Deep Learning Bootcamp: Training of Neural Networks

Technische Hochschule Ingolstadt

’ &
Kl-basierte Optimierung in der

Automobilproduktion TechnischeHochschule
Ingolstadt

Introduction

Training of Neural Networks +i

" Recap: Our model should classify (new) data correctly
" We want accuracy as a metric to evaluate the performance of our model

But:

model.compile(optimizer="adam', Loss="sparse_categorical crossentropy' metrics=["'accuracy'])

— During training, we don‘t maximize accuracy, we minimize a loss
function!

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 3

Loss functions

What is a loss function?

" |t quantifies how bad our model‘s predictions are
- We want to minimize the loss of our model!

1n

MAE=—E — v,
" | yil
=1

MSE = 1271: 2
_"-1(Vi)
1=

=" Examples:

Lecture 2 — Feedforward Deeb Learning Bootcam
Networks P J P

/Yi

—-————

How can we optimize the parameters?

Loss functions w +i

What is the relationship between model parameters and the loss value?
- Example: We can control slope w and intercept b of our linear decision
function (y = wx + b)

v

Positivew, b = 0

Slightly positive w, positive b
ShHY P P - No loss

Negative w, positive b = High loss > smaller loss

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 6

Loss functions +i

If we plot the previous example, we can approximate a landscape:

Loss
L LT
I\ Slightly positive w, positive b
- smaller loss
P
L L
-+ Slope w
Negative w, positive b
—> High loss
Positive w, b = 0 .
- No loss 4
L L

Intercept b

v

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 7

Intuition: Optimization in a Loss Landscape

" We want to choose the parameters of
our model such that the loss value is
minimal

" Intuition: We want to roll down a
mountain

" An optimization algorithm can‘t see
the ,landscape® it must perceive the
slope through the gradient

Lecture 2 — Feedforward Networks Deep Learning Bootcamp 8

Partial Derivatives (1/2) * '.

We want to know how much the change of a single parameter influences
the function value

v "
o C & B
Lt Lt ¥ &
Positive w, b = 0 Largerw, b = 0 Smallerw, b =0

’ y w y w y
g LB y

S

Lecture 2 — Feedforward .
Networks Deep Learning Bootcamp 10

Partial Derivatives (2/2) * '.

We want to know how much the change of a single parameter influences
the function value

o
R gk
L * 5
w fixed, b =0 ' w fixed, Larger b w fixed, Smaller b

’ y w y w y
g LB y

S

Lecture 2 — Feedforward Deeb Learnine Bootcam 11
Networks P & P

A visualization of the training process

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 13

After many more iterations ...

wy is finally < 0 but that took a while!

wo [519

w1 [1 54
Loss (MSE)[L22 |

dLoss /d WO[F0.47 |

dLoss/d W1[0.09 |

Learning rate[0.1 |

| Single gradient step |

| Ngradient steps |

First, only wy was adjusted, then
w; (very slowly)

Lecture 2 — Feedforward
Networks

y = w0 + wl*x

Trained model

5.0

2.5 1 JT

0.0
2.5 A L*
-504
-7.5

—10.0 1 x
0.0 25 5.0 7.5 10.0
X

Loss Surface (contour)

Loss(wO,w1)

very small gradients

Loss for w0 in 1D

Loss Surface

Deep Learning Bootcamp

Loss for wl in 1D

c)cl)_oss development over time

Loss

2000

1500 -

1000 +

500 -

0_

0

10 20 30
Iterations (time)

14

Let’s try it out!

Try to find an optimal solution by

adjusting the parameters! /

0 500 1,000 1,500 2,000 2.500

https://jalammar.github.io/visual-
interactive-guide-basics-neural-
networks/#train-your-dragon Weight < ’

Error

Lecture 2~ Feeﬂic;\r’vvxéa;rkci Deep Learning Bootcamp 15

https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/#train-your-dragon

Partial Derivatives and the Gradient

Differentiate a function with multiple variables for each in turn.
Collect results in a vector (,,the gradient®).

L(wy,wy) = 3wZ + wyw, — 1

oL 6w, +)
— = 6w w
ow, 1 2
partial derivatives
oL (“Partielle Ableitungen”)
GWZ j
6w, + WZ]
= V. = [-
X Wy gradient

(“Gradient”)

Lecture 2 — Feedforward

' 16
Networks Deep Learning Bootcamp

Idea: Gradient Descent

Determine the rate of change of our loss function . with respect to a parameter’s change

1. ,Increasing w; a little bit will increase the loss a little bit” — so decrease w;!
2. ,Increasing w; a little bit will decrease the loss a little bit” — so increase w;!
sl
2 Formally:
. oL oL
L(w)) find — and update w; « w; — a—
0 1 aWj awj

o -
- a is called the
,learning rate”

T T T T T T T T T ;
-2 -1 0 1 2 3 4 5 6 W]

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 17

Loss functions

Why don‘t we maximize accuracy directly?

* We use gradient-based optimization techniques
—The metric that should me optimized must be differentiable

e Accuracy is not differentiable (sudden jumps)

B
Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 18

Self-Study Time

Losslandscape Explorer:
https://losslandscape.com/explorer

= Use these icons to get informations
about what you see, change the
.
‘0‘]1{ landscape or take screenshots!
TURN
Tasks:
» Play around with the different visualizations on the site . : :

Use these icons to experiment with

the plotted landscape

» Take screenshots of landscapes you like

Lecture 2 — Feedforward Networks Deep Learning Bootcamp 19

https://losslandscape.com/explorer

How can we calculate the gradient of a Neural network?

More complicated data sets

Largerw, b = 0

— We need non-linear decision functions

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 21

Deriving Neural Networks +i

» Essentially, Neural Networks are huge functions with thousands of parameters

* Neural Networks are a chain of simpler functions: f(") (f("_l) (f('")(fo(xl, ...,xm)))) -

Neural Network with n layers and m variables

* Our graphical representation as network makes it easier to understand
* Can we use this simpler representation for deriving the network?

- YES! It will be more detailed, though

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 22

What neural networks are capable of

Figure 5.3 lllustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(x) = =2, (b)
flx) = sin(z), (¢), f(z) = [z,
and (d) f(x) = H(x) where H(x)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in = over the interval
(—1,1) and the corresponding val-
ues of f(x) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three dashed curves.

[Bishop, PRML 2006]

B
Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 23

Computational Graphs +i

Example: L(w,b) = 2w + 3b + 4

Forward pass

10

22 26

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 25

Training Algorithm For A Neural Network — High-Level +i

Initialization: set all parameters (weights, biases) to small values

for every epoch, for every instance:

1. Forward pass:
— Determine the current prediction y = f(x) for a training instance (x, t(x))
— Evaluate the loss L(y, t(x))

2. Backward pass:
— Determine the partial derivatives

oW for every weight and bias :

3. Gradient update:
— Update weights and biases (take a gradient step)

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 26

How do we get gradients?

(1) manually working out derivatives and coding them;

— error-prone, does not scale well for large networks

(2) numerical differentiation using finite difference approximations;

— imprecise and computationally expensive! Requires evaluating f(x + €) — f(x)
for every parameter w;!

(3) symbolic differentiation using expression manipulation in computer algebra
— complex and cryptic expressions; require closed-form equations

[Automatic Differentiation in Machine Learning: A Survey; Baydin, Pearlmutter, Radul, and Siskind; 2018]
I E——
Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 27

Computational Graphs

@
Multiplication ~ Gradient switcher * '

Forward pass a ‘>‘

Backward pass o(a,b) =a-b
6
—_— —
_
0(50) _
do 5 af
00

b \
of B
T 5.2=10
_—
%_%% e.g. f(0o) =50

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 28

Computational Graphs: Addition

Forward pass

Backward pass

a

of 0f do
ob Jdodb

yLocal gradient”

Addition ~ Gradient distributor

o(a,b) =a+b
5
e ——
—
a(asoo):5 8f
do

,Global gradient”

e.g. f(0o) =50

Lecture 2 — Feedforward
Networks

Deep Learning Bootcamp

29

Computational Graphs +i

Example: L(w,b) = 2w + 3b + 4

Forward pass

Backward pass

10

22 26

3

Lecture 2 — Feedforward .
Networks Deep Learning Bootcamp 30

Finding the gradients in the backward pass +i

Solution Recipe for a ,,Gradient Tape“:

1. Start with the final node f and set its

gradient to 1 (since Z—; = 1)

2. Traverse all the operation nodes in the
opposite order of the forward pass

3. Perform the local gradient multiplication
at every node

= You can be sure to have already calculated

Z—g for all the outgoing nodes

Lecture 2 — Feedforward

. 31
Networks Deep Learning Bootcamp

Computational Graphs +i

Example: L(w,b) = 2w + 3b + 4

Forward pass

Backward pass

5
w

2 2 10

5 1
22 n 26
I >
b 12
e.g. global gradient equals 1

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 32

Computational Graph of a Single Neuron

3
f(wy, Wy, wy; x4, X) = max (z wixi,0>
i=1

1
0.8
-1
X1
0.5
1
X2
-0.2

-2 -1 0 1 2

1

f(a) = max(a, 0)

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 33

A modern definition of deep learning ...

f5™ Yann LeCun
' 24, Dezember 2019 - {_q

Some folks still seem confused about what deep learning is. Here is a definition:

DL is constructing networks of parameterized functional modules & training them
from examples using gradient-based optimization. That's it.

This definition is orthogonal to the learning paradigm: reinforcement, supervised,
or self-supervised.

Don't say "DL can't do X" when what you really mean is "supervised learning needs
too much data to do X"

Extensions (dynamic networks, differentiable programming, graph NN, etc) allow the
network architecture to change dynamically in a data-dependent way.

FYI: https://en.wikipedia.org/wiki/Yann_LeCun

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 34

Deep Learning — Turing Award (“Nobel prize of computer science”) +i

Yoshua Bengio Geoffrey Hinton Yann LeCun

2018 ACM Turing Award for Deep Learning

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 35

Test your understanding: Computational Graphs +i

3 4
f(y W2, y X ;xzyx):<z_ Wixi>
t=1 Forward pass

~ Backward pass

@

vOUR TURN

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 36

Computational Graphs

4
3
f(yWo, W3, X 1x21x3) — (2 Wixi>
i=1

Forward pass

2
X
1 32) Backward pass
64
3
2 > . >
TRV A
96 e.g. global gradient equals 1
dz* 43
-1 dz = 47
X3 Yy > 4-(2)3 =32

Lecture 8 - Neural Networks M-APE: Introduction to Artificial Intelligence and Neural Networks 37

Computational Graphs in PyTorch

import torch

x = torch.tensor([2., 3., -1.], requires grad = True)
w = torch.tensor([1., 2., 6.], requires grad = True)
z = torch.dot(x,w)

f = torch.pow(z,4)

print(f)

tensor(16., grad fn=<PowBackwarde>)

f.backward()
print(x.grad)
print(w.grad)

tensor([32., 64., 192.])
tensor([64., 96., -32.])

Lecture 8 - Neural Networks M-APE: Introduction to Artificial Intelligence and Neural Networks 38

Efficient Gradient-based optimizers

Task

Have a look at:
https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

* What can you see? What are the differences between the trajectories?

Optimization Algorithms Visualization @
aa
|

Lecture 2 — Feedforward
Networks

Deep Learning Bootcamp 40

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

Our test optimization landscape

The same as https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

Lecture 2 — Feedforward

. 41
Networks Deep Learning Bootcamp

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

Problems for local gradient-based search

Local Minima Saddle points

o

— Gradient gets close to O

— Little progress in terms of learning

— Saddle points more common (and problematic) than local
minima (esp. in high dimensions)

[Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional nonconvex optimization”, 2014}
I —
Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 42

Gradient descent with momentum

15

05

-15
2.0

Standard Gradient Descent Momentum: Tries to accelarte,
similar to a ball rolling down a hill

[Ruder, “An overview of gradient descent optimization algorithms”, 2017]
[Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013]

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 43

Sidenote for stochastic gradient descent

for i in range (nb_epochs):
np.random.shuffle (data)
for example 1in data:

params_grad = evaluate_gradient(loss_function, example, params)
params = params - learning_rate * params_grad
Wo | Wy | Wy | W3 [wy Wo | Wy | Wy | W3 | Wy
¥ *» ||~ | L AR E SRR
I T I I

L IS S

aL“ aL‘ - | »
ow bl il gl ow $ |-

»Stochastic gradient descent (SGD)“ »Batch gradient descent “

[Ruder, “An overview of gradient descent optimization algorithms”, 2017]

Lecture 2 — Feedforward -
Networks Deep Learning Bootcamp a4

AdaGrad

AdaGrad Standard GD

Problem: Sometimes we have huge (>1000%)
differences in gradients
- We want to normalize gradients

Progress along “steep” directions is damped;

Progress along “flat” directions is accelerated;

But what happens over the course of training?

Step sizes keep decreasing ...

[Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”, 2011]
I E——
Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 45

RMSProp

AdaGrad RMSProp Standard GD

Fixes a detail of AdaGrad: AdaGrads leads to
very small update steps with increasing training
duration because it accumulates gradient steps

- Normalize gradients by a moving average of
squared gradients (the root of it, hence RMS)

Can‘t we combine this idea with momentum?

[Tieleman and Hinton, 2012]

Lecture 2 — Feedforward

Networks Deep Learning Bootcamp 46

Adam (=, Adaptive Miomentum Optimizer")

AdaGrad RMSProp Adam Standard GD

Combines Ideas from multiple Optimizers:

Building momentum (GD+Momentum)
First moment

Normalizing by squared gradient (AdaGrad,
RMSProp) Second moment

[Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015]

Lecture 2 — Feedforward

| 47
Networks Deep Learning Bootcamp

Take away messages

* We use gradients to optimize our models w.r.t. to a performance measure

* Because our performance measure has to be differentiable, we cannot use
accuracy directly. Instead, we have to use a differentiable loss function

* To calculate the gradient of a neural network, we use the backpropagation
algorithm. It's based on representing our model as a computational graph

* There exist many heuristics for achieving good optimization trajectories. Some
are based on natural counterparts, e.g. momentum

Lecture 2 — Feedforward

. 48
Networks Deep Learning Bootcamp

	Deep Learning Bootcamp: Training of Neural Networks
	Foliennummer 2
	Training of Neural Networks
	Loss functions
	Foliennummer 5
	Loss functions
	Loss functions
	Intuition: Optimization in a Loss Landscape
	Partial Derivatives (1/2)
	Partial Derivatives (2/2)
	A visualization of the training process
	After many more iterations …
	Let‘s try it out!
	Partial Derivatives and the Gradient
	Idea: Gradient Descent
	Loss functions
	Self-Study Time
	Foliennummer 20
	More complicated data sets
	Deriving Neural Networks
	What neural networks are capable of
	Computational Graphs
	Training Algorithm For A Neural Network – High-Level
	How do we get gradients?
	Computational Graphs
	Computational Graphs: Addition
	Computational Graphs
	Finding the gradients in the backward pass
	Computational Graphs
	Computational Graph of a Single Neuron
	A modern definition of deep learning …
	Deep Learning – Turing Award (“Nobel prize of computer science”)
	Test your understanding: Computational Graphs
	Computational Graphs
	Computational Graphs in PyTorch
	Foliennummer 39
	Task
	Our test optimization landscape
	Problems for local gradient-based search
	Gradient descent with momentum
	Sidenote for stochastic gradient descent
	AdaGrad
	RMSProp
	Adam (= „Adaptive Momentum Optimizer“)
	Take away messages

