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Stroke extraction and matching are critical for structural interpretation based applications of handwrit- 

ten Chinese characters, such as Chinese character education and calligraphy analysis. Stroke extraction

from offline handwritten Chinese characters is difficult because of the missing of temporal information,

the multi-stroke structures and the distortion of handwritten shapes. In this paper, we propose a compre- 

hensive scheme for solving the stroke extraction problem for handwritten Chinese characters. The method

consists of three main steps: (1) fully convolutional network (FCN) based skeletonization; (2) query pixel

guided stroke extraction; (3) model-based stroke matching. Specifically, based on a recently proposed ar- 

chitecture of FCN, both the stroke skeletons and cross regions are firstly extracted from the character

image by the proposed SkeNet and CrossNet, respectively. Stroke extraction is solved by simulating the

human perception that once given a certain pixel from non-cross region of a stroke, the whole stroke

containing the pixel can be traced. To realize this idea, we formulate stroke extraction as a problem

of pairing and connecting skeleton-wise stroke segments which are adjacent to the same cross region,

where the pairing consistency between stroke segments is measured using a PathNet [1]. To reduce the

ambiguity of stroke extraction, the extracted candidate strokes are matched with a character model con- 

sisting of standard strokes by tree search to identify the correct strokes. For verifying the effectiveness of

the proposed method, we train and test our models on character images with stroke segmentation an- 

notations generated from the online handwriting datasets CASIA-OLHWDB and ICDAR13-Online, as well

as a dataset of R egularly- W ritten online handwritten characters (RW-OLHWDB). The experimental results

demonstrate the effectiveness of the proposed method and provide several benchmarks. Particularly, the

precisions of stroke extraction for ICDAR13-Online and RW-OLHWDB are 89.0% and 94.9%, respectively.

© 2021 Elsevier Ltd. All rights reserved.
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. Introduction

Stroke extraction with matching enables offline handwritten 

hinese characters to be matched with the structural templates 

onsisting of standard ordered strokes. Stroke extraction is impor- 

ant for structural analysis of handwriting and calligraphy, and ap- 

lications such as font design and character education. Particularly 

n educational activities [2] , once obtaining strokes with match- 

ng correspondence with templates, like the right part of Fig. 1 , 

e can further find irregularly-written strokes (the first case in 

ig. 1 ), missed strokes forgotten by writers (the second case in 

ig. 1 ) and redundantly written strokes (the third case in Fig. 1 ). In
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ig. 1 , the reference models of ‘, ‘nd ‘’ provide the correct shape for

ach stroke [1,3] , but writers may make apparent mistakes because 

f their irregular writings in early stage of learning. In elemen- 

ary schools, the checking of irregular writing for students’ written 

apers poses heavy and tedious burden to teachers. Though Chi- 

ese characters are constructed by a set of primitive strokes like 

he ones in ‘’ (consisting of dot, horizontal line, turning, vertical 

ine, hook, tick slash, slash and back slash) [4] , automatic stroke 

xtraction with matching has not been solved for a long time. 

ecently, deep neural networks (specially convolutional networks) 

ave yielded very high accuracies (say, 97-98%) on handwritten 

hinese character recognition [5–7] , which also encourages us to 

nvestigate the extraction and analysis of strokes. 

Exploiting structural features (strokes and radicals [8,9] ) is ben- 

fitial for learning and understanding character patterns, but has 

ncounted difficulties. The difficulties of stroke extraction originate 

https://doi.org/10.1016/j.patcog.2021.108416
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Fig. 1. Some offline handwritten Chinese characters and their reference models. The right part shows the strokes extracted by our method. 
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rom the irregularity and variability of handwriting, the complex 

troke shapes (many multi-segment strokes), multi-stroke struc- 

ure and cross between strokes in Chinese characters. Many efforts 

ave been made for stroke extraction aiming to overcome these 

roblems. The existing stroke extraction methods can be roughly 

lassified into two categories: skeleton-free algorithms [1,10,11] and 

keleton-based ones [12–16] . Skeleton-free methods mainly han- 

le machine-printed characters with smooth stroke contours and 

imple spatial structures. For example, Tseng and Chuang [10] ap- 

lied stroke-aware rules observed from the structure of machine- 

rinted Chinese characters to extract strokes heuristically. Recently, 

im et al. [1] designed a fully convolutional network (FCN), named 

athNet, to calculate the stroke-level consistency between two ar- 

itrary foreground pixels and to extract strokes. 

When processing offline handwritten characters with variable 

troke widths and cursive writings, analysis on skeletons is more 

eliable [16–18] . On skeletons, the intersection relationship be- 

ween strokes can be detected at cross/fork points, and stroke seg- 

ents can be traced. Based on stroke segments and cross points, 

haracter structures can be represented as graphs. Some effort s 

ave been made to deal with the ambiguity of stroke segment con- 

ection at cross regions: Lin and Tang [15] detected stroke seg- 

ents bounded by fork points and connected collinear segments, 

hile Tan et al. [16] derived optimal paths from the degree infor- 

ation. 

Though the above methods are equipped with powerful vi- 

ual rules, extracting strokes from 2D images is still a chal- 

enge for most languages. Due to the stroke interference and the 

mbiguity of curvature, to split and merge line segments into 

ollinear line strokes is not clear-cut [14] , especially in local re- 
2 
ions which contain multiple candidate stroke segments. Model- 

ased stroke extraction can help overcome this ambiguity. Hsieh 

nd Lee [19,20] used online character models (composed of natural 

trokes) to guide stroke extraction, where all possible input strokes 

f the stroke types present in the reference model were detected 

rom the input character, and then the stroke correspondence was 

btained by rule-based search; In [21] , the line segments of the 

nput and reference characters were initially matched one-to-one 

nd then tentatively connected to form long strokes according to 

he matching scores during relaxation labeling; differently, Rocha 

nd Pavlidis [22] grouped the stroke components of an input char- 

cter dynamically to match against a prototype character. After- 

ards, Liu et al. [14] considered more character classes and com- 

ined stroke-level graph matching with heuristic tree search based 

troke extraction. The pre-defined templates in [14] were described 

n attributed relational graphs with keypoints and line segments, 

sing straight line to approximate all strokes. These methods work 

ell for only neatly written characters, and need large effort s of 

uman design of templates and attributes. 

A key issue in stroke extraction is to clarify the stroke-level 

mbiguity at cross regions, where multiple strokes intersect each 

ther, and among the stroke segments adjacent to a cross region, 

t is hard to decide which pair of segments form a natural stroke. 

o overcome this problem, we propose a comprehensive scheme 

or stroke extraction in offline handwritten Chinese characters. The 

ethod consists of three main steps: fully convolutional network 

FCN) based skeletonization, query pixel guided stroke extraction, 

nd model-based stroke matching. The stroke extraction part of 

ur method falls in the hybrid class of skeleton-free/skeleton-based 

ethods. Specifically, we first extract stroke skeletons and cross re- 
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ions by the proposed SkeNet and CrossNet, respectively. Then for 

xtracting complete strokes by connecting stroke segments adja- 

ent at cross regions, we measure stroke consistency by a query 

ixel guided version of PathNet [1] in a skeleton-free fashion, while 

he query pixels can be randomly chosen from the skeleton map. 

The above steps can extract nearly all strokes, including multi- 

egment and cross strokes, but inevitably remain ambiguity in 

onnecting adjacent stroke segments. This ambiguity is solved by 

atching the input character with its reference model consisting 

f ordered strokes. We collect the stroke templates for thousands 

f Chinese characters in Standard Kaiti Font [23] , and use model- 

ased tree search to get the correspondence between handwrit- 

en strokes and template strokes while abandoning redundant ex- 

racted candidate strokes. 

For training the neural networks (SkeNet, CrossNet, PathNet) 

n this paper, character images and stroke image sequences are 

roduced from online handwritten samples. Experimental results 

emonstrate that our system provides a feasible solution to ex- 

racting and ordering strokes for offline handwritten Chinese 

haracters. On our datasets of unconstrained handwriting and 

egularly-written characters, the proposed method achieves stroke 

xtraction precision 89.0% and 94.9%, respectively. 

In the proposed method, the components SkeNet and CrossNet 

which share the backbone but have different output branches) 

ave been reported in our previous conference paper [2,17] . The 

ain contribution of this paper is to present the comprehensive 

cheme of handwritten stroke extraction, as well as the com- 

onents of query pixel guided stroke extraction by PathNet and 

odel-based stroke matching. The SkeNet and CrossNet are not de- 

cribed in details, but for completeness of performance evaluation, 

heir experimental results are included in this paper. The proposed 

ethod reports superior performance in stroke extraction from of- 

ine handwritten Chinese characters. This makes the method ap- 

licable in real-world applications such as writing evaluation in 

ducation and robot interaction. To our knowledge, the proposed 

ethod is the first so far to enable extracting distorted complete 

single-segment and multi-segment) strokes from offline handwrit- 

en Chinese characters. The proposed method is also applicable 

o other Asian scripts (Japanese and Korean) which are typical 

f multi-stroke structure and multi-segment strokes. As for hand- 

ritten characters or words of Latin scripts, the proposed SkeNet, 

rossNet and PathNet in this paper can be applied to assist stroke 

rajectory recovery (such as [24] ). 

The rest of this paper is organized as follows: Section 2 reviews 

elated works; Section 3 presents the overview of method and the 

reparation of data; Section 4 describes the proposed stroke ex- 

raction method; Section 5 presents our experimental results, and 

ection 6 draws concluding remarks. 

. Related Work 

.1. Skeletonization of Handwritten Characters 

Skeletonization, or called as thinning, is an important pre- 

rocessing step for character images to facilitate stroke extrac- 

ion. In the past few decades, two types of thinning algorithms 

ave been proposed: neighborhood-based algorithms [25–27] and 

istance-based ones [28,29] . Neighborhood-based methods itera- 

ively delete pixels on the stroke boundary until centered lines 

emain. In contrast, distance based methods yield skeletons in a 

traightforward manner by using distance transforms to extract the 

edial axis of strokes. These methods are likely to yield unsatisfac- 

ory results when facing: (1) complex shapes, (2) variable stroke 

idths and (3) unsmooth edges. Particularly, the extracted lines 

re often distorted at the crosses or intersections of strokes [30] . 

ecently, FCN based skeletonization has been proven to outperform 
3 
he above methods remarkably [31] , but for training FCN, it is in- 

easible to label skeleton pixels for millions of offline handwritten 

amples [32] . Therefore, our previous work proposed to generate 

nnotated skeleton data from online handwritten samples [17] . 

.2. Template-Free Stroke Extraction for Chinese Characters 

Most stroke extraction methods [1,10,11,33–35] for Chinese 

haracters firstly analyze ambiguous zones [33] (i.e, cross regions 

n our paper). For characters in printed fonts, Sun et al. [35] rep- 

esented them using triangular meshes with their singular regions, 

hen used tangent directions of sub-strokes to highlight ambiguous 

ones; He and Yan [34] used gradient directions of character con- 

ours with chain-code features to detect cross regions. In handwrit- 

en Chinese characters, stroke extraction is mostly performed with 

keletonization to simplify the analysis of cross regions. For exam- 

le, the method in [33] even summarized out all the appearances 

f cross regions in skeleton maps instead of using various rules 

n [13] . Learning-based stroke extraction methods [1,36] were pro- 

osed to cope with complicated cases of cross regions. The method 

n [36] built a font skeleton manifold and mapped printed charac- 

ers into their stroke-level labeled variation directly. The PathNet 

n [1] can extract all strokes in printed characters of Kaiti font [37] .

n this paper, we measure the stroke-level consistency using the 

athNet, which alone is not sufficient to extract complete strokes 

rom offline handwritten Chinese characters, however. 

.3. Structural Matching with Template for Handwritten Chinese 

haracters 

Structural matching obtains the correspondence between the 

trokes in input image and the reference strokes in template char- 

cter. This can largely overcome the ambiguity of stroke extrac- 

ion. When (candidate) strokes have been extracted from the in- 

ut character image, the correspondence between input strokes 

nd reference strokes can be formulated as a graph matching prob- 

em, which can be solved using relaxation labeling [21,38,39] , tree 

earch [14,19,20] , or other graph matching algorithms. Reference 

troke information was also used to guide the stroke extraction 

rocess [20] or to merge stroke segments [14,20–22] . The method 

n [14] generates multiple candidate strokes from input image by 

erging stroke segments to match with reference strokes, then 

earches for the optimal combination of candidate strokes by tree 

earch. This method assumes strokes as straight lines, and so, the 

xtraction of curved, multi-segment and highly distorted strokes 

emains a big issue. In this paper, we propose techniques for ex- 

racting distorted complete (single-segment and multi-segment) 

trokes and use structural matching to solve the ambiguity in 

troke extraction. 

. System Overview and Data Representations 

.1. System Overview 

Our stroke extraction system, shown in Fig. 2 , is built com- 

ining the following techniques: (1) extracting stroke segments 

rom skeleton generated by the SkeNet and cross regions using 

he CrossNet; (2) using the PathNet [1] to model the stroke-level 

onsistency between stroke segments adjacent to the same cross 

egion; (3) character model based stroke matching [14] to disam- 

iguate how stroke segments are connected. 

Here, SkeNet, CrossNet and PathNet are all trainable FCNs, and 

rovide stroke segments for the stroke matching step. The SkeNet 

nd the CrossNet share the same backbone part [6] and extract 

he skeletons/cross regions, respectively. The PathNet has two in- 

ut channels: the original input image and the query pixel map, 
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nd is trained to find the stroke containing the query pixel pro- 

ided by the other input channel. For a pair of stroke segments, 

he bi-directional query result between two query pixels (one on 

ach stroke segment) can model the consistency between two seg- 

ents [1] . 

In training the FCN models, the SkeNet and the CrossNet, shar- 

ng a backbone, are trained jointly. The PathNet, with two-channel 

nput, is trained separately. The training data, with ground-truths 

f skeleton/cross pixels (for SkeNet/CrossNet) or complete strokes 

for PathNet), are generated automatically from online handwritten 

haracters. The details are described in Section 3.2 . 

Based on the pairing consistency measured by the PathNet, 

he strokes extracted by connecting stroke segments adjacent to 

he same cross region still remain ambiguous, especially when 

 stroke segment can be connected with multiple adjacent seg- 

ents or a stroke consists of more than two segments. This am- 

iguity is solved by model-based stroke matching: the extracted 

andidate strokes from input image are matched with a charac- 

er model consisting of ordered standard strokes by tree search. 

he character models are generated from the public Make Me A 

anzi dataset [37] . If the character model is of the same charac- 

er class with the input handwritten character, then most strokes 

n the input character can be matched with the standard strokes 

n the model. The class of the input character can be reasonably 

ssumed known based on two assumptions: (1) in some applica- 

ion scenarios, the users are asked to write characters of specified 

lasses; (2) currently, handwritten characters (even cursive writing 

nd slightly wrong writing) can be recognized with high accuracies 

y deep neural networks [5] . 

.2. Data Preparation 

The supervised training of our models (SkeNet, CrossNet and 

athNet) demands plenty of ground-truthed skeletons, cross re- 

ions caused by intersecting strokes, and separated strokes of of- 

ine handwritten Chinese characters. However, it is almost impos- 

ible to obtain millions of samples with pixel-wise manual anno- 

ations. 

Fortunately, online handwritten characters record strokes by 

x, y ) -coordinate sequences [32] , which can be viewed as the ideal

keletons of synthesized images (generated by dilating the stroke 

keletons) [17] . Thus, we generate a large number of synthesized 

haracter images from online handwritten characters to train all 

he models in this paper. The generated offline images inherit the 

haracter shapes and writing style of online characters, so the neg- 

igible visual differences between the synthesized data and the real 

ffline data ensure the effectiveness of our models [40] . 

As shown in Fig. 3 , each online sample records its strokes in 

riting orders, thus, all stroke images can be generated by dilat- 

ng the strokes of a plotted online character image with appropri- 

te control of stroke width (randomly sampled) and edge smooth- 

ess [17] . This step outputs offline stroke images s 1 , ..., s n , which

re generated in writing order and listed in the second row of 

ig. 3 . Next, the whole character image is the union of s 1 , ..., s n , and

he ground-truthed cross regions are formed by the pixels which 

re shared among multiple strokes. 

.2.1. Pre-Processing of Online Handwritten Data 

An online handwritten Chinese character sample of class 

is recorded as the stroke trajectory set S = { S 1 , ..., S n } . We

se anisotropy resizing to normalize all the coordinates in S 

nto a 64 × 64 area, and obtain S = {S 1 , ..., S n } , where S i =
 (x i 

1 
, y i 

1 
) , ..., (x i n i , y 

i 
n i 

) , < eos > } . To remove the redundant points in

he original data, we propose a simple strategy to pre-process the 

nline stroke sequences like that in [41] . Specifically, in S i , whether 

o remove a point (x, y ) or not depends on two conditions: the 
4 
istance D of this point away from its former point, the angle A 

onstructed by this point and its two neighbors. We decide that 

x, y ) is a redundant point and remove it once D < 1 . 5 or ( D < 5

nd A > 150 ◦) (considering that removing the point causes little 

eviation of stroke shape). 

Note that the size normalization (character re-scaling to 64 × 64 

n this paper) operation makes character recognition or stroke ex- 

raction scale-invariant. On the other hand, rotation invariance is 

ot encouraged in character recognition, because rotated charac- 

ers of different classes may be confused (such as digits 6 and 

). Nevertheless, tolerance to small rotation is necessary, because 

andwritten characters normally have rotation or skewness. This 

s offered by the tolerance of shape matching or stroke matching 

easures. 

Besides, in the CASIA-OLHWDB [32] and ICDAR13- 

nline [42] datasets, a large number of handwritten strokes 

re joined-up, which means one saved trajectory contains multiple 

trokes. These joined-up strokes are brought out because of the 

ndue connections between adjacent strokes in cursive writing. 

uch connected strokes will cause errors in generated ground- 

ruthed images, in that multiple strokes are labeled as one stroke. 

o solve this problem, we try to detect the connected strokes 

ccording to the pattern of turning between stroke segments. 

enerally, in the Cartesian coordinate system, the directions 

etermined by two adjacent line segments S i 
[ k −1] 

→ S i 
[ k ] 

and 

 

i 
[ k ] 

→ S i 
[ k +1] 

probably locate in one of four quadrants, and the 

rajectory of S i 
[ k −1] 

→ S i 
[ k ] 

→ S i 
[ k +1] 

varies in 16 different cases, 

mong which five cases go beyond the standard writing habits 

f Chinese characters. For such abnormal trajectories as shown in 

ig. 4 , the stroke trajectory should be split into multiple strokes at 

 

i 
[ k ] 

. Otherwise, like Fig. 5 (b), the lower-right trajectory containing 

wo connected strokes causes an incorrect ground-truthed image. 

o obtain more accurate annotations, we split the joined-up trajec- 

ories meeting with the above conditions in the CASIA-OLHWDB 

nd ICDAR13-Online. Note that we only split strokes at obviously 

bnormal turning points (which are highly probable to join up 

ifferent strokes), while the normal turning parts (such as the 

op-right corner of Fig. 5 (c), which is a regular multi-segment 

troke) are remaining un-split. 

.2.2. Data Generation for SkeNet and CrossNet 

By linking all the stroke segments onto a 64 × 64 plane ((a) step 

n Fig. 3 ), skeleton-wise stroke images I t s can be readily produced 

nd serve as the training target of the SkeNet. As the (b)/(c) steps 

n Fig. 3 show, when drawing stroke image sequence { s 1 , ..., s n i } ,
e assign each stroke in S a random width sampled from the 

aussian distribution N C , then resize the generated images into 

4 × 64 -size. The mean value and variance of N C are induced from 

he widths of real offline characters of class C in the offline dataset 

ASIA-HWDB datset [32] . The method of calculating stroke width 

s the same as [14] : for each character image, calculates the area of 

oreground pixels, takes the half contour length as stroke length, 

hen the ratio of area to length is the estimated stroke width. 

Besides, we define all the overlapping pixels owned by more 

han one stroke as cross pixels. The training target of CrossNet is 

o predict the overlapping pixels in a character image. 

.2.3. Data Generation for PathNet 

The forward computations of the PathNet require ground- 

ruthed data shown as the (e) step in Fig. 3 , where we keep 

 non-cross foreground pixel in the offline character image and 

et all the rest pixels as zero to produce the input query map 

like the dark map with a red pixel in Fig. 3 ), and the other

ne input channel for the PathNet is filled by the whole char- 

cter image). Hence, the training target of this query pixel is 
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Table 1 

Notations. 

Notation Description Notation Description 

I original input image f p function of PathNet 

f c function of CrossNet p q ∈ S T query pixel (red in Fig. 2 ) 

I c cross map = f c (I) p u ∈ S T undetermined pixel when knowing p q 
I t c target of CrossNet M c set of stoke segments for stroke matching 

f s function of SkeNet g i i -th stroke segment in M c 

I s skeleton map = f s (I) S T final result of skeletonization 

I t s target of SkeNet M R = { r 1 , ..., r N R } reference model with N R strokes 
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o  
o predict the stroke image which contains this pixel. In sum- 

ary, for a character sample with N strokes, we randomly 

hoose non-cross query pixels for each stroke and provide N

 input query map , character image , target stroke image } triplets 

o serve as the training data of the PathNet. 

.2.4. Building Reference Models for Stroke Matching 

Fig. 2 shows the role of reference character models. The ref- 

rence models can be obtained by parsing automatically from a 

ree and open-source dataset named Make Me A Hanzi [37,43] , 

n which more than 9,0 0 0 Chinese characters were collected by 

RPHIC Company [3] with their standard skeleton-wise strokes. 

ur data parser is illustrated in Fig. 6 , where the original data is

aved in (1024,1024)-size coordinates as the blue box shows. 

. The Proposed Stroke Extraction Method 

The description of the proposed method involves many nota- 

ion symbols, which are summarized in Table 1 . As shown in Fig. 1 ,

he proposed method has three main steps: skeletonization using 

he SkeNet, query pixel guided stroke extraction, and model-based 

troke matching. The details of the skeletonization have been re- 

orted in [17] . This paper focuses on the latter two steps. The 

rossNet will be introduced when describing query pixel selection. 

.1. Query Pixel Guided Stroke Extraction 

After skeletonization of character image, the stroke segments 

elimited by end points and crossing points can be traced, and the 

ask of stroke extraction amounts to the joining of stroke segments 

djacent to a cross region. We use the PathNet to measure the con- 

istency of joining a pair of adjacent stroke segments. 

.1.1. PathNet for Modeling Stroke-Level Consistency 

The objective of modeling stroke-level consistency is to mea- 

ure how likely two different stroke segments belong to the same 

troke. To do this, the PathNet (as shown in Fig. 2 ) has two input

hannels: the query pixel map I q , and the character image I. The 

mage I q has one pixel (the position of the query pixel p q ) labeled

s 1 and all the other pixels as 0. At the position of an undeter-

ined pixel p u , the PathNet outputs I u [ p u ] = f p (I q , I)[ p u ] [1] . 

The image I provides the whole search space for I q to find its 

ongeneric pixels. To optimize f p (I q , I) , the PathNet is trained to

inimize the cross entropy loss: 

 p = −
∑ 

i 

y i log ( ̂  y i ) + (1 − y i ) log (1 − ˆ y i ) , ˆ y i = σ ( f p (I q , I)[ p i ]) , (1)

here σ is the sigmoid function, p i is the i -th pixel in the output 

ap of PathNet, and y i is the value at the position of p i in the

arget image, which indicates that whether p i and p q belong to the 

ame stroke or not (i.e., the pixels locating in the same stroke with 

p q are labeled as 1 while all the other pixels are labeled as 0). ˆ y i 
redicts the relationship between p i and p q . 

In our experiments, the PathNet shares the same architec- 

ure with the VDSR Net in [44] , which consists of 32 repeated 
5 
onv+ReLU+BatchNorm blocks, which are all of 64 3 × 3 -size and 

-stride filters. 

.1.2. How to Choose Query Pixels 

Obviously, a query pixel p q should be located in a stroke seg- 

ent. To ensure that each query pixel can trace to an unambigu- 

us stroke, we avoid selecting query pixels from the cross regions. 

ased on the output map of the CrossNet, we detect and exclude 

ll pixels at the cross regions of strokes before choosing query pix- 

ls. Hence, we ensure that p q belongs to one and only one stroke. 

he main rules for choosing query pixels are: 

• All representative pixels (query pixel and undetermined one) 

we need are from the skeleton map S T . The skeleton-wise 

strokes in S T are the central lines of the original strokes. It has 

been proven and visualized that S T is most reasonable for de- 

scribing handwritten character images [2] . 
• For any two stroke segments that meet at the same cross region 

o i , though we exclude the two query pixels p q and p u from o i ,

we still expect that p q and p u are as spatially close as possible. 

As a conditional FCN, f p (I q , I) tends to judge the relationship 

between p q and p u more accurately when p u is close to p q . 

.1.3. How to Calculate S T 
As shown in Fig. 7 , the cross map I c and the skeleton map I s are

enerated via two isomorphic FCN branches proposed by [17,31] , 

hose configurations are designed in accordance with the building 

ules proposed by DeepSke Net [31] . The parameters of these two 

etworks are as follows: 1) convolution filters initialized by HCCR- 

NN9Layer [6] ; 2) weights for working out the side outputs from 

ultiple scales (the two branches in Fig. 7 ) [45] ; 3) learnable bi-

inear filters [17] for enlarging feature maps; 4) convolution kernels 

or generating candidate maps (the 4th row in the SkeNet/CrossNet 

ranch shown in Fig. 7 ) and the convolutional fusion. Here, dilated 

onvolution is used to maintain high resolution of feature maps in 

CNs through replacing the max-pooling operation or convolution 

ayer [46] , and it can also expand the receptive field. Besides, the 

rd and 4th rows in the SkeNet/CrossNet branch of Fig. 7 illustrate 

he recombination of feature maps. 

When training the SkeNet/CrossNet, we deploy the same bi- 

ary cross entropy loss of Eq. (1) . To obtain better skeleton, 

e adopt the post-processing technique introduced in our previ- 

us paper [17] : using K − Means clustering on the σ (I s ) ( K = 2 ,

means the sigmoid function) to calculate a threshold, which 

ransforms σ (I s ) into a binary image, and the ZhangSuen Algo- 

ithm [25] to clear the redundant foreground pixels and generate 

deal skeletons. While for calculating the final cross map, the im- 

ge σ (I c ) is simply binarized using threshold 0.5 (median value of 

(I c ) ). K − Means clustering is not used in this case because cross 

nd non-cross pixels are severely imbalanced. For convenience, the 

ntermediate results of skeletonization and the final result of cross 

etection at this stage are still denoted as I s and I c , respectively. 

After obtaining I c and I s , we represent each cross region o i of I c 
y its centroid point p c 

i 
, connect all the adjacent skeleton pixels in 

 i with p c 
i 

to produce the final skeleton map S T . This is to say, S T is
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Fig. 2. The pipeline of the proposed stroke extraction system.(a) Skeletonization using SkeNet and CrossNet, and stroke-level consistency modeling using PathNet; (b) 

Candidate stroke extraction and model-based matching. 

Fig. 3. Synthesizing methods for the training/test data in this paper ( < eos > means e nd o f s troke). Brown arrows indicate the steps of automatic generations, and all 

images share the same size 64 × 64 . The whole pipeline consists of five steps: (a) drawing the skeleton maps; (b) saving all strokes with random widths; (c) generating cross 

regions; (d) generating offline handwritten samples; (e) data generation for PathNet. 

Fig. 4. Five types of abnormal trajectories consisted by S [ k −1] 
i 

, S [ k ] 
i 

and S [ k +1] 
i 

. The arrows point the directions of the handwritten trajectories. 

6 
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Fig. 5. The necessity of splitting joined-up trajectories. (a) is a standard template character with nine strokes. (b) provides the generated ground-truthed image without 

splitting. (c) displays the correct ground-truthed image after splitting. Different colors indicate different strokes. 

Fig. 6. A sample of pre-defined reference model, consisting of ordered standard strokes. 

Fig. 7. Data flow of the cross/skeleton map generation using the SkeNet and CrossNet in Fig. 2 . Here we omit the 2 × 2 -max-pooling and batch normalization layers after 

each convolutional group. 
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roduced by re-connecting each skeleton segment to the centroid 

f its adjacent cross region. This re-connection step is to reduce 

he distortion of skeleton at cross regions. 

.1.4. The Stroke Extraction Phase 

The stroke segments generated by S T are the basic units in 

ur stroke extraction method. The stroke segments adjacent to 

he same cross region are judged to whether to merge or not. 

y connecting the mergeable stroke segments, we obtain com- 

lete multi-segment strokes. In cursive handwriting, it often hap- 

ens that multiple regular strokes are connected by ligature. While 

he CrossNet is designed to detect cross regions (intersections of 

trokes), it may not detect the turning points where two strokes 

re connected. So, to guarantee that different strokes are split at 

urning points, we use the corner detection technique of [47] to 

ocate the corner points on stroke segments, and split at corner 

oints with angle < 120 ◦ (this threshold is to guarantee that most 

troke connection corners can be detected). Though this may also 

plit regular multi-segment strokes at turning points, the later pro- 

ess of stroke segment merging will re-join the mis-split stroke 

egments. 
7 
To judge whether to merge two stroke segments adjacent to the 

ame cross region or not, we use the PathNet to measure the con- 

istency score of two adjacent stroke segments. The query pixel 

uided stroke extraction procedure is illustrated in Algorithm 1 to 

nd the mergeable stroke segments at o i . First, all the stroke seg- 

ents adjacent to o i are traced. Then, each valid pair of segments 

ith a consistency score (higher than a pre-defined threshold) is 

emporarily reserved. As shown in Algorithm 1 , p q → p u indicates 

hat, under the guidance of p q , we should analyze that whether p u 
elongs to the same stroke as p q or not. Necessarily, p u → p q is

lso considered. Based on these, the consistency score for pairing 

wo stroke segments is defined as 

 q �u = 

I u [ p u ] + I q [ p q ] 

2 

. (2) 

s illustrated in Section 4.1.1 , both I u [ p u ] and I q [ p q ] are sigmoid

utput of PathNet. So, the value of s q �u is in (0,1). Among the valid

airs (with sufficient consistency score ≥ 0 . 95 ) that share common 

egments at o i , we merge the stroke segments in the pair with the 

ighest score. Here, s q �u ≥ 0 . 95 ensures that all the merged seg- 

ents in our training dataset are correct. 
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Algorithm 1 Query Pixel Guided Stroke Extraction 

1: INPUT: S T , I, and M = ∅ , M c = ∅ 

2: obtain all the centroid points of cross regions P o = { p o 
1 
, ..., p o 

N o 
} , 

N o is the number of detected cross regions 

3: for p o 
i 

∈ P o do 

4: construct a set M i = ∅ of mergeable stroke segments pro- 

vided by p o 
i 

5: from S T , collect the set of stroke segments G = { g 1 , ..., g N s } 
ending at p o 

i 

6: save 
(

N s 
2 

)
pairs from G i in set S p 

7: for each pair [ g q , g u ] ∈ S p do 

8: select two query pixels p q and p u from g q , g u , respectively 

9: given query pixel p q and I, the PathNet outputs I u [ p u ] at 

the position of p u 
10: given query pixel p u and I, the PathNet outputs I q [ p q ] at 

the position of p q 

11: calculate consistency score s q �u = 

I u [ p u ]+ I q [ p q ] 
2 

12: if s q �u ≥ 0 . 95 then 

13: put the pair (p q , p u ) into M i 

14: end if 

15: end for 

16: if M i = ∅ then 

17: continue 

18: end if 

19: do 

20: move the pair P best with the highest score from M i to M

21: delete other pairs sharing common stroke segments with 

P best from M i 

22: until M i = ∅ 

23: end for 

24: pairs with common segments form a new stroke segment 

25: each independent pair (having no common segments with all 

the other pairs) in M forms a new stroke segment 

26: put all the newly-formed stroke segments and other unpaired 

ones into M c 

27: RETURN: M c 
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When evaluating our stroke extraction method without stroke 

atching, the output stroke segments of Algorithm 1 are the result 

f stroke extraction. For stroke extraction with stroke matching, 

he only difference is that 0.5 instead of 0.95 is supposed to be 

n adequate threshold of s q �u . This is to let ambiguous pairs of 

troke segments to be solved in stroke matching instead of relying 

n consistency score only. 

.2. Reference Model Based Stroke Matching 

In Algorithm 1 , the consistency score s q �u given by the Path- 

et tells how likely two adjacent stroke segments should be con- 

ected into one segment. Though the PathNet alone can extract 

ost strokes, the lacking of the guidance from character models 

an still result in ambiguous or wrong stroke at complex cross re- 

ions. In this section, we aim to solve the ambiguity of stroke seg- 

ent connection by stroke matching with character models. 

Stroke matching aims to search for the most plausible input 

trokes corresponding to the ordered reference strokes. Suppose 

he reference model M R = { r 1 , ..., r N R } has N R strokes, and an equal

umber of input strokes { s 1 , ..., s N R } are extracted from the input

haracter image I, the distance D between I and M R is 

 (M R , I) = 

N R ∑ 

i =1 

d(r i , s i ) , (3) 

here d measures the stroke matching distance. Our goal is to ex- 

ract a combination of strokes from I so that the distance D (M, I) 
8 
s minimized. From Section 4.1 , we already obtain all stroke seg- 

ents, whose valid subsets can be formed into multiple candidate 

trokes for each reference stroke r i . In this section, we follow the 

tandard writing orders of the strokes in the pre-defined charac- 

er models and use heuristic search [48] to seek for the optimal 

olution. 

Specifically, we formulate stroke matching as a combinato- 

ial optimization problem and solve it using the heuristic A 

∗

earch [49] . A 

∗ algorithm accomplishes stroke matching in two 

tages: candidate stroke extraction and tree search based matching. 

ased on the extracted candidate input strokes, the search space 

f stroke matching is represented as a tree structure. We denote 

he j-th candidate stroke (a merged subset of stroke segments) of 

eference stroke r i as node N i j in the search space, and use the 

atching cost G between N i j and r i as d(r i , s j ) . 

As shown in Fig. 8 , the reference strokes are listed from up 

o down in the original writing order which also determines the 

earching order. Meanwhile, CAND i provides all candidate nodes in 

he search space for a reference stroke r i . Thus, the j-th candidate 

ode N i j = { g 1 , .., g k , ..., g n } (composed of n stroke segments) of ref-

rence stroke r i in the tree stands for a input-reference stroke pair 

 g 1 , .., g k , ..., g n } ↔ r i , and causes a matching cost G ( N i j ) once being

earched. 

In A 

∗ search, for a partial (i.e., currently searched but incom- 

lete) path P from root and ending at node N i j , we accumulate 

he matching cost of all the matched (searched) nodes in P as its 

atching cost G (P ) . Besides, A 

∗ search also provides a heuristic 

unction H( N i j ) to estimate the remaining cost of a complete so- 

ution containing P . Hence, the overall cost C(P ) of P is 

(P ) = C( BEGIN − · · · − N i j ) = 

∑ 

N∈ P 
G (N) + H( N i j ) , (4) 

hich can be regarded as D (M R , I) in Eq. (3) and minimized by A 

∗

earch. Here, BEGIN denotes the root node in search space. 

.2.1. Candidate Stroke Extraction 

Once obtaining all the stroke segments { g 1 , ..., g j , ..., g N g } (in-

luding the merged stroke segments by Algorithm 1 ), we need to 

atch an input stroke (formed by a subset of stroke segments) 

ith each reference stroke. Therefore, for each reference stroke, we 

eed all the candidate input strokes which are possibly matched 

ith it. 

In Algorithm 2 , we use M R = { r 1 , ..., r N R } to denote the reference

lgorithm 2 Candidate Subsets of Stroke Segments (Stroke) Ex- 

raction 

1: INPUT: M c (saving all the stroke segments), M R 

2: for r i ∈ M R do 

3: SEG i = ∅ 

4: for g j in M c do 

5: if MinDis (r i , g j ) ≤ 6 then 

6: put g j into SEG i 

7: else if SEG i has stroke segments connected to g j then 

8: put g j into SEG i 

9: end if 

0: end for 

11: CAND i = { ∅ } 
2: put all the feasible subsets of SEG i into CAND i 

3: end for 

4: RETURN: CAND = { CAND 1 , ..., CAND N R 
} 

odel with N R reference strokes, and extract candidate strokes 

i.e., subsets of stroke segments) from M c (output by Algorithm 1 ) 

or each reference stroke r i . MinDis (r i , g j ) in Algorithm 2 measures

he shortest distance between the reference stroke r and stroke 
i 
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Fig. 8. An example of tree search for stroke matching, where each box denotes a candidate node in the tree. Red boxes with arrows show the nodes in the final searched 

path, and white boxes show the other candidate nodes with larger cost. Yellow boxes show the incompatible nodes with the searched path. Here, we omit the cost-free root 

node BEGIN and goal node END . 
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Algorithm 3 A 

∗ search for stroke matching 

1: INPUT: OP EN , CLOSED 

2: add BEGIN with cost = 0 into the tree and OP EN , BEGIN points 

to all nodes of r 1 
3: add END with cost = 0 into the tree, and all nodes of r N R point 

to END 

4: while OP EN 	 = ∅ do 

5: choose N cur with minimal C( BEGIN − · · · − N cur ) from OP EN , 

N cur belongs to CAND cur of r cur 

6: if N cur = END then 

7: trace from N cur back to BEGIN , and obtain complete path 

P 

8: RETURN P 

9: else 

10: move N cur into CLOSED 

11: for N in CAND cur+ 1 do 

12: if N / ∈ CLOSED and N / ∈ OP EN then 

13: set parent node of N as N cur , put N with C( BEGIN −
· · · − N cur > N) into OP EN 

14: if N ∈ OP EN then 

15: if C( BEGIN − · · · − N cur − N) < C( BEGIN − · · · − N) 

then 

16: change the parent node of N as N cur 

17: end if 

18: end if 

19: end if 

20: end for 

21: end if 

22: end while 

G  

c

s

c

egment g j . For r i , we first choose all the stroke segments with

inDis (r i , g j ) ≤ 6 (compared to normalized character width/height 

4), and put them into SEG i . Then, we iteratively put other seg- 

ents into SEG i which are adjacent with at least one of the cho- 

en segments in SEG i . Finally, from SEG i , we form all the feasible 

ubsets of segments into CAND i following two rules: (1) all stroke 

egments in one subset should build one and only one connected 

omponent; (2) merging more than two segments ending at the 

ame cross region is avoided. Besides, CAND i in Algorithm 2 must 

ontain one empty subset, which indicates that there is no input 

troke matched with r i . The extracted candidate strokes are shown 

n Fig. 8 , where all the boxes are the candidate nodes in the tree

tructure, and all the candidate nodes for r i are put in the i -th

ow. 

.2.2. Tree Search in Model-Based Stroke Matching 

In Algorithm 3 , we show the whole searching process of our 

ethod. To initiate the A 

∗ search, we generate a root node BEGIN , 

hose branches point to all the candidate nodes of r 1 . Meanwhile, 

 goal node END is regarded as the stopping sign of searching 

nd pointed by all the candidate nodes of the last reference stroke 

 N R 
. Moreover, both BEGIN and END are cost-free. BEGIN is initially 

tored in the list OP EN , and the list CLOSED is initially empty. After 

electing the best node from OP EN which has the minimum path 

ost ( Eq. 4 ) with its reference stroke r cur , we expand this node with

ll the candidate nodes of the next reference stroke. 

During searching, one stroke segment belongs to only one ref- 

rence stroke at most, but some newly-touched nodes (depicted 

n yellow in Fig. 8 ) contain repeated stroke segments with the 

earched nodes in P . In this case, they are treated as incompati- 

le with P and should not be expanded. 

.2.3. Calculating G ( N i j ) 

In the searched path, N i j matches a candidate stroke with r i , 

nd causes a matching cost. Therefore, we design a simple function 
9 
 ( N i j ) = G d ( N i j ) + G a ( N i j ) + G p ( N i j ) to measure this cost. Specifi-

ally, G d tells the spatial distance between N i j and r i , and G a mea- 

ures the directional difference between them. G p calculates the 

onsistency score based cost of the stroke formed by N i j . For the 
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Fig. 9. The calculations of G d , G a and G p . 
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1 RW-OLHWDB (Version 5), DOI10.5281/zenodo.4527700, https://zenodo.org/ 

record/4527700 
j-th candidate node N i j = { g 1 , .., g k , ..., g n i } of reference stroke r i , its

ost is 

 ( N i j ) = G d ( N i j ) + G a ( N i j ) + G p ( N i j ) 

= 

1 

n 

i 

n i ∑ 

k =1 

MinDis (g k , r i ) + 

[
1 − C s ( N i j , r i ) 

]

+ 

1 

n m 

n m ∑ 

v =1 

[
1 − s q �u (P i v ) 

]
, (5) 

here n i is the number of stroke segments composing the candi- 

ate stroke, and n m 

is the number of segment pairs to be merged. 

inDis (g k , r i ) in G d measures the minimal distance between the 

troke segment g k and the reference stroke r i , C s measures the di- 

ectional similarity, and s q �u measures the merging consistency of 

 pair of stroke segments (if the pair of stroke segments join at a 

urning point other than a cross region, s q �u takes 1 for cost-free 

erging). For balancing the scale of different costs, MinDis (g k , r i ) 

s normalized to [0,1] by dividing 64 
√ 

2 (the diagonal length of the 

nput image). P i v means the v -th pair of adjacent stroke segments 

n N i j , which merges n m 

pairs of segments sequentially. In the left 

art of Fig. 9 , the black arrows indicate all the shortest lengths 

rom the stroke segments g 1 , .., g k , ..., g n to the reference stroke r i .

n general, freely-handwritten strokes cannot conform with their 

orresponding reference strokes perfectly because of their vari- 

ble positions. Therefore, MinDis (g k , r i ) reduces the cost caused by 

ome strokes with correct shape but positional deviations. 

As the black points in the middle part of Fig. 9 show, 

e use cosine similarity C s ( N i j , r i ) to model the directional 

imilarity between N i j and r i as follows: (1) a point se- 

uences �(r i ) is uniformly sampled from r i ; (2) represent 

(r i ) = { (x 1 , y 1 ) , ..., (x k , y k ) , ... } with its direction vector �(r i ) =
�x 1 , �y 1 , ..., �x k , �y k , ... ] , where �x k = 

x k +1 −x k 
d k 

, �y k = 

y k +1 −y k 
d k 

,

nd d k = 

√ 

(x k +1 − x k ) 
2 + (y k +1 − y k ) 

2 . Similarly, we also obtain 

( N i j ) as the direction vector of N i j . And finally, the similarity is

alculated as 

 s ( N i j , r i ) = 

1 

2 

�( N i j ) · �(r i ) 

|| �( N i j ) || × || �(r i ) || + 

1 

2 

, (6) 

bviously, larger directional similarity should be accompanied 

ith smaller matching cost. Therefore, G a ( N i j ) is determined by 

 − C s ( N i j , r i ) . In our system, G a ( N i j ) can not only represent the

lobal trends of strokes, but also capture the local directional off- 

ets between the candidate stroke and the reference stroke. 

The last item in Eq. (5) calculates the cost caused by merging 

troke segments. For a pair of adjacent stroke segments P i v , higher 

onsistency score s q �u (P i v ) should also cause smaller matching 

ost, which can be measured by 1 − s q �u (P i v ) . 

For the case that a reference stroke r i is un-matched (matched 

ith empty candidate stroke N i j = ∅ ), the cost is calculated as 

 (∅ ) = 

1 

n g 

n g ∑ 

k =1 

{ [
1 − MinDis (g k , r i ) 

]
+ C s (g k , r i ) 

} 

, (7)
10 
here n g is the number of all the stroke segments in CAND i . When 

AND i is also empty, all stroke segments in M c will be involved in 

he calculation of G (∅ ) . Thus, the stroke segments with higher di- 

ectional similarity or shorter distances to r i cause larger un-match 

ost. The average calculation in Eq. (7) ensures that G (∅ ) locates 

n a comparable range with G ( N i j 	 = ∅ ) . 

.2.4. Calculating H( N i j ) 

For N i j , we need to use the heuristic function H( N i j ) in A 

∗

earch [49] to estimate the cost from N i j to the goal node END . 

o calculate an admissible cost once reaching N i j , we need to en- 

ure that it never overestimates the actual cost to get to the goal 

ode. Similar to the heuristic function in [14] , H( N i j ) simply accu- 

ulates the minimum matching cost for each remaining reference 

troke: 

( N i j ) = 

N R ∑ 

k = i +1 

min m 

G ( N km 

) , (8) 

here N km 

denotes the m -th candidate node in CAND k of the ref- 

rence stroke r k . 

To visualize the mechanism of the whole proposed stroke ex- 

raction process with stroke matching, we show an example in 

ig. 8 , where each node is represented as a reference-input stroke 

air. In the complete path (depicted in red), each reference stroke 

s matched with a subset (including ∅ ) of stroke segments. 

. Experiments 

.1. Datasets and Performance Criteria 

To evaluate the proposed stroke extraction method and in- 

olved tasks on offline handwritten character images, we need 

o collect enough annotated data. We use the CASIA-OLHWDB1.0 

 1.1 [32] datasets of isolated online handwritten Chinese char- 

cters (3,755 classes) to synthesize training data for our mod- 

ls and employ the ICDAR-2013 Online HCCR Competition dataset 

ICDAR-Online) [42] to generate test data. This dataset contains 

reely-written characters, and many classes are beyond the gen- 

ral teaching syllabus in elementary educational. So, from CASIA- 

LHWDB1.0 & 1.1 [32] and ICDAR-Online datasets [42] , we collect 

 subset of 1,940 classes of frequently-used characters, which can 

eet the demands in primary education [4] . 

Besides, we collect Regularly Written characters from 20 differ- 

nt writers and select the same 1940 classes as CASIA-OLHWDB1.0 

 1.1 [32] and ICDAR-Online datasets [42] . We name this dataset as 

W-OLHWDB and release it 1 to serve as one of our test datasets. 

verall, all the datasets used in our paper are listed in Table 2 ,

here all the samples are generated by the techniques in Fig. 3 . 

The trained models are applicable to offline character images 

irectly, but because of the lacking of real offline data with stroke- 

evel annotation, we evaluate the performance of stroke extraction 

https://zenodo.org/record/4527700
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Table 2 

Training/test datasets in our experiments. 

Datasets for Training 

No. Dataset handwriting type #writers #samples ( k ) #classe s 

1 OLHWDB1.0 [32] online 420 ∼814.8 1,940 

2 OLHWDB1.1 [32] online 300 ∼582.0 1,940 

Datasets for Test 

No. Dataset handwriting type #writers #samples ( k ) #classes 

3 ICDAR13-Online [42] online 60 ∼116.4 1,940 

4 RW-OLHWDB online 20 ∼38.8 1,940 

Table 3 

Model Sizes and Training Settings in our experiments. 

Model Sizes (MB) 

Backbone SkeNet Branch CrossNet Branch PathNet Overall 

12.77 0.62 0.62 5.92 19.93 

Training Settings for SkeNet/CrossNet/PathNet 

Optimizer No. of Epochs Learning Rate ( LR ) Weight Decay Momentum 

SGD 20 1 × 10 −3 2 × 10 −4 0.9 

Batch Size LR Policy LR Gamma GPUs Platform 

64 step (per 5 epochs) 0.1 2 × GeForce RTX 2070 TF1.0.0 
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Table 4 

Results of cross detection. 

models ICDAR13-Online RW-OLHWDB 

P R F -measure P R F -measure 

OverlapNet [1] 0.762 0.704 0.731 0.793 0.735 0.763 

HED Net [45] 0.849 0.786 0.816 0.890 0.825 0.856 

DeepSke Net [31] 0.867 0.801 0.832 0.895 0.830 0.861 

CrossNet (ours) 0.869 0.803 0.834 0.904 0.838 0.869 
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2 OverlapNet: https://github.com/byungsook/vectornet/blob/master/models.py ; 

HEDNet: https://github.com/s9xie/hed/blob/master/examples/hed/train _ val.prototxt 

; DeepSke Net: https://github.com/zeakey/DeepSkeleton/blob/master/examples/ 

DeepSkeleton/train _ val.prototxt 
n synthesized offline data from online handwritten samples. We 

ill show some examples of stroke extraction from real offline im- 

ges, however. 

The performance criteria are as follows: 

• For the skeletonization and cross region detection tasks, we use 

the pixel-level precision ( P ), recall ( R ) and F -measure to eval-

uate our models like [1,17,31] . Like the pixel-level evaluation 

of the similar foreground pixel detection method in [50] , we 

treat all the predicted pixels located in the 4-neighborhoods of 

ground-truthed pixels as correct predictions. 
• For the stroke extraction task, we measure the stroke-level pre- 

cision ( P s ), recall ( R s ) and F s -measure on the open-source eval-

uation system proposed by Kim et al. [1] : if one stroke is ex- 

tracted successfully without any missed or redundant stroke 

segment, it is judged to be correct. 

.2. Architectures of Models 

Our models, including the CrossNet f c [1,2] , the SkeNet f s [17] , 

nd the PathNet f p , where f c and f s share the same architec- 

ure [17] as shown in Fig. 7 . The backbone networks of f c , f s are

he convolutional part of the HCCRCNN9Layer [6] , which is an ef- 

ective deep model for handwritten Chinese character recognition 

HCCR). Because our models in this paper should share the same 

nputs with their corresponding HCCR model [17,31] , we use the 

arameters in the HCCRCNN9Layer to initialize f c and f s . The Path- 

et shares the same architecture with the VDSR-Net in [1,44] , and 

s directly trained without pre-training. The model sizes with de- 

ailed training settings are listed in Table 3 , where all the models 

eed only 19.93MB parameters storage, and thus, are highly effi- 

ient. 

.3. Experimental Results 

We give the results of the key steps in our stroke extraction 

ystem: cross detection, skeletonization, stroke extraction without 

emplate matching, and stroke extraction with template match- 

ng. Though the results of cross detection and skeletonization 

ave bee reported in our previous paper [2,17] , due to the re- 

mplementation of CrossNet and SkeNet and the re-selection of test 

ata, we give the new results in this paper for completeness. 
11 
.3.1. Cross Detection 

In this task, we conduct experiments on four representative 

odels with different architectures: OverlapNet [1] simply copied 

he architecture of VDSR-Net in [44] and was firstly deployed on 

he same task on printed Chinese characters (in Standard Kaiti 

ont [43] ); HED Net [45] is the first deep FCN model for con- 

our detection, which had a similar architecture with our SkeNet 

ut runs without the inter-channel re-grouping [31] operation and 

ulti-rate fusion [46] ; DeepSke Net mainly adds the inter-channel 

egrouping module into HED Net; While based on DeepSke Net, 

ur CrossNet uses a multi-rate convolutional fusion layer [46] to 

enerate the final output [17] . For implementing the comparison 

ethods (OverlapNet, HEDNet, DeepSke Net), we used the open 

ource codes 2 and trained the models on the same training data 

ith our model CrossNet. 

The results of cross detection are shown in Table 4 . The Over- 

apNet only stacks several convolutional layers successively with- 

ut any task-oriented designs [1] , so, it misses more pixels in cross 

egions than others. Comparing with HED Net and DeepSke Net, 

he inter-channel regrouping of feature maps in our model handles 

he multi-scale patterns (strokes) better. Furthermore, our CrossNet 

roves that the multi-rate dilated fusion [46] finds more details at 

he cross regions in handwritten character images. The CrossNet 

ollows the architecture of the priorly proposed SkeNet [17] and 

hares the same backbone with the SkeNet. So, the CrossNet only 

https://github.com/byungsook/vectornet/blob/master/models.py
https://github.com/s9xie/hed/blob/master/examples/hed/train_val.prototxt
https://github.com/zeakey/DeepSkeleton/blob/master/examples/DeepSkeleton/train_val.prototxt
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Table 5 

Results of skeletonization. P s / R s / F s denote the performance of SkeNet f c , while P T / R T / F T denote the performance of S T by combining the results of CrossNet and SkeNet. 

methods ICDAR13-Online RW-OLHWDB 

P s R s F s -measure P T R T F T -measure P s R s F s -measure P T R T F T -measure 

Stroke Correction [51] 0.322 0.348 0.335 - - - 0.394 0.410 0.402 - - - 

Stroke Continuity [30] 0.448 0.484 0.465 - - - 0.485 0.502 0.493 - - - 

ZhangSuen Thinning Algorithm [25] 0.456 0.492 0.473 - - - 0.523 0.545 0.533 - - - 

HED Net [45] 0.693 0.712 0.702 0.705 0.724 0.714 0.768 0.790 0.778 0.771 0.793 0.781 

DeepSke Net [31] 0.725 0.741 0.732 0.730 0.746 0.737 0.795 0.811 0.802 0.798 0.814 0.805 

SkeNet 0.747 0.769 0.757 0.759 0.782 0.770 0.811 0.821 0.815 0.819 0.830 0.822 

Table 6 

Results of the proposed stroke extraction method without stroke matching. When p q / ∈ S T , we randomly choose p q . N q / u denotes the number of query pixels. Potrace [52] 

treats each connected component as a standalone stroke. 

methods p q ∈ S T have p u N q / u D (p q , p u ) ICDAR13-Online RW-OLHWDB 

P s R s F s P s R s F s 

Potrace [1,52] - - - - 0.283 0.221 0.248 0.420 0.357 0.385 

OverlapNet + PathNet × × 1 - 0.734 0.681 0.706 0.802 0.780 0.790 √ × 1 - 0.774 0.717 0.744 0.814 0.791 0.802 

ours 
√ √ 

1 4 0.823 0.784 0.803 0.874 0.851 0.862 √ √ 

1 8 0.829 0.790 0.809 0.890 0.866 0.877 √ √ 

1 12 0.810 0.772 0.790 0.875 0.851 0.862 √ √ 

2 8 0.841 0.802 0.821 0.906 0.882 0.893 √ √ 

3 8 0.797 0.759 0.778 0.852 0.829 0.840 
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ncurs slight additional computation though its performance im- 

rovement over the DeepSke Net is only marginal. 

Obviously, in Table 4 , the precision P is always higher than the 

ecall rate R , which indicates that there are still a considerable 

uantity of undetected pixels. But this issue has little influence 

n stroke extraction, because the goal of cross detection is to lo- 

ate the intersection/touching points of different strokes, the de- 

ected pixels in cross regions are used to disconnect the stroke seg- 

ents adjacent to them. Occasional missing or false positive cross 

egion pixels do not cause serious error of stroke extraction, be- 

ause stroke segments undergo dynamic merging in the following 

teps of stroke extraction and matching. 

.3.2. Skeletonization 

In skeletonization task, we compare six representative meth- 

ds, of which Stroke Correction [51] , Stroke Continuity [30] and 

hangSuen Thinning Algorithm [25] are rule-based methods with- 

ut training. We implemented them using the open source codes 3 . 

he results are shown in Table 5 . In respect of precision, the FCNs

eport much better results than traditional methods (stroke correc- 

ion, stroke continuity, and ZhangSuen). Benefiting from the multi- 

ate fusion [46] , our model SkeNet outperforms the DeepSke Net 

onsiderably. 

We can see that by combining the results of CrossNet and 

keNet, the performance of skeletonization on S T is improved sig- 

ificantly over SkeNet f s alone. This is because S T improves the 

hinning results at cross regions particularly. From Table 4 & 5 , we 

an see that all the methods report better performances on RW- 

LHWDB because the more regularly written samples are easier to 

e processed. 

Some examples of S T combining SkeNet and CrossNet are 

hown in Fig. 10 , where the bright pixels show the skeleton-wise 

ross regions, whose adjacent stroke segments need to be isolated 

r merged in stroke extraction. We can see that the CrossNet can 

apture almost all valid pixels, including the intersection pixels, 

hich help refine the skeleton and split stroke segments. 
3 Stroke Correction and Stroke Continuity: https://pypi.org/project/thinning/ 

 ZhangSuen Thinning: https://scikit-image.org/docs/dev/api/skimage.morphology. 

tml#skimage.morphology.skeletonize 

t

m

f

q

m

12 
.3.3. Stroke Extraction without Matching 

For PathNet, the training target under a given query pixel p q is 

he stroke image s p q which contains p q . Therefore, we evaluate the 

roposed query pixel guided stroke extraction method on different 

elections of p q in Table 6 , where D (p q , p u ) denotes the distance

etween p q and p u shown in Fig. 11 . As for the comparison meth- 

ds, Potrace was implemented using the codes provided in [52] ; 

or OverlapNet+PathNet, the OverlapNet was used for skeletoniza- 

ion and cross detection, and then the PathNet was used for stroke 

xtraction. All the models were trained with the same data gener- 

ted in our experiments. 

The first row in Table 6 gives the results of Potrace [52] , which

s also the baseline method on the same task in [1] . Though Po- 

race simply regards each connected component as a standalone 

troke, it can reveal the challenge of stroke extraction on our 

atasets. We can see that on the regularly written Chinese charac- 

er dataset RW-OLHWDB, about 35.7% ground-truthed strokes are 

solated components without intersection with others. But on the 

ore challenging ICDAR13-online dataset, this rate drops to about 

2.1%. For reference, when processing the printed Chinese char- 

cters in [1,37,43] , Potrace can extract about 57% strokes because 

rinted Chinese characters have more isolated strokes. 

In Table 6 , the rows of “OverlapNet+PathNet” give the results 

f a pure PathNet with one query pixel (i.e., the state-of-the-art 

ethod proposed by [1] ). The results show the advantage of choos- 

ng p q from S T . This method uses only uni-directional query pixel 

uidance, thus the accuracy of stroke segment consistency is insuf- 

cient. 

The last five rows of Table 6 give the results of our method 

stroke extraction with bi-directional pixel guidance) with vari- 

ble settings of N q/u and D (p q , p u ) . First, when N q/u = 1 (one query

ixel, bi-directional guidance), the results of different D (p q , p u ) 

how that the selection D (p q , p u ) = 8 yields good performance of

troke extraction. Then by fixing D (p q , p u ) = 8 , we vary N q/u , and

nd that N q/u = 2 yields superior performance of stroke extrac- 

ion. Using more query pixels ( N q/u = 3 ) for measuring the consis- 

ency score of stroke segments, however, deteriorates the perfor- 

ance. This is because we select query pixels sequentially starting 

rom the cross region with distance interval 4, the first and second 

uery pixels are in moderate distance from the cross region, while 

ore query pixels farther away from cross region are less reliable. 

https://pypi.org/project/thinning/
https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.skeletonize
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Fig. 10. Examples of skeletonzation combining the results of SkeNet and CrossNet. The input images, ground-truthed images and our results are listed from left to right. The 

dark pixels show all the stroke segments, while the bright pixels show the ground-truthed/detected cross regions. 

Table 7 

Results of the proposed stroke extraction method with stroke matching. 

methods p q ∈ S T have p u N q / u D (p q , p u ) ICDAR13-Online RW-OLHWDB 

P s R s F s P s R s F s 

ours 
√ √ 

1 4 0.868 0.853 0.860 0.895 0.880 0.887 

1 8 0.875 0.860 0.867 0.920 0.905 0.912 

1 12 0.886 0.871 0.878 0.925 0.910 0.865 

2 8 0.890 0.875 0.882 0.949 0.934 0.941 

3 8 0.859 0.844 0.851 0.889 0.875 0.881 

Fig. 11. D (p q , p u ) = D 1 + D 2 , where D 1 or D 2 measures the minimum distance from 

the representative points to their corresponding cross region. D 1 = D 2 . 
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Table 8 

Results of stroke extraction with matching on Chinese characters of different stroke 

number N S . 

N S #classes ICDAR13-Online RW-OLHWDB 

P s R s F s -measure P s R s F s -measure 

< 5 74 0.925 0.908 0.916 0.973 0.958 0.965 

5 138 0.919 0.903 0.910 0.977 0.961 0.968 

6 168 0.906 0.889 0.897 0.963 0.944 0.953 

7 334 0.903 0.887 0.894 0.955 0.939 0.946 

8 443 0.900 0.885 0.892 0.950 0.935 0.942 

9 425 0.894 0.879 0.886 0.947 0.932 0.939 

10 284 0.884 0.866 0.874 0.926 0.910 0.917 

11 29 0.860 0.845 0.852 0.895 0.881 0.887 

12 12 0.850 0.835 0.842 0.884 0.870 0.876 

13 3 0.833 0.818 0.825 0.840 0.827 0.833 

2 ∼13 1940 0.890 0.875 0.882 0.949 0.934 0.941 
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.3.4. Stroke Extraction with Matching 

Table 7 gives the results of stroke extraction with charac- 

er model matching, at different options of N q/u and D (p q , p u ) .

gain, the choices N q/u = 2 and D (p q , p u ) = 8 yields the best per-

ormance. Compared to the results of stroke extraction without 

atching in Table 6 , the stroke extraction precision and recall rates 

re improved significantly. Specifically, the best precisions on two 

atasets are improved by 4.9% and 4.3%, respectively. This verifies 

hat the character templates play a very important role in disam- 

iguating the stroke segment connection at cross regions. 

As the complexity of stroke extraction generally increases with 

he stroke number, to verify this dependency, we also show the 

esults of the proposed stroke extraction method on Chinese char- 

cters with different numbers of standard strokes N S in Table 8 . 

e can see that with increasing N S , the performances of stroke 

xtraction on two datasets decrease gradually. The stroke number 

 has the maximum number of character classes and also gets 

troke extraction performance close to the average performance. 

imple characters (with stroke number < 8 ) are main objects of el- 

mentary school learning. The high accuracies of stroke extraction 
13 
n simple characters demonstrate the potential of the proposed 

ethod in application of character writing education. 

.3.5. Illustrative Examples 

Fig. 12 and Fig. 13 show some examples of stroke extrac- 

ion with matching on samples from ICDAR-Online dataset and 

W-OLHWDB dataset, respectively. In the figures, “GT” denotes 

he ground-truth of strokes, “Ours-(a)” denotes the results of 

troke extraction with matching; “Ours-(b)” denote the results 

f stroke extraction without matching; “Potrace” denotes the 

ethod [1,52] which treats connected components of skeleton as 

trokes. We can see that the Potrace method mis-extracts multi- 

le intersected strokes as one stroke. The proposed method with 

emplate matching produces less stroke errors compared to that of 

troke extraction without matching. 

The handwritten characters in Figs. 12 & 13 cover most of the 

ifficult cases in stroke extraction task, such as multi-stroke struc- 

ures, multi-segment and curved strokes, variable stroke width, 
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Fig. 12. Some samples randomly chosen from ICDAR13-Online dataset. Ours-(a): stroke extraction with matching; Ours-(b): stroke extraction without matching. The eight 

characters have 8(6), 9(7), 11(10), 7(8), 12(13), 11(10), 9(8) and 10(10) strokes, respectively. Here, “m (n ) ” means the reference character contains m strokes while the input 

handwritten character contains n strokes. Different colors indicate different strokes. The white arrows point to unmatched strokes, and the red arrows show those un- 

extracted and mis-extracted strokes. 
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nd various shapes of stroke intersection. Many strokes are hard 

o identify even by human experts. The cursively written charac- 

ers (in ICDAR13-Online dataset) produce more errors of missed or 

is-extracted strokes. Short strokes are more likely to be missed 

r mis-matched because they are high variable in orientation. 

The above results were obtained by evaluating on generated of- 

ine images synthesized from online handwritten samples. Though 
14 
he proposed method, with models trained on generated data, are 

eadily applicable to real offline images, it is hard to annotate a 

arge number of offline character images at stroke level for perfor- 

ance evaluation. Nevertheless, to demonstrate the applicability, 

e show some examples of stroke extraction on real handwritten 

haracter images from the ICDAR13-Offline dataset [42] in Fig. 14 . 

e can see the real offline characters have very similar appear- 
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Fig. 13. Some samples randomly chosen from RW-OLHWDB dataset. The eight characters have 16(13), 11(11), 9(8), 13(10), 10(8), 11(11), 10(11) and 9(9) strokes respectively. 
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nce to generated images in Figs. 12 & 13 , and the proposed stroke

xtraction method perform on offline characters as well as on gen- 

rated images. 

Finally, we show some typical errors of stroke extraction in 

ig. 15 . The major factors causing stroke extraction errors are as 

ollows: 

• A connected component with densely intersected multiple 

strokes is likely to make some strokes missed or merged with 

other strokes in skeletonization, such as the 1st sample in 

Fig. 15 . 
15 
• Unduly distorted strokes are likely to have large dissimilar- 

ity with the standard strokes in reference models, so that 

they are failed to be matched or split into multiple strokes at 

cross/turning point. An example is shown in the 2nd sample of 

Fig. 15 . 
• Very short strokes or segments are likely to be missed in 

skeletonization or stroke matching, such as the 3rd sample in 

Fig. 15 . 

In general, cursive handwriting with unduly distorted stroke 

hape is likely to produce stroke extraction errors. For cursively 
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Fig. 14. Some examples of stroke extraction on real offline handwritten samples. From left to right: input character image, reference model, and strokes extracted. The write 

and red arrows point to the unmatched strokes and mis-extracted ones, respectively. 

Fig. 15. Some examples of stroke extraction errors on our test datasets. From left 

to right: input character image, ground-truthed strokes, and strokes extracted. The 

regions of stroke extraction failure are boxed in red. 
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the future. 
ritten characters, it is even hard for human experts to identify 

he correct strokes. In contrast, for printed Chinese character, it 

as shown in [1] that a pure PathNet without bi-directional guid- 

nce can reach ≥ 0 . 98 for both P s and R s . 
16 
. Conclusion 

In this paper, we proposed an effective method combining 

uery pixel guidance and model-based stroke matching to address 

he challenging problem of stroke extraction for offline handwrit- 

en Chinese characters. In our system, the CrossNet detects cross 

egions (intersections of strokes), which bridge the skeleton seg- 

ents into strokes. The detected cross regions can also improve 

he skeleton produced by the proposed SkeNet. Stroke extraction 

s performed by connecting skeleton-wise stroke segments adja- 

ent to a cross region, and the pairing consistency between stroke 

egments is measured using a PathNet with bi-directional query 

ixel guidance. And finally, stroke matching with reference charac- 

er models is performed by A 

∗ search to reduce the ambiguity of 

troke connection. 

The proposed method is readily applicable to offline handwrit- 

en characters, and we built synthetic datasets (with stroke-level 

round-truths) to evaluate the performance convincingly. Our ex- 

eriments report promising performances on skeletonization, cross 

etection, and stroke extraction. For potential applications, the pro- 

osed method can be applied to detect stroke-level irregularities, 

missions, and redundancies in handwritten characters, and facili- 

ate stroke-level writing quality assessment. Since the challenging 

roblem of stroke extraction was not pursued intensively in recent 

ears, we could not compare our results with other state-of-the- 

rt results, but hopefully provide a benchmark for future studies. 

n our future work, better distance metrics are to be explored for 

ealing with high distortion in stroke matching. The end-to-end 

raining of SkeNet, CrossNet and PathNet, and alternative design of 

troke segment pairing consistency model also deserve attention in 
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