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Assosymmetric operad

A.S. Dzhumadil’daev, B.K. Zhakhayev, S.A. Abdykassymova

Abstract. An algebra with identities (a, b, c) = (a, c, b) = (b, a, c) is called assosym-
metric, where (x, y, z) = x(yz) − (xy)z is associator. We establish that operad of
assosymmetric algebras is not Koszul. We study Sn-module, An-module and GLn-
module structures on multilinear parts of assosymmetric operad.

1 Introduction

A variety of algebras is a class of algebras with polynomial identities. Operads of
algebas are constructed by multilinear parts of free algebras. These multilinear parts have
module structures over symmetric groups and have composition rules that depends from
polynomial identities. If polynomial identities have dimension no more than 3, then they
generate so called quadratic operads. One of important problems on quadratic operads
concern Koszulity problem of operads. For details on algebraic operads see [16] and [7].

For example, operad of associative algebras As is defined by identity

(a, b, c) = a(bc)− (ab)c = 0,

where (x, y, z) = x(yz)− (xy)z is associator. A multilinear part of free asociative algebras,
As(n) has dimension n! and is isomorphic to regular Sn-module. The Koszul dual of
associative operad is isomorphic to itself and associative operad is Koszul.
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Operad of left-symmetric algebras is defined by left-symmetric identity

(a, b, c) = (b, a, c).

Similarly, right-symmetric operad is constructed by right-symmetric identity

(a, b, c) = (a, c, b).

Operads of left- or right-symmetric algebras are Koszul. Their Koszul duals are defined
by perm identities, i.e. by associative identity and one-sided commutative identities.

An algebra is called assosymmetric if it satisfies two-sided symmetric identities

(a, b, c) = (b, a, c), (a, b, c) = (a, c, b).

In our paper we prove that assosymmetric operad is not Koszul. We study the multilinear
part of free assosymmetric algebra as Sn-module, An-module and GLn-module. We find
dimension of homogeneous component, sequence of dimensions of multilinear parts or
codimension sequence, colength sequence, cocharacter sequence in Sn-case, cocharacter
sequence in An-case for assosymmetric algebras.

To formulate our results in exact form we need to introduce some definitions and
notations. Let K be an algebraically closed field of characteristic 0. All algebras, vector
spaces, modules and tensor products we consider will be over field K.

Let X = {x1, x2, . . . } be a set of generators and K{X} be the absolutely free nonas-
sociative algebra. A polynomial f(x1, x2, . . . , xn) ∈ K{X} is called polynomial identity or
identity for the K-algebra R if f(r1, r2, . . . , rn)=0 for all r1, r2, . . . , rn ∈ R.

Let {fi ∈ K{X}|i ∈ I} be a set of elements in K{X}. The class V of all algebras
satisfying the polynomial identities fi = 0, i ∈ I is called the variety defined by the system
of polynomial identities {fi|i ∈ I}. The set T (V) of all polynomial identities satisfied by
the variety V is called the T -ideal or verbal ideal of V.

Assosymmetric algebras was studied in [1], [3], [11], [13], [18]. Basis of free assosymmet-
ric algebras was constructed in [11]. Moreover, this paper contains multiplication rule of
base elements that allows to present an element of free assosymmetric algebra as a linear
combination by base elements. In [3] it was proved that assosymmetric algebras under
Jordan product satisfy Lie triple and Glennie identities.

In polynomial identities theory there are two main questions: 1) describe algebras with
identities; 2) describe identities in algebras. The language of varieties allows one to freely
pass from identity to algebra and from algebra to identity. Therefore studying varieties of
algebras is one of the important problem in modern algebras. In 1950, A.I. Malcev [17] and
W.Specht [20] first time and independently used the representation theory of symmetric
group to classify polynomial identities of algebraic structures. If charK = 0, then every
polynomial is equivalent to a finite set of multilinear polynomials.

For several classes of algebras Sn-, GLn-module structures on multilinear parts of free
algebras are studied. Some cases these structures can be easy described. For example,
multilinear parts of free associative, free Zinbiel and free Leibniz algebras of degree n as
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Sn-module are isomorphic to regular module KSn [22]. But as operads these varieties are
different, since composition rules are different. In case of Lie algebras module structures
are slightly complicated. In [14] it was found list of irreducible Sn-representations that
are involved in decomposition of multilinear parts of free Lie algebras. Description of
multiplicities of irreducible Sn-representations in decomposition of multilinear part of free
Lie algebra by language of major indices of standard Young tableaux is given in [15] .

2 Statement of main result

In [2] an algebra with identity

[a, b]c+ [b, c]a+ [c, a]b = 0

is called left-Alia.

Theorem 2.1. The Koszul dual to the assosymmetric operad is left-Alia and associative.
Assosymmetric operad is not Koszul.

Let n be a positive integer. The sequence of positive integers λ = (λ1, λ2, . . . , λk) is
called partition of n, if

1. λ1 + λ2 + · · ·+ λk = n,

2. λ1 ≥ λ2 ≥ · · · ≥ λk,

and denoted by λ ` n. Length of partition λ ` n is the number of parts in λ and denoted
by `(λ). It is known that between partitions of n and Young diagrams with n boxes exist
one-to-one correspondence. We denote Young diagram with λ-shape by Yλ. Let λ, µ ` n.
Partition λ is conjugate to partition µ, if Yµ is obtained from Yλ by turning the rows into
columns and denoted by µ = λ′. A partition that is conjugate to itself is said to be a
self-conjugate partition, that is λ = λ′.

Let Sn be symmetric group on set {1, 2, . . . , n} and An be alternating subgroup of
Sn. The symmetric group Sn and alternating group An acts on multilinear part of free
assosymmetric algebra in natural way (left action or variable action).

Let R be an algebra with T -ideal T (R) and let Vn be a multilinear part of K{X} of
degree n. For n ≥ 1, the Sn-character of Vn/(Vn ∩ T (R)) is called the n-th cocharacter of
R and denoted by χn(R), and

χn(R) =
∑
λ`n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ ` n and mλ ≥ 0 is
the corresponding multiplicity.

Let T (R) be T -ideal of R. Then the non-negative integer

cn(R) = dim(Vn/Vn ∩ T (R)),
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is called the n-th codimension of the algebra R.
Let R be an algebra and

χn(R) =
∑
λ`n

mλχλ.

Then the non-negative integer

ln(R) =
∑
λ`n

mλ

is called the n-th colength of R.
For more information about codimension sequence, cocharacter sequence, colength se-

quence see [6].
We denote the irreducible Sn-module or Specht module associated to partition λ ` n by

Sλ and dimension of Sλ by dλ, the irreducible An-module associated to non-self-conjugate
partition λ ` n by SλA and to self-conjugate partition λ ` n by Sλ±A , the irreducible GLn-
module or Weyl module associated to partition λ ` n by W λ in Sn-case and by W λ

A in
An-case.

For more information about the theory of representations of Sn, An and GLn see [4],
[5], [8], [9], [10], [12] and [19].

Free base of assosymmetric algebras was found in [11]. We use this result to find formu-
las for dimensions of free assosymmetric algebras. Let F (r) be free assosymmetric algebra
generated by r elements a1, . . . , ar. Let F l1,...,lr(r) be a subspace of free assosymmetric
algebra generated by li elements ai, where i = 1, . . . , r, and Fn(r) be a subspace of free
assosymmetric algebra F (r) of degree n and Pn = F 1,...,1(n) be multilinear part of Fn(n).

Theorem 2.2. Let p = charK 6= 2, 3. Then

dimF l1,...,lr(r) =

(
l1 + · · ·+ lr
l1 · · · lr

)
+ (l1 + 1) · · · (lr + 1)−

(
r + 1

2

)
− r − 1 + w,

where w = w(l1, . . . , lr) is a number of 1’s in the sequence l1 . . . lr,

dimFn(r) =

rn +

(
n+ 2r − 1

n

)
−
(
r + 1

2

)(
n+ r − 3

n− 2

)
− r
(
n+ r − 2

n− 1

)
−
(
n+ r − 1

n

)
,

and

dimPn = n! + 2n −
(
n+ 1

2

)
− 1.

By Stirling formula n! ∼
√

2πn(n/e)n, and therefore,

dimP 1/n
n ∼ n/e.

We divide the set of multilinear base elements into two types.
First type

Tn =
{

(. . . ((xσ(1)xσ(2))xσ(3)) . . . )xσ(n) | σ ∈ Sn
}
,
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Second type

Tk,n−k =
{
xσ(1)

(
xσ(2)(. . . xσ(k)[. . . [(xσ(k+1)xσ(k+2), xσ(k+3)), xσ(k+4)], . . . , xσ(n)] . . . )

) ∣∣∣
σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < σ(k + 2) < · · · < σ(n), σ ∈ Sn

}
.

Theorem 2.3. The group Sn acts transitively on the sets Tn and Tk,n−k,
k = 0, 1, . . . , n− 3.

Let KTn and KTk,n−k be subspaces of Pn spanned by the sets Tn and Tk,n−k, for
k = 0, 1, . . . , n− 3, respectively.

Corollary 2.4. As an Sn-module

Pn ∼= KTn ⊕
⊕

k=0,1,...,n−3

KTk,n−k.

Theorem 2.5. As an Sn-module

Pn ∼=
⊕
λ`n

dλS
λ ⊕

⊕
(λ1,λ2)`n

m(λ1, λ2)S
(λ1,λ2),

where

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,
n+ 1− 2λ2, λ2 ≥ 4.

Example 2.6.

P1
∼= S(1);

P2
∼= S(2) ⊕ S(1,1);

P3
∼= 2S(3) ⊕ 2S(2,1) ⊕ S(1,1,1);

P4
∼= 3S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ 3S(2,1,1) ⊕ S(1,1,1,1);

P5
∼= 4S(5) ⊕ 6S(4,1) ⊕ 6S(3,2) ⊕ 6S(3,1,1) ⊕ 5S(2,2,1,1) ⊕ 4S(2,1,1,1,1) ⊕ S(1,1,1,1,1).

Let V be a vector space with dimension m. Let F (V ) be free assosymmetric algebra
generated by base elements of V and Hn(V ) be homogeneous part of F (V ) of degree n.

Definition 2.7. Let inv(Sn) be number of involutions,

inv(Sn) = #{σ ∈ Sn | σ2 = e}

Corollary 2.8. a.

χSn(Pn) ∼=
∑
λ`n

dλχSn(λ) +
∑

(λ1,λ2)`n

m(λ1, λ2)χSn(λ1, λ2),

where

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,

n+ 1− 2λ2, λ2 ≥ 4.
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b.
χAn(Pn) = 2χAn(KAn) +

∑
(λ1,λ2)`n

m(λ1, λ2)χAn(λ1, λ2),

where

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,

n+ 1− 2λ2, λ2 ≥ 4.

c. (Sn-case)

Hn(V ) ∼=
⊕
λ`n

dλW
λ ⊕

⊕
(λ1,λ2)`n

m(λ1, λ2)W
λ,

where
dλ > 0, m(λ1, λ2) > 0

and

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,

n+ 1− 2λ2, λ2 ≥ 4,

if dimV ≥ `(λ), `((λ1, λ2)), and

dλ = 0, m(λ1, λ2) = 0,

if dimV < `(λ), `((λ1, λ2)).

d. (An-case)

Hn(V ) ∼=

[⊕
λ 6=λ′

2dλW
λ
A

]
⊕

[⊕
λ=λ′

2

(
dλ
2
W λ+
A ⊕

dλ
2
W λ−
A

)]
⊕

⊕
(λ1,λ2)`n

m(λ1, λ2)W
λ
A,

where

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,

n+ 1− 2λ2, λ2 ≥ 4.

e. For 1 ≤ n ≤ 3
ln(Pn) = δn,3 + inv(Sn),

where δi,j is Kronecker delta. For n ≥ 4

ln(Pn) =

{
k2 + 2k − 5 + inv(Sn), n = 2k,

k2 + 3k − 4 + inv(Sn), n = 2k + 1.
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Example 2.9.

χS1(P1) = χS1(1);

χS2(P2) = χS2(2) + χS2(1, 1);

χS3(P3) = 2χS3(3) + 2χS3(2, 1) + χS3(1, 1, 1);

χS4(P4) = 3χS4(4) + 4χS4(3, 1) + 2χS4(2, 2) + 3χS4(2, 1, 1) + χS4(1, 1, 1, 1);

χS5(P5) = 4χS5(5) + 6χS5(4, 1) + 6χS5(3, 2) + 6χS5(3, 1, 1) + 5χS5(2, 2, 1)

+ 4χS5(2, 1, 1, 1, 1) + χS5(1, 1, 1, 1, 1).

Example 2.10.

χA1(P1) = χA1(1);

χA2(P2) = χA2(2) + χA2(1, 1);

χA3(P3) = 3χA3(3) + χ+
A3

(2, 1) + χ−A3
(2, 1);

χA4(P4) = 4χA4(4) + 7χA4(3, 1) + χ+
A4

(2, 2) + χ−A4
(2, 2);

χA5(P5) = 5χA5(5) + 10χA5(4, 1) + 11χA5(3, 2) + 3χ+
A5

(3, 1, 1) + 3χ−A5
(3, 1, 1).

Example 2.11.

l1(P1) = 1; l2(P2) = 2; l3(P3) = 5; l4(P4) = 13; l5(P5) = 32.

3 Proof of Theorem 2.3

Let I be the T -ideal in K{X} determined by identities

(x, y, z) = (x, z, y) = (y, x, z).

Let R be assosymmetric algebra and J = (R,R,R) + (R,R,R)R is the ideal generated
by associators. Proof of Theorem 2.3 is based on the following two results of [11].

Lemma 3.1 ( [11], Lemma 1). The expression
[
[. . . [[(a1, a2, a3), a4], a5] . . . ]an

]
is invariant,

modulo I, under all permutations of the arguments.

Lemma 3.2 ( [11], Lemma 2). If x ∈ J , the expression a1(a2(a3(. . . anx) . . . )) is invariant,
modulo I, under all permutations of the ai’s.

Now we give proof of Theorem 2.3.

Proof of Theorem 2.3. First type. Let

(· · · (ai1ai2) · · · )ain ∈ Tn, ij ∈ {1, 2, . . . , n}.
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Let σ = (ik, ik+1) be a transposition in Sn. Then

(ik, ik+1) : (· · · (((· · · (ai1ai2) · · · )aik)aik+1
) · · · )ain 7→

(· · · (((· · · (ai1ai2) · · · )aik+1
)aik) · · · )ain .

By definition of first type this element (· · · (((· · · (ai1ai2) · · · )aik+1
)aik) · · · )ain is multilinear

base element in Tn.
Second type. Let

v = ai1(· · · (aik [· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . , ain ]) · · · ) ∈ Tk,n−k, ij ∈ {1, 2, . . . , n}.

We present it in form

ai1(· · · (aik︸ ︷︷ ︸
A-part

[· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . , ain ])︸ ︷︷ ︸
B-part

· · · ).

It suffices to consider the action of transposition σ = (ij, ij+1) ∈ Sn in three cases:
Case 1 (σ acts on A-part):

σ : ai1(· · · (aij(aij+1
(· · · (aik [· · · [(aik+1

, aik+2
, aik+3

), aik+4
], . . . , ain ]) · · · ))) · · · ) 7→

ai1(· · · (aij+1
(aij(· · · (aik [· · · [(aik+1

, aik+2
, aik+3

), aik+4
], . . . , ain ]) · · · ))) · · · ).

By Lemma 3.2 σv ∈ Tk,n−k and σv = v.

Case 2 (σ acts on B-part):

σ : ai1(· · · (aik [· · · [[[· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . ], aij ], aij+1
], . . . , ain ]) · · · ) 7→

ai1(· · · (aik [· · · [[[· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . ], aij+1
], aij ], . . . , ain ]) · · · ).

By Lemma 3.1 σv ∈ Tk,n−k and σv = v.

Case 3 (σ acts on A-part and B-part simultaneously): Let

v = ai1(· · · (aik [. . . [(aik+1
, aik+2

, aik+3
), aik+4

], . . . , ain ]) · · · ) ∈ Tk,n−k, ij ∈ {1, 2, . . . , n}.

Assume that aij belongs to A-part and aij+1
belongs to B-part, i.e.

v = ai1(· · · (aij(· · · (aik [· · · [[· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . ], aij+1
], . . . , ain ]) · · · )) · · · ).

Then

σ : ai1(· · · (aij(· · · (aik [· · · [[· · · [(aik+1
, aik+2

, aik+3
), aik+4

], . . . ], aij+1
], . . . , ain ]) · · · )) · · · ) 7→

7→ ai1(· · · (aij+1
(· · · (aik [· · · [[· · · [(aik+1

, aik+2
, aik+3

), aik+4
], . . . ], aij ], . . . , ain ]) · · · )) · · · )

= (by Lemma 3.2 and Lemma 3.1)

= ap1(· · · (apl(· · · (apk [· · · [[· · · [(apk+1
, apk+2

, apk+3
), apk+4

], . . . ], apm ], . . . , apn ]) · · · )) · · · ),
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where

{i1, i2, . . . , ij+1, . . . , ik} = {p1, p2, . . . , pl, . . . , pk | p1 < p2 < · · · < pl < · · · < pk}

and

{ik+1, ik+2, ik+3, ik+4 . . . , ij, . . . , in}
= {pk+1, pk+2, . . . , pm, . . . pn | pk+1 < pk+2 < · · · < pm < · · · < pn}.

As we have noticed σv 6= v.

4 Proof of Theorem 2.5

Let V be a vector space with dimension 1. By Theorem 2.3 KTn is isomorphic to
V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

as Sn-module. Therefore

KTn ∼= IndSnS1×S1×···×S1
(1S1 ⊗ 1S1 ⊗ · · · ⊗ 1S1)

∼=
⊕
λ`n

dλS
λ,

where 1S1 is one-dimensional trivial representation of S1.
By Theorem 2.3 group of automorphisms of A-part of Tk,n−k is Sk and group of auto-

morphisms of B-part of Tk,n−k is Sn−k. Therefore Sk × Sn−k is group of automorphisms of
Tk,n−k.

Let
gA =

∑
σ∈Sk

σ ∈ KSk, gB =
∑

τ∈Sn−k

τ ∈ KSn−k.

be elements of group algebras KSk and KSn−k, respectivley. Then by Theorem 2.3
gTk,n−k = gA⊗gB is generator of all base elements of KTk,n−k and gA, gB are one-dimensional
trivial representations of Sk and Sn−k, respectively, and KTk,n−k is Sk × Sn−k-module.
Therefore KTk,n−k as Sn-module is isomorphic to

IndSnSk×Sn−k(1Sk ⊗ 1Sn−k)
∼=

⊕
(λ1,λ2)`n

S(λ1,λ2), λ2 ≤ min{k, n− k},

where 1Sk = gA, 1Sn−k = gB.
By Corollary 2.4

Pn ∼= KSn ⊕
⊕

k=0,1,...,n−3

KTk,n−k ∼=
⊕
λ`n

dλS
λ ⊕

⊕
(λ1,λ2)`n

m(λ1, λ2)S
(λ1,λ2),

where

m(λ1, λ2) =

{
n− 2− λ2, λ2 ≤ 3,

n+ 1− 2λ2, λ2 ≥ 4.
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5 Proof of Corollary 2.8

a. Follows from Theorem 2.5.

b. KTn as Sn-module is isomorphic to

KTn ∼=
⊕
λ`n

dλS
λ.

KAn as An-module is isomorphic to

KAn ∼=

[⊕
λ 6=λ′

dλS
λ
A

]
⊕

[⊕
λ=λ′

(
dλ
2
Sλ+A ⊕

dλ
2
Sλ−A

)]
,

where SλA is irreducible An-module.

If λ ` n is non-self-conjugate partition, then Sλ and Sλ
′
as An-modules are isomorphic

to

ResSnAn(Sλ) ∼= SλA, ResSnAn(Sλ
′
) ∼= Sλ

′

A

and
SλA
∼= Sλ

′

A ,

where dim(SλA) = dim(Sλ
′

A ) = dλ.

If λ ` n is self-conjugate partition, then Sλ as An-module is isomorphic to

ResSnAn(Sλ) ∼= (Sλ+A ⊕ S
λ−
A ),

where dim(Sλ+A ) = dim(Sλ−A ) = dλ
2

. For details see [10].

Therefore

KTn ∼= 2KAn.

Note that KTk,n−k, k = 0, 1, . . . , n− 3, as Sn-module is isomorphic to

KTk,n−k ∼=
⊕

(λ1,λ2)`n

S(λ1,λ2), λ2 ≤ min{k, n− k}.

Therefore KTk,n−k as An-module is isomorphic to

ResSnAn(KTk,n−k) ∼= ResSnAn(
⊕

(λ1,λ2)`n

S(λ1,λ2))

∼=
⊕

(λ1,λ2)`n

ResSnAnS
(λ1,λ2) ∼=

⊕
(λ1,λ2)`n

S
(λ1,λ2)
A , λ2 ≤ min{k, n− k}.
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c. (Sn-case) It is well known, that

W λ ∼= V ⊗n ⊗KSn Sλ.

Then

Hn(V ) ∼= V ⊗n ⊗KSn Pn

∼= V ⊗n ⊗KSn

⊕
λ`n

dλS
λ ⊕

⊕
(λ1,λ2)`n

m(λ1, λ2)S
(λ1,λ2)


∼=

(
V ⊗n ⊗KSn

⊕
λ`n

dλS
λ

)
⊕

V ⊗n ⊗KSn ⊕
(λ1,λ2)`n

m(λ1, λ2)S
(λ1,λ2)


∼=

(⊕
λ`n

dλ(V
⊗n ⊗KSn Sλ)

)
⊕

 ⊕
(λ1,λ2)`n

m(λ1, λ2)(V
⊗n ⊗KSn S(λ1,λ2))


∼=

(⊕
λ`n

dλW
λ

)
⊕

 ⊕
(λ1,λ2)`n

m(λ1, λ2)W
(λ1,λ2)

 .

d. (An-case) As in case c ( Sn-case )

e. Follows from a and Corollary 7.13.9 in [21]

6 Proof of Theorem 2.2

In calculation of dimensions we need the following easily proved combinatorial results.

Lemma 6.1. For non-negative integers α, β and n takes place the following formula

n∑
i=0

(
i+ α

i

)(
n− i+ β

n− i

)
=

(
n+ α + β + 1

n

)
In particular,

n∑
i=0

(
i+ α

i

)(
n− i+ α

n− i

)
=

(
n+ 2α + 1

n

)
Lemma 6.2. The number of non-decreasing sequences of length m with components in the
set S = {1, 2, . . . , r} is

(
m+r−1
m

)
.

Lemma 6.3. The number of non-decreasing sequences of length m with components in the
set S = {1, 2, . . . , r} such that each i ∈ S appears no more than li times is (l1+1) · · · (lr+1).
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In [11] is proved that a base of free assosymmetric algebras can be constructed by
elements of two kinds. If X = {a1, . . . , ar} is a set of generators, then in degree n the base
consists elements of a form

(· · · ((ai1ai2)ai3) · · · )ain , ais ∈ X,
ai1(· · · (aim [· · · [(aj1 , aj2 , aj3), aj4 ], . . . , ajk ]) · · · ), ais , ajt ∈ X,
i1 ≤ i2 ≤ · · · ≤ im, j1 ≤ j2 ≤ · · · ≤ jk, m ≥ 0, k ≥ 3.

Number of elements of first kind is rn. By Lemma 6.2 number of elements of second kind
L is equal to

L =
∑

m+k=n,m≥0,k≥3

(
m+ r − 1

m

)(
k + r − 1

k

)
=

∑
m+k=n,m≥0,k≥0

(
m+ r − 1

m

)(
k + r − 1

k

)
−
(
n+ r − 3

n− 2

)(
r + 1

2

)
−
(
n+ r − 2

n− 1

)(
r

1

)
−
(
n+ r − 1

n

)(
r − 1

0

)
.

By Lemma 6.1

L =

(
n+ 2r − 1

n

)
−
(
r + 1

2

)(
n+ r − 3

n− 2

)
− r
(
n+ r − 2

n− 1

)
−
(
n+ r − 1

n

)
.

Therefore,

dimFn(r) =

rn +

(
n+ 2r − 1

n

)
−
(
r + 1

2

)(
n+ r − 3

n− 2

)
− r
(
n+ r − 2

n− 1

)
−
(
n+ r − 1

n

)
.

Now suppose that any generator as, s = 1, 2, . . . , r, in each base element should enter
ls times. Then the number of base elements of first kind is(

l1 + · · ·+ ln
l1 · · · ln

)
=

(l1 + · · ·+ lr)!

l1! · · · lr!
.

Let M be set of sequences α = i1 . . . imj1j2 . . . jk with components in S = {1, 2, . . . , r}
such that each i ∈ S appears exactly li times and i1 ≤ · · · ≤ im, j1 ≤ · · · ≤ jk. For α ∈M
call its subsequence of first m components i1 . . . im as head and denote α̃. Note that each
α ∈ M is uniquely defined by head α̃. Denote set of heads by M̃ . Note also that in the
sequence α̃ = i1 . . . im each i ∈ S enters no more than li times. Therefore by Lemma 6.3
the number of heads is

|M̃ | = (l1 + 1) · · · (lr + 1).
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Let N be a subset of M consisting of sequences with the following heads

1 . . . 1︸ ︷︷ ︸
l1

. . . i . . . i︸ ︷︷ ︸
li

. . . r . . . r︸ ︷︷ ︸
lr

,

(number of such sequences is 1)

1 . . . 1︸ ︷︷ ︸
l1

. . . i . . . i︸ ︷︷ ︸
li−1

. . . r . . . r︸ ︷︷ ︸
lr

, i ∈ S,

(number of such sequences is r)

1 . . . 1︸ ︷︷ ︸
l1

. . . i . . . i︸ ︷︷ ︸
li−2

. . . r . . . r︸ ︷︷ ︸
lr

, li > 1, i ∈ S,

(number of such sequences is r − w, where w is a number of 1’s in the sequence l1 . . . lr)

1 . . . 1︸ ︷︷ ︸
l1

. . . i . . . i︸ ︷︷ ︸
li−1

. . . j . . . j︸ ︷︷ ︸
lj−1

. . . r . . . r︸ ︷︷ ︸
lr

, i < j, i, j ∈ S

(number of such sequences is r(r − 1)/2).
Let M1 = M \N be a supplement of N in the set M. Then any

α = i1 . . . imj1 . . . jk ∈M1

has the property k ≥ 3 and any such sequence generates base element of free assosymmetric
algebra of second kind. Hence the number of base elements of second kind is

dimF l1,...,lr(r) = |M1| =
(
l1 + · · ·+ lr
l1 · · · lr

)
+ (l1 + 1) · · · (lr + 1)−

(
r + 1

2

)
− r − 1 + w.

Dimension for the multilinear part is an easy consequence of this formula.

7 Proof of Theorem 2.1

Lemma 7.1. Dual operad to assosymmetric operad is generated by identities

[a, b]c+ [b, c]a+ [c, a]b = 0,

(a, b, c) = 0.

Let d!n are dimensions of multilinear parts of free algebra with such identities. Then

d!1 = 1, d!2 = 2, d!3 = 5,
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Proof. By [11, Theorem 1] the following elements form base of the multilinear part of free
assosymmetric algebra in degree 3 (ab)c, a(bc), a(cb), b(ac), b(ca), c(ab), c(ba) and other
5 elements can be presented as a linear combination of these elements. By assosymmetric
identities,

(ba)c = (ab)c− a(bc) + b(ac), (ac)b = (ab)c− a(bc) + a(cb),

(ca)b = (ab)c− a(bc) + c(ab), (bc)a = (ab)c+ b(ca)− a(bc),

(cb)a = (ab)c− a(bc) + c(ba).

Let U be an algebra such that A⊗ U is Lie-admissible. Then

[[a⊗ u, b⊗ v], c⊗ w] =

(ab)c⊗ (uv)w − c(ab)⊗ w(uv) + c(ba)⊗ w(vu)

− (ab)c⊗ (vu)w + a(bc)⊗ (vu)w − b(ac)⊗ (vu)w.

In a similar way one calculates [[b⊗ v, c⊗w], a⊗ u], [[c⊗w, a⊗ u], b⊗ v] and obtain that

[[a⊗ u, b⊗ v], c⊗ w] + [[b⊗ v, c⊗ w], a⊗ u] + [[c⊗ w, a⊗ u], b⊗ v] =

(ab)c⊗ {(uv)w − (vu)w + (vw)u− (wv)u+ (wu)v − (uw)v}
+ a(bc)⊗ {(vu)w − (vw)u+ (wv)u− u(vw)− (wu)v + (uw)v}

+ a(cb)⊗ {u(wv)− (uw)v}+ b(ac)⊗ {v(uw)− (vu)w}+ b(ca)⊗ {(vw)u− v(wu)}
+ c(ab)⊗ {(wu)v − w(uv)}+ c(ba)⊗ {w(vu)− (wv)u}

Therefore, A⊗ U is Lie-admissible iff

(uv)w − (vu)w + (vw)u− (wv)u+ (wu)v − (uw)v = 0,

(vu)w − (vw)u+ (wv)u− u(vw)− (wu)v + (uw)v = 0,

u(wv)− (uw)v = 0, v(uw)− (vu)w = 0,

(vw)u− v(wu) = 0, (wu)v − w(uv) = 0,

w(vu)− (wv)u = 0,

for any u, v, w ∈ U. Note that these conditions are equivalent to the following identities

[u, v]w + [v, w]u+ [w, u]v = 0, (1)

(uv)w = u(vw).

In [2] algebras with identity (1) are called left-alia. So, dual operad to assosymmetric
operad is generated by left-alia and associativity identities.

It is easy to see that multilinear part of free dual assosymmetric algebras has the
following base and dimensions for small degrees
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n base dim
1 {a} 1
2 {ab, ba} 2
3 {(bc)a, (ca)b, (ac)b, (ba)c, (ab)c} 5

Hence, d!1 = 1, d!2 = 2, d!3 = 5,
Let dn be dimension of multilinear part of free assosymmetric algebra in degree n. By

Theorem 2.2 d1 = 1, d2 = 2, d3 = 7, d4 = 29, d5 = 136.
By Lemma 7.1 Poincare series of assosymmetric and dual assosymmetric operads are

as follows

Gassym(x) = −x+ 2x2/2!− 7x3/3! + 29x4/4!− 136x5/5! +O(x)6,

G!
assym(x) = −x+ 2x2/2− 5x3/3! + d!4x

4/4!− d!5x5/5! +O(x)6.

We have

Gassym(G!
assym(x)) = x+ (3/8− d!4/24)x4 + 1/120(126− 10d!4 + d!5)x

5 +O(x)6.

Suppose that assosymmetric operad is Koszul. Then by Koszulity criterium ([7] Propo-
sition 4.14(b))

Gassym(G!
assym(x)) = x.

Hence
d!4 = 9, d!5 = −36.

But dimension d!5 can not be negative. Obtained contradiction shows that assosymmetric
operad is not Koszul. By Lemma 7.1 Theorem 2.1 is proved completely.
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