial factor. (9) SD{Scale Factor}: the 
standard deviation of the initial factor. (10) E{Deterioration Rate}: the expected 
value of the deterioration rate. (11) SD{Deterioration Rate}: the standard 
deviation of the deterioration rate. 

z Sampling information part: The sampling information is for inputting the 
observed failure data. 

z Decision part: The decision part provides the optimal decisions that are 
suggested by the DSS. There are five output elements that can be valuable to 
decision makers for making the final decision. There are: (1) Expected value of 
sampling information (EVSI): the EVSI can be treated as an indicator for 
determining whether to collect the failure data. In particular, if the EVSI were 
greater than the cost of collecting information applied in the prior information 
area, then collecting the failure data would be desirable; otherwise, collecting 
the failure data is not desirable. (2) Prior E{# of Failure}: the expected number 
of failures under the status quo which is estimated by using the prior 
information only. This value shows the performance of the system if no risk 
reduction action is considered. (3) Prior decision: the suggested decision is 
based only on the prior information. It could be either maintaining the status 
quo or undertaking the risk reduction action. If collecting the failure data is 
evaluated as not desirable, then the prior decision suggested by the DSS should 
be considered as the optimal decision. (4) Posterior E{# of Failure}: the 
expected number of failures under status quo which is estimated by using both 
the prior information and the failure data. This value shows the performance of 
the system if no risk reduction action is considered when the prior knowledge of 
the system and the failure data are both applied to evaluate the system. (5) 
Posterior decision: the suggested decision is based on both the prior 
information and the failure data. It could be either maintaining the status quo or 

121Chang C.-C., Cheng C.-S., Huang Y.-S.: A Web-Based Decision Support System ...



undertaking the risk reduction action. Once the failure data is applied, the 
posterior decision suggested by the DSS should be considered as the optimal 
decision. 

Once the decision area shows the decisions suggested by the DSS, the decision 
maker can perform further analysis to ensure the suggested optimal decisions are 
reliable. Sensitivity analysis can show the degree of importance for each prior 
parameter and study how they affect the optimal decisions. The DSS can provide one-
way sensitivity analysis by using each element in the prior information as the 
changing factor. The results would be the ranges of the prior parameters that are of 
special interest in which the optimal decisions remain unchanged. The DSS also 
provides what-if analysis by changing the values of the prior parameters in the prior 
information and see if the optimal decisions are still unchanged or not. 
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Figure 1: The follow chart of the DSS 
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Figure 2: The framework of the DSS 

4 Conclusions 

Aging refers to the regular changes that occur in mature genetically representative 
organisms living under representative environmental conditions as they advance in 
the chronological age. Recurrent events or failures occur frequently in studies in 
which the failures are not necessarily fatal. Information is valuable because it reduces 
the expected costs of uncertainty surrounding a decision making. The expected costs 
of uncertainty are determined by the probability that a treatment decision based on 
existing information (prior knowledge) will be wrong and by the consequences if the 
wrong decision is made. This paper develops a possible Web-based decision support 
system by considering the sensitivity analysis as well as the optimal prior and 
posterior decisions for aging chronic diseases. It can deal with uncertain prior 
knowledge about the physiological system by considering the optimal prior decision, 
the sensitivity analysis, and possibly, the optimal posterior decision (if actual failure 
data were available), and provide decision makers the effective support for quality 
decision making. 
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