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Abstract 

This paper extends the Suzuki and Shimodora method [Suzuki R, Shimodora H. Pvclust: an R 

package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540-1542] 

for assessing uncertainty in hierarchical cluster analysis to multivariate datasets and examines the 

reliability of the simulated cluster probabilities in relation to the simulation method adopted. The 

extension is applied to squared Euclidean and Mahalanobis-type distances and employs three 

simulation methods, the Monte-Carlo and bootstrap methods, and a new proposed method, the 

distance distribution. The distance distribution method is very fast and gives satisfactory predictions 

for the distance, its standard deviation, skewness, and kurtosis. The performance of the Monte-Carlo 

method is equally satisfactory, whereas the bootstrap method usually gives acceptable predictions 

only for the distance. The distance distribution and Monte-Carlo methods give similar cluster 

probabilities. The bootstrap probabilities are not very different; thus this method can be used in 

datasets of unknown distance distribution.  
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Introduction 

Hierarchical cluster analysis (HCA) [1-3] is a popular iterative technique for classifying 

objects based on their (dis)similarities. Initially each data point is considered as an individual 

cluster and then, at each iteration, based on a (dis)similarity measure, clusters merge with 

other clusters until one cluster is formed. There are several similarity/dissimilarity measures; 

the former quantify the similarity, while the latter quantify the difference between two 

objects. The output is a tree-like diagram, a dendrogram. Thus, a dendrogram visualizes the 

hierarchical relationship between objects and the presence of clusters in a dataset. If, in 

addition, a dendrogram can assess the uncertainty in the clustering process, then it enables the 

estimation of the probability of formation of the various clusters and, therefore, their stability.  

 Suzuki and Shimodora [4] proposed a bootstrap algorithm to assess uncertainty in 

HCA, which is freely available via the pvclust package of the R language. In general, in a 

simulation approach, the cluster probabilities in hierarchical cluster analysis may be 

approximated from the percentage of the appearance of the various dendrogram patterns in a 

large simulated dataset. Therefore, the basic steps to assess uncertainty in the dendrogram of 

hierarchical cluster analysis are the following. Given a dataset of samples, first all pairwise 

distances among the samples are estimated and then a large dataset of simulated distances is 

generated. Subsequently, all the dendrograms of the original and simulated distances are 

estimated and the number that each pattern in the original dendrogram appears in the 

simulated distances is counted. The uncertainty in a pattern is assessed from the percentage of 

the appearance of this pattern in the simulated dataset, which gives the simulated probability 

of the formation of this pattern. Therefore, the assessment of uncertainty in HCA requires the 

creation of simulated distances.  

 The simplest approach to generate simulated distances is via the Monte-Carlo or the 

bootstrap methods. In these methods, we first generate simulated samples and then these 



samples are used to compute simulated distances. The Monte-Carlo method presumes that we 

know the underlying statistical distributions in the data, whereas bootstrapping is free from 

distributional assumptions. However, both usually require long computational time. In the 

present paper we propose a new, very fast, approach that directly simulates the distance 

distribution, provided that this distribution is known. Thus, it can be used to generate 

simulated distances without the creation of artificial datasets. The performance of these three 

simulation methods, i.e. the Monte-Carlo (MC), the bootstrap (B), and the distance 

distribution (DD) methods, is tested using squared Euclidean and Mahalanobis type 

distances. Special attention is paid to expressions of Euclidean or Mahalanobis distances that 

are unbiased estimators of population divergence since such distances are of primary interest 

in many biological/anthropological studies. Finally, the Suzuki-Shimodora [4] approach to 

assess uncertainty in HCA is extended to multivariate datasets and the impact of the 

performance of a simulation method on the accuracy of the estimated cluster probabilities is 

examined.      

 

Theoretical Part 

Simulation Methods for Distances and their Application in HCA  

The simulation of a distance measure, d, between two samples generates a bunch of artificial 

distances that have the same or a similar distribution as the distribution of d. Thus, the 

simulated distances should have at least the first four moments, mean, variance, skewness, 

and kurtosis, as close as possible to those of the original distance. Therefore, to assess the 

performance of a simulation method, we should compare the simulated first four moments to 

the corresponding moments calculated on the original dataset. However, at this point we 

should clarify the following. Due to the asymmetry of the distance distribution, the distance is 

not equal to its first moment. Therefore, we should either transform the distance to its first 



moment or vice versa. Here, we have chosen the latter approach and the relationships used to 

connect a certain distance to its first moment are presented and discussed below. 

 As already mentioned in the Introduction, in the present paper we examined three 

simulation methods; the conventional Monte-Carlo and bootstrap methods, and a new 

proposed simulation based on the distance distribution. Consider g multivariate samples, i.e. 

samples consisting of r variables. We assume that these samples come from multivariate 

normal or binary populations depending on whether the samples consist of continuous or 

binary data. The squared Euclidean and Mahalanobis type distances that can be calculated 

between pairs of samples can be expressed in matrix notation as a quadratic form [5], i.e. in 

the form xTAx, where x is a column vector of r random variables, A is an r-dimensional 

symmetric matrix, and T denotes the transpose matrix. Note that when a quadratic form is 

used to express a squared Euclidean or Mahalanobis type distance, the values of vector x are 

not sample values. If the dataset consists of continuous variables, the values of x are the 

differences in the mean values per variable between two samples. For datasets of binaries, the 

values of x can be the differences in the proportions or proper transformations of the 

proportions per variable between two samples. A basic property of a quadratic form is that its 

expected value is given from [5]: 

 

                                                   E[xTAx] = μTAμ + tr(AΣ)                                     (1) 

 

where μ = E[x] and Σ = Cov[x] are the expected value and covariance matrix of x, 

respectively, and tr denotes the trace of a matrix.  

The conventional Monte-Carlo and bootstrapping methods can be performed 

straightforwardly. In the Monte-Carlo method, based on the mean values per variable and 

sample and the corresponding sample variances or the pooled covariance matrix of all 

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Trace_(linear_algebra)


samples, we generate the populations from which the original samples have been drawn. 

Then samples are randomly drawn from the populations, pairwise distances are calculated 

and the first four moments of their distribution are estimated. In bootstrapping, the simulated 

samples are produced by resampling with replacement. Thus, there is no need to generate 

simulated populations; the simulated distances are computed directly on the simulated 

samples. Finally, in the simulation based on the distance distribution, for the simulated 

distances we adopted the following relationship: 

  

                                                d(sim.DD) = E[d] + s(X - μ)/σ                                 (2) 

 

where E[d] is the expected value of the original distance measure d, s is the standard 

deviation of d, X is a random value generated from the distance distribution and  and σ are 

the mean value and the standard deviation of this distribution. Equation (2) has been adopted 

since, due to the term s(X-)/σ, the simulated distances, d(sim.DD), follow the distance 

distribution with standard deviation s, whereas the term E[d] shifts the expected simulated 

value to the E[d] value. Note that for the application of this approach, the distance 

distribution and the standard deviation s of d are needed.  

In the subsections below the most important squared Euclidean and Mahalanobis type 

distances and their unbiased estimators for population divergence between multivariate 

samples are presented. For each of them the specific expression of Equation (2) is developed. 

The variance, skewness, and kurtosis of the distances discussed here are presented as 

supplementary material in the file: Supplement-1-Moments. These are needed for testing the 

performance of the simulations as well as for the application of the DD method via Equation 

(2). 

As soon as a distance measure is properly simulated, we can extend the Suzuki-



Shimodora [4] method to assess uncertainty in HCA in a multivariate dataset. Figure 1 shows 

schematically the proposed approach. We first estimate the selected distance measure d, its 

standard deviation (sd), skewness (sk), and kurtosis (ku) in the original dataset and apply 

HCA to determine the dendrogram visualizing the clusters in this dataset. Next, using one or 

more of the MC, DD, and B simulation methods, we create simulated distances (~ 5000) and 

from their distribution we estimate the simulated d, sd, sk, and ku values. Now by comparing 

the original d, sd, sk, and ku values to the simulated ones, using either plots or quantitative 

measures such as the Root Mean Square Percentage Error (RMSPE) defined below, the most 

appropriate simulation method can be selected, and its simulated distances can be used to 

estimate cluster probabilities. In case the distance distribution is unknown, or the dataset does 

not fulfil the requirements that are necessary for a reliable estimation of the distance 

moments, this comparison does not provide any useful information and the cluster 

probabilities should be based on the bootstrap method.   

 

[Figure 1 near here] 

 

Squared Euclidean and Corrected Squared Euclidean Distances 

Consider two multivariate samples, originating from two populations. Each sample consists 

of r continuous variables and n1 and n2 observations, respectively. If missing values are 

included, the number of observations per sample and variable i will be n1i and n2i. Between 

the centroids of these two samples, the squared Euclidean distance (ED) is defined from:   

 

                                                       ED = (x̅1 - x̅2)
T
(x̅1 - x̅2)                                      (3) 

 

where x̅1, x̅2 are the vectors of the mean values of samples 1 and 2, respectively. According 



to Equation (1), the expected value of ED is equal to the squared Euclidean distance between 

the populations, EDp = (μ
1
 - μ

2
)

T
(μ

1 
- μ

2
), where μ

1
, μ

2
 are the vectors of the mean values of 

populations 1 and 2, respectively, plus the trace tr(Cov[x̅1 - x̅2]), which is given by: 

 

                   tr(Cov[x̅1 - x̅2]) = ∑ Var[x̅1i] + Var[x̅2i]
r
i=1 = ∑

σ1i
2

n1i
 + 

σ2i
2

n2i

r
i=1                      (4) 

 

since Var[x̅1i] = σ1i
2 /n1i and Var[x̅2i] = σ2i

2 /n2i, where σ1i
2 , σ2i

2  are the variances of variable i in 

populations 1 and 2. Note that in the simulation process the squared Euclidean distance 

between the populations, EDp, is practically equal to the squared Euclidean distance 

calculated in the original dataset, ED, because for the generation of populations we used the 

unbiased estimators mean values and variances of the original samples and, thus, these 

quantities are practically common in the samples and the corresponding populations. 

Therefore, when applying the Monte-Carlo or the Bootstrap method, the estimated first 

distance moment of the simulated values, E[ED(sim.MC/B)], can be used to estimate the 

simulated squared Euclidean distance, ED(sim), by subtracting from E[ED(sim.MC/B)] the 

trace given from Equation (4). That is: 

 

                                     ED(sim) = E[ED(sim.MC/B)] - tr(Cov[x̅1 - x̅2]                  (5) 

 

 At this point we should clarify that although the squared Euclidean distance does not 

account for correlations among the variables, it can be applied to correlated data. However, 

the expressions for the distance moments presented in Supplement-1-Moments are strictly 

valid when the variables are independent. This limitation should be taken into consideration 

in the calculation of the variance, skewness, and kurtosis as well as in the implementation of 

the MC method. 



To apply the DD method, Equation (2), we may take into account that x̅ follows at 

least asymptotically the normal distribution with mean value and variance equal to µ and 

2/n, respectively, where µ,  are the mean value and the standard deviation of the population 

distribution and n is the sample size. Therefore, the difference x̅1i - x̅2i also follows the 

normal distribution with mean value and variance equal to μ
1i

 - μ
2i

 and σ1i
2 /n

1i
 + σ2i

2 /n
2i

, 

respectively, which yields: 

 

(x̅1i - x̅2i)
2

σ1i
2 /n

1i
 + σ2i

2 /n
2i

 ~ χ2(1,λi)                                                                            (6) 

 

where χ2(1,λi) is the noncentral chi-square distribution with 1 degree of freedom and i is the 

noncentrality parameter given by: 

 

 λi=
(μ

1i
 - μ

2i
)
2

σ1i
2 /n

1i
 + σ2i

2 /n
2i

                                                                                    (7) 

 

Therefore, for the application of Equation (2), we may use the following expression under the 

assumption that variables are independent:  

 

ED(sim.DD) = ED + tr(Cov[x̅1 - x̅2]) + ∑ si{χ2(1,λi) - 1 - λi}/√2(1+2λi)

r

i=1

     (8) 

 

where ED is the squared Euclidean distance in the original dataset and si is the standard 

deviation of the squared Euclidean distance when it is computed on variable i. It can be 

estimated from the square root of term i of Equation (S1-18) in Supplement-1-Moments. For 



the simulated squared Euclidean distance according to the DD method, we can use again 

Equation (5) after replacing the first moment obtained from Monte-Carlo or bootstrapping by 

that obtained from the data generated from Equation (8). This easily arises from Equation (8) 

if we calculate the expected value of both sides. Note that in Equation (8), χ2(1,λi) denotes a 

random value generated from the noncentral chi-squared distribution with 1 degree of 

freedom and i noncentrality parameter. For this distribution, the mean value is equal to 1+i 

and the standard deviation is √2(1 + 2λi).  When a random variable is multiplied by a 

constant, then both its mean and standard deviation are multiplied by this constant and for 

this reason the quantity σ1i
2 /n

1i
 + σ2i

2 /n
2i

 does not appear in Equation (8). 

The Euclidean distance is a distance with a wide range of applications. However, it is 

not an unbiased estimator of population divergence since its expected value is not equal to the 

Euclidean distance between populations. From the treatment presented above, this property 

can be incorporated into the Euclidean distance if it is corrected as follows:  

 

                                   cED = (x̅1 - x̅2)T(x̅1 - x̅2) - tr(Cov[x̅1 - x̅2])                           (9) 

 

where the trace is still given by Equation (4). For simulated cED distances based on the MC, 

B or DD methods, we may simply use the expression: 

 

                                         cED(sim) = ED(sim) - tr(Cov[x̅1 - x̅2])                         (10) 

 

Finally, we should clarify that in many expressions above the population quantities 

μ
1i

, μ
2i

, σ1i
2 , σ2i

2  appear. If these quantities are unknown, they may be approximated from the 

corresponding sample mean and variance since the sample mean and variance are unbiased 

estimators of the corresponding population statistics. The same holds for all relevant 



expressions presented in this section. 

 

Squared Mahalanobis and Corrected Squared Mahalanobis Distances 

The Euclidean distances allow for missing values, but they do not consider differences in the 

dispersion of the sample points in space. A first approach to account for the distribution of 

sample points is to normalize the ED, cED distances. There are several ways to normalize an 

Euclidean distance. However, a better distance measure that assumes an anisotropic Gaussian 

distribution of the sample points is the Mahalanobis distance (MD). 

For the definition of the Mahalanobis distance, consider g multivariate normal 

populations with a common covariance matrix, C = C1 = C2 = … = Cg. Then the Mahalanobis 

distance between populations 1 and 2 is defined from [6-8]: 

 

                                                 MDpop=(μ
1
 - μ

2
)

T
C

-1(μ
1 

- μ
2
)                                (11) 

 

This expression can be used to estimate the corresponding sample Mahalanobis distance 

provided that μ
1
,  μ

2
 are replaced by x̅1,  x̅2 and the matrix C is known.  If C is unknown, it 

may be replaced by the pooled covariance matrix S, which is an unbiased estimator of C. To 

distinguish these two expressions of sample Mahalanobis distance, we will denote them by 

MD1 when C is known, and MD2 when S is used. 

The major disadvantage of the sample Mahalanobis distances, MD1 and MD2, in 

biological and anthropological studies is that they are not unbiased estimators of population 

divergence. For the MD1 we can define an unbiased estimator from:  

 

                                     cMD1 = MD1 - rf = (x̅1 - x̅2)TC
-1(x̅1 - x̅2) - rf                   (12) 

 



where f = 1/n1 + 1/n2. Equation (12) arises if we apply Equation (1) to MD1 and take into 

account that tr(AΣ) = tr(C-1
Σ) = rf because  is equal to Cf (see Equation 6-22 in ref. 6). 

Note that for the MD1 and cMD1 the covariances among the variables are taken into 

account in the calculations. For this reason, in the Monte-Carlo method the simulated 

multivariate normal populations should be generated based on the mean values per variable 

and sample and the pooled covariance matrix of the original dataset. As in the case of ED, 

when applying the Monte-Carlo or the Bootstrap method, the estimated first distance moment 

is used to compute the simulated MD1 from: 

 

                                          MD1(sim) = E[MD1(sim.MC/B)] - rf                           (13) 

 

For the simulated cMD1 distances, we can use the relationship: 

 

                                               cMD1(sim) = MD1(sim) - rf                                   (14) 

 

For simulations using the DD method, we can make use of the following theorem of a 

quadratic form [5]: If x is a multivariate normal random vector with a mean vector μ and a 

covariance matrix Σ, i.e. x ~ Nr(μ,Σ),  and AΣ is idempotent, then the quadratic form xTAx 

follows the noncentral chi-square distribution, χ2(p, λ), with p = rank(AΣ) degrees of freedom 

and noncentrality parameter λ = μT
Aμ. In the present case, this theorem yields: 

 

                                                             MD1/f ~ χ2(r, λ)                                         (15) 

 

where λ = (μ
1
 - μ

2
)

T
C

-1

(μ
1
 - μ

2
)/f since A = C-1

/f,  = Cf and A =1 is idempotent. Therefore, 

for simulations based on the distance distribution, we may use the following expression:  



 

                         MD1(sim.DD) = MD1 + rf + s(χ2(r,λ) - r - λ)/√2(1 + 2λ)             (16) 

 

where MD1 is the original distance and s is the standard deviation of MD1. The latter may be 

estimated from the square root of Equation (S1-22) in Supplement-1-Moments. For the 

corresponding simulated cMD1 distances, we can use Equation (14). 

The MD2 distance does not follow the chi-square distribution. It has been shown that 

the distribution of MD2 is related to the non-central F statistic [9-11] (for details see 

Supplement-1-Moments). Its unbiased estimator may be expressed as [11,12]: 

 

                                                       cMD2 = q·MD2 - rf                                         (17) 

 

where q = (N – g – r - 1)/(N - g). The Monte-Carlo and bootstrap simulations can be 

performed such as in the case of the MD1. However, taking into account Equation (S1-29), 

the simulated MD2 and cMD2 are estimated from: 

 

                                     MD2(sim) = q·E[MD2(sim.MC/B)] - rf                            (18) 

 

                                     cMD2(sim) = q·E[cMD2(sim.MC/B)] - rf                         (19) 

 

 For simulations based on the DD method, we can use Equation (2) where now X is a 

random value generated from the noncentral F distribution with v1 = r and v2 = N-g-r+1 

degrees of freedom and  the noncentrality parameter given from  = MD2/f [9-11]. In 

particular, the expressions that should be used are: 

 



                             MD2(sim.DD) = (MD2 + rf)/q + sMD2(Fv1,v2
(r, λ) - μ)/σ           (20) 

 

                         cMD2(sim.DD) = (cMD2 + rf)/q + scMD2(Fv1,v2
(r ,λ) - μ)/σ          (21) 

 

where sMD2, scMD2 can be estimated via Equation (S1-28) and  and σ are the mean value and 

the standard deviation of the F distribution given from Equation (S1-26) and the square root 

of Equation (S1-27), respectively. The simulated MD2 and cMD2 via the DD method may be 

estimated from Equations (18), (19), where the expected values computed from the MC and 

B methods are replaced by those computed from the DD method.    

 

Mean Measure of Divergence 

The mean measure of divergence (MMD) is a distance exclusively for binary data. This 

measure was introduced by statistician C.A.B. Smith for use by Grewal [13] and it may be 

expressed as [14-16]: 

 

MMD = 
1

r
∑ {(θ1i - θ2i)

2

r

i=1

- 
1

n1i

 - 
1

n2i

 }                                                    (22) 

 

where n1i is the number of individuals from sample 1 in which the presence of trait i is 

examined, n2i is the number of individuals from sample 2 in which the presence of trait i is 

examined, and 1i and 2i denote the transformed frequencies of each trait per sample. There 

are various methods for the estimation of the transformed frequencies, such as the arcsine 

transformations suggested by Freeman-Tukey or Anscombe [17]. A complete theory of this 

distance measure is presented by Sjøvold [14], where it is shown that the MMD is an 

unbiased estimator for the squared difference between the angular transformations of the 



population incidences provided that there are no traits (variables) that exhibit a particularly 

high (>0.95) or low (<0.05) frequency within one or more samples. For this reason, such 

traits are removed before the calculation of the MMD. The MMD is, in fact, a type of the 

cED distance, where its value is averaged by division by r, the mean sample values x̅1i, x̅2i 

are replaced by the transformed frequencies θ1i, θ2i and the trace term is given by the sum of 

variances: 

 

Var = 
1

r
∑{

1

n1i

 + 
1

n2i

r

i=1

}                                                                                 (23) 

 

For the application of the Monte-Carlo method, populations of binary data can be 

created using multivariate binary variates of known marginal probabilities. For the marginal 

probabilities, we may use the φ values of the original samples, since φ is an unbiased 

estimator, or we may approximately use their adjustment (φ+3/(8n))/(1+3/(4n)) when the 

Anscombe transformation is used. However, we found that these two approaches lead to 

similar results and, therefore, for simulations we may use either of them. Since the MMD is a 

type of the cED, the algorithm used for Monte-Carlo and bootstrapping simulations for the 

cED can be also adopted for the MMD. 

For simulations using the DD method, we can take into account that  follows the 

normal distribution with mean value and variance equal to  (i.e. the value of θ in the 

population) and 1/n, respectively, and that in the MMD all r traits are assumed to be 

independent [14]. Therefore, Equation (8) is transformed to the following expression:  

 

MMD(sim.DD) = MMD + Var + ∑ si{χ2(1,λi) - 1 - λi}/√2(1+2λi)

r

i=1

      (24) 



 

where si is given by the square root of Equation (S1-31) and the noncentrality parameter 𝜆𝑖 

can be estimated from:  

 

λi = 
(Θ1i - Θ2i)

2

1/n1i + 1/n2i

                                                                                           (25) 

 

where the population parameter  can be approximated from the corresponding sample 

parameter . From Equation (24) we readily obtain that the simulated MMD via the DD 

method may be calculated from: 

 

                                            MMD(sim) = E[MMD(sim.DD)] - Var                      (26) 

 

Corrected Squared Euclidean Distance for Binary Data 

If the corrected Euclidean distance is applied directly to the proportions of the original binary 

data, we obtain the distance [18]: 

 

UMD = ∑ {(φ
1i

 - φ
2i

)
2

r

i=1

 - 
p

1i
(1-p

1i
)

n1i

 - 
p

2i
(1-p

2i
)

n2i

}                                (27) 

 

where φ
1i

 is the proportion of variable i of sample 1 having the trait in question and, 

similarly, φ
2i

 is the corresponding proportion for sample 2. Note that in the case of binary 

data we have E[] = p and Var() = p(1-p)/n, where p is the proportion of the population 

having the trait in question. It is seen that the distance is similar to the MMD with the trace 

term given by: 



  

Var = ∑{
p

1i
(1-p

1i
)

n1i

 + 
p

2i
(1-p

2i
)

n2i

}

r

i=1

                                                         (28) 

 

For the simulated distances based on the Monte-Carlo method or bootstrapping, we 

can proceed as in the MMD. Since the UMD is an unbiased estimator of population 

divergence in the entire range of   values, i.e. from =0 to  =1 [18], for the creation of 

populations of binary data, we can use as marginal probabilities the sample  values. For 

simulations based on the distance distribution, Equation (24) becomes: 

 

UMD(sim.DD) = UMD + Var + ∑ si{χ2(1,λi) - 1 - λi}/√2(1+2λi)

r

i=1

       (29) 

 

where si is given by the square root of Equation (S1-34) and 𝜆𝑖 can be estimated from: 

 

λi = 
(p

1i
 - p

2i
)
2

p
1i

(1-p
1i

)/n
1i

 + p
2i

(1-p
2i

)/n
2i

                                                          (30) 

 

using in the calculations  in place of p.  

Table S1 of the file Supplement-2-Tables summarizes the conditions used for the 

simulation study of each distance measure. 

 

Materials and Methods 

Materials 

To test the performance of the simulations and the uncertainty in hierarchical clustering in 



relation to the distances studied in this paper, real and simulated datasets were used. The real 

datasets were obtained from the literature and, in particular, from the following three sources: 

a) The dataset of Egyptian skulls that can be found in Thomson and Randall-MacIver [19], 

and in online domains such as 

https://www3.nd.edu/~busiforc/handouts/Data%20and%20Stories/regression/egyptian 

%20skull%20development/EgyptianSkulls.html or from the file “skulls” of the R package 

HSAUR; b) the Howells Craniometric Data Set, compiled by Dr. William Howells [20-23] 

and made available online by Dr Benjamin Auerbach at 

https://web.utk.edu/~auerbach/HOWL.htm; and c) the Ossenberg database of cranial 

nonmetric traits [24], freely available online at: http://library.queensu.ca/webdoc/ssdc/cntd.  

The first dataset (EG1) consists of 150 cases of four measurements of male Egyptian 

skulls from 5 different time periods, where thirty skulls are measured from each time period. 

To create a dataset with different sample sizes, we have selected the first 5, 10, 15, 20, and 30 

cases of EG1 and named this dataset EG2.   

The William Howells Craniometric Data Set consists of 82 measurements (variables) 

obtained from 2524 human crania from 30 populations. From this dataset we have removed 

11 variables with missing values and selected the male subset of 12 Pacific populations 

(dataset WH1). These populations comprise the Moriori, Maori South, Maori North, Mokapu, 

Easter Island, Ainu, Guam, Japan North, Japan South, Atayal, Hainan, and Philippines. 

Geographically, the first five groups are classified as “Pacific” (P) and the latter seven as 

“Western Pacific” (WP). This dataset consists of 484 individuals and has a q value equal to 

0.85. The q value affects the shape of the distribution of the Mahalanobis distances, hence it 

is interesting to examine the effect of this parameter on the simulation of the Mahalanobis 

distances MD2 and cMD2. Note that the q value in all datasets of Egyptian skulls (EG1-EG2) 

is greater than 0.9, thus these datasets cannot be used per se for the examination of the 

https://www3.nd.edu/~busiforc/handouts/Data%20and%20Stories/regression/egyptian%20%20skull%20development/EgyptianSkulls.html
https://www3.nd.edu/~busiforc/handouts/Data%20and%20Stories/regression/egyptian%20%20skull%20development/EgyptianSkulls.html
https://web.utk.edu/~auerbach/HOWL.htm
http://library.queensu.ca/webdoc/ssdc/cntd


abovementioned effect. For this reason, we have created a subset of the WH1 dataset with a 

significantly low value of q as follows. We selected the first 9 samples of WH1 and from 

each sample we selected the first 5 to 30 individuals. The created dataset, WH2, consisted of 

130 individuals with q = 0.4.  

The Nancy Ossenberg database includes cranial nonmetric traits from the Arctic and 

Northwestern North America as well as Northeast Asia, Eurasia, Africa, and the South 

Pacific [24]. From this database we created a dataset of male individuals consisting of 11 

samples of 574 individuals, 5 from Africa with 195 individuals and 6 from Eurasia with 379 

individuals. From the Eurasia populations, the samples Bavaria, Czechoslovakia, Europe, 

France, Germany, and Russia have been removed because of their very small size. The 

number of cranial traits in the Ossenberg database is 69. However, 15 of them were 

eliminated because they were scored on an ordinal scale from 0 to 2 or 3. In addition, we 

removed from the dataset another 10 variables due to many missing values. From this dataset 

(NO1) of 44 traits, two subsets with 31 (NO2) and 22 (NO3) traits were also examined after 

data editing to remove traits with p  0.01 and p  0.02, respectively. Finally, we created a 

large dataset (NO4) consisting of 44 traits and 3838 male individuals from all over the world 

grouped into 5 samples: Africa (AF), Northeast Asia (AS), Eurasia (EU), Native America and 

Greenland (NAG), and South Pacific (SP). This dataset was also examined after data editing 

to remove intercorrelated traits, a process that resulted in a dataset of 21 variables (NO5).  

The simulated datasets were created to follow the multivariate normal distribution 

with mean values those of the real dataset EG1 and containing correlated and uncorrelated 

continuous variables. For correlated variables, the covariance matrix of the dataset EG1 was 

used. In particular, we created four datasets, SIM1 to SIM4. In the first two, SIM1, SIM2, the 

variables are independent and sample sizes are equal to those of the EG1 and EG2 datasets, 

respectively. In the last two, SIM3, SIM4, the variables are correlated and the sample sizes 



are equal to the corresponding sizes of SIM1, SIM2 and EG1, EG2, i.e. (30, 30, 30, 30, 30) 

and (5, 10, 15, 20, 30) cases, respectively.  With these simulated data we can test how the 

proposed methods work, i.e. if there are deviations and their extent when we work on real 

data in relation to data that follow the "ideal" multivariate normal distribution.  

At this point we should clarify the following. The first four datasets consist of 

continuous variables that measure the linear distance between several cranial landmarks. 

These data are analyzed almost exclusively using the Mahalanobis distance corrected for 

small sample sizes [11, 25]. For getting statistical inference, such as statistical significance 

[11] and confidence intervals [10], this distance presumes that the data follow the 

multivariate normal distribution. Therefore, these datasets as well as all the simulated SIM1 

to SIM4 datasets are appropriate for testing the MD1, cMD1, MD2, and cMD2 distances. The 

EG1 and EG2 datasets consist of small samples with just 4 variables.  For this reason, the 

statistically significant correlations among the variables are very limited and, therefore, they 

can be also used, along with the SIM1 and SIM2 datasets, to analyze the ED and cED 

distances. Finally, the binary datasets NO1 to NO5 include samples with edited or non-edited 

frequencies or intercorrelations designed to test the MMD and UMD. For the selection, 

properties, and biological importance of the traits/variables in binary datasets, see [14].  

Details of the datasets used in the current study are presented as Supplementary 

Material in the Table S2 of the file Supplement-2-Tables. The complete datasets are available 

from the authors upon request. 

 

Software 

For each distance measure presented in this study three homemade functions have been 

written in R to implement the MC, B and DD simulation methods. The functions generate 

simulated data that are used to give: a) sample, (population), and simulated sample distances; 



b) standard deviations and values of skewness and kurtosis of the sample distances estimated 

from the theory and the distribution of the simulated sample distances; c) cluster probabilities 

assessing the uncertainty in the dendrogram; c) several plots among the various distances, 

plots of standard deviations, skewness, and kurtosis values, and dendrograms of the original 

and simulated sample distances. A function that implements the Pearson distribution system 

via the PearsonDS library of R has also been written to plot the distribution density of a 

distance from its moments, i.e. from the mean, variance, skewness, and kurtosis. All software 

material, along with detailed instructions, is presented as supplementary material in 

Supplement-3-Instructions&Code.  

The default number of iterations used to estimate simulated distances was 5000 for all 

simulation methods. In the MC method the 5000 samples were randomly drawn from 

populations with size equal to 100000 each. To examine the number of iterations on the 

performance of the simulation methods, the 5000 iterations were increased to 50000 in 

certain simulations using the B and DD methods. In similar simulations with the MC method, 

the iterations were increased to 10000 without increase in the population size. 

Finally, hierarchical clustering was performed using the hclust() function from the 

base stats package of R. For the cluster agglomeration method (linkage method), the Ward 

minimum variance method was selected, i.e. the method that minimizes the total within-

cluster variance. 

 

Results and Discussion 

To test the performance of the simulation methods, we may examine the comparison plots 

between original and simulated data of pairwise squared distances (d), their standard 

deviations (sd), the corresponding skewness (sk) and kurtosis (ku) of their distribution 

density curves. Two examples of such plots are given in Figures 2 and 3, which show plots 



between original and simulated ED and MD2 distances and their sd, sk, ku plots estimated on 

the EG2 dataset for the ED and the WH1 dataset for the MD2.  

  

[Figures 2 to 3 near here] 

 

A quantitative comparison can be carried out via a scoring measure for prediction 

models, such as the Root Mean Square Percentage Error (RMSPE) defined from: 

 

RMSPE = 100√
∑ (y
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 - y
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)
2N

j=1

N(y
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 - y
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)
2

                                                          (31) 

 

where yjo is the j-th original value of the quantity being tested, yjs is the corresponding 

quantity obtained from simulated data, yo,max, yo,min are the maximum and minimum values of 

yjo, and N is the number of yjo values. In case of kurtosis, the range yo,max - yo,min was replaced 

by the corresponding mean value because there were distances where this difference was very 

close to zero yielding misleading RMSPE values. Table 1 presents RMSPE values for d, sd, 

sk, and ku that correspond to the ED, MD1, MD2, MMD and UMD when estimated using the 

simulation methods MC, B and DD. The corresponding RMSPE values of cED, cMD1, 

cMD2 are identical or almost identical to those of ED, MD1, and MD2, respectively, and for 

this reason they have not been included in the table. Note that in this table, as in all other 

tables, EG1-2 indicates results estimated from the mean of those obtained from datasets EG1 

and EG2, and the same holds for SIM1-2 and SIM3-4. 

 

[Table 1 near here] 

 



From the comparison plots and the RMSPE values, we observe that the MC and DD 

simulation methods outperform B. Thus, the RMSPE values for MC and DD tend to converge 

with each other, while the corresponding RMSPE values are much higher for the bootstrap 

method. A significant improvement in the performance of the bootstrap method is observed 

only in NO5, i.e. a binary dataset with nearly independent traits. Note that the performance of 

the MC and DD methods can be improved if we increase the number of the simulated 

distances. For example, if we increase this number from 5000 to 50000, the RMSPE values 

when using the MD1 distance measure with DD are reduced from 0.43, 0.083, 0.075 to 0.16, 

0.028, 0.021 in the datasets EG1-2, WH1, WH2, respectively, i.e. RMSPE on average is 

reduced by one third. In contrast, the RMSPE values for B remain practically unaffected by 

the increase in the number of the simulated distances. Finally, we observe that the 

performance of the simulation methods on the simulated datasets is practically the same as 

that observed in the corresponding real datasets, indicating that the selected real datasets fulfil 

the preconditions necessary for the application of the distances under study or the violation of 

certain conditions does not have a significant effect on the results.   

To examine the effect of the discrepancy between theoretical and simulated moments 

on the distribution density curve of a distance, we can use the Pearson distribution system via 

the PearsonDS library of R. As an example, Figure 4 shows distance distribution density plots 

obtained from the MD1, MD2, and MMD when applied on pairs of samples of the EG2, 

WH1, and NO5 datasets, respectively. These distances were selected because they show 

relatively large differences between theoretical and simulated moment values. It is seen that 

the MC and DD methods describe very satisfactorily the distribution density curves of the 

MD1, MD2, whereas the bootstrap method shows great deviations from the expected 

behavior. In the NO5 dataset, both MC and B show deviations from the expected behavior.    

 



[Figure 4 near here] 

 

To sum up, the MC and DD simulation methods are much better than the bootstrap 

method. The performance of the MC and DD is very similar and increases with the increase 

of the number of simulated distances. The DD method is much faster than the MC and B 

methods and therefore, if necessary, we can easily increase the number of the simulated 

distances. For example, if we apply the simulation methods with the MMD to the NO3 and 

NO4 datasets and the MD1, MD2 to the WH1 dataset, then on average the DD method is 100 

times faster than MC and 1100 times faster than the B method. In this example, the DD is 

2500 times faster than the B method when it is used to apply the MMD to the NO4 dataset 

and 350 times faster than the MC when it applies the MD1 to the WH1 dataset. On the other 

hand, the MC method can give information on whether a distance measure is or can be 

corrected to become an unbiased estimator of population divergence. This is very useful 

information, especially for the MMD, since this distance measure is valid within a certain 

range of frequencies, usually between 0.1 and 0.9. To meet this requirement, a data editing 

procedure is usually adopted to remove variables with low/high frequencies. However, when 

we improve the MMD to behave as an unbiased estimator, a large reduction of variables may 

be needed. For example, in our datasets we need to reduce the number of traits from 44 in 

dataset NO1 to 22 in NO3 in order to make the MMD behave as an unbiased estimator. A 

similar great loss of traits occurs when we remove intercorrelated variables. For example, 

from 44 traits in NO4, we ended up with 21 in NO5. In such cases a loss of useful 

information regarding population affinity cannot be excluded.  

Figures 6 and 7 as well as the Figures given in Supplement-4-Dendrograms show 

selected dendrograms along with the cluster probabilities obtained from the application of the 

R functions. We observe that, overall, the estimated cluster probabilities from the three 



simulation methods do not exhibit significant differences. This is also seen in Figure 5, which 

shows cluster probabilities estimated by means of the MC, DD, and B methods when using 

the cMD2 over all relevant datasets and the MMD over NO3, NO4, and NO5. If we take into 

account that in most cases the bootstrap method does not simulate satisfactorily the distance 

distribution, this is a rather unexpected result, indicating the tolerance of the computed cluster 

probabilities over the performance of the simulation method used in these calculations.  

 

[Figure 5 near here] 

 

To test quantitatively the impact of the simulation method in assessing the uncertainty 

in HCA, we examined the differences between cluster probabilities estimated from the three 

simulation methods. Table 2 shows the mean and maximum percent of absolute difference 

between cluster probabilities estimated from the MC and DD methods, and Table 3 presents 

differences in the cluster probabilities between the MC and B simulation methods. It is seen 

that the MC and DD methods, which exhibit practically the same simulation performance, 

give similar cluster probabilities. On average, the mean and maximum differences between 

the cluster probabilities obtained from these methods are 1.7% and 3.6%, respectively. Note 

that these differences are not significantly affected from the number of iterations used, i.e. the 

observed differences are not significantly reduced if we increase the number of iterations, due 

to the random selection of the simulated distances. In line with the patterns seen in Figure 5, 

Table 3 shows that bootstrapping by simple resampling with replacement does not give as 

bad results as expected from the comparisons using distance moments. On average, the mean 

and maximum differences between MC and B are 2.9% and 6.2%, respectively. Noting also 

that the maximum percent difference in the cluster probabilities between the MC and B 

methods is 11% and that between MC and DD is 8%, it becomes clear that the estimated 



probabilities do not depend much on the simulation method. This is an interesting result since 

it shows that the bootstrap method can be a useful alternative to the MC and DD methods in 

datasets that follow unknown distance distributions.  

 

[Table 2 near here] 

[Table 3 near here] 

 

Finally, Table 4 gives selected values of the mean and minimum percent of cluster 

probabilities estimated from simulations based on the DD method. It is evident that these 

probabilities for a certain dataset and distance measure determine the reliability of the 

information about the clusters appearing in the dendrogram. For example, in Figure 6 we 

observe that the populations from North Japan, South Japan, Atayal, Hainan, and Philippines 

form a cluster with a probability 1.0. Note that this probability is not related to a specific 

configuration of the sub-clusters formed by these populations. It is also interesting to observe 

that this cluster appears in the dendrograms of all Mahalanobis distances, MD1, cMD1, MD2, 

and cMD2, with very high probabilities ranging from 0.98 to 1. Therefore, the craniometric 

data clearly indicate the affinity of these populations. In contrast, Figure 7 shows that all the 

cluster probabilities when using the MMD are particularly low and, therefore, this 

dendrogram cannot be used to draw conclusions for the existence of clusters of populations. 

The use of the UMD in place of the MMD increases these probabilities but they are still too 

low to give reliable information about the existence of clusters. From Table 4 and the cluster 

probabilities shown in the dendrograms of Figures 6, 7 and in Supplement-4-Dendrograms, 

we note that metric data are more informative than binary data with one exception: The 

binary data can give reliable information only if we use very large samples, such as those of 

datasets NO4 and NO5 (Table 4).  



 

[Table 4 near here] 

[Figure 6 near here] 

[Figure 7 near here] 

 

Conclusions 

The assessment of the uncertainty in hierarchical clustering is an essential step to draw 

reliable conclusions about the existence of clusters in a dataset. This assessment can be 

performed via the computation of simulated probabilities for the appearance of the various 

dendrogram patterns. In the examples used in the present study, these probabilities were high 

enough when using craniometric data, allowing the determination of clusters of populations 

of close affinity with certainty. In contrast, the use of binary datasets with cranial traits can 

give useful cluster information only if the samples are of particularly large size. 

The estimation of reliable simulated cluster probabilities presumes reliably simulated 

distances since these probabilities arise from the percentage of the appearance of the various 

dendrogram patterns in a large simulated dataset of distances. In the present study we have 

examined three simulation methods: the conventional Monte-Carlo method and the 

bootstrapping by simple resampling with replacement, and a new proposed method, the 

distance distribution method. It is shown that the MC and DD simulation methods perform 

similarly and give very satisfactory predictions for the first four distance moments, provided 

that the data fulfil the requirements that are necessary for a reliable estimation of the distance 

moments. In addition, the performance of these two methods can be further improved if we 

increase the number of the simulated distances, which can be easily carried out by the DD 

method since this method is very fast. In contrast, the bootstrap method used in the present 

study gives rather acceptable predictions of the first distance moment, but it fails to simulate 



satisfactorily the standard deviation, skewness, and kurtosis.  

The MC and DD methods give very similar cluster probabilities. On average, the 

mean and maximum differences between the cluster probabilities obtained from these 

methods are 1.7% and 3.6%, respectively. The bootstrap probabilities are not very different 

from those obtained from the MC and DD methods, despite the rather poor simulation 

performance of this method. This result shows that the bootstrap method can be used in 

datasets that exhibit strong deviations from the distributions examined in the present study or 

datasets of unknown distance distribution.  
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TABLES 

Table 1. RMSPE for the squared distances (d), standard deviations (sd), skewness (sk) and kurtosis (ku) of the ED, MD1, MD2, MMD and 

UMD when estimated using the MC, DD, and B methods. 

 

Distance/ 

dataset 

d(MC) d(DD) d(B) sd(MC) sd(DD) sd(B) sk(MC) sk(DD) sk(B) ku(MC) ku(DD) ku(B) 

ED/EG1-2 

ED/SIM1-2 

ED/SIM3-4 

MD1/EG1-2 

MD1/SIM1-2 

MD1/SIM3-4 

MD1/ WH1 

MD1/ WH2 

MD2/EG1-2 

MD2/SIM1-2 

MD2/SIM3-4 

MD2/ WH1 

MD2/ WH2 

MMD/NO3 

MMD/NO4 

MMD/NO5 

UMD/NO1 

UMD/NO2 

UMD/NO3 

UMD/NO4 

UMD/NO5 

0.51 

0.48 

0.51 

0.43 

0.35 

0.41 

0.09 

0.11 

0.67 

0.61 

0.59 

0.13 

0.2 

2.16 

3.8 

2.69 

0.33 

0.36 

0.35 

1.08 

0.81 

0.43 

0.36 

0.34 

0.43 

0.45 

0.45 

0.08 

0.07 

0.52 

0.54 

0.48 

0.11 

0.19 

0.24 

0.15 

0.30 

0.24 

0.21 

0.22 

0.2 

0.41 

1.51 

1.42 

1.16 

1.4 

3.16 

2.15 

0.81 

1 

2.35 

3.33 

2.49 

2.17 

** 

1.22 

1.26 

1.51 

1.23 

0.61 

0.45 

0.44 

0.42 

0.72 

0.72 

1.06 

0.61 

0.57 

0.93 

0.64 

0.89 

1.28 

1.26 

1.51 

0.85 

0.82 

2.96 

7.52 

7.84 

1.77 

1.31 

0.89 

1.85 

0.78 

0.87 

1.12 

0.86 

0.9 

0.84 

1.28 

0.67 

0.77 

1.16 

0.49 

0.87 

0.95 

1.14 

0.84 

0.82 

1.32 

0.55 

0.8 

0.67 

1.12 

0.83 

7.24 

7.75 

7.77 

8.3 

13.75 

5.5 

12.27 

26.23 

8.79 

13.74 

9.04 

14.09 

** 

16.07 

16.47 

10.87 

28.3 

17.78 

17.16 

27.61 

3.91 

77.63 

4.71 

7.15 

7.84 

6.82 

7.43 

23.3 

28.39 

8.22 

6.10 

11.78 

11.33 

9.17 

15.48 

33.1 

27.45 

19.44 

22.58 

15.93 

27.46 

15.59 

5.95 

4.54 

5.58 

6.91 

5.89 

6.74 

20.07 

33.22 

16.36 

10.67 

9.99 

13.6 

5.31 

12.22 

15.3 

15.36 

8.58 

10.81 

10.83 

26.09 

20.96 

22.68 

13.44 

16.85 

31.68 

29.21 

20 

199.15 

556.25 

44.01 

29.75 

36.13 

80.76 

** 

79.99 

41.27 

15.59 

67.97 

37.52 

60.09 

50.74 

26.32 

11.64 

5.67 

6.63 

7.97 

6.33 

5.26 

3.06 

2.67 

6.84 

5.38 

7.01 

3.4 

10.11 

4.05 

4.56 

1.75 

7.33 

7.17 

5.3 

1.95 

1.64 

5.33 

6.90 

4.87 

7.17 

5.40 
5.66 

2.69 

2.71 

16.69 

11.95 

6.47 

3.04 

6.15 

2.92 

1.65 

2.51 

3.68 

3.99 

4.16 

2.04 

4.76 

15.06 

18.38 

13.65 

16.04 

25.60 

8.95 

22.18 

46.11 

21.82 

23.04 

10.72 

11.78 

** 

16.4 

2.48 

3.40 

35.12 

17.77 

16.48 

3.49 

3.16 
 

**: Computational problems; system is computationally singular 

Values in bold show minimum values of RMSPE per distance, standard deviation, skewness, and kurtosis, whereas underlined values have been 

estimated as the RMSPE of kurtosis 
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Table 2. Mean and maximum percent difference between cluster probabilities estimated from 

Monte-Carlo simulations and simulations based on the DD method. 

Distance Dataset Mean Max Distance Dataset Mean Max 

ED 

cED 

MD1 

cMD1 

MD2 

cMD2 

ED 

cED 

MD1 

cMD1 

MD2 

cMD2 

ED 

cED 

MD1 

cMD1 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM3-4 

SIM3-4 

SIM3-4 

SIM3-4 

2.08 

1.3 

0.97 

0.7 

0.78 

1.05 

1.18 

0.95 

0.82 

0.57 

1.23 

1.03 

1.5 

1.35 

1.15 

1.08 

4.5 

3.3 

2.7 

1.7 

2.4 

1.6 

2.6 

1.9 

2 

0.9 

2.3 

2.4 

4.3 

2.4 

2.1 

1.9 

MD2 

cMD2 

MD1 

cMD1 

MD2 

cMD2 

MD1 

cMD1 

MD2 

cMD2 

MMD 

UMD 

MMD 

UMD 

MMD 

UMD 

SIM3-4 

SIM3-4 

WH1 

WH1 

WH1 

WH1 

WH2 

WH2 

WH2 

WH2 

NO3 

NO3 

NO4 

NO4 

NO5 

NO5 

1.25 

1.73 

1.87 

2.31 

1.88 

2.53 

1.99 

2.76 

3.06 

1.49 

2.44 

2.43 

5.27 

1 

2.1 

1.23 

2.8 

4.1 

7.2 

7.4 

5.2 

7.6 

3.4 

4.4 

5.3 

2.7 

5.8 

5.7 

7.9 

1.7 

3.6 

1.9 

 

  



33 

 

Table 3. Mean and maximum percent difference between cluster probabilities estimated from 

Monte-Carlo simulations and simulations based on bootstrapping. 

Distance Dataset Mean Max Distance Dataset Mean Max 

ED 

cED 

MD1 

cMD1 

MD2 

cMD2 

ED 

cED 

MD1 

cMD1 

MD2 

cMD2 

ED 

cED 

MD1 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM1-2 

SIM3-4 

SIM3-4 

SIM3-4 

1.5 

2.12 

2.23 

1.97 

1.95 

2.03 

3.22 

3.18 

4.47 

5.02 

3.55 

4 

3.62 

3.83 

3.7 

3.6 

4 

6.2 

4.3 

4.9 

4.1 

9 

8.5 

9.3 

11.1 

8.1 

10.1 

7.2 

6.6 

7.8 

cMD1 

MD2 

cMD2 

MD1 

cMD1 

MD2 

cMD2 

MD1 

cMD1 

MMD 

UMD 

MMD 

UMD 

MMD 

UMD 

SIM3-4 

SIM3-4 

SIM3-4 

WH1 

WH1 

WH1 

WH1 

WH2 

WH2 

NO3 

NO3 

NO4 

NO4 

NO5 

NO5 

3.2 

3.02 

2.52 

1.55 

1.77 

2.53 

1.83 

2.66 

4.59 

1.36 

3.27 

6.4 

4.47 

2.27 

0.63 

7.7 

5.4 

5.2 

3.8 

4.4 

5.8 

5.5 

5.5 

9.1 

3.7 

8.3 

7.7 

5.3 

2.7 

1 
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Table 4. Mean and minimum percent of cluster probabilities estimated from simulations 

based on the DD method. 

Distance Dataset Mean Min Distance Dataset Mean Min 

ED 

cED 

MD1 

cMD1 

MD2 

cMD2 

MD1 

cMD1 

MD2 

cMD2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

EG1-2 

WH1 

WH1 

WH1 

WH1 

60.80 

58.28 

67.12 

65.03 

66.17 

63.97 

78.28 

75.18 

74.38 

70.81 

24.8 

30.8 

38.6 

46.4 

38.4 

45.8 

46.9 

29.3 

39.6 

29.2 

MD1 

cMD1 

MD2 

cMD2 

MMD 

UMD 

MMD 

UMD 

MMD 

UMD 

WH2 

WH2 

WH2 

WH2 

NO3 

NO3 

NO4 

NO4 

NO5 

NO5 

76.71 

75.14 

43.37 

35.86 

15.94 

21.92 

60.07 

97.77 

73.13 

42.07 

55.5 

59.3 

24.7 

24.6 

6.6 

5.0 

42.0 

97.3 

49.9 

38.3 
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FIGURES 

 

Figure 1. Schematic representation of the steps followed for the estimation of cluster 

probabilities in multivariate datasets. 
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Figure 2. Comparison plots between original and simulated ED distances estimated on the 

EG2 dataset (A), their standard deviations (B), the skewness (C), and the kurtosis (D) of their 

distribution. The original data are shown with (o) and the simulated data using MC, DD, and 

B with (), (ȹ), and (+), respectively. 
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Figure 3. Comparison plots between original and simulated MD2 distances estimated on the 

WH1 dataset (A), their standard deviations (B), the skewness (C), and the kurtosis (D) of 

their distribution. The original data are shown with (o) and the simulated data using MC, DD, 

and B with (), (ȹ), and (+), respectively. 
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Figure 4. Distance distribution density plots obtained from the MD1, MD2, and MMD when 

applied on the pairs of samples 1 and 5 of the EG2, 3 and 11 of the WH1, and 1 and 4 of the 

NO5 datasets. The plots have been calculated using the dpearson function of the PearsonDS 

library of R by means of the mean, variance, skewness, and kurtosis of each distance (o) and 

the corresponding simulated quantities using MC (), DD (), and B (- - -). 
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Figure 5. Cluster probabilities when using the cMD2 over all relevant datasets and the MMD 

over NO3, NO4, and NO5 estimated by means of MC (), DD (ȹ), and B (+) simulations.  
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Figure 6. Ward’s dendrogram obtained from the cMD2 when applied to the dataset WH1 and 

cluster probabilities estimated using the DD method.  

 

Figure 7. Ward’s dendrogram obtained from the MMD when applied to the dataset NO3 and 

cluster probabilities estimated using the DD method. 


