Assosymmetric operad

A.S. Dzhumadil'daev, B.K. Zhakhayev, S.A. Abdykassymova

Abstract

An algebra with identities $(a, b, c)=(a, c, b)=(b, a, c)$ is called assosymmetric, where $(x, y, z)=x(y z)-(x y) z$ is associator. We establish that operad of assosymmetric algebras is not Koszul. We study S_{n}-module, A_{n}-module and $G L_{n}{ }^{-}$ module structures on multilinear parts of assosymmetric operad.

1 Introduction

A variety of algebras is a class of algebras with polynomial identities. Operads of algebas are constructed by multilinear parts of free algebras. These multilinear parts have module structures over symmetric groups and have composition rules that depends from polynomial identities. If polynomial identities have dimension no more than 3 , then they generate so called quadratic operads. One of important problems on quadratic operads concern Koszulity problem of operads. For details on algebraic operads see [16] and [7].

For example, operad of associative algebras $\mathcal{A} s$ is defined by identity

$$
(a, b, c)=a(b c)-(a b) c=0,
$$

where $(x, y, z)=x(y z)-(x y) z$ is associator. A multilinear part of free asociative algebras, $\mathcal{A} s(n)$ has dimension n ! and is isomorphic to regular S_{n}-module. The Koszul dual of associative operad is isomorphic to itself and associative operad is Koszul.

[^0]Operad of left-symmetric algebras is defined by left-symmetric identity

$$
(a, b, c)=(b, a, c)
$$

Similarly, right-symmetric operad is constructed by right-symmetric identity

$$
(a, b, c)=(a, c, b)
$$

Operads of left- or right-symmetric algebras are Koszul. Their Koszul duals are defined by perm identities, i.e. by associative identity and one-sided commutative identities.

An algebra is called assosymmetric if it satisfies two-sided symmetric identities

$$
(a, b, c)=(b, a, c), \quad(a, b, c)=(a, c, b)
$$

In our paper we prove that assosymmetric operad is not Koszul. We study the multilinear part of free assosymmetric algebra as S_{n}-module, A_{n}-module and $G L_{n}$-module. We find dimension of homogeneous component, sequence of dimensions of multilinear parts or codimension sequence, colength sequence, cocharacter sequence in S_{n}-case, cocharacter sequence in A_{n}-case for assosymmetric algebras.

To formulate our results in exact form we need to introduce some definitions and notations. Let K be an algebraically closed field of characteristic 0 . All algebras, vector spaces, modules and tensor products we consider will be over field K.

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a set of generators and $K\{X\}$ be the absolutely free nonassociative algebra. A polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K\{X\}$ is called polynomial identity or identity for the K-algebra R if $f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$ for all $r_{1}, r_{2}, \ldots, r_{n} \in R$.

Let $\left\{f_{i} \in K\{X\} \mid i \in I\right\}$ be a set of elements in $K\{X\}$. The class \mathfrak{V} of all algebras satisfying the polynomial identities $f_{i}=0, i \in I$ is called the variety defined by the system of polynomial identities $\left\{f_{i} \mid i \in I\right\}$. The set $T(\mathfrak{V})$ of all polynomial identities satisfied by the variety \mathfrak{V} is called the T-ideal or verbal ideal of \mathfrak{V}.

Assosymmetric algebras was studied in [1], [3], [11], [13], [18]. Basis of free assosymmetric algebras was constructed in [11]. Moreover, this paper contains multiplication rule of base elements that allows to present an element of free assosymmetric algebra as a linear combination by base elements. In [3] it was proved that assosymmetric algebras under Jordan product satisfy Lie triple and Glennie identities.

In polynomial identities theory there are two main questions: 1) describe algebras with identities; 2) describe identities in algebras. The language of varieties allows one to freely pass from identity to algebra and from algebra to identity. Therefore studying varieties of algebras is one of the important problem in modern algebras. In 1950, A.I. Malcev [17] and W.Specht [20] first time and independently used the representation theory of symmetric group to classify polynomial identities of algebraic structures. If $\operatorname{char} K=0$, then every polynomial is equivalent to a finite set of multilinear polynomials.

For several classes of algebras $S_{n^{-}}, G L_{n}$-module structures on multilinear parts of free algebras are studied. Some cases these structures can be easy described. For example, multilinear parts of free associative, free Zinbiel and free Leibniz algebras of degree n as
S_{n}-module are isomorphic to regular module $K S_{n}$ [22]. But as operads these varieties are different, since composition rules are different. In case of Lie algebras module structures are slightly complicated. In [14] it was found list of irreducible S_{n}-representations that are involved in decomposition of multilinear parts of free Lie algebras. Description of multiplicities of irreducible S_{n}-representations in decomposition of multilinear part of free Lie algebra by language of major indices of standard Young tableaux is given in [15].

2 Statement of main result

In [2] an algebra with identity

$$
[a, b] c+[b, c] a+[c, a] b=0
$$

is called left-Alia.
Theorem 2.1. The Koszul dual to the assosymmetric operad is left-Alia and associative. Assosymmetric operad is not Koszul.

Let n be a positive integer. The sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is called partition of n, if

1. $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$,
2. $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$,
and denoted by $\lambda \vdash n$. Length of partition $\lambda \vdash n$ is the number of parts in λ and denoted by $\ell(\lambda)$. It is known that between partitions of n and Young diagrams with n boxes exist one-to-one correspondence. We denote Young diagram with λ-shape by Y_{λ}. Let $\lambda, \mu \vdash n$. Partition λ is conjugate to partition μ, if Y_{μ} is obtained from Y_{λ} by turning the rows into columns and denoted by $\mu=\lambda^{\prime}$. A partition that is conjugate to itself is said to be a self-conjugate partition, that is $\lambda=\lambda^{\prime}$.

Let S_{n} be symmetric group on set $\{1,2, \ldots, n\}$ and A_{n} be alternating subgroup of S_{n}. The symmetric group S_{n} and alternating group A_{n} acts on multilinear part of free assosymmetric algebra in natural way (left action or variable action).

Let R be an algebra with T-ideal $T(R)$ and let V_{n} be a multilinear part of $K\{X\}$ of degree n. For $n \geq 1$, the S_{n}-character of $V_{n} /\left(V_{n} \cap T(R)\right)$ is called the n-th cocharacter of R and denoted by $\chi_{n}(R)$, and

$$
\chi_{n}(R)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda},
$$

where χ_{λ} is the irreducible S_{n}-character associated to the partition $\lambda \vdash n$ and $m_{\lambda} \geq 0$ is the corresponding multiplicity.

Let $T(R)$ be T-ideal of R. Then the non-negative integer

$$
c_{n}(R)=\operatorname{dim}\left(V_{n} / V_{n} \cap T(R)\right),
$$

is called the n-th codimension of the algebra R.
Let R be an algebra and

$$
\chi_{n}(R)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda} .
$$

Then the non-negative integer

$$
l_{n}(R)=\sum_{\lambda \vdash n} m_{\lambda}
$$

is called the n-th colength of R.
For more information about codimension sequence, cocharacter sequence, colength sequence see [6].

We denote the irreducible S_{n}-module or Specht module associated to partition $\lambda \vdash n$ by S^{λ} and dimension of S^{λ} by d_{λ}, the irreducible A_{n}-module associated to non-self-conjugate partition $\lambda \vdash n$ by S_{A}^{λ} and to self-conjugate partition $\lambda \vdash n$ by $S_{A}^{\lambda \pm}$, the irreducible $G L_{n^{-}}$ module or Weyl module associated to partition $\lambda \vdash n$ by W^{λ} in S_{n}-case and by W_{A}^{λ} in A_{n}-case.

For more information about the theory of representations of S_{n}, A_{n} and $G L_{n}$ see [4], [5], [8], [9], [10], [12] and [19].

Free base of assosymmetric algebras was found in [11]. We use this result to find formulas for dimensions of free assosymmetric algebras. Let $F(r)$ be free assosymmetric algebra generated by r elements a_{1}, \ldots, a_{r}. Let $F^{l_{1}, \ldots, l_{r}}(r)$ be a subspace of free assosymmetric algebra generated by l_{i} elements a_{i}, where $i=1, \ldots, r$, and $F_{n}(r)$ be a subspace of free assosymmetric algebra $F(r)$ of degree n and $P_{n}=F^{1, \ldots, 1}(n)$ be multilinear part of $F_{n}(n)$.

Theorem 2.2. Let $p=\operatorname{char} K \neq 2,3$. Then

$$
\operatorname{dim} F^{l_{1}, \ldots, l_{r}}(r)=\binom{l_{1}+\cdots+l_{r}}{l_{1} \cdots l_{r}}+\left(l_{1}+1\right) \cdots\left(l_{r}+1\right)-\binom{r+1}{2}-r-1+w
$$

where $w=w\left(l_{1}, \ldots, l_{r}\right)$ is a number of 1 's in the sequence $l_{1} \ldots l_{r}$,

$$
\begin{aligned}
& \operatorname{dim} F_{n}(r)= \\
& \quad r^{n}+\binom{n+2 r-1}{n}-\binom{r+1}{2}\binom{n+r-3}{n-2}-r\binom{n+r-2}{n-1}-\binom{n+r-1}{n}
\end{aligned}
$$

and

$$
\operatorname{dim} P_{n}=n!+2^{n}-\binom{n+1}{2}-1
$$

By Stirling formula $n!\sim \sqrt{2 \pi n}(n / e)^{n}$, and therefore,

$$
\operatorname{dim} P_{n}^{1 / n} \sim n / e
$$

We divide the set of multilinear base elements into two types.
First type

$$
T_{n}=\left\{\left(\ldots\left(\left(x_{\sigma(1)} x_{\sigma(2)}\right) x_{\sigma(3)}\right) \ldots\right) x_{\sigma(n)} \mid \sigma \in S_{n}\right\}
$$

Second type

$$
\begin{aligned}
T_{k, n-k}=\left\{x_{\sigma(1)}\left(x_{\sigma(2)}\left(\ldots x_{\sigma(k)}\left[\ldots\left[\left(x_{\sigma(k+1)} x_{\sigma(k+2)}, x_{\sigma(k+3)}\right), x_{\sigma(k+4)}\right], \ldots, x_{\sigma(n)}\right] \ldots\right)\right)\right. \\
\left.\sigma(1)<\sigma(2)<\cdots<\sigma(k), \sigma(k+1)<\sigma(k+2)<\cdots<\sigma(n), \sigma \in S_{n}\right\} .
\end{aligned}
$$

Theorem 2.3. The group S_{n} acts transitively on the sets T_{n} and $T_{k, n-k}$, $k=0,1, \ldots, n-3$.

Let $K T_{n}$ and $K T_{k, n-k}$ be subspaces of P_{n} spanned by the sets T_{n} and $T_{k, n-k}$, for $k=0,1, \ldots, n-3$, respectively.

Corollary 2.4. As an S_{n}-module

$$
P_{n} \cong K T_{n} \oplus \bigoplus_{k=0,1, \ldots, n-3} K T_{k, n-k}
$$

Theorem 2.5. As an S_{n}-module

$$
P_{n} \cong \bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda} \oplus \underset{\left(\lambda_{1}, \lambda_{2}\right) \vdash n}{\bigoplus} m\left(\lambda_{1}, \lambda_{2}\right) S^{\left(\lambda_{1}, \lambda_{2}\right)},
$$

where

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

Example 2.6.

$$
\begin{gathered}
P_{1} \cong S^{(1)} ; \\
P_{2} \cong S^{(2)} \oplus S^{(1,1)} ; \\
P_{3} \cong 2 S^{(3)} \oplus 2 S^{(2,1)} \oplus S^{(1,1,1)} ; \\
P_{4} \cong 3 S^{(4)} \oplus 4 S^{(3,1)} \oplus 2 S^{(2,2)} \oplus 3 S^{(2,1,1)} \oplus S^{(1,1,1,1)} ; \\
P_{5} \cong 4 S^{(5)} \oplus 6 S^{(4,1)} \oplus 6 S^{(3,2)} \oplus 6 S^{(3,1,1)} \oplus 5 S^{(2,2,1,1)} \oplus 4 S^{(2,1,1,1,1)} \oplus S^{(1,1,1,1,1)}
\end{gathered}
$$

Let V be a vector space with dimension m. Let $F(V)$ be free assosymmetric algebra generated by base elements of V and $H_{n}(V)$ be homogeneous part of $F(V)$ of degree n.

Definition 2.7. Let $\operatorname{inv}\left(S_{n}\right)$ be number of involutions,

$$
\operatorname{inv}\left(S_{n}\right)=\#\left\{\sigma \in S_{n} \mid \sigma^{2}=e\right\}
$$

Corollary 2.8. a.

$$
\chi_{S_{n}}\left(P_{n}\right) \cong \sum_{\lambda \vdash n} d_{\lambda} \chi_{S_{n}}(\lambda)+\sum_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) \chi_{S_{n}}\left(\lambda_{1}, \lambda_{2}\right),
$$

where

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

b.

$$
\chi_{A_{n}}\left(P_{n}\right)=2 \chi_{A_{n}}\left(K A_{n}\right)+\sum_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) \chi_{A_{n}}\left(\lambda_{1}, \lambda_{2}\right),
$$

where

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

c. $\left(S_{n}\right.$-case)

$$
H_{n}(V) \cong \bigoplus_{\lambda \vdash n} d_{\lambda} W^{\lambda} \oplus \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) W^{\lambda}
$$

where

$$
d_{\lambda}>0, m\left(\lambda_{1}, \lambda_{2}\right)>0
$$

and

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

if $\operatorname{dim} V \geq \ell(\lambda), \ell\left(\left(\lambda_{1}, \lambda_{2}\right)\right)$, and

$$
d_{\lambda}=0, m\left(\lambda_{1}, \lambda_{2}\right)=0
$$

if $\operatorname{dim} V<\ell(\lambda), \ell\left(\left(\lambda_{1}, \lambda_{2}\right)\right)$.
d. (A_{n}-case)

$$
H_{n}(V) \cong\left[\bigoplus_{\lambda \neq \lambda^{\prime}} 2 d_{\lambda} W_{A}^{\lambda}\right] \oplus\left[\bigoplus_{\lambda=\lambda^{\prime}} 2\left(\frac{d_{\lambda}}{2} W_{A}^{\lambda+} \oplus \frac{d_{\lambda}}{2} W_{A}^{\lambda-}\right)\right] \oplus \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) W_{A}^{\lambda},
$$

where

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

e. For $1 \leq n \leq 3$

$$
l_{n}\left(P_{n}\right)=\delta_{n, 3}+\operatorname{inv}\left(S_{n}\right)
$$

where $\delta_{i, j}$ is Kronecker delta. For $n \geq 4$

$$
l_{n}\left(P_{n}\right)= \begin{cases}k^{2}+2 k-5+\operatorname{inv}\left(S_{n}\right), & n=2 k \\ k^{2}+3 k-4+\operatorname{inv}\left(S_{n}\right), & n=2 k+1\end{cases}
$$

Example 2.9.

$$
\begin{gathered}
\chi_{S_{1}}\left(P_{1}\right)=\chi_{S_{1}}(1) ; \\
\chi_{S_{2}}\left(P_{2}\right)=\chi_{S_{2}}(2)+\chi_{S_{2}}(1,1) ; \\
\chi_{S_{3}}\left(P_{3}\right)=2 \chi_{S_{3}}(3)+2 \chi_{S_{3}}(2,1)+\chi_{S_{3}}(1,1,1) ; \\
\chi_{S_{4}}\left(P_{4}\right)=3 \chi_{S_{4}}(4)+4 \chi_{S_{4}}(3,1)+2 \chi_{S_{4}}(2,2)+3 \chi_{S_{4}}(2,1,1)+\chi_{S_{4}}(1,1,1,1) ; \\
\chi_{S_{5}}\left(P_{5}\right)=4 \chi_{S_{5}}(5)+6 \chi_{S_{5}}(4,1)+6 \chi_{S_{5}}(3,2)+6 \chi_{S_{5}}(3,1,1)+5 \chi_{S_{5}}(2,2,1) \\
+4 \chi_{S_{5}}(2,1,1,1,1)+\chi_{S_{5}}(1,1,1,1,1) .
\end{gathered}
$$

Example 2.10.

$$
\begin{gathered}
\chi_{A_{1}}\left(P_{1}\right)=\chi_{A_{1}}(1) ; \\
\chi_{A_{2}}\left(P_{2}\right)=\chi_{A_{2}}(2)+\chi_{A_{2}}(1,1) ; \\
\chi_{A_{3}}\left(P_{3}\right)=3 \chi_{A_{3}}(3)+\chi_{A_{3}}^{+}(2,1)+\chi_{A_{3}}^{-}(2,1) ; \\
\chi_{A_{4}}\left(P_{4}\right)=4 \chi_{A_{4}}(4)+7 \chi_{A_{4}}(3,1)+\chi_{A_{4}}^{+}(2,2)+\chi_{A_{4}}^{-}(2,2) ; \\
\chi_{A_{5}}(5)+10 \chi_{A_{5}}(4,1)+11 \chi_{A_{5}}(3,2)+3 \chi_{A_{5}}^{+}(3,1,1)+3 \chi_{A_{5}}^{-}(3,1,1)
\end{gathered}
$$

Example 2.11.

$$
l_{1}\left(P_{1}\right)=1 ; \quad l_{2}\left(P_{2}\right)=2 ; \quad l_{3}\left(P_{3}\right)=5 ; \quad l_{4}\left(P_{4}\right)=13 ; \quad l_{5}\left(P_{5}\right)=32
$$

3 Proof of Theorem 2.3

Let I be the T-ideal in $K\{X\}$ determined by identities

$$
(x, y, z)=(x, z, y)=(y, x, z)
$$

Let R be assosymmetric algebra and $J=(R, R, R)+(R, R, R) R$ is the ideal generated by associators. Proof of Theorem 2.3 is based on the following two results of [11].

Lemma 3.1 ([11], Lemma 1). The expression $\left[\left[\ldots\left[\left[\left(a_{1}, a_{2}, a_{3}\right), a_{4}\right], a_{5}\right] \ldots\right] a_{n}\right]$ is invariant, modulo I, under all permutations of the arguments.

Lemma 3.2 ([11], Lemma 2). If $x \in J$, the expression $a_{1}\left(a_{2}\left(a_{3}\left(\ldots a_{n} x\right) \ldots\right)\right)$ is invariant, modulo I, under all permutations of the a_{i} 's.

Now we give proof of Theorem 2.3.
Proof of Theorem 2.3. First type. Let

$$
\left(\cdots\left(a_{i_{1}} a_{i_{2}}\right) \cdots\right) a_{i_{n}} \in T_{n}, \quad i_{j} \in\{1,2, \ldots, n\} .
$$

Let $\sigma=\left(i_{k}, i_{k+1}\right)$ be a transposition in S_{n}. Then

$$
\begin{aligned}
\left(i_{k}, i_{k+1}\right):\left(\cdots\left(\left(\left(\cdots\left(a_{i_{1}} a_{i_{2}}\right) \cdots\right) a_{i_{k}}\right) a_{i_{k+1}}\right) \cdots\right) a_{i_{n}} & \mapsto \\
& \left(\cdots\left(\left(\left(\cdots\left(a_{i_{1}} a_{i_{2}}\right) \cdots\right) a_{i_{k+1}}\right) a_{i_{k}}\right) \cdots\right) a_{i_{n}} .
\end{aligned}
$$

By definition of first type this element $\left(\cdots\left(\left(\left(\cdots\left(a_{i_{1}} a_{i_{2}}\right) \cdots\right) a_{i_{k+1}}\right) a_{i_{k}}\right) \cdots\right) a_{i_{n}}$ is multilinear base element in T_{n}.

Second type. Let

$$
v=a_{i_{1}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right) \in T_{k, n-k}, \quad i_{j} \in\{1,2, \ldots, n\}
$$

We present it in form

$$
\underbrace{a_{i_{1}}\left(\cdots \left(a_{i_{k}}\right.\right.}_{A \text {-part }} \underbrace{\left.\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots, a_{i_{n}}\right]\right)}_{B \text {-part }} \cdots)
$$

It suffices to consider the action of transposition $\sigma=\left(i_{j}, i_{j+1}\right) \in S_{n}$ in three cases: Case 1 (σ acts on A-part):

$$
\begin{gathered}
\sigma: a_{i_{1}}\left(\cdots\left(a_{i_{j}}\left(a_{i_{j+1}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right)\right)\right) \cdots\right) \mapsto \\
a_{i_{1}}\left(\cdots\left(a_{i_{j+1}}\left(a_{i_{j}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right)\right)\right) \cdots\right) .
\end{gathered}
$$

By Lemma $3.2 \sigma v \in T_{k, n-k}$ and $\sigma v=v$.
Case 2 (σ acts on B-part):

$$
\begin{gathered}
\sigma: a_{i_{1}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left[\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots\right], a_{i_{j}}\right], a_{i_{j+1}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right) \mapsto \\
a_{i_{1}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left[\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \cdots\right], a_{i_{j+1}}\right], a_{i_{j}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right) .
\end{gathered}
$$

By Lemma $3.1 \sigma v \in T_{k, n-k}$ and $\sigma v=v$.
Case 3 (σ acts on A-part and B-part simultaneously): Let

$$
v=a_{i_{1}}\left(\cdots\left(a_{i_{k}}\left[\ldots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right) \in T_{k, n-k}, \quad i_{j} \in\{1,2, \ldots, n\} .
$$

Assume that $a_{i_{j}}$ belongs to A-part and $a_{i_{j+1}}$ belongs to B-part, i.e.

$$
v=a_{i_{1}}\left(\cdots\left(a_{i_{j}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots\right], a_{i_{j+1}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right)\right) \cdots\right)
$$

Then

$$
\begin{gathered}
\sigma: a_{i_{1}}\left(\cdots\left(a_{i_{j}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots\right], a_{i_{j+1}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right)\right) \cdots\right) \mapsto \\
\mapsto a_{i_{1}}\left(\cdots\left(a_{i_{j+1}}\left(\cdots\left(a_{i_{k}}\left[\cdots\left[\left[\cdots\left[\left(a_{i_{k+1}}, a_{i_{k+2}}, a_{i_{k+3}}\right), a_{i_{k+4}}\right], \ldots\right], a_{i_{j}}\right], \ldots, a_{i_{n}}\right]\right) \cdots\right)\right) \cdots\right) \\
=(\text { by Lemma 3.2 and Lemma 3.1 }) \\
=a_{p_{1}}\left(\cdots\left(a_{p_{l}}\left(\cdots\left(a_{p_{k}}\left[\cdots\left[\left[\cdots\left[\left(a_{p_{k+1}}, a_{p_{k+2}}, a_{p_{k+3}}\right), a_{\left.p_{k+4}\right]}\right], \ldots\right], a_{p_{m}}\right], \ldots, a_{p_{n}}\right]\right) \cdots\right)\right) \cdots\right),
\end{gathered}
$$

where

$$
\left\{i_{1}, i_{2}, \ldots, i_{j+1}, \ldots, i_{k}\right\}=\left\{p_{1}, p_{2}, \ldots, p_{l}, \ldots, p_{k} \mid p_{1}<p_{2}<\cdots<p_{l}<\cdots<p_{k}\right\}
$$

and

$$
\begin{aligned}
&\left\{i_{k+1}, i_{k+2}, i_{k+3}, i_{k+4} \ldots, i_{j}, \ldots, i_{n}\right\} \\
&=\left\{p_{k+1}, p_{k+2}, \ldots, p_{m}, \ldots p_{n} \mid p_{k+1}<p_{k+2}<\cdots<p_{m}<\cdots<p_{n}\right\}
\end{aligned}
$$

As we have noticed $\sigma v \neq v$.

4 Proof of Theorem 2.5

Let V be a vector space with dimension 1. By Theorem $2.3 K T_{n}$ is isomorphic to $\underbrace{V \otimes V \otimes \cdots \otimes V}_{n}$ as S_{n}-module. Therefore

$$
K T_{n} \cong \operatorname{Ind}_{S_{1} \times S_{1} \times \cdots \times S_{1}}^{S_{n}}\left(\mathbf{1}_{S_{1}} \otimes \mathbf{1}_{S_{1}} \otimes \cdots \otimes \mathbf{1}_{S_{1}}\right) \cong \bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda}
$$

where $1_{S_{1}}$ is one-dimensional trivial representation of S_{1}.
By Theorem 2.3 group of automorphisms of A-part of $T_{k, n-k}$ is S_{k} and group of automorphisms of B-part of $T_{k, n-k}$ is S_{n-k}. Therefore $S_{k} \times S_{n-k}$ is group of automorphisms of $T_{k, n-k}$.

Let

$$
g_{A}=\sum_{\sigma \in S_{k}} \sigma \in K S_{k}, \quad g_{B}=\sum_{\tau \in S_{n-k}} \tau \in K S_{n-k}
$$

be elements of group algebras $K S_{k}$ and $K S_{n-k}$, respectivley. Then by Theorem 2.3 $g_{T_{k, n-k}}=g_{A} \otimes g_{B}$ is generator of all base elements of $K T_{k, n-k}$ and g_{A}, g_{B} are one-dimensional trivial representations of S_{k} and S_{n-k}, respectively, and $K T_{k, n-k}$ is $S_{k} \times S_{n-k}$-module. Therefore $K T_{k, n-k}$ as S_{n}-module is isomorphic to

$$
\operatorname{Ind} d_{S_{k} \times S_{n-k}}^{S_{n}}\left(\mathbf{1}_{S_{k}} \otimes \mathbf{1}_{S_{n-k}}\right) \cong \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} S^{\left(\lambda_{1}, \lambda_{2}\right)}, \quad \lambda_{2} \leq \min \{k, n-k\},
$$

where $\mathbf{1}_{S_{k}}=g_{A}, \mathbf{1}_{S_{n-k}}=g_{B}$.
By Corollary 2.4

$$
P_{n} \cong K S_{n} \oplus \bigoplus_{k=0,1, \ldots, n-3} K T_{k, n-k} \cong \bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda} \oplus \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) S^{\left(\lambda_{1}, \lambda_{2}\right)},
$$

where

$$
m\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}n-2-\lambda_{2}, & \lambda_{2} \leq 3 \\ n+1-2 \lambda_{2}, & \lambda_{2} \geq 4\end{cases}
$$

5 Proof of Corollary 2.8

a. Follows from Theorem 2.5.
b. $K T_{n}$ as S_{n}-module is isomorphic to

$$
K T_{n} \cong \bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda} .
$$

$K A_{n}$ as A_{n}-module is isomorphic to

$$
K A_{n} \cong\left[\bigoplus_{\lambda \neq \lambda^{\prime}} d_{\lambda} S_{A}^{\lambda}\right] \oplus\left[\bigoplus_{\lambda=\lambda^{\prime}}\left(\frac{d_{\lambda}}{2} S_{A}^{\lambda+} \oplus \frac{d_{\lambda}}{2} S_{A}^{\lambda-}\right)\right]
$$

where S_{A}^{λ} is irreducible A_{n}-module.
If $\lambda \vdash n$ is non-self-conjugate partition, then S^{λ} and $S^{\lambda^{\prime}}$ as A_{n}-modules are isomorphic to

$$
\operatorname{Res}_{A_{n}}^{S_{n}}\left(S^{\lambda}\right) \cong S_{A}^{\lambda}, \quad \operatorname{Res}_{A_{n}}^{S_{n}}\left(S^{\lambda^{\prime}}\right) \cong S_{A}^{\lambda^{\prime}}
$$

and

$$
S_{A}^{\lambda} \cong S_{A}^{\lambda^{\prime}},
$$

where $\operatorname{dim}\left(S_{A}^{\lambda}\right)=\operatorname{dim}\left(S_{A}^{\lambda^{\prime}}\right)=d_{\lambda}$.
If $\lambda \vdash n$ is self-conjugate partition, then S^{λ} as A_{n}-module is isomorphic to

$$
\operatorname{Res}_{A_{n}}^{S_{n}}\left(S^{\lambda}\right) \cong\left(S_{A}^{\lambda+} \oplus S_{A}^{\lambda-}\right)
$$

where $\operatorname{dim}\left(S_{A}^{\lambda+}\right)=\operatorname{dim}\left(S_{A}^{\lambda-}\right)=\frac{d_{\lambda}}{2}$. For details see [10].
Therefore

$$
K T_{n} \cong 2 K A_{n}
$$

Note that $K T_{k, n-k}, k=0,1, \ldots, n-3$, as S_{n}-module is isomorphic to

$$
K T_{k, n-k} \cong \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} S^{\left(\lambda_{1}, \lambda_{2}\right)}, \quad \lambda_{2} \leq \min \{k, n-k\} .
$$

Therefore $K T_{k, n-k}$ as A_{n}-module is isomorphic to

$$
\begin{aligned}
\operatorname{Res}_{A_{n}}^{S_{n}}\left(K T_{k, n-k}\right) & \cong \operatorname{Res}_{A_{n}}^{S_{n}}\left(\bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} S^{\left(\lambda_{1}, \lambda_{2}\right)}\right) \\
& \cong \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} \operatorname{Res} s_{A_{n}}^{S_{n}} S^{\left(\lambda_{1}, \lambda_{2}\right)} \cong \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} S_{A}^{\left(\lambda_{1}, \lambda_{2}\right)}, \quad \lambda_{2} \leq \min \{k, n-k\} .
\end{aligned}
$$

c. $\left(S_{n}\right.$-case $)$ It is well known, that

$$
W^{\lambda} \cong V^{\otimes n} \otimes_{K S_{n}} S^{\lambda}
$$

Then

$$
\begin{aligned}
& H_{n}(V) \cong V^{\otimes n} \otimes_{K S_{n}} P_{n} \\
& \cong V^{\otimes n} \otimes_{K S_{n}}\left(\bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda} \oplus \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) S^{\left(\lambda_{1}, \lambda_{2}\right)}\right) \\
& \cong\left(V^{\otimes n} \otimes_{K S_{n}} \bigoplus_{\lambda \vdash n} d_{\lambda} S^{\lambda}\right) \oplus\left(V^{\otimes n} \otimes_{K S_{n}} \bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) S^{\left(\lambda_{1}, \lambda_{2}\right)}\right) \\
& \cong\left(\bigoplus_{\lambda \vdash n} d_{\lambda}\left(V^{\otimes n} \otimes_{K S_{n}} S^{\lambda}\right)\right) \oplus\left(\underset{\left(\lambda_{1}, \lambda_{2}\right) \vdash n}{\bigoplus_{2}} m\left(\lambda_{1}, \lambda_{2}\right)\left(V^{\otimes n} \otimes_{K S_{n}} S^{\left(\lambda_{1}, \lambda_{2}\right)}\right)\right) \\
& \cong\left(\bigoplus_{\lambda \vdash n} d_{\lambda} W^{\lambda}\right) \oplus\left(\bigoplus_{\left(\lambda_{1}, \lambda_{2}\right) \vdash n} m\left(\lambda_{1}, \lambda_{2}\right) W^{\left(\lambda_{1}, \lambda_{2}\right)}\right) .
\end{aligned}
$$

d. $\left(A_{n}\right.$-case) As in case \mathbf{c} (S_{n}-case $)$
e. Follows from a and Corollary 7.13.9 in [21]

6 Proof of Theorem 2.2

In calculation of dimensions we need the following easily proved combinatorial results.
Lemma 6.1. For non-negative integers α, β and n takes place the following formula

$$
\sum_{i=0}^{n}\binom{i+\alpha}{i}\binom{n-i+\beta}{n-i}=\binom{n+\alpha+\beta+1}{n}
$$

In particular,

$$
\sum_{i=0}^{n}\binom{i+\alpha}{i}\binom{n-i+\alpha}{n-i}=\binom{n+2 \alpha+1}{n}
$$

Lemma 6.2. The number of non-decreasing sequences of length m with components in the set $S=\{1,2, \ldots, r\}$ is $\binom{m+r-1}{m}$.

Lemma 6.3. The number of non-decreasing sequences of length m with components in the set $S=\{1,2, \ldots, r\}$ such that each $i \in S$ appears no more than l_{i} times is $\left(l_{1}+1\right) \cdots\left(l_{r}+1\right)$.

In [11] is proved that a base of free assosymmetric algebras can be constructed by elements of two kinds. If $X=\left\{a_{1}, \ldots, a_{r}\right\}$ is a set of generators, then in degree n the base consists elements of a form

$$
\begin{gathered}
\left(\cdots\left(\left(a_{i_{1}} a_{i_{2}}\right) a_{i_{3}}\right) \cdots\right) a_{i_{n}}, \quad a_{i_{s}} \in X, \\
a_{i_{1}}\left(\cdots\left(a_{i_{m}}\left[\cdots\left[\left(a_{j_{1}}, a_{j_{2}}, a_{j_{3}}\right), a_{j_{4}}\right], \ldots, a_{j_{k}}\right]\right) \cdots\right), \quad a_{i_{s}}, a_{j_{t}} \in X, \\
i_{1} \leq i_{2} \leq \cdots \leq i_{m}, \quad j_{1} \leq j_{2} \leq \cdots \leq j_{k}, \quad m \geq 0, k \geq 3
\end{gathered}
$$

Number of elements of first kind is r^{n}. By Lemma 6.2 number of elements of second kind L is equal to

$$
\begin{aligned}
L= & \sum_{m+k=n, m \geq 0, k \geq 3}\binom{m+r-1}{m}\binom{k+r-1}{k} \\
= & \sum_{m+k=n, m \geq 0, k \geq 0}\binom{m+r-1}{m}\binom{k+r-1}{k} \\
& -\binom{n+r-3}{n-2}\binom{r+1}{2}-\binom{n+r-2}{n-1}\binom{r}{1}-\binom{n+r-1}{n}\binom{r-1}{0} .
\end{aligned}
$$

By Lemma 6.1

$$
L=\binom{n+2 r-1}{n}-\binom{r+1}{2}\binom{n+r-3}{n-2}-r\binom{n+r-2}{n-1}-\binom{n+r-1}{n}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{dim} F_{n}(r)= \\
& \quad r^{n}+\binom{n+2 r-1}{n}-\binom{r+1}{2}\binom{n+r-3}{n-2}-r\binom{n+r-2}{n-1}-\binom{n+r-1}{n}
\end{aligned}
$$

Now suppose that any generator $a_{s}, s=1,2, \ldots, r$, in each base element should enter l_{s} times. Then the number of base elements of first kind is

$$
\binom{l_{1}+\cdots+l_{n}}{l_{1} \cdots l_{n}}=\frac{\left(l_{1}+\cdots+l_{r}\right)!}{l_{1}!\cdots l_{r}!}
$$

Let M be set of sequences $\alpha=i_{1} \ldots i_{m} j_{1} j_{2} \ldots j_{k}$ with components in $S=\{1,2, \ldots, r\}$ such that each $i \in S$ appears exactly l_{i} times and $i_{1} \leq \cdots \leq i_{m}, j_{1} \leq \cdots \leq j_{k}$. For $\alpha \in M$ call its subsequence of first m components $i_{1} \ldots i_{m}$ as head and denote $\tilde{\alpha}$. Note that each $\alpha \in M$ is uniquely defined by head $\tilde{\alpha}$. Denote set of heads by \tilde{M}. Note also that in the sequence $\tilde{\alpha}=i_{1} \ldots i_{m}$ each $i \in S$ enters no more than l_{i} times. Therefore by Lemma 6.3 the number of heads is

$$
|\tilde{M}|=\left(l_{1}+1\right) \cdots\left(l_{r}+1\right)
$$

Let N be a subset of M consisting of sequences with the following heads

(number of such sequences is 1)

$$
\underbrace{1 \ldots 1}_{l_{1}} \cdots \underbrace{i \ldots i}_{l_{i}-1} \cdots \underbrace{r \ldots r}_{l_{r}}, \quad i \in S,
$$

(number of such sequences is r)

$$
\underbrace{1 \ldots 1}_{l_{1}} \cdots \underbrace{i \ldots i}_{l_{i}-2} \cdots \underbrace{r \ldots r}_{l_{r}}, \quad l_{i}>1, \quad i \in S,
$$

(number of such sequences is $r-w$, where w is a number of 1 's in the sequence $l_{1} \ldots l_{r}$)

$$
\underbrace{1 \ldots 1}_{l_{1}} \cdots \underbrace{i \ldots i}_{l_{i}-1} \cdots \underbrace{j \ldots j}_{l_{j}-1} \cdots \underbrace{r \ldots r}_{l_{r}}, \quad i<j, \quad i, j \in S
$$

(number of such sequences is $r(r-1) / 2$).
Let $M_{1}=M \backslash N$ be a supplement of N in the set M. Then any

$$
\alpha=i_{1} \ldots i_{m} j_{1} \ldots j_{k} \in M_{1}
$$

has the property $k \geq 3$ and any such sequence generates base element of free assosymmetric algebra of second kind. Hence the number of base elements of second kind is

$$
\operatorname{dim} F^{l_{1}, \ldots, l_{r}}(r)=\left|M_{1}\right|=\binom{l_{1}+\cdots+l_{r}}{l_{1} \cdots l_{r}}+\left(l_{1}+1\right) \cdots\left(l_{r}+1\right)-\binom{r+1}{2}-r-1+w .
$$

Dimension for the multilinear part is an easy consequence of this formula.

7 Proof of Theorem 2.1

Lemma 7.1. Dual operad to assosymmetric operad is generated by identities

$$
\begin{gathered}
{[a, b] c+[b, c] a+[c, a] b=0,} \\
(a, b, c)=0
\end{gathered}
$$

Let $d_{n}^{!}$are dimensions of multilinear parts of free algebra with such identities. Then

$$
d_{1}^{!}=1, d_{2}^{!}=2, d_{3}^{!}=5,
$$

Proof. By [11, Theorem 1] the following elements form base of the multilinear part of free assosymmetric algebra in degree $3(a b) c, a(b c), a(c b), b(a c), b(c a), c(a b), c(b a)$ and other 5 elements can be presented as a linear combination of these elements. By assosymmetric identities,

$$
\begin{gathered}
(b a) c=(a b) c-a(b c)+b(a c), \quad(a c) b=(a b) c-a(b c)+a(c b), \\
(c a) b=(a b) c-a(b c)+c(a b), \quad(b c) a=(a b) c+b(c a)-a(b c), \\
(c b) a=(a b) c-a(b c)+c(b a) .
\end{gathered}
$$

Let U be an algebra such that $A \otimes U$ is Lie-admissible. Then

$$
\begin{aligned}
& {[[a \otimes u, b \otimes v], c \otimes w]=} \\
& \qquad \begin{aligned}
&(a b) c \otimes(u v) w-c(a b) \otimes w(u v)+c(b a) \otimes w(v u) \\
&-(a b) c \otimes(v u) w+a(b c) \otimes(v u) w-b(a c) \otimes(v u) w .
\end{aligned}
\end{aligned}
$$

In a similar way one calculates $[[b \otimes v, c \otimes w], a \otimes u],[[c \otimes w, a \otimes u], b \otimes v]$ and obtain that

$$
\begin{aligned}
& {[[a \otimes u, b \otimes v], c \otimes w]+[[b \otimes v, c \otimes w], a \otimes u]+[[c \otimes w, a \otimes u], b \otimes v]=} \\
& \qquad \begin{array}{r}
(a b) c \otimes\{(u v) w-(v u) w+(v w) u-(w v) u+(w u) v-(u w) v\} \\
+a(b c) \otimes\{(v u) w-(v w) u+(w v) u-u(v w)-(w u) v+(u w) v\} \\
+a(c b) \otimes\{u(w v)-(u w) v\}+b(a c) \otimes\{v(u w)-(v u) w\}+b(c a) \otimes\{(v w) u-v(w u)\} \\
\quad+c(a b) \otimes\{(w u) v-w(u v)\}+c(b a) \otimes\{w(v u)-(w v) u\}
\end{array}
\end{aligned}
$$

Therefore, $A \otimes U$ is Lie-admissible iff

$$
\begin{gathered}
(u v) w-(v u) w+(v w) u-(w v) u+(w u) v-(u w) v=0, \\
(v u) w-(v w) u+(w v) u-u(v w)-(w u) v+(u w) v=0, \\
u(w v)-(u w) v=0, \quad v(u w)-(v u) w=0, \\
(v w) u-v(w u)=0, \quad(w u) v-w(u v)=0, \\
w(v u)-(w v) u=0,
\end{gathered}
$$

for any $u, v, w \in U$. Note that these conditions are equivalent to the following identities

$$
\begin{gather*}
{[u, v] w+[v, w] u+[w, u] v=0} \tag{1}\\
(u v) w=u(v w)
\end{gather*}
$$

In [2] algebras with identity (1) are called left-alia. So, dual operad to assosymmetric operad is generated by left-alia and associativity identities.

It is easy to see that multilinear part of free dual assosymmetric algebras has the following base and dimensions for small degrees

n	$b a s e$	dim
1	$\{a\}$	1
2	$\{a b, b a\}$	2
3	$\{(b c) a,(c a) b,(a c) b,(b a) c,(a b) c\}$	5

Hence, $d_{1}^{!}=1, d_{2}^{!}=2, d_{3}^{!}=5$,
Let d_{n} be dimension of multilinear part of free assosymmetric algebra in degree n. By Theorem $2.2 d_{1}=1, d_{2}=2, d_{3}=7, d_{4}=29, d_{5}=136$.

By Lemma 7.1 Poincare series of assosymmetric and dual assosymmetric operads are as follows

$$
\begin{gathered}
G_{\text {assym }}(x)=-x+2 x^{2} / 2!-7 x^{3} / 3!+29 x^{4} / 4!-136 x^{5} / 5!+O(x)^{6}, \\
G_{\text {assym }}^{!}(x)=-x+2 x^{2} / 2-5 x^{3} / 3!+d_{4}^{!} x^{4} / 4!-d_{5}^{!} x^{5} / 5!+O(x)^{6} .
\end{gathered}
$$

We have

$$
G_{\text {assym }}\left(G_{\text {assym }}^{!}(x)\right)=x+\left(3 / 8-d_{4}^{!} / 24\right) x^{4}+1 / 120\left(126-10 d_{4}^{!}+d_{5}^{!}\right) x^{5}+O(x)^{6} .
$$

Suppose that assosymmetric operad is Koszul. Then by Koszulity criterium ([7] Proposition $4.14(\mathrm{~b})$)

$$
G_{\text {assym }}\left(G_{\text {assym }}^{!}(x)\right)=x
$$

Hence

$$
d_{4}^{!}=9, d_{5}^{!}=-36 .
$$

But dimension $d_{5}^{!}$can not be negative. Obtained contradiction shows that assosymmetric operad is not Koszul. By Lemma 7.1 Theorem 2.1 is proved completely.

Acknowledgements

This project partially was carried out when the second named author visited the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences. He is very grateful for the creative atmosphere and the warm hospitality during his visit.

Authors are grateful to V. Drensky for his kind interest in our results and for essential comments.

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant number AP08855944).

References

[1] Boers, A.H.: On assosymmetric rings. Indag. Math. (N.S.) 5 (1994) 9-27.
[2] Dzhumadil'daev, A.S.: Algebras with skew-symmetric identity of degree 3. J. Math. Sci 161 (1) (2009) 11-30.
[3] Dzhumadil'daev, A.S.: Assosymmetric algebras under Jordan product. Comm. Algebra 46 (1) (2018) 129-142.
[4] Fulton, W.: Young tableaux with Applications to Representation theory and Geometry. Cambridge University Press (1997).
[5] Fulton, W.; Harris, J.: Representation Theory. A first course. Springer-Verlag New York Inc. (1991).
[6] Giambruno,A.; Zaicev, M.: Polynomial Identities and Asymptotic Methods. (2005).
[7] Ginzburg, V.; Kapranov, M.: Koszul duality for operads. Duke Math. J. 76 (1994) 203-272. Erratum: 80 (1995), 293; arXiv: 0709.1228.
[8] Henke, A.; Regev, A.: Weyl Modules for the Schur Algebra of the Alternating Group. J. Algebra 257 (1) (2002) 168-196.
[9] Henke, A.;Regev, A.: A-Codimensions and A-Cocharacters. Isr. J. Math. 133 (1) (2003) 339-355.
[10] Henke, A.; Regev, A.: Explicit decompositions of the group algebras $F S_{n}$ and $F A_{n}$. Lect. notes in pure and appl. math. 235 (2003) 329-357.
[11] Hentzel, I.R.; Jacobs, D.P.; Peresi, L.A.: A basis for Free Assosymmetric Algebras. J. Algebra 183 (1996) 306-318.
[12] James, G.; Kerber, A.: The representation Theory of the Symmetric Group. Addison-Wesley Publishing Company, Inc. (1981).
[13] Kleinfeld, E.: Assosymmetric rings. Proc. Amer. Math. Soc. 8 (1957) 983-986.
[14] Klyachko, A.A.: Lie elements in the tensor algebra. Siberian Mathematical Journal 15 (1974) 914-920.
[15] Kraśkiewicz, W.; Weynman, J.: Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr. 63 (2001) 265-284.
[16] Loday, J.-L.; Vallette, B.: Algebraic operads. Grundlehren Math. Wiss. 346, Springer, Heidelberg (2012).
[17] Malcev, A.I.: On algebras defined by identities. Mat. Sbornik N.S. 26 (1950) 19-33. (in Russian)
[18] Pokrass, D.J.;Rodabaugh, D.: Solvable assosymmetric ring are nilpotent. Proc. Amer. Math. Soc. 64 (1977) 30-34.
[19] Sagan, B.E.: The symmetric group: Representations, Combinatorial Algorithms, and Symmetric Functions, Graduate Texts in Mathematics. Springer Verlag, New York (2001).
[20] Specht, W.: Gesetze in Ringen I. Math. Z. 52 (1950) 557-589.
[21] Stanley, R.P.: Enumerative Combinatorics. Cambridge University Press (1999).
[22] G.W. Zinbiel: Encyclopedia of types of algebras 2010. In: Proceedings of the International Conference on Operads and Universal Algebra. Tianjin, China, 5 - 9 July 2010, 217-297.

Received: 17 February, 2021
Accepted for publication: 24 June, 2021
Communicated by: Pasha Zusmanovich

[^0]: MSC 2020: 17A50; 20C30
 Keywords: Free assosymmetric algebras, Specht module, Weyl module, cocharacter, codimension, colength. Affiliation:
 A.S. Dzhumadil'daev, S.A. Abdykassymova - Institute of Mathematics and Mathematical Modeling, Pushkin str., 125, Almaty, Kazakhstan
 E-mail: dzhuma@hotmail.com
 E-mail: saule_asan@hotmail.com
 B.K. Zhakhayev - Faculty of Engineering and Natural Sciences, Suleyman Demirel University, Abylai Khan Str., 1/1, Kaskelen, Kazakhstan
 Institute of Mathematics and Mathematical Modeling, Pushkin str., 125, Almaty, Kazakhstan
 E-mail: bekzat22@hotmail.com

