
THE LIMITS OF MATHEMATICS
1

G. J. Chaitin
IBM Research Division, P. O. Box 704, Yorktown Heights, NY 10598, email:

chaitin@watson.ibm.com

1 Introduction

In a remarkable development, I have constructed a new de�nition for a self-
delimiting universal Turing machine (UTM) that is easy to program and runs
very quickly. This provides a new foundation for algorithmic information theory
(AIT), which is the theory of the size in bits of programs for self-delimiting
UTM's. Previously, AIT had an abstract mathematical quality. Now it is possible
to write down executable programs that embody the constructions in the proofs
of theorems. So AIT goes from dealing with remote idealized mythical objects
to being a theory about practical down-to-earth gadgets that one can actually
play with and use.

This new self-delimiting UTM is implemented via software written in a new
version of LISP that I invented especially for this purpose. This LISP was de-
signed by writing an interpreter for it in Mathematica that was then translated
into C. I have tested this software by running it on IBM RS/6000 workstations
with the AIX version of UNIX.

Using this new software and the latest theoretical ideas, it is now possible to
give a self-contained \hands on" mini-course presenting very concretely my latest
proofs of my two fundamental information-theoretic incompleteness theorems.
The �rst of these theorems states that an N -bit formal axiomatic system cannot
enable one to exhibit any speci�c object with program-size complexity greater
than N + c. The second of these theorems states that an N -bit formal axiomatic
system cannot enable one to determine more than N + c0 scattered bits of the
halting probability
.

Most people believe that anything that is true is true for a reason. These
theorems show that some things are true for no reason at all, i.e., accidentally,
or at random.

As is shown in this course, the algorithms considered in the proofs of these
two theorems are now easy to program and run, and by looking at the size in
bits of these programs one can actually, for the �rst time, determine exact values
for the constants c and c0.

I used this approach and software in an intensive short course on the limits of
mathematics that I gave at the University of Maine in Orono in the summer of
1994. I also lectured on this material during a stay at the Santa Fe Institute in the
spring of 1995, and at a meeting at the Black Sea University in Romania in the
summer of 1995. A summary of the approach that I used on these three occasions
will appear under the title \A new version of algorithmic information theory" in a

1 C. Calude (ed.). The Finite, the Unbounded and the In�nite, Proceedings of the
Summer School \Chaitin Complexity and Applications",Mangalia, Romania, 27 June
{ 6 July, 1995.

Journal of Universal Computer Science, vol. 2, no. 5 (1996), 270-305
submitted: 13/5/96, accepted: 13/5/96, appeared: 28/5/96  Springer Pub. Co.

forthcoming issue of the new magazine Complexity, which has just been launched
by the Santa Fe Institute and John Wiley and Sons. A less technical discussion
of the basic ideas that are involved \How to run algorithmic information theory
on a computer" will also appear in Complexity.

After presenting this material at these three di�erent places, it became ob-
vious to me that it is extremely di�cult to understand it in its original form. So
next time, at the Rovaniemi Institute of Technology in the spring of 1996, I am
going to use the new, more understandable software in this report; everything
has been redone in an attempt to make it as easy to understand as possible.

For their stimulating invitations, I thank Prof. George Markowsky of the
University of Maine, Prof. Cristian Calude of the University of Auckland, Prof.
John Casti of the Santa Fe Institute, and Prof. Veikko Ker�anen of the Rovaniemi
Institute of Technology. And I am grateful to IBM for supporting my research for
almost thirty years, and to my current management chain at the IBM Research
Division, Dan Prener, Christos Georgiou, Eric Kronstadt, Je� Ja�e, and Jim
McGroddy.

This report includes the LISP runs *.r used to present the information-
theoretic incompleteness theorems of algorithmic information theory. This report
does not include the software used to produce these LISP runs. To obtain the
software for this course via e-mail, please send requests to chaitin@watson.-
ibm.com.

2 The New Idea

Here is a quick summary of this new LISP, in which atoms can now either be
words or unsigned decimal integers. First of all, comments are written like this:
[comment]. Each LISP primitive function has a �xed number of arguments. '
is QUOTE, = is EQ, and atom, car, cdr, cadr, caddr, cons are provided with
their usual meaning. We also have lambda, define, let, if and display and
eval. The notation " indicates that an S-expression with explicit parentheses
follows, not what is usually the case in this LISP, an M-expression, in which
the parentheses for each primitive function are implicit. nil denotes the empty
list (), and the logical truth values are true and false. For dealing with un-
signed decimal integers we have +, -, *, ^, <, >, <=, >=, base10-to-2,
base2-to-10.

So far this is fairly standard. The new idea is this. We de�ne our standard
self-delimiting universal Turing machine as follows. Its program is in binary, and
appears on a tape in the following form. First comes a LISP expression, written
in ASCII with 8 bits per character, and terminated by an end-of-line character
'\n'. The TM reads in this LISP expression, and then evaluates it. As it does
this, two new primitive functions read-bit and read-exp with no arguments
may be used to read more from the TM tape. Both of these functions explode
if the tape is exhausted, killing the computation. read-bit reads a single bit
from the tape. read-exp reads in an entire LISP expression, in 8-bit character
chunks, until it reaches an end-of-line character '\n'.

This is the only way that information on the TM tape may be accessed, which
forces it to be used in a self-delimiting fashion. This is because no algorithm can
search for the end of the tape and then use the length of the tape as data in the

271Chaitin G.J.: The Limits of Mathematics

computation. If an algorithm attempts to read a bit that is not on the tape, the
algorithm aborts.

How is information placed on the TM tape in the �rst place? Well, in the
starting environment, the tape is empty and any attempt to read it will give
an error message. To place information on the tape, one must use the primitive
function try which tries to see if an expression can be evaluated.

Consider the three arguments �, � and
 of try. The meaning of the �rst
argument is as follows. If � is no-time-limit, then there is no depth limit.
Otherwise � must be an unsigned decimal integer, and gives the depth limit
(limit on the nesting depth of function calls and re-evaluations). The second
argument � of try is the expression to be evaluated as long as the depth limit
� is not exceeded. And the third argument
 of try is a list of bits to be used
as the TM tape.

The value � returned by the primitive function try is a triple. The �rst
element of � is success if the evaluation of � was completed successfully, and
the �rst element of � is failure if this was not the case. The second element
of � is out-of-data if the evaluation of � aborted because an attempt was
made to read a non-existent bit from the TM tape. The second element of
� is out-of-time if evaluation of � aborted because the depth limit � was
exceeded. These are the only possible error
ags, because this LISP is designed
with maximally permissive semantics. If the computation � terminated normally
instead of aborting, the second element of � will be the result produced by the
computation �, i.e., its value. That's the second element of the list � produced
by the try primitive function.

The third element of the value � is a list of all the arguments to the primitive
function display that were encountered during the evaluation of �. More pre-
cisely, if display was called N times during the evaluation of �, then � will be
a list of N elements. The N arguments of display appear in � in chronological
order. Thus try can not only be used to determine if a computation � reads too
much tape or goes on too long (i.e., to greater depth than �), but try can also
be used to capture all the output that � displayed as it went along, whether the
computation � aborted or not.

In summary, all that one has to do to simulate a self-delimiting universal
Turing machine U(p) running on the binary program p is to write

try no-time-limit 'eval read-exp p

This is an M-expression with parentheses omitted from primitive functions. (Re-
call that all primitive functions have a �xed number of arguments.) With the
parentheses supplied, it becomes the S-expression

(try no-time-limit ('(eval(read-exp))) p)

This says that one is to read a complete LISP S-expression from the TM tape
p and then evaluate it without any time limit and using whatever is left on the
tape p.

Some more primitive functions have also been added. The 2-argument func-
tion append denotes list concatenation, and the 1-argument function bits con-
verts an S-expression into the list of the bits in its ASCII character string rep-
resentation. These are used for constructing the bit strings that are then put
on the TM tape using try's third argument
. We also provide the 1-argument

272 Chaitin G.J.: The Limits of Mathematics

functions size and length that respectively give the number of characters in
an S-expression, and the number of elements in a list. Note that the functions
append, size and length could be programmed rather than included as built-
in primitive functions, but it is extremely convenient and much much faster to
provide them built in.

Finally a new 1-argument identity function debug with the side-e�ect of
outputting its argument is provided for debugging. Output produced by debug
is invisible to the \o�cial" display and try output mechanism. debug is needed
because try � �
 suppresses all output � produced within its depth-controlled
evaluation of �. Instead try collects all output � from within � for inclusion in
the �nal value � that try returns, namely � = (success/failure, value of �, �).

3 Course Outline

The course begins by explaining with examples my new LISP. See examples.r.
Then the theory of LISP program-size complexity is developed a little bit.

LISP program-size complexity is extremely simple and concrete. In particular, it
is easy to show that it is impossible to prove that a self-contained LISP expression
is elegant, i.e., that no smaller expression has the same value. To prove that an
N -character LISP expression is elegant requires a formal axiomatic system that
itself has at least LISP complexity N � 410. See godel.r.

Next we de�ne our standard self-delimiting universal Turing machine U(p)
using

cadr try no-time-limit 'eval read-exp p

as explained in the previous chapter.
Next we show that

H(x; y) � H(x) +H(y) + c

with c = 432: Here H(� � �) denotes the size in bits of the smallest program that
makes our standard universal Turing machine compute � � �. Thus this inequality
states that the information needed to compute the pair (x; y) is bounded by
a constant c plus the sum of the information needed to compute x and the
information needed to compute y. Consider

cons eval read-exp
cons eval read-exp

nil

This is an M-expression with parentheses omitted from primitive functions. With
all the parentheses supplied, it becomes the S-expression

(cons (eval (read-exp))
(cons (eval (read-exp))

nil))

c = 432 is just 8 bits plus 8 times the size in characters of this LISP S-expression.
See utm.r.

273Chaitin G.J.: The Limits of Mathematics

Consider a binary string x whose size is jxj bits. In utm.r we also show that

H(x) � 2jxj+ c

and
H(x) � jxj+H(jxj) + c0

with c = 1106 and c0 = 1024. As before, the programs for doing this are exhibited
and run.

Next we turn to the self-delimiting program-size complexityH(X) for in�nite
r.e. sets X . This is de�ned to be the size in bits of the smallest LISP expression
� that executes forever without halting and outputs the members of the r.e. set
X using the LISP primitive display, which is an identity function with the side-
e�ect of outputting the value of its argument. Note that this LISP expression
� is allowed to read additional bits or expressions from the TM tape using the
primitive functions read-bit and read-exp if � so desires. But of course � is
charged for this; this adds to �'s program size.

It is in order to deal with such unending expressions � that the LISP primitive
function for time-limited evaluation try captures all output from displaywithin
its second argument �.

Now consider a formal axiomatic system A of complexityN , i.e., with a set of
theorems TA that considered as an r.e. set as above has self-delimiting program-
size complexity H(TA) = N . We show that A cannot enable us to exhibit a
speci�c S-expression s with self-delimiting complexity H(s) greater than N + c.
Here c = 4872. See godel2.r.

Next we show two di�erent ways to calculate the halting probability
 of
our standard self-delimiting universal Turing machine in the limit from below.
See omega.r and omega2.r. The �rst way of doing this, omega.r, is straight-
forward. The second way to calculate
, omega2.r, uses a more clever method.
Using the clever method as a subroutine, we show that if
N is the �rst N bits
of the fractional part of the base-two real number
, then

H(
N) > N � c

with c = 8000. Again this is done with a program that can actually be run and
whose size gives us a value for c. See omega3.r.

Consider again the formal axiomatic system A with complexity N , i.e., with
self-delimiting program-size complexity H(TA) = N . Using the lower bound of
N � c on H(
N) established in omega3.r, we show that A cannot enable us to
determine more than the �rst N+c0 bits of
. Here c0 = 15328. In fact, we show
that A cannot enable us to determine more than N + c0 bits of
 even if they
are scattered and we leave gaps. See godel3.r.

Last but not least, the philosophical implications of all this should be dis-
cussed, especially the extent to which it tends to justify experimental mathe-
matics. This would be along the lines of the discussion in my talk transcript
\Randomness in arithmetic and the decline and fall of reductionism in pure
mathematics."

This concludes our \hands-on" mini-course on the information-theoretic lim-
its of mathematics.

274 Chaitin G.J.: The Limits of Mathematics

4 References

Here is a useful collection of hand-outs for this course:

[1] G. J. Chaitin, \Randomness in arithmetic and the decline and fall of reduc-
tionism in pure mathematics," in J. Cornwell, Nature's Imagination, Oxford
University Press, 1995, pp. 27{44.

[2] G. J. Chaitin, \The Berry paradox," Complexity 1 (1995), pp. 26{30.
[3] G. J. Chaitin, \A new version of algorithmic information theory," Complex-

ity, to appear.
[4] G. J. Chaitin, \How to run algorithmic information theory on a computer,"

Complexity, to appear.

examples.r

LISP Interpreter Run

[Test new lisp & show how it works]

aa [initially all atoms eval to self]

expression aa

value aa

nil [except nil = the empty list]

expression nil

value ()

'aa [quote = literally]

expression (' aa)

value aa

'(aa bb cc) [delimiters are ' " () [] blank \n]

expression (' (aa bb cc))

value (aa bb cc)

(aa bb cc) [what if quote omitted?!]

expression (aa bb cc)

value aa

'car '(aa bb cc) [here effect is different]

expression (' (car (' (aa bb cc))))

value (car (' (aa bb cc)))

car '(aa bb cc) [car = first element of list]

expression (car (' (aa bb cc)))

value aa

275Chaitin G.J.: The Limits of Mathematics

car '((a b)c d)

expression (car (' ((a b) c d)))

value (a b)

car '(aa)

expression (car (' (aa)))

value aa

car aa [ignore error]

expression (car aa)

value aa

cdr '(aa bb cc) [cdr = rest of list]

expression (cdr (' (aa bb cc)))

value (bb cc)

cdr '((a b)c d)

expression (cdr (' ((a b) c d)))

value (c d)

cdr '(aa)

expression (cdr (' (aa)))

value ()

cdr aa [ignore error]

expression (cdr aa)

value aa

cadr '(aa bb cc) [combinations of car & cdr]

expression (car (cdr (' (aa bb cc))))

value bb

caddr '(aa bb cc)

expression (car (cdr (cdr (' (aa bb cc)))))

value cc

cons 'aa '(bb cc) [cons = inverse of car & cdr]

expression (cons (' aa) (' (bb cc)))

value (aa bb cc)

cons'(a b)'(c d)

expression (cons (' (a b)) (' (c d)))

value ((a b) c d)

276 Chaitin G.J.: The Limits of Mathematics

cons aa nil

expression (cons aa nil)

value (aa)

cons aa ()

expression (cons aa ())

value (aa)

cons aa bb [ignore error]

expression (cons aa bb)

value aa

("cons aa) [supply nil for missing arguments]

expression (cons aa)

value (aa)

("cons '(aa) '(bb) '(cc)) [ignore extra arguments]

expression (cons (' (aa)) (' (bb)) (' (cc)))

value ((aa) bb)

atom ' aa [is-atomic? predicate]

expression (atom (' aa))

value true

atom '(aa)

expression (atom (' (aa)))

value false

atom '()

expression (atom (' ()))

value true

= aa bb [are-equal-S-expressions? predicate]

expression (= aa bb)

value false

= aa aa

expression (= aa aa)

value true

= '(a b)'(a b)

expression (= (' (a b)) (' (a b)))

value true

277Chaitin G.J.: The Limits of Mathematics

= '(a b)'(a x)

expression (= (' (a b)) (' (a x)))

value false

if true x y [if ... then ... else ...]

expression (if true x y)

value x

if false x y

expression (if false x y)

value y

if xxx x y [anything not false is true]

expression (if xxx x y)

value x

[display intermediate results]

cdr display cdr display cdr display '(a b c d e)

expression (cdr (display (cdr (display (cdr (display (' (a b

c d e))))))))

display (a b c d e)

display (b c d e)

display (c d e)

value (d e)

('lambda(x y)x 1 2) [lambda expression]

expression ((' (lambda (x y) x)) 1 2)

value 1

('lambda(x y)y 1 2)

expression ((' (lambda (x y) y)) 1 2)

value 2

('lambda(x y)cons y cons x nil 1 2)

expression ((' (lambda (x y) (cons y (cons x nil)))) 1 2)

value (2 1)

(if true "car "cdr '(a b c)) [function expressions]

expression ((if true car cdr) (' (a b c)))

value a

(if false "car "cdr '(a b c))

expression ((if false car cdr) (' (a b c)))

value (b c)

278 Chaitin G.J.: The Limits of Mathematics

('lambda()cons x cons y nil) [function with no arguments]

expression ((' (lambda () (cons x (cons y nil)))))

value (x y)

[Here is a way to create an expression and then

evaluate it in the current environment. EVAL (see

below) does this using a clean environment instead.]

(display

cons "lambda cons nil cons display 'cons x cons y nil nil)

expression ((display (cons lambda (cons nil (cons (display ('

(cons x (cons y nil)))) nil)))))

display (cons x (cons y nil))

display (lambda () (cons x (cons y nil)))

value (x y)

[let ... be ... in ...]

let x a cons x cons x nil [first case, let x be ... in ...]

expression ((' (lambda (x) (cons x (cons x nil)))) a)

value (a a)

x

expression x

value x

[second case, let (f x) be ... in ...]

let (f x) if atom display x x (f car x)

(f '(((a)b)c))

expression ((' (lambda (f) (f (' (((a) b) c))))) (' (lambda (

x) (if (atom (display x)) x (f (car x))))))

display (((a) b) c)

display ((a) b)

display (a)

display a

value a

f

expression f

value f

append '(a b c) '(d e f) [concatenate-list primitive]

expression (append (' (a b c)) (' (d e f)))

value (a b c d e f)

[define "by hand" temporarily]

279Chaitin G.J.: The Limits of Mathematics

let (cat x y) if atom x y cons car x (cat cdr x y)

(cat '(a b c) '(d e f))

expression ((' (lambda (cat) (cat (' (a b c)) (' (d e f)))))

(' (lambda (x y) (if (atom x) y (cons (car x) (cat

(cdr x) y))))))

value (a b c d e f)

cat

expression cat

value cat

[define "by hand" permanently]

define (cat x y) if atom x y cons car x (cat cdr x y)

define cat

value (lambda (x y) (if (atom x) y (cons (car x) (cat (c

dr x) y))))

cat

expression cat

value (lambda (x y) (if (atom x) y (cons (car x) (cat (c

dr x) y))))

(cat '(a b c) '(d e f))

expression (cat (' (a b c)) (' (d e f)))

value (a b c d e f)

define x (a b c) [define atom, not function]

define x

value (a b c)

cons x nil

expression (cons x nil)

value ((a b c))

define x (d e f)

define x

value (d e f)

cons x nil

expression (cons x nil)

value ((d e f))

size abc [size of S-expression in characters]

expression (size abc)

280 Chaitin G.J.: The Limits of Mathematics

value 3

size ' (a b c)

expression (size (' (a b c)))

value 7

length ' (a b c) [number of elements in list]

expression (length (' (a b c)))

value 3

length display bits ' a [S-expression --> bits]

expression (length (display (bits (' a))))

display (0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0)

value 16

length display bits ' abc [extra character is \n]

expression (length (display (bits (' abc))))

display (0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0

0 0 0 1 0 1 0)

value 32

length display bits nil

expression (length (display (bits nil)))

display (0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0)

value 24

length display bits ' (a)

expression (length (display (bits (' (a)))))

display (0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0

0 0 0 1 0 1 0)

value 32

[plus]

+ abc 15 [not number --> 0]

expression (+ abc 15)

value 15

+ '(abc) 15

expression (+ (' (abc)) 15)

value 15

+ 10 15

expression (+ 10 15)

value 25

- 10 15 [non-negative minus]

281Chaitin G.J.: The Limits of Mathematics

expression (- 10 15)

value 0

- 15 10

expression (- 15 10)

value 5

* 10 15 [times]

expression (* 10 15)

value 150

^ 10 15 [power]

expression (^ 10 15)

value 1000000000000000

< 10 15 [less than]

expression (< 10 15)

value true

< 10 10

expression (< 10 10)

value false

> 15 10 [greater than]

expression (> 15 10)

value true

> 10 10

expression (> 10 10)

value false

<= 15 10 [less than or equal]

expression (<= 15 10)

value false

<= 10 10

expression (<= 10 10)

value true

>= 10 15 [greater than or equal]

expression (>= 10 15)

value false

>= 10 10

282 Chaitin G.J.: The Limits of Mathematics

expression (>= 10 10)

value true

= 10 15 [equal]

expression (= 10 15)

value false

= 10 10

expression (= 10 10)

value true

[here not number isn't considered zero]

= abc 0

expression (= abc 0)

value false

= 0003 3 [other ways numbers are funny]

expression (= 3 3)

value true

000099 [leading zeros removed]

expression 99

value 99

[and numbers are constants]

let x b cons x cons x nil

expression ((' (lambda (x) (cons x (cons x nil)))) b)

value (b b)

let 99 45 cons 99 cons 99 nil

expression ((' (lambda (99) (cons 99 (cons 99 nil)))) 45)

value (99 99)

define 99 45

define 99

value 45

cons 99 cons 99 nil

expression (cons 99 (cons 99 nil))

value (99 99)

[decimal<-->binary conversions]

base10-to-2 255

283Chaitin G.J.: The Limits of Mathematics

expression (base10-to-2 255)

value (1 1 1 1 1 1 1 1)

base10-to-2 256

expression (base10-to-2 256)

value (1 0 0 0 0 0 0 0 0)

base10-to-2 257

expression (base10-to-2 257)

value (1 0 0 0 0 0 0 0 1)

base2-to-10 '(1 1 1 1)

expression (base2-to-10 (' (1 1 1 1)))

value 15

base2-to-10 '(1 0 0 0 0)

expression (base2-to-10 (' (1 0 0 0 0)))

value 16

base2-to-10 '(1 0 0 0 1)

expression (base2-to-10 (' (1 0 0 0 1)))

value 17

[illustrate eval & try]

eval display '+ display 5 display 15

expression (eval (display (' (+ (display 5) (display 15)))))

display (+ (display 5) (display 15))

display 5

display 15

value 20

try 0 display '+ display 5 display 15 nil

expression (try 0 (display (' (+ (display 5) (display 15))))

nil)

display (+ (display 5) (display 15))

value (success 20 (5 15))

try 0 display '+ debug 5 debug 15 nil

expression (try 0 (display (' (+ (debug 5) (debug 15)))) nil)

display (+ (debug 5) (debug 15))

debug 5

debug 15

value (success 20 ())

[eval & try use initial variable bindings]

284 Chaitin G.J.: The Limits of Mathematics

cons x nil

expression (cons x nil)

value ((d e f))

eval 'cons x nil

expression (eval (' (cons x nil)))

value (x)

try 0 'cons x nil nil

expression (try 0 (' (cons x nil)) nil)

value (success (x) ())

define five! [to illustrate time limits]

let (f x) if = display x 0 1 * x (f - x 1)

(f 5)

define five!

value ((' (lambda (f) (f 5))) (' (lambda (x) (if (= (dis

play x) 0) 1 (* x (f (- x 1)))))))

eval five!

expression (eval five!)

display 5

display 4

display 3

display 2

display 1

display 0

value 120

[by the way, numbers can be big:]

let (f x) if = x 0 1 * x (f - x 1)

(f 100) [one hundred factorial!]

expression ((' (lambda (f) (f 100))) (' (lambda (x) (if (= x

0) 1 (* x (f (- x 1)))))))

value 93326215443944152681699238856266700490715968264381

62146859296389521759999322991560894146397615651828

62536979208272237582511852109168640000000000000000

00000000

[time limit is nesting depth of re-evaluations

due to function calls & eval & try]

try 0 five! nil

expression (try 0 five! nil)

value (failure out-of-time ())

try 1 five! nil

285Chaitin G.J.: The Limits of Mathematics

expression (try 1 five! nil)

value (failure out-of-time ())

try 2 five! nil

expression (try 2 five! nil)

value (failure out-of-time (5))

try 3 five! nil

expression (try 3 five! nil)

value (failure out-of-time (5 4))

try 4 five! nil

expression (try 4 five! nil)

value (failure out-of-time (5 4 3))

try 5 five! nil

expression (try 5 five! nil)

value (failure out-of-time (5 4 3 2))

try 6 five! nil

expression (try 6 five! nil)

value (failure out-of-time (5 4 3 2 1))

try 7 five! nil

expression (try 7 five! nil)

value (success 120 (5 4 3 2 1 0))

try no-time-limit five! nil

expression (try no-time-limit five! nil)

value (success 120 (5 4 3 2 1 0))

define two* [to illustrate running out of data]

let (f x) if = 0 x nil

cons * 2 display read-bit (f - x 1)

(f 5)

define two*

value ((' (lambda (f) (f 5))) (' (lambda (x) (if (= 0 x)

nil (cons (* 2 (display (read-bit))) (f (- x 1)))

))))

try 6 two* '(1 0 1 0 1)

expression (try 6 two* (' (1 0 1 0 1)))

value (failure out-of-time (1 0 1 0 1))

try 7 two* '(1 0 1 0 1)

286 Chaitin G.J.: The Limits of Mathematics

expression (try 7 two* (' (1 0 1 0 1)))

value (success (2 0 2 0 2) (1 0 1 0 1))

try 7 two* '(1 0 1)

expression (try 7 two* (' (1 0 1)))

value (failure out-of-data (1 0 1))

try no-time-limit two* '(1 0 1)

expression (try no-time-limit two* (' (1 0 1)))

value (failure out-of-data (1 0 1))

try 18

'let (f x) if = 0 x nil

cons * 2 display read-bit (f - x 1)

(f 16)

bits 'a

expression (try 18 (' ((' (lambda (f) (f 16))) (' (lambda (x)

(if (= 0 x) nil (cons (* 2 (display (read-bit)))

(f (- x 1)))))))) (bits (' a)))

value (success (0 2 2 0 0 0 0 2 0 0 0 0 2 0 2 0) (0 1 1

0 0 0 0 1 0 0 0 0 1 0 1 0))

[illustrate nested try's]

[most constraining limit wins]

try 20

'cons abcdef try 10

'let (f n) (f display + n 1) (f 0) [infinite loop]

nil nil

expression (try 20 (' (cons abcdef (try 10 (' ((' (lambda (f)

(f 0))) (' (lambda (n) (f (display (+ n 1)))))))

nil))) nil)

value (success (abcdef failure out-of-time (1 2 3 4 5 6

7 8 9)) ())

try 10

'cons abcdef try 20

'let (f n) (f display + n 1) (f 0) [infinite loop]

nil nil

expression (try 10 (' (cons abcdef (try 20 (' ((' (lambda (f)

(f 0))) (' (lambda (n) (f (display (+ n 1)))))))

nil))) nil)

value (failure out-of-time ())

try 10

'cons abcdef try 20

'let (f n) (f debug + n 1) (f 0) [infinite loop]

nil nil

expression (try 10 (' (cons abcdef (try 20 (' ((' (lambda (f)

287Chaitin G.J.: The Limits of Mathematics

(f 0))) (' (lambda (n) (f (debug (+ n 1))))))) ni

l))) nil)

debug 1

debug 2

debug 3

debug 4

debug 5

debug 6

debug 7

debug 8

value (failure out-of-time ())

try no-time-limit

'cons abcdef try 20

'let (f n) (f display + n 1) (f 0) [infinite loop]

nil nil

expression (try no-time-limit (' (cons abcdef (try 20 (' (('

(lambda (f) (f 0))) (' (lambda (n) (f (display (+

n 1))))))) nil))) nil)

value (success (abcdef failure out-of-time (1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19)) ())

try 10

'cons abcdef try no-time-limit

'let (f n) (f display + n 1) (f 0) [infinite loop]

nil nil

expression (try 10 (' (cons abcdef (try no-time-limit (' (('

(lambda (f) (f 0))) (' (lambda (n) (f (display (+

n 1))))))) nil))) nil)

value (failure out-of-time ())

[illustrate read-bit & read-exp]

read-bit

expression (read-bit)

value out-of-data

read-exp

expression (read-exp)

value out-of-data

try 0 'read-bit nil

expression (try 0 (' (read-bit)) nil)

value (failure out-of-data ())

try 0 'read-exp nil

expression (try 0 (' (read-exp)) nil)

value (failure out-of-data ())

288 Chaitin G.J.: The Limits of Mathematics

try 0 'read-exp bits 'abc

expression (try 0 (' (read-exp)) (bits (' abc)))

value (success abc ())

try 0 'read-exp bits '(abc def)

expression (try 0 (' (read-exp)) (bits (' (abc def))))

value (success (abc def) ())

try 0 'read-exp bits '(abc(def ghi)jkl)

expression (try 0 (' (read-exp)) (bits (' (abc (def ghi) jkl)

)))

value (success (abc (def ghi) jkl) ())

try 0 'cons read-exp cons read-bit nil bits 'abc

expression (try 0 (' (cons (read-exp) (cons (read-bit) nil)))

(bits (' abc)))

value (failure out-of-data ())

try 0 'cons read-exp cons read-bit nil append bits 'abc '(0)

expression (try 0 (' (cons (read-exp) (cons (read-bit) nil)))

(append (bits (' abc)) (' (0))))

value (success (abc 0) ())

try 0 'cons read-exp cons read-bit nil append bits 'abc '(1)

expression (try 0 (' (cons (read-exp) (cons (read-bit) nil)))

(append (bits (' abc)) (' (1))))

value (success (abc 1) ())

try 0 'read-exp bits '(a b c)

expression (try 0 (' (read-exp)) (bits (' (a b c))))

value (success (a b c) ())

try 0 'cons read-exp cons read-exp nil bits '(a b c)

expression (try 0 (' (cons (read-exp) (cons (read-exp) nil)))

(bits (' (a b c))))

value (failure out-of-data ())

try 0 'cons read-exp cons read-exp nil

append bits '(a b c) bits '(d e f)

expression (try 0 (' (cons (read-exp) (cons (read-exp) nil)))

(append (bits (' (a b c))) (bits (' (d e f)))))

value (success ((a b c) (d e f)) ())

bits 'a [to get characters codes]

expression (bits (' a))

289Chaitin G.J.: The Limits of Mathematics

value (0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0)

try 0 'read-exp '(0 1 1 0 0 0 0 1) ['a' but no \n character]

expression (try 0 (' (read-exp)) (' (0 1 1 0 0 0 0 1)))

value (failure out-of-data ())

try 0 'read-exp '(0 1 1 0 0 0 0 1 0 0 0 0 1 0 1)[0 missing]

expression (try 0 (' (read-exp)) (' (0 1 1 0 0 0 0 1 0 0 0 0

1 0 1)))

value (failure out-of-data ())

try 0 'read-exp '(0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0) [okay]

expression (try 0 (' (read-exp)) (' (0 1 1 0 0 0 0 1 0 0 0 0

1 0 1 0)))

value (success a ())

[if we get to \n reading 8 bits at a time,

we will always interpret as a valid S-expression]

try 0 'read-exp

'(0 0 0 0 1 0 1 0) [nothing in record; only \n]

expression (try 0 (' (read-exp)) (' (0 0 0 0 1 0 1 0)))

value (success () ())

try 0 'read-exp '(1 1 1 1 1 1 1 1 [unprintable character]

0 0 0 0 1 0 1 0) [is deleted]

expression (try 0 (' (read-exp)) (' (1 1 1 1 1 1 1 1 0 0 0 0

1 0 1 0)))

value (success () ())

bits () [to get characters codes]

expression (bits ())

value (0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0)

[three left parentheses==>three right parentheses supplied]

try 0 'read-exp '(0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0)

expression (try 0 (' (read-exp)) (' (0 0 1 0 1 0 0 0 0 0 1 0

1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0)))

value (success ((())) ())

[right parenthesis 'a'==>left parenthesis supplied]

try 0 'read-exp '(0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1

0 0 0 0 1 0 1 0) [& extra 'a' ignored]

expression (try 0 (' (read-exp)) (' (0 0 1 0 1 0 0 1 0 1 1 0

0 0 0 1 0 0 0 0 1 0 1 0)))

value (success () ())

290 Chaitin G.J.: The Limits of Mathematics

['a' right parenthesis==>'a' is seen & parenthesis]

try 0 'read-exp '(0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1

0 0 0 0 1 0 1 0) [is ignored]

expression (try 0 (' (read-exp)) (' (0 1 1 0 0 0 0 1 0 0 1 0

1 0 0 1 0 0 0 0 1 0 1 0)))

value (success a ())

End of LISP Run

Elapsed time is 16 seconds.

godel.r

LISP Interpreter Run

[[[

Show that a formal system of lisp complexity

H_lisp (FAS) = N cannot enable us to exhibit

an elegant S-expression of size greater than N + 410.

An elegant lisp expression is one with the property

that no smaller S-expression has the same value.

Setting: formal axiomatic system is never-ending

lisp expression that displays elegant S-expressions.

]]]

[Here is the key expression.]

define expression

let (examine x)

if atom x false

if < n size car x car x

(examine cdr x)

let fas 'display ^ 10 430 [insert FAS here preceeded by ']

let n + 410 size fas

let t 0

let (loop)

let v try t fas nil

let s (examine caddr v)

if s eval s

if = success car v failure

let t + t 1

(loop)

(loop)

define expression

value ((' (lambda (examine) ((' (lambda (fas) ((' (lambd

a (n) ((' (lambda (t) ((' (lambda (loop) (loop)))

291Chaitin G.J.: The Limits of Mathematics

(' (lambda () ((' (lambda (v) ((' (lambda (s) (if

s (eval s) (if (= success (car v)) failure ((' (la

mbda (t) (loop))) (+ t 1)))))) (examine (car (cdr

(cdr v))))))) (try t fas nil))))))) 0))) (+ 410 (s

ize fas))))) (' (display (^ 10 430)))))) (' (lambd

a (x) (if (atom x) false (if (< n (size (car x)))

(car x) (examine (cdr x)))))))

[Size expression.]

size expression

expression (size expression)

value 430

[Run expression & show that it knows its own size

and can find something bigger than it is.]

eval expression

expression (eval expression)

value 1000

00

00

00

00

00

00

00

0000000000000000000000000000000

[Here it fails to find anything bigger than it is.]

let (examine x)

if atom x false

if < n size car x car x

(examine cdr x)

let fas 'display ^ 10 429 [insert FAS here preceeded by ']

let n + 410 size fas

let t 0

let (loop)

let v try t fas nil

let s (examine caddr v)

if s eval s

if = success car v failure

let t + t 1

(loop)

(loop)

expression ((' (lambda (examine) ((' (lambda (fas) ((' (lambd

a (n) ((' (lambda (t) ((' (lambda (loop) (loop)))

(' (lambda () ((' (lambda (v) ((' (lambda (s) (if

292 Chaitin G.J.: The Limits of Mathematics

s (eval s) (if (= success (car v)) failure ((' (la

mbda (t) (loop))) (+ t 1)))))) (examine (car (cdr

(cdr v))))))) (try t fas nil))))))) 0))) (+ 410 (s

ize fas))))) (' (display (^ 10 429)))))) (' (lambd

a (x) (if (atom x) false (if (< n (size (car x)))

(car x) (examine (cdr x)))))))

value failure

End of LISP Run

Elapsed time is 2 seconds.

utm.r

LISP Interpreter Run

[[[

First steps with my new construction for

a self-delimiting universal Turing machine.

We show that

H(x,y) <= H(x) + H(y) + c

and determine c.

Consider a bit string x of length |x|.

We also show that

H(x) <= 2|x| + c

and that

H(x) <= |x| + H(the binary string for |x|) + c

and determine both these c's.

]]]

[

Here is the self-delimiting universal Turing machine!

]

define (U p) cadr try no-time-limit 'eval read-exp p

define U

value (lambda (p) (car (cdr (try no-time-limit (' (eval

(read-exp))) p))))

(U bits 'cons x cons y cons z nil)

expression (U (bits (' (cons x (cons y (cons z nil))))))

value (x y z)

(U append bits 'cons a debug read-exp

bits '(b c d)

)

expression (U (append (bits (' (cons a (debug (read-exp)))))

(bits (' (b c d)))))

debug (b c d)

value (a b c d)

[

293Chaitin G.J.: The Limits of Mathematics

The length of alpha in bits is the

constant c in H(x) <= 2|x| + 2 + c.

]

define alpha

let (loop) let x read-bit

let y read-bit

if = x y

cons x (loop)

nil

(loop)

define alpha

value ((' (lambda (loop) (loop))) (' (lambda () ((' (lam

bda (x) ((' (lambda (y) (if (= x y) (cons x (loop)

) nil))) (read-bit)))) (read-bit)))))

length bits alpha

expression (length (bits alpha))

value 1104

(U

append

bits alpha

'(0 0 1 1 0 0 1 1 0 1)

)

expression (U (append (bits alpha) (' (0 0 1 1 0 0 1 1 0 1)))

)

value (0 1 0 1)

(U

append

bits alpha

'(0 0 1 1 0 0 1 1 0 0)

)

expression (U (append (bits alpha) (' (0 0 1 1 0 0 1 1 0 0)))

)

value out-of-data

[

The length of beta in bits is the

constant c in H(x,y) <= H(x) + H(y) + c.

]

define beta

cons eval read-exp

cons eval read-exp

nil

define beta

value (cons (eval (read-exp)) (cons (eval (read-exp)) ni

l))

length bits beta

294 Chaitin G.J.: The Limits of Mathematics

expression (length (bits beta))

value 432

(U

append

bits beta

append

bits 'cons a cons b cons c nil

bits 'cons x cons y cons z nil

)

expression (U (append (bits beta) (append (bits (' (cons a (c

ons b (cons c nil))))) (bits (' (cons x (cons y (c

ons z nil))))))))

value ((a b c) (x y z))

(U

append

bits beta

append

append bits alpha '(0 0 1 1 0 0 1 1 0 1)

append bits alpha '(1 1 0 0 1 1 0 0 1 0)

)

expression (U (append (bits beta) (append (append (bits alpha

) (' (0 0 1 1 0 0 1 1 0 1))) (append (bits alpha)

(' (1 1 0 0 1 1 0 0 1 0))))))

value ((0 1 0 1) (1 0 1 0))

[

The length of gamma in bits is the

constant c in H(x) <= |x| + H(|x|) + c

]

define gamma

let (loop k)

if = 0 k nil

cons read-bit (loop - k 1)

(loop base2-to-10 eval read-exp)

define gamma

value ((' (lambda (loop) (loop (base2-to-10 (eval (read-

exp)))))) (' (lambda (k) (if (= 0 k) nil (cons (re

ad-bit) (loop (- k 1)))))))

length bits gamma

expression (length (bits gamma))

value 1024

(U

append

bits gamma

append

[Arbitrary program for U to compute number of bits]

295Chaitin G.J.: The Limits of Mathematics

bits' '(1 0 0 0)

[That many bits of data]

'(0 0 0 0 0 0 0 1)

)

expression (U (append (bits gamma) (append (bits (' (' (1 0 0

0)))) (' (0 0 0 0 0 0 0 1)))))

value (0 0 0 0 0 0 0 1)

End of LISP Run

Elapsed time is 19 seconds.

godel2.r

LISP Interpreter Run

[[[

Show that a formal system of complexity N

can't prove that a specific object has

complexity > N + 4872.

Formal system is a never halting lisp expression

that output pairs (lisp object, lower bound

on its complexity). E.g., (x 4) means

that x has complexity H(x) greater than or equal to 4.

]]]

[Here is the prefix.]

define pi

let (examine pairs)

if atom pairs false

if < n cadr car pairs

car pairs

(examine cdr pairs)

let t 0

let fas nil

let (loop)

let v try t 'eval read-exp fas

let n + 4872 length fas

let p (examine caddr v)

if p car p

if = car v success failure

if = cadr v out-of-data

let fas append fas cons read-bit nil

(loop)

if = cadr v out-of-time

let t + t 1

(loop)

unexpected-condition

296 Chaitin G.J.: The Limits of Mathematics

(loop)

define pi

value ((' (lambda (examine) ((' (lambda (t) ((' (lambda

(fas) ((' (lambda (loop) (loop))) (' (lambda () ((

' (lambda (v) ((' (lambda (n) ((' (lambda (p) (if

p (car p) (if (= (car v) success) failure (if (= (

car (cdr v)) out-of-data) ((' (lambda (fas) (loop)

)) (append fas (cons (read-bit) nil))) (if (= (car

(cdr v)) out-of-time) ((' (lambda (t) (loop))) (+

t 1)) unexpected-condition)))))) (examine (car (c

dr (cdr v))))))) (+ 4872 (length fas))))) (try t (

' (eval (read-exp))) fas))))))) nil))) 0))) (' (la

mbda (pairs) (if (atom pairs) false (if (< n (car

(cdr (car pairs)))) (car pairs) (examine (cdr pair

s)))))))

[Size pi.]

length bits pi

expression (length (bits pi))

value 4872

[Size pi + fas.]

length

append bits pi

bits 'display '(xyz 9999)

expression (length (append (bits pi) (bits (' (display (' (xy

z 9999)))))))

value 5072

[Here pi finds something suitable.]

cadr try no-time-limit 'eval read-exp

append bits pi

bits 'display '(xyz 5073)

expression (car (cdr (try no-time-limit (' (eval (read-exp)))

(append (bits pi) (bits (' (display (' (xyz 5073)

))))))))

value xyz

[Here pi doesn't find anything suitable.]

cadr try no-time-limit 'eval read-exp

append bits pi

bits 'display '(xyz 5072)

expression (car (cdr (try no-time-limit (' (eval (read-exp)))

(append (bits pi) (bits (' (display (' (xyz 5072)

))))))))

value failure

297Chaitin G.J.: The Limits of Mathematics

End of LISP Run

Elapsed time is 153 seconds.

omega.r

LISP Interpreter Run

[[[[Omega in the limit from below!]]]]

define (all-bit-strings-of-size k)

if = 0 k '(())

(extend-by-one-bit (all-bit-strings-of-size - k 1))

define all-bit-strings-of-size

value (lambda (k) (if (= 0 k) (' (())) (extend-by-one-bi

t (all-bit-strings-of-size (- k 1)))))

define (extend-by-one-bit x)

if atom x nil

cons append car x '(0)

cons append car x '(1)

(extend-by-one-bit cdr x)

define extend-by-one-bit

value (lambda (x) (if (atom x) nil (cons (append (car x)

(' (0))) (cons (append (car x) (' (1))) (extend-b

y-one-bit (cdr x))))))

define (count-halt p)

if atom p 0

+

if = success car try t 'eval read-exp car p

1 0

(count-halt cdr p)

define count-halt

value (lambda (p) (if (atom p) 0 (+ (if (= success (car

(try t (' (eval (read-exp))) (car p)))) 1 0) (coun

t-halt (cdr p)))))

define (omega t) cons (count-halt (all-bit-strings-of-size t))

cons /

cons ^ 2 t

nil

define omega

value (lambda (t) (cons (count-halt (all-bit-strings-of-

size t)) (cons / (cons (^ 2 t) nil))))

(omega 0)

expression (omega 0)

value (0 / 1)

298 Chaitin G.J.: The Limits of Mathematics

(omega 1)

expression (omega 1)

value (0 / 2)

(omega 2)

expression (omega 2)

value (0 / 4)

(omega 3)

expression (omega 3)

value (0 / 8)

(omega 8)

expression (omega 8)

value (1 / 256)

End of LISP Run

Elapsed time is 38 seconds.

omega2.r

LISP Interpreter Run

[[[[Omega in the limit from below!]]]]

define (count-halt prefix bits-left-to-extend)

if = bits-left-to-extend 0

if = success car try t 'eval read-exp prefix

1 0

+ (count-halt append prefix '(0) - bits-left-to-extend 1)

(count-halt append prefix '(1) - bits-left-to-extend 1)

define count-halt

value (lambda (prefix bits-left-to-extend) (if (= bits-l

eft-to-extend 0) (if (= success (car (try t (' (ev

al (read-exp))) prefix))) 1 0) (+ (count-halt (app

end prefix (' (0))) (- bits-left-to-extend 1)) (co

unt-halt (append prefix (' (1))) (- bits-left-to-e

xtend 1)))))

define (omega t) cons (count-halt nil t)

cons /

cons ^ 2 t

nil

define omega

value (lambda (t) (cons (count-halt nil t) (cons / (cons

(^ 2 t) nil))))

299Chaitin G.J.: The Limits of Mathematics

(omega 0)

expression (omega 0)

value (0 / 1)

(omega 1)

expression (omega 1)

value (0 / 2)

(omega 2)

expression (omega 2)

value (0 / 4)

(omega 3)

expression (omega 3)

value (0 / 8)

(omega 8)

expression (omega 8)

value (1 / 256)

End of LISP Run

Elapsed time is 33 seconds.

omega3.r

LISP Interpreter Run

[[[

Show that

H(Omega_n) > n - 8000.

Omega_n is the first n bits of Omega,

where we choose

Omega = xxx0111111...

instead of

Omega = xxx1000000...

if necessary.

]]]

[Here is the prefix.]

define pi

let (count-halt prefix bits-left-to-extend)

if = bits-left-to-extend 0

if = success car try t 'eval read-exp prefix

1 0

+ (count-halt append prefix '(0) - bits-left-to-extend 1)

300 Chaitin G.J.: The Limits of Mathematics

(count-halt append prefix '(1) - bits-left-to-extend 1)

let (omega t) cons (count-halt nil t)

cons /

cons ^ 2 t

nil

let w eval read-exp

let n length w

let w cons base2-to-10 w

cons /

cons ^ 2 n

nil

let (loop t)

if (<=rat w (omega t))

(big nil n)

(loop + t 1)

let (<=rat x y)

<= * car x caddr y * caddr x car y

let (big prefix bits-left-to-add)

if = 0 bits-left-to-add

cons cadr try t 'eval read-exp prefix

nil

append (big append prefix '(0) - bits-left-to-add 1)

(big append prefix '(1) - bits-left-to-add 1)

(loop 0)

define pi

value ((' (lambda (count-halt) ((' (lambda (omega) ((' (

lambda (w) ((' (lambda (n) ((' (lambda (w) ((' (la

mbda (loop) ((' (lambda (<=rat) ((' (lambda (big)

(loop 0))) (' (lambda (prefix bits-left-to-add) (i

f (= 0 bits-left-to-add) (cons (car (cdr (try t ('

(eval (read-exp))) prefix))) nil) (append (big (a

ppend prefix (' (0))) (- bits-left-to-add 1)) (big

(append prefix (' (1))) (- bits-left-to-add 1))))

))))) (' (lambda (x y) (<= (* (car x) (car (cdr (c

dr y)))) (* (car (cdr (cdr x))) (car y)))))))) ('

(lambda (t) (if (<=rat w (omega t)) (big nil n) (l

oop (+ t 1)))))))) (cons (base2-to-10 w) (cons / (

cons (^ 2 n) nil)))))) (length w)))) (eval (read-e

xp))))) (' (lambda (t) (cons (count-halt nil t) (c

ons / (cons (^ 2 t) nil)))))))) (' (lambda (prefix

bits-left-to-extend) (if (= bits-left-to-extend 0

) (if (= success (car (try t (' (eval (read-exp)))

prefix))) 1 0) (+ (count-halt (append prefix (' (

0))) (- bits-left-to-extend 1)) (count-halt (appen

d prefix (' (1))) (- bits-left-to-extend 1)))))))

301Chaitin G.J.: The Limits of Mathematics

[Run pi.]

cadr try no-time-limit 'eval read-exp

append bits pi

bits '

[Program to compute first n = 8 bits of Omega]

'(0 0 0 0 0 0 0 1)

expression (car (cdr (try no-time-limit (' (eval (read-exp)))

(append (bits pi) (bits (' (' (0 0 0 0 0 0 0 1)))

)))))

value (out-of-data out-of-data out-of-data out-of-data o

ut-of-data out-of-data out-of-data out-of-data out

-of-data out-of-data () out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

302 Chaitin G.J.: The Limits of Mathematics

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou

t-of-data out-of-data out-of-data out-of-data out-

of-data out-of-data out-of-data out-of-data out-of

-data out-of-data out-of-data out-of-data out-of-d

ata out-of-data out-of-data out-of-data out-of-dat

a out-of-data)

[Size pi.]

length bits pi

expression (length (bits pi))

value 8000

End of LISP Run

Elapsed time is 148 seconds.

godel3.r

LISP Interpreter Run

[[[

Show that a formal system of complexity N

can't determine more than N + 8000 + 7328

= N + 15328 bits of Omega.

Formal system is a never halting lisp expression

that outputs lists of the form (1 0 X 0 X X X X 1 0).

This stands for the fractional part of Omega,

and means that these 0,1 bits of Omega are known.

X stands for an unknown bit.

]]]

[Here is the prefix.]

define pi

let (number-of-bits-determined w)

if atom w 0

+ (number-of-bits-determined cdr w)

if = X car w

0

1

303Chaitin G.J.: The Limits of Mathematics

let (supply-missing-bits w)

if atom w nil

cons if = X car w

read-bit

car w

(supply-missing-bits cdr w)

let (examine w)

if atom w false

[if < n (number-of-bits-determined car w)]

[Change n to 1 here so will succeed.]

if < 1 (number-of-bits-determined car w)

car w

(examine cdr w)

let t 0

let fas nil

let (loop)

let v try t 'eval read-exp fas

let n + 8000 + 7328 length fas

let w (examine caddr v)

if w (supply-missing-bits w)

if = car v success failure

if = cadr v out-of-data

let fas append fas cons read-bit nil

(loop)

if = cadr v out-of-time

let t + t 1

(loop)

unexpected-condition

(loop)

define pi

value ((' (lambda (number-of-bits-determined) ((' (lambd

a (supply-missing-bits) ((' (lambda (examine) (('

(lambda (t) ((' (lambda (fas) ((' (lambda (loop) (

loop))) (' (lambda () ((' (lambda (v) ((' (lambda

(n) ((' (lambda (w) (if w (supply-missing-bits w)

(if (= (car v) success) failure (if (= (car (cdr v

)) out-of-data) ((' (lambda (fas) (loop))) (append

fas (cons (read-bit) nil))) (if (= (car (cdr v))

out-of-time) ((' (lambda (t) (loop))) (+ t 1)) une

xpected-condition)))))) (examine (car (cdr (cdr v)

)))))) (+ 8000 (+ 7328 (length fas)))))) (try t ('

(eval (read-exp))) fas))))))) nil))) 0))) (' (lam

bda (w) (if (atom w) false (if (< 1 (number-of-bit

s-determined (car w))) (car w) (examine (cdr w))))

))))) (' (lambda (w) (if (atom w) nil (cons (if (=

X (car w)) (read-bit) (car w)) (supply-missing-bi

ts (cdr w))))))))) (' (lambda (w) (if (atom w) 0 (

+ (number-of-bits-determined (cdr w)) (if (= X (ca

r w)) 0 1))))))

304 Chaitin G.J.: The Limits of Mathematics

[Size pi.]

length bits pi

expression (length (bits pi))

value 7328

[Run pi.]

cadr try no-time-limit 'eval read-exp

append bits pi

append [Toy formal system with only one theorem.]

bits 'display '(1 X 0)

[Missing bit of omega that is needed.]

'(1)

expression (car (cdr (try no-time-limit (' (eval (read-exp)))

(append (bits pi) (append (bits (' (display (' (1

X 0))))) (' (1)))))))

value (1 1 0)

End of LISP Run

Elapsed time is 94 seconds.

305Chaitin G.J.: The Limits of Mathematics

