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Abstract: This paper deals with the Pascal subroutines for solving certain problems
in the interval linear programming, especially with calculating the exact range, i.e.
the supremum and the infimum of optimal objective function values of a family of LP
problems in which all coefficients in constraints vary in given intervals. A theoretical
background of the algorithms and a description of the package is included. An appli-
cation of algorithms regarding a set of feasible coefficients and the solvability set is
described in this paper and numerical experiences are also mentioned.
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1 Introduction

Let us consider the following linear programming (LP) problem in the standard
form

S(A,b): sup{c'z : Az = b,z > 0}. (1)

As a case of inexact input data, let us assume that the data may vary in-
dependently in given intervals. Therefore, we shall consider an interval m by
n matrix [A] and an interval m—vector [b] given by the bounds A, A, b and b
satisfying b < b.

By an interval linear programming (ILP) problem we mean the family of LP
problems S(A,b), where A € [A], b € [b] and ¢ € R" is a given vector.

For the fixed A € [A] and b € [b], the problem S(A,b) is called a subproblem
of an ILP problem with the set of feasible solutions denoted by X (A,b). Let
H ={heR™:|h|=1,i=1,..,m}. By using Sp, h € H let us introduce
the so-called extremal subproblem, of which the i-th constraint has the form
(Az); = b, if h; = L and (Az); = b; if h; = —1,i = 1,2,..., m. The corresponding
set of feasible solutions will be denoted by Xj,.

Let f(A,b) denote the optimal value of a subproblem S(A,b). The function f
defined in this way is called the solution function of an ILP problem. The package
is devoted to calculating the supremum f and the infimum f of the solution
function subject to given intervals, i.e., calculating the exact upper and lower
bounds of optimal values for all subproblems of a given ILP problem. For such a

! This research was supported by the Grant Agency of the Czech Republic under the
grant No. 201/95/1484.



Mraz F., Kursch M., Panuska D.: Pacal Subroutines for Solving Some Problems ... 165

problem it is redundant to consider an interval vector [c] = {c € R" : ¢ < ¢ < ¢}
in the objective function because it holds ¢’z < ¢Tz < € « for all z > 0 and
celc.

The problem was solved either by using interval arithmetic, e.g., by Beeck [1],
Jansson [3], [4] or without interval analysis by Rohn in [10], [11]. The mentioned
results were received under a restricting assumption, e.g., a basis stable case (see
Section 2) was often considered. For our Pascal package, the approach without
interval arithmetic is used as well. The theoretical background and a description
of the algorithms are given in full detail in [5], [6] and [7]. There is a brief
summary in Section 2.

By the set of feasible solutions we denote the set

F={(A,b) € [A] x [b] : X(A,b) # 0}. 2)

The solvability set S is defined as the set containing all values A, b, ¢ belonging
to the given intervals so that problem (1) has a finite optimum.

An application regarding the sets F' and S is mentioned in Section 2. A
description of the Pascal package including certain numerical experiences is given
in Section 3.

2 Theoretical Background, Algorithms and Applications

Let us denote by X the set of all feasible solutions for a given ILP problem, i.e.,
X =U{X(A,b): A e [A4],b€ [b]}. (3)

It is known that the set X is a convex polytope which follows immediately from
the Oettli-Prager theorem [8]. Moreover, the values f and f are reached in some
vertices of X. An important class of ILP problems is introduced by the following
definition: The set X is called regular if each of its vertices is a vertex of some
Xp,h € H. The calculation of the exact upper bound f is based on the following
assertion:

Theorem 1. Let  be a vertex of the reqular set X. Then c¢"x = f if and only if
x is an optimal solution of an extremal subproblem Sy, in which the dual optimal
y = (y;) satisfies the following:

Proof was given in [5].
Theorem 1 implies a possibility to solve a sequence of extremal subproblems
Sy, until the optimality criterion (4) is satisfied.

Algorithm SUP

0. Choose a h € H.

1. Compute the optimal solution z" of the subproblem S, and a dual optimal
solution y. If S}, is unbounded, then f := oo and STOP.

2. If y;h; <0,i=1,...,m, then set f :=c’2" and STOP.

3. Specify the index s with yshs = max{y;h; : y;h; > 0} and proceed to the
new subproblem, of which the constraints are changed in the s-th row.
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4. Go to step 1.

The continuation to a new subproblem in step 3 can be done efficiently by
adding the opposite s-th extremal equation to the constraints and by performing
an usual step of the simplex method. All details are described in [5].

If the set X is regular, then the algorithm SUP operates with m rows table
except for changing the s-th row in step 3, where one row is added. If the set
X is not regular, then the value f can be achieved at some vertex of X which
does not belong to any X}, h € H. In this case we must consider not only the
extremal, but also the so-called ¢t-subproblems. Then, the number of rows in a
table may change between m and 2m during a calculation. It was proved in [5],
however, that the optimality criterion generalized for the t-subproblems has the
form (4). Moreover, for an arbitrary ILP problem, the algorithm SUP terminates
in a finite number of steps in calculating the exact upper bound of optimal values
f or with a conclusion that the set of all feasible solutions X is empty. We should
emphasize an important feature of the algorithm SUP: If the set X is regular
then the SUP algorithm works in a simplified way with m rows table without
verifying the regularity of X.

Calculating the exact lower bound f of optimal values is more difficult as

it is an NP-hard problem, see Rohn [12]. First, we introduce new definitions. A
given ILP problem is called strongly solvable if each subproblem S(A,b) has a
finite optimum. An ILP problem will be called basis stable with basis B if each
subproblem S(A4,b) has a unique nondegenerate optimal basic solution with the
basis B.

Theorem 2. Let an ILP problem be strongly solvable. Then there is an h* € H
such that f = f(Ap«,bp+) = min{f(Ap,bp) : h € H}.

Theorem 2 leads to a possibility of solving 2™ extremal subproblems to cal-
culate the exact lower bound f. For a small value of m it can be calculated
efficiently by using the algorithm SUP as it proceeds easily and efficiently from
an optimal solution of an extremal subproblem to a feasible ( sometimes even op-
timal ) solution of another extremal subproblem. The problem was solved by the
algorithm with a systematic passage through all extremal subproblems: hence-
forth, the algorithm is denoted by AS. However, depending on a hardware, the
value m should not be greater than 20 in order to finish a computation within
a reasonable time limit.

There is another alternative to solve the problem in question. It is based
on the following assertion which gives, however, only a necessary condition for
calculating the exact lower bound of optimal values f.

Theorem 3. Let an ILP problem be strongly solvable. If x is an optimal solution
of an extremal subproblem Sy, with ¢’z = f, then a dual optimal solution y = (y;)
satisfies the condition N

yihi Z 0, 1= 1, ceey M (5)

As the condition (5) differs from the condition (4) in opposite inequalities only,
Theorem 3 implies a modified algorithm with obvious changes of the algorithm
SUP in steps 2 and 3. Because we have a necessary condition in Theorem 3
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only, there is a problem of the termination of the procedure and of a possible
conclusion if the criterion (5) in step 2 is satisfied. Finiteness of the modified
algorithm in reaching the exact lower bound f is ensured under the assumption
of basic stability. N

If an ILP problem is basis stable, then a procedure utilizing step 3 of the
algorithm yields immediately an optimal solution of a new subproblem with
a smaller optimal value. It should be emphasized that the algorithm works in
this way without the knowledge of basic stability. Therefore, after finding an
optimal solution of the initial subproblem, the solution function value decreases
monotonically by passing through the vertices of the set X if condition (5) is not
satisfied. Thus, the value f is reached in a finite number of steps. The problem,
however, consists in the fact that the basic stability assumption is difficult to
verify except for some sufficient conditions.

Neverthless, there is still a result regarding the termination of the above
procedure in a general case. It was shown in [7] that the condition (5) is sufficient
at least for a local lower bound of optimal values. Because of this result, the
modified algorithm will be denoted by LM ( i. e. Local Minimizer of the solution
function ).

The above algorithms enable us not only to calculate the exact lower and
upper bound of optimal values but also to obtain applications. The first one
is connected with the problem of whether or not each LP problem S(A,b), A €
[A],b € [b] has a feasible solution, i.e., whether or not the set of feasible solutions
F = [A] x [b]. The problem can also be formulated in the following way: Is the
set X(A,b) of nonnegative solutions of a system of linear equations Az = b
nonempty for each A € [A],b € [b] ? The following Theorem was proved by
Rohn in [9]:

Theorem 4. X (A,b) is not empty for all (A,b) € [A] x [b] <= all extremal
subproblems Sy, h € H have nonempty sets Xp,.

If we use the algorithm AS, then a verification of a feasibility of all extremal
subproblems need not solve 2™ extremal systems, but to perform 2™ steps of
the Simplex method.

The second application regards the solvability set of a given ILP problem,
namely, a decision whether all LP problems

S(A,b,c) : sup{c’z : Az = b,z > 0} (6)

where A € [A4], b € [b] and ¢ € [¢] have a finite optimum. Let us consider
an ILP problem of a special form with input intervals given by the central
values Ag, bo, co and by relative error €, i.e. [A] = Ao £ €|Ao|, [b] = bo % €|bo],
[c] = coEe|cg|. Such an ILP will be indicated by ILP(€) with the set of all feasible
solutions X (e).

Theorem 5. If €; < €5 then X(e1) C X (e2).

Proof follows easily from the Oettli-Prager theorem [8].

Suppose that the subproblem S(Ag, by, ¢) has a finite optimum. Because of
Theorem 5 the following procedure can be performed: Let us start by using the
above SUP algorithm for calculating the exact upper bound of optimal values
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f(e) for an ILP(e) problem with an initial fixed value e. If f(€)o is finite then
repeat using the SUP algorithm with the value 2¢p, otherwise with the value
€0/2. After a finite number of steps, a modified procedure of the bisection of an
interval for e values results in calculating values €;, €2 with a required accuracy
such that all ILP(€) problems with € € [0, €;] have a finite upper bound of optimal
values f(e) and for each € > €5 there is an unbounded subproblem of an ILP(¢)
problem. Together with the previous application we can find a value ¢y < €
such that for any € € [0, €g] all subproblems of a corresponding ILP(€) problem
have a finite optimum.

3 Subroutines and Numerical Experience

The ILP package in Pascal can be operated very easily by means of a basic menu
offering the following options: File, Edit, Work, Export and Help.

The File option gives the following possibilities:

- to Open any file contained in the directory ILP ( e.g. to observe results of
calculations in output files which are contained in directories OutputAS, Out-
putLM and OutputSU )

- to Set up paths with a possibility for changing the adjusted paths to input
and output files

- to Print a current file.

The Edit option helps in editing a file which has been opened by the File
option.

The Work option enables us to run three basic subroutines denoted by SUP,
LM and AS in correspondence to the above algorithms. The subroutines are
based on the codes of Bunday and Garside [2] and they were tested on PCs. It
is possible to use both the MS DOS and MS Windows operation systems. All
new procedures are described in a manual in details which enable any user to
modify subroutines, especially in procedures connected with a form of input and
output files. By running a subroutine, a user is asked for names of input and
output files. There are two types of input data which must be prepared in the
input file.

(i) The input data of the form

m n A A b b ¢

if the interval matrix [A] and interval vector [b] are given by their bounds A,
A, band b.

(ii) The input data of the form

m n Ay by € ¢

if the interval matrix [A] and interval vector [b] are given by their central
values Ag and by with [A] = Ag £ €| Ao|, [b] = by % €|bo|.

An output file contains final results with input data and final values of an
optimal solution. Subroutines LM and AS contain a warning label if the set of
feasible solutions is not regular.

By running subroutines, the user has an opportunity to choose the initial ex-
tremal subproblem. The menu offers four initial subproblems given by four vec-
tors k', h2, h?, h* belonging to the set H. Vectors h' and h? all have components
equal to 1 and -1, respectively. For vector h® there is h; = (—=1)"1,i = 1,...,m,
while h; = (=1)%,i = 1,...,m for vector h*. Geometrically, it means a possibility
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to start from vertices lying in quite different parts of the polytope X. It can be
useful especially for calculating the exact lower bound.

If the initial extremal subproblem has no feasible solution, then the procedure
continues by using a systematic procedure to another extremal subproblem by
changing exactly one row of the constraints. If all extremal subproblems have
no feasible solutions, then the set X of all feasible solutions is empty.

A user’s chosen results of outputfiles can be exported into MS Word by means
of the option Export.

All the above subroutines were tested in the collection of more than five
hundred randomly generated examples. Numerical experience, especially with
an implementation of the algorithm LM, could be of some interest. It was con-
firmed that the algorithm works successfully except for an ILP problem with
a nonregular set X. Such a case, however, can be easily recognized during the
execution of step 3 of the algorithm. If such a case appears, a warning label
is used as cycling may occur. Thus, the algorithm LM terminates after a finite
number of steps with a warning of nonregularity, or with satisfying optimality
criterion (5), i.e., with finding the exact lower bound in a stable region with the
current basis B. There are several possibilities to proceed in a irregular case:

(i) We can try to proceed to another extremal subproblem if condition
(5) is not satisfied for more indices.

(if) We can start the procedure with another initial extremal subproblem.

(iii) We can continue carefully using the algorithm INF while checking
the number of iterations to prevent cycling.

To solve irregular problems, procedure (ii) was usually used. There were
some problems among the tested collection with the following result: There was
an irregularity warning for a certain choice of an initial subproblem, while the
algorithm LM terminated succesfully for another choice of the initial subproblem.
This has even happened with problems having a relative error € < 0.01.

Regarding the AS algorithm, it can also be used as an examination of some
properties of an ILP problem which can be characterized in terms of extremal
subproblems, e.g., regularity, feasibility, strong solvability, basic stability and
boundedness. A possible application of this type was described briefly in Section
2. The theoretical results mentioned in [6], which are supported by the numerical
experience, lead to the conclusion that the algorithms seem to be more useful
than other approaches based on the simplex method.
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