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Abstract 

Biodistance analysis can elucidate various aspects of past population structure. The most 

commonly adopted measure of divergence when estimating biodistances is the Mean Measure 

of Divergence (MMD). The MMD is an unbiased estimator of population divergence but this 

property is lost when the dataset includes variables with very high or low frequency. In the 

present paper, we examine new measures of divergence based on untransformed binary data 

and the logit and probit transformations. It is shown that a measure of divergence based on 

untransformed data is a better unbiased estimator of population divergence. The conventional 

MMD is a satisfactory distance measure for binary data; however, it may produce biased 

estimations of population divergence when there are many traits with frequencies lower than 

0.1 or/and greater than 0.9. Finally, the measures of divergence based on the probit and logit 

transformations are usually biased estimators.    
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Introduction  

Biodistance analysis examines the relatedness or distance of past populations, employing 

skeletal and dental phenotypic data. These phenotypic data include metrics and nonmetric 

traits, and are used as a proxy for the genotype with the underlying assumption that phenotypic 

variability expresses phylogenetic variation (Relethford 2016). The observed biodistances may 

be attributed to various factors such as gene flow, shared ancestry, or other processes (Buikstra 

et al. 1990; Hefner et al. 2016; Pietrusewsky 2013); therefore, this type of analysis can elucidate 

important aspects of past population history.  

 

Biodistance studies were among the first domains of physical anthropology developed as early 

as the 18th century (Blumenbach 1775). Early studies were heavily focused on craniometrics 

and had a typological and descriptive character (e.g. Broca 1863; review by Stojanowski 2019). 

From the 1960s and the emergence of New Archaeology, biodistance analysis diversified the 

topics addressed and encompassed various issues of past population structure and short-

distance mobility along with large-scale migrations (Buikstra 1979; Corruccini 1972; 

Rightmire 1970). The generalization of the use of advanced non-destructive methods for data 

collection (e.g. geometric morphometrics), along with the enhanced availability of software to 

implement complex statistical tests, have contributed to biodistance studies still being broadly 

used in the 21st century (Pilloud and Hefner 2016).  

 

Any measure used to estimate biodistances should have two main properties: a) It should be an 

unbiased estimator of population divergence because even though we are estimating paired 

biodistances between samples, what we are actually interested in is the distance among the 

populations from which these samples derive, b) It should provide the means to evaluate if the 

biodistances estimated are statistically significant or not.  

 

Many measures of dissimilarity have been proposed for binary data, including Jaccard distance, 

simple matching distance, Hamming distance and others. In biodistance studies the most 

common measure used, mainly because it is an unbiased estimator of population divergence, 

is the Mean Measure of Divergence (MMD). The MMD was devised by the British statistician 

C.A.B. Smith in order to be used by M.S. Grewal (1962) in his estimation of biological 

divergence across generations of laboratory mice in sublines of the C57BL strain. 

Subsequently, the use of the MMD was generalized in anthropology through the work by A.C. 

Berry and R.J. Berry, who examined the biodistance of different human groups using 

nonmetric skeletal traits (e.g., Berry and Berry 1967; Berry 1974). This measure is still 

extensively adopted for biodistance estimation using skeletal and dental dichotomous 

nonmetric traits in studies across the world (e.g. Irish 2016; Nikita et al. 2012; Ullinger et al. 

2005). Its use is so generalized that it has led a number of scholars to propose ways of 

automating its calculation (Bertsatos and Chovalopoulou 2016; Nikita 2017; Santos 2018; 

Sołtysiak 2011), whereas recently a new version of a parametric bootstrap for the Mean 

Measure of Divergence has been developed to make it suitable for samples with scarcity of 

data (Zertuche and Meza-Peñaloza 2020). 
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Despite its broad applicability, the MMD has two limitations: a) it is based on the arcsine 

transformation, so when there are many traits with low or high frequency (less than 0.1 or 

greater than 0.9), it ceases being an unbiased estimator of population divergence, b) when traits 

are inter-correlated, the relationships used to determine the statistical significance of the 

distances may not be accurate. For these reasons, datasets are usually edited prior to the use of 

the MMD in order to remove traits with low or high frequency as well as inter-correlated traits 

(Harris and Sjøvold 2004; Irish 2010 and references therein). Nonetheless, such editing may 

lead to the loss of important information as it often results in a substantial number of 

variables/nonmetric traits being eliminated from the estimation of the biodistances.  

 

In the present paper we examine three new measures of divergence based on untransformed 

data and the logit and probit transformations, additionally to the MMD. To test the performance 

of these measures of divergence, we use simulated data as well as real datasets of dental 

nonmetric traits. The aim is to test under what conditions the aforementioned measures of 

divergence are unbiased estimators of population divergence and consequently whether 

untransformed data or some transformation, which does not require data editing/elimination, 

produces better results. 

 

 

Measures of divergence  

A general expression  

Consider two samples, 1 and 2, originating from two populations with binary data that code 

the presence or absence of a specific trait.  If n1, n2 are the sample sizes and k1, k2 the number 

of individuals in the samples possessing the particular trait, then an obvious measure of 

divergence is the squared Euclidean distance: 

 

𝐸𝐷 = (𝜑1 − 𝜑2)2 (1) 

 

where 𝜑1 = 𝑘1/𝑛1, 𝜑2 = 𝑘2/𝑛2 are the proportions of the individuals in the samples 

possessing the trait under examination. Despite its simplicity, Eq. (1) is not an appropriate 

measure of divergence for biodistance studies because this distance is not an unbiased estimator 

of population divergence. This is because the expected value of ED, E[ED], is given by (Souza 

and Houghton 1977): 

 

𝐸[𝐸𝐷] = 𝐸[(𝜑1 − 𝜑2)2] = (𝐸[(𝜑1 − 𝜑2)])2 + 𝑉𝑎𝑟(𝜑1 − 𝜑2) 

 

              = (𝑝1 − 𝑝2)2 + 𝑉𝑎𝑟(𝜑1) + 𝑉𝑎𝑟(𝜑2) (2) 

 

where p1, p2 are the expected values of φ1, φ2, that is, p1, p2 are the proportions of individuals 

in the two populations having the trait in question. It is seen that the expected value of ED is 

not equal to the corresponding Euclidean distance between the populations, (𝑝1 − 𝑝2)2, due to 

the variances 𝑉𝑎𝑟(𝜑1), 𝑉𝑎𝑟(𝜑2). 
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A direct way to define an unbiased estimator of population divergence has been adopted in 

developing the well-known Mean Measure of Divergence (MMD) (Berry and Berry 1967; 

Berry 1974, 1976; Grewal 1962; Sjøvold 1973, 1977; Souza and Houghton 1977). In general, 

to define an unbiased estimator of population divergence, a data transformation is selected, t = 

f(φ), that either stabilizes the variance or the variance is expressed in terms of pi, ni, 

i.e. 𝑉𝑎𝑟(𝑡𝑖) = 𝑉𝑖 = 𝑉(𝑛𝑖) or 𝑉𝑎𝑟(𝑡𝑖) = 𝑉𝑖 = 𝑉(𝑝𝑖, 𝑛𝑖), where 𝑉(𝑛𝑖) denotes a function of 𝑛𝑖 

and 𝑉(𝑝𝑖, 𝑛𝑖) denotes a function of 𝑝𝑖, 𝑛𝑖. Then an unbiased estimator of population divergence 

is defined from  

 

𝑀𝐷 = (𝑡1 − 𝑡2)2 − (𝑉1 + 𝑉2) (3) 

 

since, according to Eq. (2), we have:  

 

𝐸[𝑀𝐷] = (𝑇1 − 𝑇2)2 + 𝑉1 + 𝑉2 − (𝑉1 + 𝑉2) = (𝑇1 − 𝑇2)2 (4) 

 

where T1, T2 are the expected values of t1, t2. This definition is straightforwardly extended to 

the case where each population consists of r traits. Then for each trait i, we have: 

 

𝑀𝐷𝑖 = (𝑡1𝑖 − 𝑡2𝑖)2 − (𝑉1𝑖 + 𝑉2𝑖) (5) 

 

and therefore, a Total Measure of Divergence may be defined from: 

  

𝑇𝑀𝐷 = ∑ 𝑀𝐷𝑖

𝑟

𝑖=1

= ∑{(𝑡1𝑖 − 𝑡2𝑖)
2

𝑟

𝑖=1

− (𝑉1𝑖 + 𝑉2𝑖)}                                                                       (6) 

 

whereas the Mean Measure of Divergence (including the commonly adopted C.A.B. Smith’s 

MMD and its extensions) is given by: 

 

𝑀𝑀𝐷 = 𝑇𝑀𝐷/𝑟 (7) 

 

If the transformed data is nearly normally distributed and under the hypothesis that there is no 

population divergence, the quantity:  

 

𝑆 = ∑
(𝑡1𝑖 − 𝑡2𝑖)2

𝑉1𝑖 + 𝑉2𝑖

𝑟

𝑖=1

                                                                                                                               (8) 

 

will be distributed approximately as the chi-squared distribution with r degrees of freedom, 𝜒𝑟
2, 

provided that all r traits are independent (Souza and Houghton 1977). Therefore, this statistic 

can be used to test the null hypothesis that TMD = 0. Alternatively, we may use the following 

test statistic (Sjøvold 1977; Souza and Houghton 1977): 
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𝑇 = 𝑇𝑀𝐷/√2 ∑(𝑉1𝑖 + 𝑉2𝑖)2

𝑟

𝑖=1

                                                                                                          (9) 

 

which follows the standard normal distribution N(0,1). 

 

 

Data transformations 

Several data transformations have been proposed for proportions, which exhibit, at least 

approximately, the requested properties for the variance. The most common transformation is 

the arcsine transformation, which is a variance-stabilizing transformation. Within the context 

of the mean measure of divergence, this transformation can be performed by means of Smith’s 

formula, t = sin−1(1 − 2𝜑), where sin-1 is the inverse trigonometric sine function, although 

two other transformations, the Freeman-Tukey (1950) and Anscombe (1948) transformations, 

perform better and have replaced Smith’s formula. Using the arcsine transformation and 

irrespective of the specific formula used to implement this transformation, the variability of 

the transformed data is given by (Bartlett 1947; Sjøvold 1977): 

 

𝑉𝑎𝑟(𝑡) ≈ 1/𝑛 (10) 

 

except for very small or high φ values and low n values, lower than 20. This expression of 

𝑉𝑎𝑟(𝑡), in combination with Eqs. (6) and (7), yields directly Smith’s Mean Measure of 

Divergence (MMD) (Berry and Berry 1967; Berry 1974, 1976; Grewal 1962; Harris and 

Sjøvold 2004; Irish 2010; Nikita 2015; Sjøvold 1973, 1977). 

Apart from the arcsine transformation, there are at least three other approaches that should be 

taken into account: the untransformed proportions, the logit and the probit transformation. For 

untransformed proportions, we have (Sjøvold 1977): 

 

𝐸[𝜑] = 𝑝    and  𝑉𝑎𝑟(𝜑) = 𝑝(1 − 𝑝)/𝑛 (11) 

 

whereas for the logit transformation, t = logit(𝜑) = ln(𝜑 /(1- 𝜑)), Bartlett (1947) suggests: 

 

𝑉𝑎𝑟(𝑡) ≈
1

𝑝(1 − 𝑝)𝑛
                                                                                                                         (12) 

 

 

For the probit transformation, it is not known what the variance expression in terms of p and n 

is (Bartlett 1947). However, there is a close relationship between logit and probit functions that 

may be expressed as (https://en.wikipedia.org/wiki/Probit): 

 

𝑙𝑜𝑔𝑖𝑡(𝜑) ≈ 𝑝𝑟𝑜𝑏𝑖𝑡(𝜑)/√𝜋/8 (13) 

 

https://en.wikipedia.org/wiki/Probit


7 
 

which yields:  

 

𝑉𝑎𝑟(𝑝𝑟𝑜𝑏𝑖𝑡(𝜑)) ≈ 𝑉𝑎𝑟 (√
𝜋

8
 𝑙𝑜𝑔𝑖𝑡(𝜑)) =

𝜋

8
 𝑉𝑎𝑟(𝑙𝑜𝑔𝑖𝑡(𝜑)) ≈

𝜋/8

𝑝(1 − 𝑝)𝑛
                    (14) 

  

Equations (12) and (14) may be written as 

 

𝑉𝑎𝑟(𝑡) ≈
𝑐𝑃,𝐿

𝑝(1 − 𝑝)𝑛
                                                                                                                          (15) 

 

where 𝑐𝑃 = 1 for the logit transformation and 𝑐𝐿 = 𝜋/8 for the probit transformation. Note 

that Var(t) in Eq. (15) varies linearly with 1/n at a constant p value, whereas at a constant n 

value, it varies linearly with 1/p(1-p). Therefore, a plausible modification of Eq. (15) that may 

extend its validity is the following:           

 

𝑉𝑎𝑟(𝑡) ≈
𝛼𝑃,𝐿/𝑝(1 − 𝑝) + 𝑏𝑃,𝐿

𝑛
                                                                                                      (16) 

 

where 𝛼𝑃,𝐿 , 𝑏𝑃,𝐿 are constants. When 𝑏𝑃,𝐿 = 0 and 𝛼𝑃,𝐿 = 𝑐𝑃,𝐿, Eq. (16) is reduced to Eq. (15). 

However, we should point out that Eq. (15) and, therefore, Eq. (16) are approximate 

expressions of Var(t) and, therefore, we should use simulations to determine the optimum 

values of 𝛼𝑃,𝐿 , 𝑏𝑃,𝐿 and 𝑐𝑃,𝐿 that make these expressions of Var(t) useful in the widest possible 

range of p, n values. This issue is examined below in the sections Materials and Methods and 

Results and Discussion.  

 

Measures of divergence 

Based on the results presented above for the variance of transformed/untransformed data and 

the general expression for the Total Measure of Divergence, Eq. (6), we obtain the following 

measures of divergence: 

 

a) Untransformed data 

Using raw data, t = , and Eqs. (6) and (10) readily yield: 

 

𝑈𝑀𝐷 = ∑{(𝜑1𝑖 − 𝜑2𝑖)
2

𝑟

𝑖=1

−
𝑝1𝑖(1 − 𝑝1𝑖)

𝑛1𝑖
−

𝑝2𝑖(1 − 𝑝2𝑖)

𝑛2𝑖
}                                                       (17) 

 

where n1i is the number of individuals from sample 1 in which the presence of trait i is examined 

and n2i is the corresponding number of individuals from sample 2.  

 

b) Arcsine transformation 

It results in the well-known Mean Measure of Divergence (MMD): 
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𝑀𝑀𝐷 =
𝑇𝑀𝐷

𝑟
=

1

𝑟
∑{(𝑡1𝑖 − 𝑡2𝑖)

2

𝑟

𝑖=1

−
1

𝑛1𝑖
−

1

𝑛2𝑖
 }                                                                       (18) 

 

where t1i and t2i denote the transformed φ values of each trait per sample. As mentioned above, 

initially, the transformation was performed by means of Smith’s formula, but now, due to better 

performance, the transformations suggested by Freeman-Tukey (1950) and Anscombe (1948) 

are preferred. The latter may be expressed as: 

 

t = sin−1 (1 − 2
k + 3/8

n + 3/4
)                                                                                                              (19) 

 

where k shows how many times each trait appears in a sample of n size, that is, φ = k/n. Note 

that for the MMD the addition of the value 0.5 in the two last denominators of Eq. (18) has 

been suggested (Green and Suchey 1976; Irish 2010). 

 

c) Probit transformation 

The probit transformation gives: 

 

𝑃𝑀𝐷 = ∑{(𝑝𝑟𝑜𝑏𝑖𝑡(𝜑1𝑖) − 𝑝𝑟𝑜𝑏𝑖𝑡(𝜑2𝑖))2

𝑟

𝑖=1

−
𝑃1𝑖

𝑛1𝑖
−

𝑃2𝑖

𝑛2𝑖
}                                                        (20) 

 

where 

𝑃1,2 =
𝑎𝑃

𝑝1,2(1 − 𝑝1,2)
+ 𝑏𝑃  ≈

𝑐𝑃

𝑝1,2(1 − 𝑝1,2)
 ≈

𝜋/8

𝑝1,2(1 − 𝑝1,2)
                                              (21) 

 

d) Logit transformation 

The logit transformation gives: 

 

𝐿𝑀𝐷 = ∑{(𝑙𝑜𝑔𝑖𝑡(𝜑1𝑖) − 𝑙𝑜𝑔𝑖𝑡(𝜑2𝑖))2

𝑟

𝑖=1

−
𝐿1𝑖

𝑛1𝑖
−

𝐿2𝑖

𝑛2𝑖
}                                                              (22) 

 

where 

𝐿1,2 =
𝑎𝐿

𝑝1,2(1 − 𝑝1,2)
+ 𝑏𝐿 ≈

𝑐𝐿

𝑝1,2(1 − 𝑝1,2)
≈

1

𝑝1,2(1 − 𝑝1,2)
                                                 (23) 

 

In all the above relationships, with the exception of the MMD, Equation (18), the population 

probabilities p1, p2 may be estimated from the corresponding sample quantities, φ1, φ2 since, 

according to Equation (11), 𝐸[𝜑] = 𝑝, i.e. φ is an unbiased estimator of p. However, when p 

is close to 0 or 1 and the sample size is relatively small, φ may be equal to 0 or 1. In this case, 

Bartlett’s correction may be used (Harris and Sjøvold 2004), which entails the replacement of 

p=0 with p=1/4n, and p=1 with p=1-1/4n. Finally, although P1,2 and L1,2 may be approximated 
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via Eqs. (21) and (23), i.e. P1,2 = /(8p1,2(1-p1,2)) and L1,2 = 1/(p1,2(1-p1,2)), it is better to use the 

expressions with the constants aP, bP, aL, bL. These constants are estimated using simulations, 

as discussed below.   

 

 

Materials and Methods  

 

Tests for data transformations 

To examine the performance of the data transformations, we used a simple simulation, which 

estimates the conditions under which the variance of the transformed data may be expressed as 

a function of p, n, what this expression is under logit and probit transformation, and whether 

the transformed data follow a nearly normal distribution or not. The rbinom function of the R 

language, which can model individual Bernoulli trials, was used for its implementation. Based 

on rbinom, a function was written that generates random numbers from the binomial 

distribution, it creates samples of random numbers of various size, n, and binomial 

probabilities, p, it calculates the φ value of each sample of size n, and, based on the φ values, 

it estimates the variances after the transformations under study using 100000 iterations 

(samples). The function also provides histograms and Q-Q plots to test the normality of the 

transformed/untransformed data. The Q-Q plots were created by means of the qqPlot function 

of the car library. For the logit and probit transformations, Bartlett’s correction was used when 

a φ value equal to 0 or 1 was generated (Bartlett 1936; Harris and Sjøvold 2004). Concerning 

constants a, b and c in Eqs. (21) and (23), these have been estimated in Excel spreadsheets 

using Solver by minimizing the value of the sum of squared errors, where errors are the 

differences between calculated and simulated variances. The calculations were performed in 

the region 0.15  p  0.85 and n  50 (Supporting Data S1). Note that even though we used n 

 50 when estimating constants a, b and c in the Solver, we have found that the same values 

may be used for smaller n values (n  30). 

 

 

Generation of simulated data 

To test the measures of divergence presented above, we used simulated data as well as real 

datasets of dental nonmetric traits. The simulated data were multivariate binary data. In all 

artificial datasets the number of samples was equal to 5 consisting of either 10, 20, 30, 40, 50 

cases or 100, 200, 300, 400, 500 cases to test the effect of sample size. The number of traits 

per sample was r = 20. The binary data were generated given marginal distributions and a 

correlation matrix using the generate.binary function of the MultiOrd package of the R library. 

We used two types of correlation matrix: the unit correlation matrix and the matrix with the 

greatest correlations that is compatible with the marginal probabilities adopted for the 

generation of the various artificial datasets. In what concerns the marginal probabilities, p, the 

first sample is generated from uniformly distributed p values between p1 and p2, the second 

sample is generated from uniformly distributed p values between p1+step and p2+step, the 

third consists of uniform values between p1+2*step and p2+2*step and so on, where step takes 
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the values 0, 0.005, 0.05 and 0.1, p1 takes the values 0, 0.05, 0.1, and p2 the values 0.1, 0.15, 

0.2. Typical matrices of marginal probabilities and correlation matrices used in the present 

study are shown in the Supporting Data S2.  

 

To examine the bias of the distances under study, very large samples of 10000 cases each were 

used to approximate populations from which 1000 samples of 10, 20, 30, 40, 50 cases or 100, 

200, 300, 400, 500 cases were randomly drawn, their distances were computed and averaged. 

The bias is evaluated from the difference between population distances and averaged sample 

distances. Note that the distance between populations 1 and 2 is calculated from the sum of 

terms (T1i - T2i)
2, where i ranges from 1 to r and T may be estimated either from the value of 

the transformation t = f(φ) at the population, T = f(p) f(φ), or from the expected value of t, T 

= E[t]. Considering Equation (4), the latter should be preferred.   

 

 

Simulation of a real dataset 

The simulation of a real dataset of samples with binary data is straightforward using correlated 

multivariate binary variates of known marginal probabilities. However, to test whether a given 

measure of divergence behaves as an unbiased population estimator, we need to simulate the 

populations from which the dataset originates. This may be achieved if we take into account 

that the sample  value is an unbiased estimator of the corresponding population p value. For 

this reason, in the present study populations of size 50000 were created using as marginal 

probabilities the  values of the original samples. Then 1000 samples were randomly drawn 

from the populations, their distances were calculated and averaged.  

 

When a measure of divergence is an unbiased estimator of population divergence, population 

and averaged sample distances coincide. Therefore, a simple scatterplot of the population and 

averaged sample distances of all pairs of populations/samples under study is a simple way to 

visualize biases and detect their magnitude.  

 

At this point we should clarify the following. When we simulate a population based on the 

sample  value, then the corresponding population p value is practically equal to , p  . 

Similarly, for the population T value we have T  t, where t is a transformation of .  Therefore, 

according to Eqs. (3) and (6), the distance between two simulated populations i, j is greater 

than that between the corresponding original samples and this difference is equal to the sum of 

sample variances 𝑉𝑖 + 𝑉𝑗. Consequently, if we consider a scatterplot with pairwise sample, 

population, and averaged sample distances, the original distances do not coincide with the 

population distances unless the sum 𝑉𝑖 + 𝑉𝑗 is very small, i.e. when the sample sizes are large. 

The original distances coincide with the population distances under all circumstances if we 

subtract from each distance between populations as well as from each averaged distance 

between samples drawn randomly from the populations the sum 𝑉𝑖 + 𝑉𝑗 estimated from the 

sample properties. Note that since the bias is estimated only from the difference between 

population and averaged sample distances and during this correction the same quantity (𝑉𝑖 +
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𝑉𝑗) is subtracted from the population and averaged sample distances, the biases in the 

estimation of population divergence remain the same. Therefore, under this correction, if a 

measure of divergence is an unbiased estimator, the averaged sample distances will coincide 

with the distances between the original samples and between the simulated populations, 

otherwise the averaged sample distances will deviate from the corresponding original and 

population distances.  

 

 

Datasets of dental nonmetric traits  

The dataset of actual archaeological material of dental nonmetric traits was collected by the 

first author from seven archaeological sites across Greece. The archaeological material 

intentionally comprised datasets with diverse temporal and geographic distribution in order to 

evaluate how meaningful the obtained biodistances are. In particular, we used three Cretan 

assemblages, Kephala Petras rock shelter, Livari-Skiadi rock shelter and Eleutherna, and four 

mainland Greek assemblages, Xeropigado, Akraiphnio, Christianoi, and Pella. The number of 

dental traits in the original database was 28 (GR-28). A subset of this dataset with 12 traits 

(GR-12) was also examined after data editing to remove traits with φ  0.01.  

 

The Kephala Petras rock shelter lies 1 km east of the modern town of Siteia in north-eastern 

Crete and dates to the Early Minoan IB - Middle Minoan IB/IIA (ca. 2900-1875/1850 BC) 

(Tsipopoulou 2010). The Livari-Skiadi rock shelter is located in south-eastern Crete and it is 

largely contemporary to the Kephala Petras material, dating to the Early Minoan IB - Early 

Minoan III (ca. 2900-2100/2050 BC) (Papadatos and Sofianou 2015). The material from 

Eleutherna was excavated in a proto-Byzantine Basilica and dates to the 6th-7th c. AD (Themelis 

1994-1996). Xeropigado is located in north-western Greece (near the modern city of Kozani) 

and dates to the Early and Middle Bronze Age (2420-1730 BC) (Maniatis and Ziota 2011). 

Pella is in north-central Greece and dates to the Early Bronze Age (Akamatis 2009). The 

cemetery of ancient Akraiphnio is located at the eastern coast of Lake Kopais in central Greece 

(close to the modern city of Thebes) and temporally spans the Late Geometric to the Late 

Roman times (7th c. BC- 6th c. AD) (Sabetai 1995; Vlachogianni 1997). The skeletal 

assemblage from Christianoi was found inside the Church of Transfiguration of the Saviour at 

Christianoi, in the district of Triphylia in Messene in the Peloponnese, and dates approximately 

to the 13th c. AD (Kappas and Sakkari 2012). The bioarchaeological analysis of the above 

assemblages has been published in Nikita et al. (2019) for Akraiphnio, Kalliga (2015) for Pella, 

Triantaphyllou (2010) for Xeropigago, Triantaphyllou (2012) for Kephala Petras, Bourbou 

(2004) for Eleutherna, and Triantaphyllou (2016) for Livari-Skiadi, while the material from 

Christianoi is currently under preparation for publication. 

 

The main feature of the dental dataset is the great percentage of traits with small and very small 

φ values (Table 1). For more details about this dataset, see the Supporting Data S3.  

 

 

Software to test distance measures 
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The generation of artificial data for distance measures, as well as the calculation of the distance 

measures presented in this study and their p-values, were carried out by means of four 

homemade functions in R: simbiasbinMDs, simperbinMDs, biasbinMDs, and perbinMDs. 

  

The simbiasbinMDs function is used to generate artificial data for five samples of 20 traits 

based on certain marginal probabilities and correlation matrices. Based on these data, pairwise 

distances between populations are calculated, where each population is approximated by a 

sample of 10000 cases. The obtained distances are compared to pairwise distances between 

samples randomly drawn from the corresponding populations. The latter distances are averaged 

over 1000 samples each. The function provides also dendrograms for sample and averaged 

distances using the hclust() function.    

 

The simperbinMDs function is used to estimate the accuracy of the p-values of the estimated 

distances obtained from artificial data. For this estimation, p-values obtained for each distance 

from the two test statistics, S and T, Eqs. (8) and (9), are compared to p-values estimated from 

the permutation method. The permutation method adopted involves the following steps: 1) 

calculation of the value d of a certain measure of divergence as well as the values S and T of 

the test statistics using the original dataset, 2) random redistribution of all cases into new groups 

with sizes equal to the original ones, 3) calculation of di and the values Si and Ti of the test 

statistics based on the new groups, 4) repetition of steps 2 and 3 at least M=1000 times, and 5) 

estimation of three p-values for each distance from the ratios N(di  d)/M, N(Si  S)/M and 

N(Ti  T)/M, where N(xy) is the number of cases where x is greater than or equal to y. 

 

The biasbinMDs function is used to assess biases in the estimation of population divergence. 

The original dataset is used to simulate the respective populations and calculate all pairwise 

population distances using the measures of divergence discussed in the present study. Then 

these distances are compared to the corresponding pairwise distances between samples 

randomly drawn from the populations. As in the first function, the latter distances are averaged 

over 1000 samples each. From the comparison, we can assess which of the distances calculated 

on the dataset under study are unbiased estimators of population divergence. The function 

provides also dendrograms of the distances of the original dataset and the averaged distances.     

 

Finally, the perbinMDs function estimates the accuracy of p-values of distances calculated on 

a specific dataset. It works like the simperbinMDs function. 

 

All software material is given as Supporting Data S4.    

 

 

Results and Discussion 

Results for data transformations 

Some of the obtained results are shown in Table 2 and Figure 1, whereas more details are 

presented in the Supporting Data S1. The results show that, apart from the untransformed data, 
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where the relationship 𝑉𝑎𝑟(𝜑) = 𝑝(1 − 𝑝)/𝑛 is valid for every p and n value, all other 

expressions exhibit, as expected, asymptotic variance stabilization as well as asymptotic 

normality. Asymptotic normality is also shown from the untransformed data.   

 

For the variance of the transformed data, the arcsine transformation performs better since it 

fails for p  0.1 or p  0.9 when n  20, whereas for probit/logit, these limits are p  0.15 or p 

 0.85 when n  30. In what concerns the normality of the φ, t data, in general, there are rather 

strong deviations from normality when n  50, irrespective of the p value. The normality is 

improved as n increases, especially when p > 0.1 or p < 0.9. This holds for the untransformed 

data and the arcsine transformation, whereas data obtained from probit/logit transformations 

exhibit more pronounced deviations from normality especially when p  0.1 or p  0.9. 

 

The asymptotic nature of variance stabilization and data normality is expected to affect the bias 

of the calculated distances as well as the validity of the significance tests. The extent of this 

effect can only be assessed through extensive analysis of artificial and real data, as attempted 

in the current study.     

 

 

The problem of negative distances 

A main issue when using the MMD is the calculation of negative MMDs when the compared 

samples come from populations that are biologically very similar. In this case 𝑡1𝑖 ≈ 𝑡2𝑖 and a 

negative MMD may be calculated from the terms −1/𝑛1𝑖  𝑎𝑛𝑑 − 1/𝑛2𝑖. Because negative 

distances are considered to be biologically meaningless, negative MMD values are changed to 

zero prior to subsequent multivariate analyses (Harris and Sjøvold 2004) or a proper constant 

is added to all pairwise MMDs (Ossenberg et al. 2006). An alternative suggestion is to delete 

traits that have a negative contribution to the MMD (Harris and Sjøvold 2004). 

If negative MMD values are considered biologically meaningless and should be transformed 

to 0, the same approach should be followed for the individual traits that have a negative 

contribution in the calculation of the MMD. However, if we transform the negative 

contributions to 0, the MMD is no longer an unbiased estimator of population divergence. This 

is because the calculated sample distances increase since negative contributions become 0, 

whereas this procedure leaves population distances unaffected because in the population the 

size n is very large and, therefore, 1/n tends to zero, resulting in non-negative contributions to 

the population MMDs. Consequently, transforming negative MMD contributions to zero 

should be avoided.  

The suggestion to delete traits that have a negative contribution to the MMD seems to solve 

the above problem, however, it should also be avoided for the following reason. The 

elimination of traits that correspond to biologically similar populations enhances the 

differences between the populations, which may result in false conclusions about their 

biodistance. Moreover, for other pairs of samples these traits may correspond to biologically 

distant populations. Therefore, the elimination of traits may exclude negative values in the 

MMD, but it does not exclude the possibility of a strong bias of the MMDs in relation to 
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population biodistances. 

Finally, Ossenberg’s et al. (2006) suggestion is mathematically equivalent to adding a constant 

(the same constant) to each trait contribution, i.e. (𝑡1𝑖 − 𝑡2𝑖)2−1/𝑛1𝑖 − 1/𝑛2𝑖 + 𝑐𝑜𝑛𝑠𝑡, where 

const is the absolute value of the largest negative value of all (𝑡1𝑖 − 𝑡2𝑖)
2−1/𝑛1𝑖 − 1/𝑛2𝑖 

values over all pairs of samples. Under this transformation, all the MMDs are raised by the 

amount r*const and for this reason, no negative MMDs are computed. Moreover, the MMD 

remains an unbiased estimator of population divergence. Thus, consider that we create a dataset 

of populations using correlated multivariate binary variates and compute all pairwise MMDs 

by adding, say 1, to each trait contribution, (𝑇1𝑖 − 𝑇2𝑖)
2−1/𝑁1𝑖 − 1/𝑁2𝑖 + 1 ≈  (𝑇1𝑖 −

𝑇2𝑖)
2  +  1, since 1/𝑁1𝑖 ≈ 0 𝑎𝑛𝑑 1/𝑁2𝑖 ≈ 0. Then samples are randomly drawn from the 

populations, the MMDs are estimated via Ossenberg’s et al. (2006) suggestion, (𝑡1𝑖 −

𝑡2𝑖)
2−1/𝑛1𝑖 − 1/𝑛2𝑖 + 1, and averaged. In this technique all the MMD values are positive 

and, since the MMD is an unbiased estimator, population and averaged sample MMDs 

converge. It is evident that under Ossenberg’s et al. (2006) correction all the MMDs are raised 

by the amount of r (when const=1) in relation to the population MMDs computed without 

correction. If we now alter the const value to 2, 3, 4, …, we obtain a spectrum of MMDs, where 

for each const value, population and averaged MMDs will converge, they will be positive 

numbers and they are raised by the amount of r in relation to the MMDs of the previous const 

value. Moreover, all MMDs at the various const values give the same dendrograms, metric and 

non-metric multidimensional scaling (MDS) plots. Therefore, the choice of const affects the 

magnitude of the MMD between two samples but it does not affect the differences among the 

pairwise MMD values of a dataset; it is these differences that give useful information about 

the relative biodistance among the populations and help to identify patterns and relationships 

between populations.  

The situation is expected to be the same when const takes the values 0, -1, -2, … In this case 

there is a const value that makes all MMDs negative. However, even in this case, population 

and averaged MMDs converge and they differ by a constant value from the corresponding 

positive MMDs computed using a high positive const value. Thus, the relative biodistances 

among the populations remain the same and for this reason the negative MMDs give precisely 

the same dendrogram as that of the positive MMDs. There is only a problem with the 

applicability of metric and nonmetric MDS because these techniques demand the input of a 

distance or dissimilarity matrix with non-negative elements. However, even in the case where 

all MMDs are negative, metric MDS can be applied using the cmdscale() R function, provided 

that the dimensions are selected based on the (two) smallest eigenvalues. Thus, the correction 

of negative MMDs concerns exclusively the applicability of nonmetric MDS and the solution 

proposed by Ossenberg et al. (2006) is the simplest one which solves the problem and it does 

not bias the distances.  

As an example, consider Figure 2, which shows MMDs computed on a simulated dataset using 

r=20, unit correlation matrix, step=0.05, p1=0.2, and p2=0.4. The sample sizes are 10, 20, 30, 

40, 50 and each population has a size of 10000. Note that since p1=0.2 and p2=0.4, the sample 

φ values and the corresponding population p values will range from 0.2 to 0.6 (0.4 plus 5 times 

0.05, which is the step value). For this reason, the computed MMDs are positive. However, if 
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we examine the individual trait contributions, we find that in almost all cases there are negative 

contributions that affect the final MMDs shown in Figure 2. In addition, due to these p values 

(which are greater than 0.1), the MMD is an unbiased estimator of population divergence 

despite the small sample sizes. This is shown in Figure 2, where the values averaged over 500 

MMDs of samples (o) randomly drawn from the populations converge satisfactorily to the 

corresponding population MMDs () when const = 0 (Fig-2A) and const = 1 (Fig-2B). Some 

small deviations concern only the very small first sample (n = 10). In contrast, if we transform 

the negative trait contributions to zeros, the population MMDs remain unaffected because there 

are no negative MMDs (), whereas the corrected MMDs (o) are substantially raised in relation 

to the corresponding population MMDs (Fig-2C), showing a clear bias of the computed MMD 

values.   

The discussion presented above was focused on the MMD using the arcsine transformation. 

However, it is evident that it concerns all the measures of divergence (MDs) presented in this 

study (UMD, PMD, LMD). Moreover, since negative MMDs concern exclusively the 

applicability of metric and nonmetric MDS and the present study does not involve 

multidimensional scaling techniques, no correction for negative MDs has been applied in the 

remainder of the paper.  

 

Results from simulated data 

Representative results obtained from the simulated data are presented in the Supporting Data 

S2. This file includes tables and figures that show the effect of sample size and the presence of 

traits with very small φ values on whether the distances under study are unbiased estimators of 

population divergence or not. The simulated data was created using function simbiasbinMDs, 

which also performed the analysis and created dendrograms. Figures 3 and 4 present 

comparisons of the distance measures UMD, MMD, PMD, and LMD when the binary datasets 

have been created using unit correlation matrix (i.e. a matrix with almost zero correlations) and 

a correlation matrix with the strongest positive correlations. Note that the histograms of the 

Pearson correlation coefficients that correspond to the correlation matrices of Figures 3 and 4, 

given in the Supporting Data S2, show a peak at 0.75. In Figure 3 the sample sizes are small 

(10-20-30-40-50), whereas in Figure 4 the sample sizes range from 100 to 500 (100-200-300-

400-500) cases. In both figures the percentage of traits with low relative frequencies is 41% 

for p < 0.1 and 16% for p < 0.05. 

 

It is seen that both sample size and the presence of traits with very small φ values play an 

important role in whether a distance is an unbiased estimator of population divergence or not. 

As a rule, when the sample sizes are relatively large, greater than 100 or 200, even for 

percentages of traits as large as 90% for p < 0.1 and 40% for p < 0.05, all the examined 

distances are either unbiased or nearly unbiased estimators of population divergence. The 

presence of strong intercorrelations practically does not affect this property. As the sample 

sizes decrease, below 50 cases per sample, all distances, except the UMD, start to show a biased 

estimation of the population divergence. Note that some, usually small, deviations between 

population and averaged UMDs disappear when we increase the repetition number. Therefore, 
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the UMD appears to be the most robust unbiased estimator of population divergence among all 

measures of divergence studied. Again, the intercorrelations among the traits do not affect the 

biased/unbiased estimation of the population divergence. This is an important result because it 

allows us to simulate a specific dataset of multivariate binary data using the simple unit 

correlation matrix.    

 

 

Results from dental nonmetric traits of archaeological assemblages 

The results obtained from the dental nonmetric traits are shown in Figures 5 and 6 and the 

Supporting Data S3. The calculations in this spreadsheet were performed using the biasbinMDs 

function. As mentioned above, this function assesses biases in the estimation of population 

divergence by using the original dataset to simulate the respective populations and 

subsequently calculating pairwise population distances and pairwise distances between 

samples randomly drawn from the populations. The comparison between the population and 

averaged samples pairwise distances allows the assessment of which of the distances are 

unbiased estimators of population divergence.  

The original GR-28 dataset includes many traits with very low frequencies (Table 1). However, 

despite the presence of a relatively large proportion of low frequencies (21%), the UMD is an 

unbiased estimator (Figure 5). The MMD, PMD and LMD exhibit biased estimations of the 

population divergence, although the bias in the MMD is smaller than that in the PMD and LMD 

(Figure 5 and Supporting Data S3). In addition, we observe that most of the values of the PMD 

and LMD are negative but, as explained above, this is not a problem and it can be addressed 

via Ossenberg’s et al. (2006) correction.  

If we use data editing and remove traits with p < 0.01, we obtain the GR-12 dataset, i.e. a 

dataset with 16 traits less. This is a great trait reduction and is likely to lead to a significant loss 

of information about the clustering of samples/populations. In the reduced dataset, both the 

UMD and MMD are unbiased estimators of population divergence and this property has been 

considerably improved for the other distances as well (Figure 5 and Supporting Data S3). 

 

The potential impact of the loss of information when reducing the dataset can be seen using 

dendrograms. Figure 6 shows Ward’s dendrograms obtained from the UMD and MMD when 

applied to the GR-28 and GR-12 datasets. It is seen that there is indeed a loss of information 

about clusters when passing from GR-28 to GR-12. For UMD and MMD, the dendrograms of 

the GR-28 dataset show two broad clusters, one encompassing all prehistoric assemblages 

(Petras, Livari, Xeropigado, Pella) and the other including the historical materials (Christianoi, 

Eleutherna, Akraiphnio). When using GR-12, the picture obtained is very similar but now the 

Early Bronze Age assemblage from Pella clusters together with the historical materials, which 

is very difficult to explain archaeologically.  

 

These very tentative bioarchaeological results show that MMD and UMD provide largely the 

same information but UMD outperforms the other measures as an unbiased estimator of 
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population divergence, as expected based on the mathematical principles underlying its 

definition. With regard to whether this measure also generates meaningful biodistances, in our 

dataset this is the case; however, further research employing larger and more diverse 

archaeological assemblages which form known biodistance clusters is needed.   

 

Results concerning p-value estimation 

 

The results concerning the p-values are given in Figure 7 and in the Supporting Data S2 and 

Supporting Data S3 and they have been obtained using the simperbinMDs and perbinMDs 

functions. The comparisons between p-values calculated from the test statistics S and T and 

the permutation method reveal the following. There is a characteristic difference between the 

MMD, UMD and the rest of the measures of divergence concerning the pattern of their p-

values. Specifically, when the PMD and LMD take negative values, whereas the corresponding 

MMD, UMD are positive, the p-values calculated from the test statistics S and T are much 

greater that those estimated from the permutation method, which gives p-values similar to those 

corresponding to the MMD and UMD. This is an indication that under these conditions the 

permutation method is more reliable than the test statistics.   

 

In what concerns the MMD and UMD, although the pattern of their p-values is overall the 

same, there are differences in the p-values calculated from the various techniques, i.e. from the 

test statistics S and T, Equations (8) and (9), and the Monte-Carlo permutation method based 

on the S, T and d statistics (Figure 7). Nevertheless, we have not detected significant 

differences between p-values calculated from the test statistics S, T and the permutation 

method, even in the analysis of simulated data with strong intercorrelations. Note that the test 

statistics S and T are valid if the transformed data is nearly normally distributed and all r traits 

are independent. Thus, the comparisons of the p-values do not show which of the techniques 

examined provide the best estimation of the p-value. However, at this point we should clarify 

that the calculation of different p-values for a certain distance when all p-values are, say above 

0.1, is unimportant; on the contrary, it shows that there is no evidence that the distance is 

statistically significant. Similarly, different p-values but all well below 0.05 provide strong 

evidence against the null hypothesis and, therefore, indicate statistical significance since the 

smaller the p-value, the stronger the evidence for statistical significance. Finally, in the limiting 

case where the estimated p-values lie around 0.05, it is up to the researcher to decide about 

distance significance. From this point of view, in most cases concerning the MMD and UMD, 

the differences among the p-values calculated from the various techniques examined in this 

paper are not so substantial to prevent us from reaching safe conclusions about the significance 

of distances under study. In contrast, the estimation of the significance of the computed 

distances based on all techniques provides a more secure result. For the remaining distances, 

the significance should be based mainly on the permutation method. 

 

 

A revision of the data editing procedure 

 

Currently the MMD is usually applied after data editing; naturally, the same could be done for 
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all distances presented above, especially the PMD and LMD. The data editing procedure 

involves the elimination of the following traits from the dataset:  

1. Traits that exhibit only missing values in one or more samples under study.  

2. Traits that exhibit a particularly high (>0.95) or low (<0.05) frequency within one or more 

samples under study.  

3. Nondiagnostic traits, that is, traits that are not significantly different between at least one 

pair of samples (Harris and Sjøvold 2004).  

4. Traits that exhibit a statistically significant intercorrelation with one another (Irish 2010 and 

references therein).  

 

Based on the present study, this procedure should be revised except for the first step since none 

of the measures of divergence described above can be computed if there are traits that exhibit 

only missing values in one or more samples. For the second step, traits that exhibit a 

particularly high or low frequency within one or more samples may cause problems since, apart 

from the untransformed data, all the other expressions for the variance of the transformed data 

are approximately valid within a certain range of p and n values. Thus, the arcsine 

transformation fails for p  0.1 or p  0.9 when n  20, whereas for probit/logit these limits 

become p  0.15 or p  0.85 when n < 30. However, the present study showed that these limits 

may be violated and a measure of divergence can show small biased estimations of the 

population divergence. This is especially true for the MMD. In any case, the second step may 

be revised as follows. We examine whether the distance under examination is a biased or an 

unbiased estimator of population divergence. If it is an unbiased estimator, there is no need to 

delete any traits. If it is a biased estimator, we remove trait(s) starting from those with the 

smallest/highest frequency until we obtain a dataset in which the computed distance is an 

unbiased or nearly unbiased estimator of population divergence. This process may be easily 

implemented using function biasbinMDs.  

 

Concerning the third step listed above, it may be ignored. Nondiagnostic traits may favor the 

appearance of negative MDs. However, the existence of such traits indicates that the 

populations under study are biologically close to each other, whereas their elimination 

enhances the differences between populations, which may yield false conclusions about their 

biodistance. If a researcher wants to avoid negative distance values, Ossenberg et al. (2006) 

offer the best solution. Finally, in what concerns the presence of strongly intercorrelated traits, 

as we found using simulated data, such traits do not yield biased estimations of population 

divergence and do not have a significant effect on the p-values estimated from the S statistic, 

Equation (8), which assumes that all r traits should be independent. Note that in a 2015 study 

it was also shown that the inclusion of intercorrelated traits does not appear to affect the validity 

of the MMD results (Nikita 2015). However, the main reason for many researchers to delete 

intercorrelated traits is that the MMD does not take into account the effect of intercorrelated 

traits on the population divergence. From this point of view, this is a justifiable procedure, 

which, though, as any data elimination approach, may lead to biased MMD values.  
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Conclusions 

 

In the present study we examined three new measures of divergence based on untransformed 

data (UMD) and the logit (LMD) and probit (PMD) transformations. In addition, we examined 

the conventional Smith’s Mean Measure of Divergence (MMD) based on the arcsine 

transformation. The main conclusions that can be drawn are the following: 

1. The UMD based on untransformed data outperforms the other measures. It is an unbiased 

estimator of population divergence and does not exhibit application problems at very low or 

very high frequencies. 

2. The MMD is a satisfactory distance measure for binary data, although its application requires 

a careful test to avoid biased estimations of population divergence when there are small sample 

sizes and many traits with frequencies lower than 0.1.  

3. The UMD and MMD usually give similar information about the relative biodistance and the 

existing patterns and relationships between populations. 

4. The measures of divergence based on the probit and logit transformations are more prone to 

biased estimations of population divergence than the UMD and MMD, especially in datasets 

with small sample sizes and traits with very low frequencies. Since they have no advantage 

over the UMD and MMD, these measures may be considered inappropriate for the study of 

datasets of dental (as well as cranial) traits.  

5. The statistical significance of the estimated distances should be based on both the S and T 

test statistics and the permutation method avoiding assumptions on trait independence and 

normality of transformed/untransformed data. 

6. The conventional data editing procedure should be revised. It should be mainly related to 

the need for a measure of divergence to be an unbiased estimator. If a measure of divergence 

is an unbiased estimator for a certain dataset, there is no need to delete any traits. If though this 

measure is a biased estimator, we remove trait(s) starting from those with the smallest/highest 

frequency until we obtain a dataset in which the computed measure becomes an unbiased 

estimator of population divergence.  
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Tables  

 

Table 1. Percentage of low and high trait frequencies in datasets of dental nonmetric traits 

from Greek archaeological assemblages 

 

Dataset Traits φ0.1  φ0.05 φ0.01 φ0.9  

GR-28 

GR-12 

28 

12 

51.0% 

8.3% 

35.7% 

3.6% 

20.9% 

0 

0 

0 

 

 

Table 2. Summary of data transformations for proportions 

 

Transformation Variance Range 

no transformation  𝑝(1 − 𝑝)/𝑛 Every p, n 

arcsine  1/𝑛 0.1  p  0.9 and n  20 

probit 0.26
𝑝(1 − 𝑝)

+ 0.57

𝑛
≈ 

0.36

𝑝(1 − 𝑝)𝑛
≈

𝜋/8

𝑝(1 − 𝑝)𝑛
 

0.15  p  0.85 and n  30 

logit  1.31
𝑝(1 − 𝑝)

− 1.17

𝑛
≈ 

1.1

𝑝(1 − 𝑝)𝑛
≈

1

𝑝(1 − 𝑝)𝑛
 

0.15  p  0.85 and n  30 
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Figures 

 

 

 
Fig. 1. Plots of simulated vs. calculated variances for untransformed data and data after arcsine, 

probit and logit transformation. 
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Fig. 2. Comparisons of MMDs when estimated on simulated populations () and averaging 

500 distances of samples randomly drawn from these populations (o). Distances have been 

corrected for negative contributions as follows: No correction has been made in (A); the value 

1 has been added to all distances at each trait in (B); and negative trait contributions have been 

transformed to zeros in (C). 
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Fig. 3. Comparisons of the various distance measures when estimated on simulated 

populations, UMD (), MMD (), LMD (), PMD (), and averaging 1000 distances of 

samples randomly drawn from these populations UMD (o), MMD (), LMD (+), PMD (). 

Binary datasets created using r=20, step=0.005, p1=0, p2=0.2, unit correlation matrix (A), and 

symmetric correlation matrix with the strongest positive correlations (B). Population 

size=10000 and sample sizes: (1) 10, (2) 20, (3) 30, (4) 40, (5) 50.  
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Fig. 4. Comparisons of the various distance measures when estimated on simulated 

populations, UMD (), MMD (), LMD (), PMD (), and averaging 1000 distances of 

samples randomly drawn from these populations UMD (o), MMD (), LMD (+), PMD (). 

Binary datasets created using r=20, step=0.005, p1=0, p2=0.2, unit correlation matrix (A), and 

symmetric correlation matrix with the strongest positive correlations (B). Population 

size=10000 and sample sizes: (1) 100, (2) 200, (3) 300, (4) 400, (5) 500. 
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Fig. 5. Comparisons of UMD and MMD when estimated a) on GR-28 and GR-12 datasets of 

binary data (+), b) on the corresponding simulated populations (o), and c) by averaging the 

distances of 1000 samples randomly drawn from the populations (). Population and averaged 

distances are corrected by subtracting the corresponding variances. 
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Fig. 6. Ward’s dendrograms obtained from the UMD and MMD when applied to the GR-28 

and GR-12 datasets.  

Key: 1 = Petras, 2 = Livari, 3 = Xeropigado, 4 = Pella, 5 = Christianoi, 6 = Eleutherna, 7 = Akraiphnio 

 

 
Fig. 7. p-values for the MMD of the GR-12 dataset estimated from test statistics S (o) and T 

() using Equations (8) and (9) and the permutation method using as test statistic the values d 

of the MMD () as well as the test statistics S (+) and T () of Equations (8) and (9), 

respectively. 

 


