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1 Introduction

Rational Pavelka logic (RPL) is obtained from Lukasiewicz infinite valued propo-
sitional calculus (L) by adding the truth constants 7 for r € [0,1] N Q. The
corresponding algebraic structures (Pavelka algebras) will be MV-algebras that
contain a set of constants {7 | » € [0,1] N Q} as a subalgebra. The quantifiers
defined on an MV-algebra appear in [10, 11] reflecting the action of the quanti-
fiers in Lukasiewicz infinite valued predicate calculus (LV). In this paper we start
from the Rational Pavelka predicate logic (RPLY) in order to define the quanti-
fiers on Pavelka algebras. This leds to the notion of monadic Pavelka algebra. If
K is a non-empty set then the MV-algebra [0, 1]% has a canonical structure of
monadic Pavelka algebra. The main result of this paper is a representation theo-
rem for monadic Pavelka algebras. In fact, our results can be viewed as algebraic
versions of the results in [6] (see also [4], pp. 223-226).

2 Monadic MV-algebras

The MV-algebras were introduced in [1] as algebraic models for L. An
MV-algebra is an algebraic structure (A, ®,—,0) where (A4, ®,0) is an abelian
monoid and — is an unary operation such that :

1. ==z =z for any z € A,

2. 2 ® -0 = -0 for any z € A,

3.a(zdy)dy=-(-yPdz)®z forany z, y € A.

* C. 8. Calude and G. Stefinescu (eds.). Automata, Logic, and Computability. Special
1ssue dedicated to Professor Sergiu Rudeanu Festschrift.
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We also define 1 = =0, 2 0y = =(~s®d w), sz — y = Dy,
zVy=zd(-z0y), Ay =z 0O (-zdy) Thus (4,V,A,0,1) is a bounded
distributive lattice. If z € A and n is a natural number we denote

0z =0, (n+ 1)z =nz @ =z,

20 =1, 2" = 2" O .

The interval [0,1] is an MV-algebra with respect to the operations
z®y =min(l,z +y) and 7z = 1 — z. In [0, 1] we have that 2 ©y = maz(0,z +
y—1)and 2 — y = min(l,1 — 2z + y). If z < 1 then there exists a natural
number n such that z” = 0.

Lemma 2.1 [2] In every MV-algebra A the following equalities hold:
(1) a®Veroi = Vier(@a® i), a® Ajerzi = N\ies(a @ zi),
(i) a© Vi i = V(@ © zi), a O N\jep 2 = Nigr(a © z3),
(iii) 4f A is linearly ordered then
2
Vier(zi ® z:) =2 (Viep 2i), Vier(zi © 2i) = (Vier wi)zj
Nier(zi @ 2:) =2 (Niep i), Nier(zi © 23) = (Ajep zi) ™

Lemma 2.2 [1, 2] The implication operation — has the following properties:
Hez<yiffe —y=1,

)yoz<eiff y<z—a,

(iii) (zVy) — 2= (2 — 2) A (y — 2).

A non-empty subset F' of A is an MV-filter ( filter) if for every z, y € A the
following are satisfied:
4 zyeFP=>z0yel,
S5.z<y,z € F=>yekF.
For X C A the filter generated by X is given by

fit(X)={a€A|z1®-- &z, <a for some n < wand z1,...,z, € X}.
If F is a filter and b € A then

filt(X U {b})={a € A| 2 b" < a for some n < w and = € F}.
With any filter F' of A we can associate a congruence ~p on A:

z~pyiff (z— y)A(y—z)€PF.

Denote by A/p the quotient MV-algebra A/ ~r and denote by a/p the class of
a€ A

A proper filter P is prime if zVy € P implies x € P or y € P. One can prove
that a proper filter P is prime iff 1 — y € Pory — z € Pforany z,y € A
iff A/p is alinearly ordered MV-algebra.

Definition 2.3 An existential quantifier on an MV-algebra A is a mapping
3: A — A which satisfies the following axioms:

MO. 30 =0,

Ml. z < Jz,

M2. I(z © Fy) = Fz © Ty,
M3. I(z & Fy) = Fz & Ty,
M4. Iz © z) = Jz © Tz,
M5. 3(z @ z) = Jz & J=.

If we define Vo = =3—z for any 2 € A then the mapping V: A — A fulfils

the following properties:
MOQ°. V1 =1,
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M1°. Vz

M2°. V(w @ Vy) Yz & Vy,
M3°. V(z © Vy) = Vz O Vy,
M4°. V(z & z) = Yz & Vz,

M5°. V(z © z) = Vo © Va.

A mapping V: A — A satisfying the properties M0° - M5° will be called
universal quantifier on A. A monadic MV-algebra is a pair (A,3) where A is
an MV-algebra and 3 is an existential quantifier on A. One can also define a
monadic MV-algebra as a pair (4,V) where A is an MV-algebra and V is an
universal quantifier on A.

Lemma 2.4 [10] In every monadic MV-algebra the following properties are sat-
1sfied:

(i) 31 =1,

(i) 33z = T,

(iii) 3(-Fz) = -3z,

(iv) 3(Fz © Fy) = = © Ty,

(v) 3(Fz & Fy) = Fz @ Ty,

(vi) El(a A 3b) = Ja A 3,

(Vl) J(a V b) = Ja V T,

(vill) # <y = Jz < Jy and Yz < Vy,
(ix) IVz = Vz, Vdz = Jz.

Example 2.5 [3] If K is a non-empty set then [0,1]% becomes a monadic
MV-algebra by defining 3 : [0, 1]% — [0, 1]¥ in the following way:

(3p)(k) = \V/{p(l) | L € K} for any p € [0,1]¥ and k € K.
The axioms M0-M5 can be proved by using Lemma 2.1.

3 Monadic Pavelka algebras

Let us denote L the MV-algebra [0,1] N Q.

Definition 3.1 A Pavelka algebra is a structure (A, {7 :r € L}) where A is an
MV-algebra and {7 : 7 € L} C A such that:

P0.0=0,

PlL.r®s=7®3 for anyr,s € L,

P2. =7 = =7 for any r € L,

P3. 7 #5 for any distinct r, s € L.

Thus, the mapping 7 +— 7 is an injective morphism of MV-algebras. The Lin-
denbaum - Tarski algebra of Rational Pavelka logic (RPL) is a Pavelka algebra.

The notion of morphism of Pavelka algebras is introduced as usual.

Lemma 3.2 Let (A, {F:7 € L}) be a Pavelka algebra, P a proper filter of A
and r, s € L. Then the following hold:

(i)7ePiffr=1,

(11) r<s iﬁ?/p S?/p,

Proof. (i) If » # 1 then there is n < w such that »” =0, s0 7> = 0. But 7 € P

implies 7™ € P for each m < w. We get 0 € P. Contradiction.
(i)r<siffr —s=1ilr—sePiflT—s5€Piff 7/p <35/p. O
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Definition 3.3 4 monadic Pavelka algebra is a structure (A,3,{7:r € L})
where (A,3) is a monadic MV-algebra and (A, {7 : 7 € L}) is a Pavelka alge-
bra such that 37 =7 for any r € L.

The notion of morphism of monadic Pavelka algebras is introduced as usual.

Example 3.4 Let F be the set of formulas of Rational Pavelka predicate logic
(RPLV) and ~ the following equivalence relation on F: ¢ ~ ¢ iff F ¢ — 9. If
z is a variable then we denote (3z)([¢]) = [Tzyp] where ¢ is a formula and [y]
its class in F/.. Then (F/.,3z: F/. —— F.) is a monadic MV-algebra. If »,
s € L are distinct then [7] # [5]. If [f] = [5] then F 7 —» Sand F 5 — 7. We
get 7 < s and s <7 (see [4]), so r = 5. It is easy to show that in this way F/.
becomes a monadic Pavelka algebra.

Example 3.5 Let K be a non-empty set. For » € L denote 7 : K — [0, 1] the
constant function k +— 7. Thus <[0, 1185 {7:re L}> is a Pavelka algebra, so , by

Example 2.5, [0,1]% is endowed with a structure of monadic Pavelka algebra.

If A is a monadic Pavelka algebra then a morphism of monadic Pavelka
algebras @ : A — [0, 1]% will be called a representation of A.

Lemma 3.6 In a monadic Pavelka algebra A the following equalities hold for
anyr € L and a € A:
(i) IFDa) =7 I(a),

(vill) Va — 7 =3(a — 7).

Proof. (1) A(7@a)=3(F da) =37 d Ja =7 & Ja.

(i), (iii), (iv) follows similarly.

(V)3T —a)=3(-Tda)=F(FT ®a) =T ® Ja=7 — Ta.

(vi)V(a —7)=V(-a®7)=7@V-a=7d -Ja=Ja — T.

(vil), (viii) follows similarly. O

One remark that B = 3(A) = V(A) is a Pavelka subalgebra of A.
For the rest of the paper let (A,3,{F:7 € L}) be an arbitrary monadic
Pavelka algebra and B = 3(A4).

Lemma 3.7 Ifs € L, a € A and 5 £ a then there exists X C B such that:
(i) filt(X U{a — $}) is proper,
(i) for anyb€ Bandr € L,7 —be X orb— T € X.

Proof. We shall prove that the filt(a — ) is proper. If not, then (a — 5)" =0
for some n < w. But (¢ — 3)" V (§ — a)” = 1 s0 (5§ — a)”™ = 1. This yields
§ — a =1, hence 5§ < a. Contradiction. Thus there exists b ¢ filt(a — 3).
Consider an enumeration {(a¢,7¢) | ¢ < k} of the set B x L. We shall
construct by induction a sequence {X¢ }¢ <), such that b ¢ filt(X) for any & < k.
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L] X() = {(L — E}
e { = (+ 1. The induction hypothesis is b ¢ filt(X¢). Assume b €
filt(Xe U {ae — T¢}) N filt(Xe U {F¢ — ac}) so there is n < w such that

)" b e Filt(X¢) and (7¢ — ac)™ — b€ filt(Xc). But
1—b
[(ac —=7¢)" V (¢ — ac)"] — b
=lla¢ — 7¢)" — b A[(T¢ — ag)™ —— O]
hence b € filt(X¢). Contradiction. It follows that b & filt(X, U {ac — 7¢}) or
b¢ filt(Xe U{7c — ac}). Thus one can define
XE:{Xgum<_aQ}ﬁbgﬁﬁ@kumg—ﬁwp
XcU{7; — ac} otherwise.
o If ¢ is a limit ordinal then X = UC<E Xe.
It follows that b & filt(U,, X¢) and we define X = J; 4 X¢ —{a — 35} O

(a¢

Sl

L]

—_=

Lemma 3.8 Let X be a the set constructed in Lemma 3.7. If 3a € X then there
exists a prime filter P such that X U {a} C P.

Proof. By the dual of [2], Proposition 1.2.13 it suffices to prove that fil¢(XU{a})
is a proper filter. If not, then there exist m < w and zy, ..., z, € X such
that 21 @ - @z, ®a™ = 0. Denote z = 21 ® --- ® 2, so ¢ < —a™, hence
Ve < V=(a™) = =3(a™). But ¢ € 3(A) because X C I(A) so ¢ < =3(a™), hence
—3(a™) € fult(X). By hypothesis, 3(a™) = (Ja)™ € filt(X), contradicting that
filt(X) is proper. O

4 Representation theorem

In this section we shall prove a representation theorem for monadic Pavelka
algebras.

Theorem 4.1 Let (A,3,{F :r € L}) be a monadic Pavelka algebra. If a € A
and s € L such that’s £ a then there exist a non-empty set K, a representation

$:A—1[0,1)% and k € K such that $(a)(k) < s.

Proof. Let X be the set constructed in Lemma 3.7 and K the set of prime filters
of A including X. For any z € A and P € K denote
[z]p = sup{r € L |7 —— z € P}.

In order to define ¢ we have to prove some properties.
(\)[z]p =inf{re L|z — 7 € P}.
Ifr — 2z € Pand £ — 5 € P then, by Lemma 3.2, 7 — s € P,sor < s. It
follows that [z]p < inf{r € L |z — 7 € P}. If we assume [z]p < inf{r € L |
z — 7 € P} then thereis ¢ € L such that [z]p < ¢ <inf{r € L |z — 7 € P},
sog— z & P and ¢ — G ¢ P. This contradicts the fact that P is a prime
filter.
(ii) [z @ ylp = [z]p © [y]p.
(ii1) [z © y]p = [z]p © [y]p.
In order to prove (ii) we have

[zdylp=inf{t|zdy —t€ P} and

[z]p @ lylp = sup{r®q |7 — z € P, — y € P}. )
By Lemma 3.2, 7 — 2z € P,g — y € P and @y — t € P implies
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7/p<z/p,q/p <y/pandz/p@y/p <t/psor®q/p <t/p, hencer ®q < t.
We proved that [z]p & [y]p < [z ® y]p. The converse inequality and (iii) follow
similarly.
(iv) [F]lp = 7 for any r € L.
By Lemma 3.2, [F]=sup{g € L| g <7} =r.
Let us define @ : A — [0,1]% by &(z)(P) = [z]p for any z € A and P € K.
In accordance to (ii)-(iv), @ is a morphism of Pavelka algebras. Now we shall
prove that
(v) @(3z)(P) = (3P(z))(P) for any z € A and P € K.
If r € L and P, @ € K we have, in accordance to Lemma 3.2, 7 — Jz € P
iff 7 — 3 € Q, therefore [3z]p = [Iz]g. Then [Jz]|p = [Tz]g > [z]g for every
Q € K, hence
5(32)(P) = Bl > supllile | Q € K} = supl#(2)(Q) | Q € K = (3(z))(P).
The following implications:
r<|[Fzlp=>Tz—T&P (cf (i)
=>3Jdz—7¢X (. XCP)
=7 -— 3z €X (cf Lemma 3.7)
= 3(7 — z) € X (cf. Lemma 3.6)
(cf. Lemma 3.8)

for some @ € K, establish the converse inequality in (v). Indeed, if we assume
[Fz]p > sup{[z]g | @ € K} then thereis 7 € L such that [3z]p > r > sup{[z]g |
€ K} contradicting the above implications. Therefore, ¢ is a representation
of A.
Finally, by Lemma 3.7, there exists Py € K such that X U {a — 35} C P, so
P(a)(Py) < s and ®(a)(Py) =inf{r|a — T € R} O

For any a € A let us define
[a] = sup{r |7 < a}

| al|=inf{®(a)(k)|®: A— [0,1]¥ representation and k € K}.
Corollary 4.2 [a] =|| a || for any a € A.

Proof. The inequality [a] <|| a || is obvious. Assume there exists s € L such
that [a] < s <|| @ ||. Thus § £ a so, by Theorem 4.1, there exist a rep-
resentation @: A — [0,1]% and k € K such that ®(a)(k) < s. Therefore
|| e ||< ®(a)(k) < s. Contradiction. O
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