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ABSTRACT 

In this paper, we present a methodology for calculating IRC. First, a Merton-type model is 

introduced for simulating default and migration. The model is modified to incorporate 

concentration. The calibration is also elaborated. Second, a simple approach to determine market 

data, including equity, in response to default and credit migration is presented. Next, a methodology 

toward constant level of risk is described. The details of applying the constant level of risk 

assumption and aggregating different subportfolios are addressed. Finally, the empirical and 

numerical results are presented. 
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1 Introduction 

The Basel Committee on Banking Supervision requires banks to compute Incremental Risk 

Charge (IRC) as a supplemental to value as risk. IRC is part of the new rules developed in response 

to the financial crisis. 

IRC captures the loss due to default and migration events at a 99.9% confidence level over 

a one-year capital horizon. The liquidity of position is explicitly modeled in IRC through liquidity 

horizon and constant level of risk. 

The constant level of risk assumption in IRC reflects the view that securities and 

derivatives held in the trading book are generally more liquid than those in the banking book and 

may be rebalanced more frequently than once a year (see Aimone [2018]).   

IRC assumes a constant level of risk over a one-year capital horizon which may contain 

shorter liquidity horizons. This constant level of risk assumption implies that a bank would 

rebalance, or rollover, its positions over the one-year capital horizon in a manner that maintains the 

initial risk level, as indicated by the profile of exposure by credit rating and concentration. 

This paper proposes a methodology consisting of two Monte Carlo simulations. The first 

Monte Carlo simulation simulates default, migration, and concentration in an integrated way. 

Combining with full re-valuation, the loss distribution at the first liquidity horizon for a subportfolio 

can be generated. The second Monte Carlo simulation is the random draws based on the constant 

level of risk assumption. It convolutes the copies of the single loss distribution to produce one year 

loss distribution. The aggregation of different subportfolios with different liquidity horizons is 

addressed. Moreover, the methodology for equity is also included, even though it is optional in 

IRC. 

 

2 Simulation of Default and Credit Migration 

2.1 Simulation Model 
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Most of the portfolio models of credit risk used in the banking industry is based on the 

conditional independence framework. In these models, defaults and credit migration of individual 

borrowers depend on a set of common systematic risk factors describing the state of the economy. 

Merton-type models have become very popular. The Merton-type model (or standardized Merton 

model) is 
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where 

 i,   The independent standard normally random variables 

    The systematic risk 

 i   The idiosyncratic risk for issuer/obligor i 

i  The weighted correlation reflecting the impact of systematic risk factor 

on issuer/obligor i.  

iz  The normalized asset return or creditworthiness indicator for 

issuer/obligor i 

This model becomes the most popular one in default and migration risk modeling and 

yields the core of the Basel II capital rule (see Heitfield [2003]). 

The IRC encompasses all positions subject to a capital charge for specific interest rate 

risk according to the internal models with exception of securitization and nth-to-default credit 

derivatives. Equity is optional. For IRC-covered positions, the IRC captures default risk and 

credit migration risk only. 

2.2 Simulation model for multiple-liquidity-horizon subportfolios 

Liquidity horizons are determined for each position to reflect actual practice and 

experience during periods of both systematic and idiosyncratic stresses. The total portfolio shall be 

divided into the subportfolios based on different liquidity horizons. Let’s assume that there are two 



 4 

subportfolios with different liquidity horizons: 3 month and 6 month. To model different liquidity 

periods, one can use the above model (3) but calibrate different i ’s, such as, im _3  and im _6 , 

for different periods. 

  Alternatively, one can also use a multiple-period model as: 
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where i  is unique for different periods under issuer i and   is an exponentially declining weight 

(see Dunn [2008]). 

2.3 Calibration of i  

The most popular approaches to calibrate the asset correlation are Maximum Likelihood 

Estimation or regression based on time series default data. Alternatively, in the new Basel Capital 

Accord, a formula for derivation of risk weighted asset correlation for corporate, sovereign, and 

bank exposures is given as (see Tasche [2004] and Basel [2003]): 
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2.4 Concentration 

The phenomenon we need to model is that concentration will result a higher IRC number, 

comparing to non-concentration case. Furthermore, the more concentration a portfolio has, the 

higher IRC result it generates. To achieve this, we model the effect of issuer and market 

concentration as well as clustering of default and migration by introducing another parameter, the 

concentration parameter.   

Our methodology is based on a simple mechanism for coupling issuer/market 

concentrations to migrations and defaults. In the simulation framework (3) or (4) and (5), the 
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probability of a migration or default increases with the asset volatility.  Since the effect of 

increasing concentration within a sector is to increase the probability of migration/default events 

within that sector, we model increased concentration as an increase in the volatility of the 

systematic risk driver.  All positions sensitive to that risk driver will have an increased probability 

of migration/default events occurring. The modified simulation model is 

iitiiiz 
2

1)||1( −++=     (7a) 

Where i  is the weighted concentration factor depending on correlation between issuer default 

and migration events and  
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where if one uses (3),   = 0 and  == tt x . Otherwise,   is time declining weight and 

ktt xx −,,  are independent standard normally random variables representing systematic risks in 

different time periods. 

2.5 Calibration of i  

The calibration is based on credit migration matrix. It can be derived using either analytic 

closed-form or Monte-Carlo simulation. In theory, one can use Pearson’s product moment or 

Kendall’s  . 

2.6 Determination of default and credit migration 

The simulated asset return iz , combined with migration/default thresholds, is used to 

ascertain when default or migration is deemed to occur. The calculation of the thresholds of credit 

migration and default is based on credit migration probability (see JP Morgan [1997]). Using a 

BBB issuer as an example and given migration matrix, we can calculate the thresholds as: 

BBB
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BBB

A
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BBB

BBB

BB

BBB

B

BBB

CCC

BBB

D zzzzzzz ,,,,,, . The rating bands and thresholds are shown in Figure 1 
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Figure 1 Credit migration rating thresholds (for BBB) 
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2.7 Calibration of transition matrix, default probability (PD), and loss given 

default (LGD) 

The straight forward cohort approach is used to estimate transition matrices based on 

obligors’ rating history, which has become the industry standard. The PD estimate is based on EDF 

data that is used for calculation of PD benchmarked against internal default history. Internal data 

is used for LGD parameter benchmarked against relevant external proxy data. 

 

3 Constant Level of Risk 

The constant level of risk reflects recognition by regulators that securities/derivatives held 

in the trading book are generally much more liquid than those in the banking book, where a buy-

and-hold assumption over one year may be reasonable. It implies that IRC should be modeled under 

the assumption that banks rebalance their portfolio several times over the capital horizon in order 

to maintain a constant risk profile as market conditions evolve.  

There are several ways to interpret constant level of risk: constant loss distribution or 

constant risk metrics (e.g. VaR). We believe the constant loss distribution assumption is the most 

rigorous. Under this assumption, the same metrics (e.g. VaR, moments, etc.) can be achieved for 

each liquidity horizon.  

The liquidity horizon for a position or set of positions has a floor of three months. Let us 

use three months as an example. We interpret constant level of risk to mean that the bank holds its 

portfolio constant for the liquidity horizon, then rebalances by selling any default, downgraded, or 

upgraded positions and replaces them so that the portfolio is returned to the level of risk it had at 

the beginning. The process is repeated 4 times over the capital horizon resulting 4 independent and 

identical loss distributions.  

An intuitive explanation is shown in Figure 2. A generic path with appears in red; P&L 

contributions from each liquidity horizon appear in blue. In this schematic, the position experiences 
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downgrade, upgrade or default, resulting in a loss or profit.  This position is then removed and 

replaced at the end of each liquidity horizon by rebalancing. The final P&L for the path will be the 

summary of all losses and profits. 

In addition, one needs to consider the reinvestment of all cash flows realized during the 

liquidity horizon and rollover of expired deals. 

 

4 Aggregation and Time Horizon Correlation 

First we need to divide the portfolio into the subportfolios based on liquidity horizons. If 

there is only one single-liquidity-horizon subportfolio, the rebalance at the end of each liquidity 

horizon washes out the time horizon correlation. However, if there are multiple subportfolios, the 

time horizon correlations need to be addressed. 

To elaborate the details, we assume there are two subportfolios with liquidity horizons: 3 

months and 6 months. Based on the default and migration simulation and full re-valuation, we can 

generate loss distributions at first liquidity horizons for 3-month and 6-month subportfolios as 

mPL3 , and mPL6 . 

There are two approaches to achieve the correlative aggregation: copula approach or 

correlation matrix approach.  

4.1 Copula approach 

We conduct the second Monte Carlo simulation by generate 4 standard normal random 

draws for scenario j: 
jjjj xxxx 4321 ,,., . These random draws represent a Monte-Carlo path. 

4.1.1 Three-month Subportfolio 

The P&L distribution of three-month subportfolio is mPL3 . The four draws of loss 

distribution are ( ) ( ) ( ) ( ))(,)(,)(,)( 43332313

j

m

j

m

j

m

j

m xPLxPLxPLxPL  , where   is the 

accumulative normal. The total P&L of the three-month subportfolio for scenario j is 
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4.1.2 Six-month Subportfolio 

The P&L distribution of the six-month subportfolio is mPL6 . We can calculate correlation 

),( 63 mm PLPL  between mPL3  and mPL6  using Pearson product-moment. The two correlated 

random draws are 
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mm xPLxPL  . The total P&L of the six-month subportfolio for scenario j is 
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Summing up (18) and (19), we can get the total P&L for scenario j as 

  
j

mtotal

j

mtotal

j

total PLPLPL 3_6_ +=     (20) 

4.2 Correlation matrix approach 

Based on the four 3-month independent identical loss distributions: 

mmmm PLPLPLPL 3333 ,,, , and two 6-month independent identical loss distributions: 

mm PLPL 66 , , we can construct a 66  pair-wise sample correlation matrix  . Applying the 

Cholesky decomposition to the correlation matrix  , we have 
TLL= , where L  is a lower 

triangular matrix.  

We conduct the second Monte Carlo simulation by generating 4 independent standard 

normal random draws: 
jjjj xxxx 4321 ,,.,  for the four 3-month periods in a year and 2 independent 

standard normal random draws 
jx5 , 

jx6  for the two 6-month periods to construct a path/scenario j. 
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The random draw vector is  jjjjjj xxxxxxX 654321= . We can obtain correlative random 

draw vector  

 jjjjjj xxxxxxX 654321
~~~~~~~

=  by 
TT XLX =

~
   (21) 

The total P&L for scenario j is 
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The final IRC will be 99.9% VaR based on distribution 
j

totalPL . In general, the correlation 

matrix approach is more generic and can be easily extended to any number of subportfolios. 
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