
HOL-Z 2.0:

A Proof Environment for Z-Specifications

Achim D. Brucker
Albert-Ludwigs-Universität Freiburg

brucker@informatik.uni-freiburg.de

Frank Rittinger
Albert-Ludwigs-Universität Freiburg

rittinge@informatik.uni-freiburg.de

Burkhart Wolff
Albert-Ludwigs-Universität Freiburg
wolff@informatik.uni-freiburg.de

Abstract: We present a new proof environment for the specification language Z.
The basis is a semantic representation of Z in a structure-preserving, shallow em-
bedding in Isabelle/HOL. On top of the embedding, new proof support for the Z
schema calculus and for proof structuring are developed. Thus, we integrate Z into a
well-known and trusted theorem prover with advanced deduction technology such as
higher-order rewriting, tableaux-based provers and arithmetic decision procedures. A
further achievement of this work is the integration of our embedding into a new tool-
chain providing a Z-oriented type checker, documentation facilities and macro support
for refinement proofs; as a result, the gap has been closed between a logical embedding
proven correct and a tool suited for applications of non-trivial size.

Key Words: Theorem Proving, Refinement, Z

Category: D.2.1, D.2.4, F.3.1, F.4.1

1 Introduction

Tools for formal specification languages can roughly be divided into two main
categories: straightforward design which implements a specification environment
directly in a programming language, and embedded design which implements
it on the basis of a logical embedding in a theorem prover environment, e.g.
Isabelle [Paulson, 1994]. Examples of the former are Z/EVES [ZEVES, 2003],
KIV [KIV, 2003] or FDR [FDR, 2003], examples of the latter are HOL-Unity
[Paulson, 2000], VHDL [Reetz, 1995], HOL-CSP [Tej and Wolff, 1997] and HOL-
OCL [Brucker and Wolff, 2002].

The advantage of embedded designs such as HOL-Z (whose underlying con-
servative embedding of Z into the higher-order logic (HOL) instance of Isabelle
has been described in [Kolyang et al., 1996]) is their solid logical basis: all sym-
bolic computations on formulae are divided into “logical core theorems” (i.e.

Journal of Universal Computer Science, vol. 9, no. 2 (2003), 152-172
submitted: 14/10/02, accepted: 14/2/02, appeared: 28/2/03  J.UCS

derived rules) and special tactical programs controlling their application. Thus,
logical consistency of a tool for specification languages can be reduced to the
consistency of the underlying meta-logic and the correctness of the underlying
logical engine, which is in our case a well-known and accepted one. When scaling
up to a tool, the problems with embedded designs are threefold:

1. A tool-oriented logical embedding must be designed for effective deduction.
This usually conflicts with other design goals such as provability of meta-
theoretic properties (e.g. completeness).

2. Embeddings often present the embedded language in the form of meta-logical
formulae: this has negative effects on presentation and error-handling.

3. The embedding and the concrete prover may suggest unstructured proof
attempts (“unfold everything into meta-logic, bust the pieces there . . . ”)
and an unnatural proof organization. This may be too low-level for larger
developments.

In order to meet these problems, we improved our logical embedding called HOL-
Z. The integrated environment — still called HOL-Z for simplicity — offers the
following features:

1. HOL-Z is a “shallow embedding” [Kolyang et al., 1996]; types are handled
on the meta-level, and many elements of Z are “parsed away” and represent
no obstacle for deduction.

2. HOL-Z is based on a new front-end consisting of an integrated parser and
type checker; this paves the way for professional documentation and high-
level error-handling.

3. HOL-Z offers technical support of methodology (such as refinement, top-
down proof development or proof obligation management), and support of
particular “structured proof idioms” such as the schema calculus in Z.

Our first contribution in this paper consists in a proof calculus for the schema
calculus of Z and its implementation based on derived rules. As the second
contribution, we provide an integration of HOL-Z into a specific tool-chain in
order to “scale up” the previous work on embedding Z into Isabelle/HOL to a
proof environment that has been applied in several larger case studies.

2 Foundations

2.1 Isabelle/HOL

Higher-order logic (HOL) [Church, 1940, Andrews, 1986] is a classical logic with
equality enriched by total polymorphic higher-order functions. It is more expres-
sive than first-order logic, since e.g. induction schemes can be expressed inside

153Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

the logic. Pragmatically, HOL can be viewed as a combination of a typed func-
tional programming language like Standard ML (SML) or Haskell extended by
logical quantifiers.

When extending logics, two approaches can be distinguished: the axiomatic
method on the one hand and conservative extensions on the other. Extending
HOL via axioms easily leads to inconsistency; given the fact that libraries contain
several thousand theorems and lemmas, the axiomatic approach is too error-
prone in practice. In contrast, a conservative extension introduces new constants
(by constant definitions) and types (by type definitions) only via axioms of a
particular form; a proof that conservative extensions preserve consistency can
be found in [Gordon and Melham, 1993].

The HOL library provides conservative theories for the HOL-core based on
type bool, for the numbers such as nat and int, for typed set theory based on
τ set and a list theory based on τ list.

Isabelle [Paulson, 1994] is a generic theorem prover. New object logics can
be introduced by specifying their syntax and inference rules. Among other logics,
Isabelle supports first-order logic (intuitionistic and classical), Zermelo-Fränkel
set theory (ZF) and HOL, which we choose as a framework for HOL-Z.

Following the tradition of LCF-style provers, Isabelle consists of a logical
engine encapsulated in an abstract data type thm in SML; any thm object has
been constructed by trusted elementary rules in the kernel. Thus Isabelle sup-
ports user-programmable extensions in a logically safe way. A number of generic
proof procedures (tactics), written in SML, have been developed. A special tac-
tic is the simplifier based on higher-order rewriting and proof-search procedures
based on higher-order resolution.

2.2 Z by Example

The formal specification language Z [Spivey, 1992] is based on typed set theory
and first-order logic with equality. The syntax and the semantics are specified
in an ISO-standard [ISOZ, 2002]; for future standardization efforts of operat-
ing system libraries or programming language semantics, Z is therefore a likely
candidate. Z provides constructs for structuring and combining data-oriented
specifications: schemas model the states of the system (state schemas) and op-
erations on states (operation schemas), while the schema calculus is used to
compose these sub-specifications to larger ones. We present these constructs us-
ing a standard example, Spivey’s “birthday book”. This simple system stores
names and dates of birthdays and provides, for example, an operation to add a
new birthday. In Z, abstract types for NAME and DATE can be declared that
we use in a schema (consisting of a declaration part and a predicate part) to
define the system state BirthdayBook . For transitions over the system state, the
schema AddBirthday is used:

154 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

BirthdayBook
known : PNAME
birthday : NAME �→ DATE

known = dom birthday

AddBirthday
∆BirthdayBook
n? : NAME ; d? : DATE

n? /∈ known
birthday ′ = birthday ∪ {n? �→ d?}

∆BirthdayBook imports the state schema into the operation schema in a
“stroked” and a “non-stroked” version: BirthdayBook ′ and BirthdayBook . The
resulting variables birthday ′ and birthday are conventionally understood as the
states after and before the operation, respectively.

This system is refined to a more concrete one based on a state BirthdayBook1
containing two (unbounded) arrays and an operation AddBirthdayBook1 imple-
menting AddBirthday on this state:

BirthdayBook1
names : N �→ NAME
dates : N �→ DATE
hwm : N

∀ i , j : 1 . . hwm • i �= j
⇒ names(i) �= names(j)

AddBirthday1
∆BirthdayBook1
name? : NAME ; date? : DATE

∀ i : 1 . . hwm • name? �= names(i)
hwm ′ = hwm + 1
names ′ = names ⊕ {hwm ′ �→ name?}
dates ′ = dates ⊕ {hwm ′ �→ date?}

The relation between abstract states (captured by the schema Birthday) and
the concrete states (captured by Birthday1) is again represented in a schema
in Z, namely the schema Abs ; the relation defines known as the range of the
names-array (upto high-water-mark hwm) and the relation from positionally
associated names and dates as equal to the relation birthday from the abstract
state Birthday:

Abs
BirthdayBook
BirthdayBook1

known = {i : 1 . . hwm • names(i)}
∀ i : 1 . . hwm • birthday(names(i)) = dates(i)

One can use the schema calculus to combine different operation schemas into

155Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

with
specification

generated
proof obligations

generate
proof

obligations
using

holz.sty

for checking
Isabelle script

fulfillment
of obligations

verify proof obligations
using

Isabelle/HOL-Z

HOL-Z notation
and obligations in

specification
type checking
and HOL-Z
conversion

using
ZeTausing

LATEX-based
Z notation

literate specification

Figure 1: A Tool Chain supporting Literate Specification

one operation. For example, one could strengthen the AddBirthday operation
with an operation schema AlreadyKnown which expresses the fact that the entry
that should be added already exists in the birthday book:

Add == AddBirthday ∨ AlreadyKnown

The birthday book will be our running example throughout the rest of the paper.

3 A Tool Chain for Literate Specification

The core of HOL-Z, namely the logical embedding discussed in the next chapters,
is now integrated into a chain of tools. We briefly describe the data flow of our
tool-chain as depicted in Fig. 1; in the following sections we will describe the
components of the tool-chain in more detail.

At the beginning, a normal LATEX-based Z specification is created; the spec-
ification may contain formal text, macros for proof obligation generation and
informal explanations in a mixed, “literate specification” style. Running LATEX
leads to the expansion of proof obligation macros, and also generates an Isabelle-
script that checks that the obligations are fulfilled (to be run at a later stage).
ZeTa takes over, extracts all Z definitions from the LATEX source (including the
generated ones) and type checks them or provides animation for some Z schemas.
Our plug-in into ZeTa converts the specification (sections, declarations, defini-
tions, schemas, . . .) into SML-files that can be loaded into Isabelle. In the theory
contexts provided by these files, usual Isabelle proof-scripts can be developed.

The elements of our tool chain can be technically organized in various ways.
One way is to build a front-end by integrating ZeTa into XEmacs (which is
our preferred setting since, for example, a click on a type-error message leads
to a highlighting of the corresponding source) and a back-end based on Isabelle.
Another way is an organization into usual shell scripts, that allows for easy
integration of the specification process into the general software development
process, including in particular version management that allows for semantically
checked specifications. In this setting, for example, one can assure that new

156 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

versions of the specification document are accepted as main versions only when
the proof obligation check scripts run successfully, etc.

3.1 The LATEX-based Z Specification

The formal text in a specification document closely follows the LATEX format
of the Z standard described in [ISOZ, 2002]. In this section, we therefore fo-
cus on our add-on holz.sty, a macro package for generating proof obliga-
tions. We decided to use LATEX itself as a flexible mechanism to construct and
present proof obligations inside the specification — this may include consis-
tency conditions, refinement conditions or special safety properties imposed by
a special method for a certain specification architecture. Our LATEX package
holz.sty provides, among others, commands for generating refinement con-
ditions as described in [Spivey, 1992]. For our running example of the birth-
day book’s AddBirthday operation, we instantiate the refinement condition that
AddBirthday is refined by the more concrete AddBirthday1 as follows:

\zrefinesOp[Astate=BirthdayBook, Cstate=BirthdayBook1,

Aop=AddBirthday, Cop=AddBirthday1,

Args={n?: NAME; d?: DATE}, Abs=Abs]{Add}

Here, Astate contains the schema describing the abstract state and Cstate holds
the schema describing the concrete state. Based on this input, our LATEX package
automatically generates the following two proof obligations:

Add1 == ∀BirthdayBook ; BirthdayBook1; n? : NAME ; d? : DATE •
(preAddBirthday ∧ Abs) ⇒ preAddBirthday1

Add2 == ∀BirthdayBook ; BirthdayBook1; BirthdayBook1′; n? : NAME ;
d? : DATE • (preAddBirthday ∧ Abs ∧ AddBirthday1)

⇒ (∃BirthdayBook ′ • Abs ′ ∧ AddBirthday)

These proof obligations are type-checked using ZeTa and are converted to
HOL-Z by our ZeTa-to-HOL-Z converter.

3.2 The ZeTa System

ZeTa [Zeta, 2003] is an open environment for the development, analysis and
animation of specifications. Specification documents are represented by units
in the ZeTa system that can be annotated with different content like LATEX
mark-up, type-checked abstract syntax, etc. The system is aware of dependencies
between the units and attempts to exploit this when units change. An integration
of ZeTa into the editing environment XEmacs greatly facilitates changes and the
management of consistency checking in large specifications. The contents of units
is computed by adaptors, which can be plugged into the system dynamically.

157Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

Two plugins are available that are particularly important for our purpose:
one consists in a type checker for Z based on LATEX covering a large part of
the Z standard; the other is an animator for Z that allows for the evaluation
of Z expressions, in particular schemas. Thus, specifications can be tested easily
during the specification work helping to avoid spurious errors.

3.3 ZeTa-to-HOL-Z Converter

The converter consists of two parts: an adaptor that is plugged into ZeTa and
converts the type-checked abstract syntax of a unit more or less directly into
an SML-file. On the SML side, this file is read and a theory context is built
inside Isabelle/HOL-Z. This involves the conversion into the internal HOL-Z
representation by the Z-Encoder (see Sec. 4.1), followed by an independent type
checking of the result by Isabelle (ruling out that implementation errors in the
Z-Encoder may yield inconsistency), followed by a check of conservativity con-
ditions for schemas and some optimizations for partial function application in
order to simplify later theorem proving.

In its present state, the converter can translate most Z constructs with the ex-
ception of user-defined generic definitions, arbitrary free types or less frequently
used schema operators like hiding and piping.

4 Representing Z in Isabelle/HOL: The Foundations

In order to be self-contained, we present the foundations of the HOL-Z em-
bedding. While most basic concepts of this embedding have been developed by
one of the authors jointly with Santen and Kolyang [Kolyang et al., 1996], the
implementation of the new “Z-Encoder” is a complete redevelopment; this also
involves new machinery for converting types, bindings, and schema calculus con-
structs.

4.1 Conformance with “The Standard”

For any embedding of a logic, the question of the faithfulness of the encoding of
one calculus in another has to be raised. This question seems to be very critical
for HOL-Z since the semantics in the Z standard [ISOZ, 2002] (ZFSN) is based
on Zermelo-Fränkel set theory (ZF) and not on typed set theory as HOL. ZFSN
does not define a deductive system: It provides a semantics in set theory and
requires “conformance” of a deductive system for Z, i.e. the soundness of all rules
of the system with this semantics.

The core of the ZFSN semantics consists of the definition of the partial func-
tions [[τ]]τ , [[e]]ε and [[p]]P that assign to each element of each syntactic category

158 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

HOL

Z ZF

Z-Encoder Semantics [Gordon and Melham, 1993]

∼=
[[e]]ε, [[τ]]τ , [[p]]P in ZFSN

Figure 2: An Overview of Semantic Relations

(types τ , expressions e and predicates p) a type resp. a value (meaning). A cal-
culus conforms to the standard if it reflects the semantic function where it is
defined. The semantic functions are interpreted in an untyped universe of ZF.
In the semantic universe, objects like {0, {0}} may occur that are illegal in the
typed set theory of HOL. This does not mean that {0, {0}} is legal in Z; in fact,
one of the major objectives of [[τ]]τ is to rule out such expressions by a type-
discipline that can be injectively mapped into the typed λ-calculus underlying
HOL.

Fig. 2 outlines the semantic situation: Let HOLτ be the set of HOL-terms of
simple type τλ. Moreover, let Zτ denote the set of Z-expressions of a Z-type τZ ,
and ZF the class of sets in ZF into which all elements of Zτ are mapped. The two
type systems are both interpreted in a universe, i.e. a ZF-set. According to ZFSN,
the Z universe is closed under Cartesian products and powerset-construction. Ac-
cording to [Gordon and Melham, 1993], the HOL universe is a set closed under
function construction A → B and the type bool . The crucial point for the cor-
rectness of the overall approach is that both universes are isomorphic. Slightly
simplified, the types τZ and τλ are defined as:

τZ = integer τλ = bool

| τZ × · · · × τZ | integer

| 〈| τn1 � τz , . . . , τnn � τZ |〉 | τλ × τλ

| P τZ | τλ → τλ

The injection from τZ to τλ is now defined as follows: integers are mapped
to themselves, multiple Cartesian products τZ × · · · × τZ to binary products
associated to the right, bindings (i.e. records) 〈| τn1 � τZ , . . . , τnn � τZ |〉
to n-ary Cartesian products sorted by their tag names τni , and P τZ to τλ →
bool . From this mapping, it can be seen that HOL-Z is slightly more liberal
than τZ (it admits mixtures of Cartesian products and bindings that are not
allowed in Z, for example), but the semantic domains are still isomorphic to
each other. In particular, the typed set theory of Z is converted to the theory
of typed characteristic functions in HOL1. Thus, the Z-Encoder maps all terms
1 In our implementation, however, the situation is slightly more complex: the above

said is true for schema types P〈| τn1 � τZ , . . . , τnn � τZ |〉; all other P-types are

159Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

A
x1 : S1

x2 : S2

P

B
A; A′

x2 : T

Q

C
y : B
z : seq A

R(y.x1, y.x ′
1)

Figure 3: Schemas and their Use

in Zτ to specific HOLτ -terms, such that the diagram in Fig. 2 commutes up to
isomorphism for all τ . Our argument works for a monomorphic type universe.
For more details and an extension to polymorphic types, see [Santen, 1998].

It is perhaps surprising to discover that the semantic basis of Z as described
in the rather complex ZFSN is just an equivalent to the standard model of the
typed λ-calculus. It remains to evaluate the syntactical, notational facet of Z
can be handled by our Z-Encoder (to be discussed in the next section).

4.2 Encoding Schemas

Semantically, schemas are just sets of bindings of a certain type. However, a refer-
ence to a schema can play different roles in a specification: it can serve as import
in the declaration list of other schemas (e.g. reference A in schema B in Fig. 3),
it can serve as set (e.g. reference A or B in schema C in Fig. 3), or it can serve
as predicate in the so-called schema calculus (see below). Moreover, references to
schemas may be decorated by a stroke, which results in a renaming of the vari-
ables in a schema and of the tag names in the corresponding schema type by suf-
fixing them with a stroke. Schema operators like ∆A are syntactic synonyms for
A ∧ A′. Note that several occurrences of declarations (e.g. x2 in schema B) in a
schema are identified and their associated sets S2 and T are intersected (provided
that their underlying types are equal; otherwise, the whole declaration is illegal).
It is this particular feature of Z that excludes a treatment of schemas by sets of
“extensible records” [Naraschewski and Wenzel, 1998, Brucker and Wolff, 2002].

The first key idea for the design of HOL-Z is to compute a raw type, the
schema-signature SΣ for all expressions of schema type. More precisely, a schema-
signature SΣ P〈| x1 �→ τ1, . . . , xn �→ τn |〉 is just the ordered list of tag names

mapped to the type-constructor set — which is defined isomorphic to characteristic
functions, but distinguished from them by the type-system of HOL. This optimiza-
tion gives better access to HOL-libraries and a bit more type-safety in HOL-Z.

160 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

[x1, . . . , xn]. In the Z-Encoder, schema-signatures are abstracted from τZ -types
which are available whenever ZeTa is used as front-end. When using the weaker
typed e-mail format (as in locally stated proof-goals; see Sec. 5.5), they are
approximated on the basis on schema syntax, on previously compiled schemas
from an environment, and on computations of the effect of schema operators
over schema subexpressions.

The second key idea is to represent schemas “as predicates” by default, i.e.
as characteristic functions over bindings, that are represented as products. This
is achieved by a pre-translator on parsed terms in the Z-Encoder, that makes
implicit bindings in Z expressions — expressed by their schema-signature —
explicit and generates coercions of schemas according to their role. For example,
the schema declaration A, as depicted in Fig. 3, of type P〈| x1 �→ τ1, x2 �→ τ2 |〉,
is converted into the constant definition:

A ≡ λ(x1, x2) • x1 ∈ S1 ∧ x2 ∈ S2 ∧ P

As a result of this presentation, the treatment of schema references as import or
as set, as used in schema B , can be represented truthfully as follows:

B ≡ λ(x1, x2, x ′
1, x

′
2) • A(x1, x2) ∧ A(x ′

1, x
′
2) ∧ x2 ∈ T ∧ Q

while an expression A∪A will be represented by (asSetA)∪ (asSetA) (with the
coercion asSet from characteristic functions to typed sets in HOL).

As mentioned, there is a further role in which schema references may be used:
in the schema calculus, one may write a schema expression A ∧ B which has the
schema type P〈| x1 �→ τ1, x2 �→ τ2, x ′

1 �→ τ1, x ′
2 �→ τ2 |〉. Such an expression will be

represented by

λ(x1, x2, x ′
1, x

′
2) • A(x1, x2) ∧ B(x1, x2, x ′

1, x
′
2)

The schema type of the conjunction of two schema expressions is the union of the
schema signatures, provided that each tag name is associated with the same type.
Thus, having “parsed away” the specific binding conventions of Z into standard
λ-calculus, Isabelle’s proof-engine can handle Z as ordinary HOL-formulae. There
is no further “embedding specific” overhead such as predicates stating the well-
typedness of certain expressions, etc; these issues are handled inside the typing
discipline of HOL. Note, moreover, that our representation keeps the structure
of the original Z specification — previous attempts [Bowen and Gordon, 1995]
had been based on “flattening” (unfolding) of the schema notation — and allows
for a controlled unfolding of schemas in the course of a proof.

So far, the presentation of binding is adequate for automatic proofs; however,
in practice, realistic case studies require proofs with user interaction. This leads
to the requirement that intermediate lemmas can be inserted “in the way of

161Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

Z”, intermediate results are presented “Z-alike”, and the proof style imposed
by Z (cf. [Woodock and Davies, 1996]) can be mimicked. Therefore, we define
a special “annotated” abstraction operator SBinder semantically equivalent to
the pair-splitting λ-abstraction from the example above:

consts SBinder0 :: ”[string , β ⇒ δ] ⇒ (β ⇒ δ)”
”SBinder0 An P ≡ P”
SBinder :: ”[string ,[β,γ] ⇒ δ] ⇒ ((β ∗ γ)⇒δ)”
”SBinder An P ≡ (λ (x,y). (P x y))”

and introduce the notation:

SB “x” � x , “y” � y, “z” � z .P

for:
SBinder “x”(λ x .SBinder “y”(λ y.SBinder0“z”(λ z .P)))

Using these operators, the example above is pretty-printed by:

SB “x1” � x1, “x2” � x2, “x ′
1” � x3, “x ′

2” � x4 • A(x1, x2) ∧ B(x1, x2, x3, x4)

where each field name is kept as a (semantically irrelevant) string in the repre-
sentation. Thus, while the “real binding” is dealt by Isabelle’s internal λ, which
is subject to α-conversion, the presentation of intermediate results is done on
the basis of the original field-names from the user’s specification.

5 Proof Support for Z

Based on the semantic representation of Z in Isabelle/HOL presented in the
previous section, we will now describe structured proof-support for Z.

5.1 The Mathematical Toolkit of Z

Z comes with a large toolkit of mathematical definitions concerning relations,
functions, sets and bags one can build on when specifying software systems.
Based on the observation that the semantic domains are equivalent, it is now
straightforward to embed this “Mathematical Toolkit” conservatively in HOL.

The type of relation (written A↔B) is defined as the set of all pairs over
A and B . Thus, in contrast to HOL, all functions are encoded by their graph.
This allows for partial function spaces and for operations like the union of two
functions.

The toolkit is presented as a suite of constant definitions (the technique is
equivalent to [Bowen and Gordon, 1995]). On the right-hand side of the type
definition some parsing information is given together with the binding values.

162 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

consts
partial func :: ”[α set ,β set] ⇒ (α ↔ β) set” (” �→ ” [54,53] 53)
total func :: ”[α set ,β set] ⇒ (α ↔ β) set” (” → ” [54,53] 53)
partial inj :: ”[α set ,β set] ⇒ (α ↔ β) set” (” �� ” [54,53] 53)
func overrid :: ”[α ↔ β , α ↔ β] ⇒ (α ↔ β)” (” ’(+’) ” [55,56] 55)

defs
total func def ”S → R ≡{s . s ∈ S �→ R ∧ dom s= S}”
partial inj def ”S �� R ≡{s . s ∈ S �→ R ∧ (∀ x1x2y . (x1,y) ∈s

∧ (x2,y) ∈s → x1= x2)}”
func overrid def ”S (+) R ≡ (dom R � S) ∪ R”

Conformance of the set operators �→,→, . . . ,⊕ of the mathematical toolkit is
easy to verify: Just compare these definitions (and there are hundreds) with the
ones in ZFSN. Furthermore, the laws given in [Spivey, 1992] can be derived as
theorems. Especially the theorem:⋂

x :{}
P(x) = {y.true}

holds, in contrast to ZF where the result of this intersection over the empty index
set is defined equal to {} because there are no universal sets in this untyped
theory. In typed set theories like in Z or in HOL, the complement of a set is
always defined.

5.2 Proof Support for the Schema Calculus

As discussed in the previous section, schemas can be used as predicates in the
schema calculus, for which we implemented syntax and proof support. Besides
the usual logical connectors ∧,∨,¬ ,⇒ that may be used to connect schema ex-
pressions, there are also schema-quantifiers in the schema calculus. For example,
the schema expression ∀A • B is a schema of type P(〈| x ′

1 �→ τ1, x ′
2 �→ τ2 |〉). In

HOL-Z, it is represented by:

SB ”x ′
1” � x3 ”x ′

2” � x4 • ∀(x1, x2) : asSetA • B(x1, x2, x3, x4)

Analogously, the following operators are defined:

– the existential quantifier ∃A • B ,

– the hiding operator B \ (x1, x2) equivalent to ∃M •B (where M is a schema
with empty predicate part and schema-signature [x1, x2]), and

– the preB operator that hides all variables that have a stroke or a “!”-suffix.

163Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

The latter schema operator is motivated by the convention in Z to give variables
denoting components of a successor state a stroke suffix, while variables denoting
output get a “!”-suffix.

Schema quantifiers play an important role for the formulation of proof obli-
gations and lemmas in Z. The proof obligation Add1 for the refinement in the
BirthdayBook example (see Sec. 3.1) is a pure schema expression. For inserting
local lemmas into Isabelle, proof goals can be inserted directly by a suitably
adapted parser (using the Z-Encoder internally) based on the compact ASCII-
based e-mail format defined in ZFSN. For example, one can insert an already
simplified version of Add1 described in [Spivey, 1992, p. 138]2:

zgoal thy
”∀ BirthdayBook • ∀ BirthdayBook 1 •∀ n? ∈NAME•∀d? ∈DATE•

(n? �∈ known∧ known= {n. ∃ i∈#1..hwm. n=names i}
=⇒ (∀i ∈ #1..hwm . n? �= names i))”;

which opens an Isabelle proof state.
Note that this statement, directly drawn from a prominent Z textbook, is

strictly speaking not a Z-formula in the sense of ZFSN; since there are logical
connectors that have a schema expression on one side and a HOL expression
on the other, such mixed expressions can not be entered in the ZeTa-frontend.
Such use of mixed formulae in the course of proofs is in fact quite common
in the Z literature (see also [Woodock and Davies, 1996]). Instead of develop-
ing a somewhat artificial, closed proof calculus on schema expressions (as in
[ISOZ, 2002, Henson and Reeves, 1998]), we opted for a calculus supporting such
mixed forms.

The question has to be settled how the issue of binding is treated in mixed
forms. Here, the general rule we adopted is that scopes introduced by schemas
also extend to HOL subformulae, i.e. in ∀S • S ′, all bindings introduced by the
schema-signature of S are also used to bind any free variables in S ′, regardless if
it occurs in a schema expression or not. Moreover, the question has to be solved
how schema expressions (i.e. expressions with a non-empty schema-signature)
are treated logically at the top-level, since expression of the form are encoded
into predicates over this schema-signature. Our answer is that we treat such
“free variables” declared in a schema-signature but never bound as universally
quantified; this is achieved by defining the � operator equivalent to the universal
quantor ∀ of type (α → bool) → bool and adding it at the root of any schema
expression. Conceptually, this means that � S (or: “valid S”) has the meaning
that the predicate must hold for all elements in the schema.

From the perspective of a mixed form calculus, it is quite clear what is
needed for a joint calculus: for any construct of the schema calculus, a pair of
2 For the purpose of our presentation we use the usual mathematical notation.

164 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

introduction and elimination rules must be added. Since in the case of schema
expressions, argument lists of predicates vary over schema-signatures, these rules
are in fact rule schemes, whose individual instances are just equivalents for the
usual (bounded) quantifiers and set comprehensions. In the following, we use xi

to denote a vector of variables x1, . . . , xn ; the juxtaposition xiyi of two vectors
represents their concatenation. With x̃ we denote a permutation of a vector x.
In the following, we represent the rule schemes of schema quantifiers in natural
deduction style (to which Isabelle is mainly geared):

∧
xi .S (xi)

� S
turnstileI � S

[S (ti)]··
R

R

turnstileE

∧
xi .

[S (xi)]··
T (x̃iyj)

∀S • T

sch allI(*) ∀S • T

[S (ti),T (t̃iyj)]··
R

R

sch allE(*)

S (ỹj t′itk !)

pre S
preI(*) pre S

∧
x′

i .xk !.

[S (˜yjx′
ixk !)]··

R

R

preE(*)

S (ti) S (t̃iyj)

∃S • T
sch exI(*) ∃S • T

∧
xi .

[S (x̃iyj)]··
R

R

sch exE(*)

Note that the turnstileI rule introduces the equivalent of fresh free variables into
a backward proof-state; consequently, schema expressions are not necessarily
closed in our calculus. This motivates the following proviso (*) on most of the
rules above: we require that yk is the vector of free variables corresponding to
the schema signature of the conclusion P (in the introduction rules) or the type
of the first premise P (in the elimination rules); i.e. we require yk = SΣ(τ) where
τ is the type of P .

In HOL-Z, for each of these rule schemes a special tactic is provided for both
forward and backward proof. While the former corresponds to a transformation
on objects of type thm — representing formulae accepted by Isabelle as valid
—, the latter is a tactic that may be applied to the i-th subgoal of the current
proof state. These tactics are collected in the SML package ZProofUtils and
have the format:

val strip_turnstile : thm → thm

(* erases topmost turnstile � S *)

val strip_schball : thm → thm

165Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

(* erases topmost schema quantifier ∀ x: A • P x *)

val intro_sch_all_tac : int → tactic

(* pseudo introduction rule of a schema-universal

quantifier ∀ S • P; in backwards reasoning , it

eliminates a topmost schema -quantifier and replaces

them by parameters , that were suitably renamed *)

val elimsch_all_tac : int → tactic

(* pseudo elimination rule of a schema -universal

quantifier ∀ S • P; in backwards reasoning , it

eliminates a topmost schema -quantifier in the

assumption list and replaces them by schema

variables. *)

An introduction and elimination rule pair for schema comprehensions {S | P •E}
(semantically represented as {m | ∃xi : asSetS • P(xi) ∧ m = E (xi)}) is also
provided. Its definition is straightforward and not really a semantic extension of
HOL, merely a syntactic paraphrasing of HOL rules.

While the correctness of the calculus is assured by formal, machine-checked
proofs of more atomic rules that were used inside the tactics implementing the
above rule schemes, the question of (relative) completeness is more difficult to
answer. Of course, since HOL includes the axiom of infinity, HOL is incom-
plete wrt. standard models as a consequence of Gödels incompleteness results.
However, from the form of the rule schemes, it is obvious that they “trans-
form” all schema expressions into standard higher-order predicate expressions
in the course of a proof; this means, that for monomorphic expressions, the com-
pleteness result [Andrews, 1986, p. 197] applies here wrt. Henkin models and a
calculus presented there. To the best of our knowledge, there is no (relative)
completeness result for the polymorphic case and the precise form of rules used
in Isabelle/HOL.

5.3 Interfacing Schema Expressions into Proof-Contexts

These tactics have been implemented and combined to new tactics, for example
to a tactic that “strips off” all universal quantifiers (including schema quantifiers)
and implications. These operators are available both in a forward and backward
version and are declared as:

val stripS : thm → thm

(* erases topmost combination of operators as above *)

166 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

val stripS_tac : int → tactic

(* generalization of HOL ’s strip_tac - removes leading

turnstiles , universal schema , bounded and unbounded

quantifiers and implications ... *)

These tactical operations serve as proof-technical adaptors between the Z-style
lemma formats and a presentation in terms of the built-in logic Pure of Isabelle. If
one thinks of a schema-signature as an interface to the parameters of its context
proof state, both the forward and backward combinators work as kind of interface
adaptors: in a backward proof, stripS_tac opens the local bindings hidden
internally in the schema quantifiers by converting them to a parameter context,
i.e. a vector of variables bound by Isabelle’s meta-logic quantifier

∧
(traditionally

used to implement provisos in logical rules of the form “this variable must not
occur in the assumptions”, etc.). Conversely, a Z-style lemma may be logically
“massaged” via stripS before introducing it into a backward proof; such a
massage consists in erasing all schema binders and replacing bound variables in
the formula by meta-variables that may be instantiated by the parameters of the
proof context by Isabelle’s resolution. We would like to emphasize again that all
these highly non-trivial transformations on the binding structure in a mixed form
of HOL-Z are based on rules derived from the definitions of the schema-logical
quantifiers and thus proven correct within Isabelle. The applications of these
elementary rules are controlled by tactical programs, that also apply elementary
renaming tactics to present the bound variables of the proof-state in terms of
user-defined names stemming from the specification.

5.4 Semantic Projections “on the fly”

From a pragmatic point of view, schemas represent nested containers of semantic
knowledge of the specification. Experience shows that just expanding schemas
of realistic size in the course of a proof is usually infeasible; proof states tend to
become too large to be accessible to both interactive and automatic reasoning.
For this, in the course of a proof, expansions of schemas should be avoided.
Rather, if a particular consequence of a schema is needed, a semantical projection
lemma should be used; for our example schema B (see Fig. 3), these are the
following lemmas in mixed form:

� B =⇒ A � B =⇒ x2 ∈ T � B =⇒ A′ � B =⇒ Q

We provide special functions that generate semantic projections “on the fly”
whenever they are needed:

val get_decl : theory → string → int → thm

val get_conj : theory → string → int → thm

167Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

The first lemma in the list of semantic projection lemmas for B can be generated
by get_decl thy "B" 1, while the last is constructed by get_conj thy "B" 1

(“give the first conjunct of the predicate part of schema B). Via the stripS-
combinator, semantic projection lemmas can be converted into Isabelle’s meta-
logical format “on the fly” and therefore be used in a backward proof (see the
example in the next section).

5.5 An Example for Structured Proofs in HOL-Z

In order to demonstrate the proof techniques introduced in the previous sections,
we use a standard textbook proof [Spivey, 1992, p. 138] for the first proof obli-
gation of the refinement of AddBirthday by AddBirthday1. Spivey argues that
this theorem can be immediately reduced to the following simplified form:

zgoal thy
”∀ BirthdayBook • ∀ BirthdayBook1 • ∀ n? ∈ NAME•∀d? ∈ DATE•

(n? �∈ known∧ known= {n. ∃ i∈#1..hwm . n=names i}
=⇒ (∀i ∈ #1..hwm . n? �= names i))”;

and the application of

by(stripS tac 1);

transforms the goal into the following proof state:

1.
∧

birthday known dates hwm names n? d? i .
[[BirthdayBook (birthday , known); BirthdayBook 1 (dates , hwm , names);

n? ∈NAME ; d? ∈DATE ;
n? �∈ known∧ known= {n. ∃ i∈#1..hwm. n=names i};
i ∈ (#1 .. hwm)]] =⇒ n? �= names i

Note that the quite substantial reconstruction of the underlying binding struc-
ture still leads to a proof state that is similar in style and presentation to the
one presented in [Woodock and Davies, 1996].

Besides the “schema calculus”, Z offers a large library of set operators spec-
ifying relations, functions as relations, sequences and bags; this library (the
Mathematical Toolkit) substantially differs in style from the Isabelle/HOL li-
brary, albeit based on the same foundations. For HOL-Z 2.0, we substantially
improved this library and added many derived rules that allow for higher degree
of automatic reasoning by Isabelle’s standard proof procedures. For example,
the goal above is simply “blown away” by:

auto();

which finishes the proof automatically.

168 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

Unfortunately, a more careful analysis of the initial proof obligation Add1

(Sec. 3.1) and the “simplified” formulation above represents a gap in Spivey’s
proof. The implicitly assumed lemma1:

�BirthdayBook∧ (∀i∈#1..hwm . n? �=names i) =⇒ pre AddBirthday1

states that a valid concrete state BirthdayBook1 and the syntactic precondition
(i.e. the conjoints in the predicate part of a schema that contain only occurrences
of variables without stroke or with a “?”-suffix) implies the semantic precondition
(i.e. pre S meaning “there is a successor state”). In other words, any reachable
state 〈| names ′ == a, hwm ′ == b, dates ′ == c |〉 fulfills the state invariant
BirthdayBook ′ , i.e. ∀i , j∈#1..hwm’. i �=j =⇒names ’(i) �=names ’(j). This proof
constitutes in fact 80 percent of the overall proof task and is omitted here (see
our example documentation in the HOL-Z 2.0 distribution).

Instead, we focus on a sample proof that shows how the bits and pieces can be
brought together: We start the proof with the generated proof obligation Add1;
its formula is bound to a constant that is unfolded during the initialization of
the proof:

{ goalw thy [Add 1def] ”Add 1”;}

∀ BirthdayBook• (∀ BirthdayBook 1 •(∀ n?∈NAME . ∀d?∈DATE .
pre AddBirthday ∧Abs =⇒ pre AddBirthday1)))

The next steps represent the opening of the bindings and some structural nor-
malization:

⇐=
{

by (stripS tac 1);
by (Step tac 1);

}

∀birthday known dates hwm names n? d?.
[[BirthdayBook (birthday , known); BirthdayBook 1 (dates , hwm , names);

n? ∈NAME ; d? ∈DATE ;
pre (AddBirthday(birthday , birthday ’, d?, known, known, n?));
Abs (birthday , dates , hwm , known, names)]]

=⇒ pre AddBirthday1

We apply lemma1 and eliminate its premise BirthdayBook from the proof con-
text:

⇐=




by (rtac (stripS lemma1) 1);
br conjI 1;
by (convert2hol tac [] 1);




169Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

∀birthday known dates hwm names n? d?.
[[BirthdayBook (birthday , known); BirthdayBook 1 (dates , hwm , names);

n? ∈NAME ; d? ∈DATE ;
pre (AddBirthday(birthday , birthday ’, d?, known, known, n?));
Abs (birthday , dates , hwm , known, names)]]

=⇒∀ i∈ #1 .. hwm . n? �=names i

Now we weaken the assumptions by applying lemma2 (this simple lemma can be
found in the HOL-Z 2.0 distribution and is not explained here), and by applying
a semantic projector into schema Abs yielding its first conjunct:

⇐=
{

bd (stripS lemma2) 1;
bd (stripS (get conj thy “Abs” 1)) 1;

}
∧

birthday known dates hwm names n? d?.
[[BirthdayBook (birthday , known); BirthdayBook1 (dates , hwm, names);

n? ∈ NAME ; d? ∈DATE ; n? �∈known;
known= known= {n. ∃ i∈#1..hwm . n=names i}]]

=⇒∀ i∈ #1 .. hwm . n? �=names i

We are now in the position described before in Spivey’s simplified proof, such
that Isabelle’s standard proof procedure can take over and complete the proof:

⇐= {auto();}

True

This closes our example proof. For the sake of the presentation, we deliberately
chose the procedural proof-language of Isabelle and not the more recent, declar-
ative one called Isar. We consider an integration into Isar as an add-on that
complicates matters here. In any case, an integration into Isar would be a useful
extension of the actual HOL-Z environment.

6 Conclusion and Further Work

We have presented HOL-Z, a tool-chain for writing Z specifications, type-checking
them, and proving properties about them. In this new setting, we can write our
Z specifications in the type setting system LATEX, we can automatically generate
proof obligations, import both of them into a theorem prover environment, and
use the existing proof mechanisms to gain a higher degree of automation. With
the proof support for the schema calculus, realistic analysis of specifications, in
particular refinement proofs, becomes feasible.

170 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

We applied HOL-Z to several large specifications, e.g. an architecture of
CVS (the Concurrent Versions System) [Brucker et al., 2002] and the CORBA
Security Service [Basin et al., 2002], with a focus on security analysis of CVS and
CORBA. The large CORBA example (approx. 90 pages (!) that are converted
and loaded in less than 5 minutes on a standard PC using PolyML) shows the
feasibility of our approach for real world examples. The case studies also involved
significant proofs of the refinement of an abstract architectural description to the
implementation.

A consequence of our implementation of the converter is that there is no
direct interaction between ZeTa and HOL-Z. A closer integration of HOL-Z
into ZeTa would be desirable but has not been realized so far.

We will investigate if the introduction and elimination tactics can be inte-
grated much deeper into Isabelle’s fast_tac procedure; this would pave the way
for a tableaux-based approach of reasoning over the “schema calculus” — which
would be, to our knowledge, a new technique for automated deduction on Z
specifications.

References

[Andrews, 1986] Andrews, P. B. (1986). An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. Academic Press.

[Basin et al., 2002] Basin, D., Rittinger, F., and Viganò, L. (2002). A formal analysis
of the CORBA security service. In Bert, D., Bowen, J. P., Henson, M. C., and
Robinson, K., editors, ZB 2002: Formal Specification and Development in Z and
B, LNCS 2272, pages 330–349. Springer.

[Bowen and Gordon, 1995] Bowen, J. P. and Gordon, M. J. C. (1995). A shallow em-
bedding of Z in HOL. Information and Software Technology, 37(5–6):269–276.

[Brucker et al., 2002] Brucker, A. D., Rittinger, F., and Wolff, B. (2002). A CVS-
Server security architecture — concepts and formal analysis. Technical Report
182, Albert-Ludwigs-Universität Freiburg.

[Brucker and Wolff, 2002] Brucker, A. D. and Wolff, B. (2002). A proposal for a formal
OCL semantics in Isabelle/HOL. In Muñoz, C., Tahar, S., and Carreño, V.,
editors, Theorem Proving in Higher Order Logics, LNCS 2410, pages 99–114.
Springer.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68.

[FDR, 2003] FDR (2003). Failures-divergence refinement – FDR2 user manual. http:
//www.fsel.com/fdr2_manual.html.

[Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. F. (1993). Introduction
to HOL. Cambridge University Press.

[Henson and Reeves, 1998] Henson, M. C. and Reeves, S. (1998). A logic for the
schema calculus. In Bowen, J. P., Fett, A., and Hinchey, M. G., editors, ZUM’98:
The Z Formal Specification Notation, LNCS 1493, pages 172–191. Springer.

[ISOZ, 2002] ISOZ (2002). Z formal specification notation — syntax, type system and
semantics. ISO/IEC 13568:2002, International Standard.

[KIV, 2003] KIV (2003). http://i11www.ira.uka.de/~kiv/.
[Kolyang et al., 1996] Kolyang, Santen, T., and Wolff, B. (1996). A structure preserv-

ing encoding of Z in Isabelle/HOL. In von Wright, J., Grundy, J., and Harrison,

171Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

J., editors, Theorem Proving in Higher Order Logics, LNCS 1125, pages 283–298.
Springer Verlag.

[Naraschewski and Wenzel, 1998] Naraschewski, W. and Wenzel, M. (1998). Object-
oriented verification based on record subtyping in Higher-Order Logic. In Grundy,
J. and Newey, M., editors, Theorem Proving in Higher Order Logics, LNCS 1479,
pages 349–366. Springer.

[Paulson, 1994] Paulson, L. C. (1994). Isabelle: a generic theorem prover. LNCS 828.
Springer, New York.

[Paulson, 2000] Paulson, L. C. (2000). Mechanizing UNITY in Isabelle. ACM Trans-
action on Computational Logic, 1(1):3–32.

[Reetz, 1995] Reetz, R. (1995). Deep Embedding VHDL. In Schubert, E., Windley,
P., and Alves-Foss, J., editors, International Workshop on Higher Order Logic
Theorem Proving and its Applications, LNCS 971, pages 277–292. Springer.

[Santen, 1998] Santen, T. (1998). On the semantic relation of Z and HOL. In Bowen,
J., Fett, A., and Hinchey, M., editors, ZUM ’98, LNCS 1493, pages 96–115.

[Spivey, 1992] Spivey, J. M. (1992). The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science.

[Tej and Wolff, 1997] Tej, H. and Wolff, B. (1997). A corrected failure-divergence
model for CSP in Isabelle/HOL. In Fitzgerald, J., Jones, C., and Lucas, P.,
editors, FME 97, LNCS 1313, pages 318–337. Springer.

[Woodock and Davies, 1996] Woodock, J. and Davies, J. (1996). Using Z. Prentice
Hall.

[Zeta, 2003] Zeta (2003). http://uebb.cs.tu-berlin.de/zeta/.
[ZEVES, 2003] ZEVES (2003). http://www.ora.on.ca/z-eves/welcome.html.

172 Brucker A.D., Rittinger F., Wolff B.: HOL-Z 2.0: A Proof Environment ...

