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Motivation



Image Recognition: Classification Based On Images

IMAGENET

ImageNet Large Scale Visual Recognition Challenge
— Established 2010
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ImageNet

* ImageNet database: https://image-net.org/

* Consists of >14 Million annotated images of >20 000 categories

* ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

— Uses 1000 classes
— Widely used as a benchmark for model architectures

— Famous architectures designed for ILSVRC:
— Pascal VOC, Alexnet, Inception, ResNet

* Well-performing models must be able to differentiate a huge variety of
different image classes

Lecture 4 — Transfer Learning Deep Learning Bootcamp 4


https://image-net.org/

ImageNet

How are well-performing architectures developed?

e Usually: gradual improvements of previous approaches

 Some creativity and good ideas (batch-norm, gradient flow, residual
connections)

* Mostly: Huge amounts of data, Tons of computational power and time!

-2 It is very hard to discover/train similar performing architectures without
the resources of Google, Facebook, ...

- Idea: let’s use their work to solve our simpler problem!
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Transfer Learning



Transfer Learning - Definition

* We want to use existing well-working approaches and trained models to
a problem to solve a different, but related problem

e Usually: We want to transfer general knowledge to a more specific task

 Examples:
* Dogs vs. Cats = Giraffes vs Elephants
* Handwritten characters = Handwritten digits
* ImageNet = Nearly every other image recognition task

Unambiguous Ambiguous whether to Unambiguous no
defect (y=1) classify as defect defect (y=0)
All labelers Even expert labelers All labelers

will agree disagree will agree
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Convolutional Neural Nets are Feature Extractors

Low level features Mid level features High level features
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[Lee et. al, ICML 2009]
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Transfer Learning — How can it work?

* Trained CNNs are excellent feature extractors

* Their way of feature extraction is similar to the
human’s visual system

* They extract meaningful representations from
images, which makes classification easier

* Because the models are already pretrained, we need
less data! The models are already ,,able” to
* Detect edges
* Detect squares ...
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Transfer Learning - Usage

* Because of its huge variety, model architectures trained on ImageNet
data are very often capable of solving a more special task

i We change the last
?
* How can we use these architectures- layer of this part

We want to keep this \
part (here Iies the Input: 299x29913.f‘lulput.ﬂxﬁﬂﬂdﬁ

,intelligence®). This
includes the trained 1
CTE RO
: I I : : I 3
Convolution Input: Cutput:

AvgPool 299x299x3 Bx8x2048

M:g;{PT}%I Final part:8x8x2048 -> 1001
Concat
Dropout

Fully connected
Softmax

-+

From: https://cloud.google.com/tpu/docs/inception-v3-advanced?hl=de
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Transfer Learning

2. Fine-tune: Train the last

1. Train on large data set
layer(s) for c custom classes

(or even pre-trained net)

| FC-1000 | FC-C

FC-4096 e g g

\ Reinitialize
I FC-4096 I I FC-4096 I . .
this and train

__MaxPool _| |__MaxPool |
I Conv-512 I I Conv-512 I
| Conv-512 | | Conv-512 |
| MaxPool | |__MaxPool |
| Conv-512 | Conv-512
| Conv-512 | | Conv-512 I
|__MaxPool | |__MaxPool | > Freeze these

Conv-256 Conv-256
| Conv-256 | | Conv-256 I
[ WaxPool _| [ WaxPool _|
I Conv-128 I Conv-128
| Conv-128 | | Conv-128 |
| MaxPool | | MaxPool |
I Conv-64 I | Conv-64 |
| Conv-64 | |__Conv-64 | )
|___Image | |__Image |
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Later layers act as good feature extractors

Freezing means not updating the weights (even
if you would get gradients from backprop).

impoxrt torchvision.models as models

resnetl8 = models.resnetl8(pretrained=True)

alexnet = models.alexnet(pretrained=True)

squeezenet = models.squeezenetl O(pretrained=True)

vggle = models.vggl6 (pretrained=True)

densenet = models.densenetl16l(pretrained=True)

inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)

shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnexth0_32x4d = models.resnextb0_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnetb50_2(pretrained=True)
mnasnet = models.mnasnetl_0O(pretrained=True)
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Transfer Learning - Usage

e How can we use these architectures?

tf.keras.applications.InceptionV3(

include top=True,

weights-"imagenet", Usually, we use pretrained models and keep the weights
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000, We only change the final layer

classifier activation="softmax", (,where the decision happens®)
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Examples



Transfer Learning ’ '.

* Transfer Learning is not just in image classification a viable strategy

* Example: Classification of sensor values:
* Usually: You design a model architecture specifically for [n_sensors, 1]
sized inputs
* It can be worth to try out a naive transfer learning approach
* Try to resize your input into [x, y, 1] and act like it’s a pictures
* Chances are high that this will work well
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26th CIRP Life Cycle Engineering (LCE) Conference
Explainable Convolutional Neural Network for Gearbox Fault Diagnosis

John Grezmak 2, Peng Wang ?, Chuang Sun °, and Robert X. Gao **
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2446 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 4, APRIL 2019 @

- . - - - Original Signal
Highly Accurate Machine Fault Diagnosis Using TR |
. VWA
Deep Transfer Learning |
Siyu Shao @, Student Member, IEEE, Stephen McAleer ©, Rugiang Yan ©, Senior Member, IEEE, Time Frequency Distribution
and Pierre Baldi ¥, Fellow, IEEE
ImageNet
dataset
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Fig. 4. Experimental facility. (1) Opera meter. (2) Induction Motor. (3) (C <
Bearing. (4) Shaft. (5) Loading Disc. (6) Driving Belt. (7) Data Acqui- [E
2

e ——

——

——

sition Board. (8) Bevel gearbox. (9) Magnetic Load.(10) Reciprocating
Mechanism. (11) Variable Speed Controller. (12) Current Probe [23].
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Examples: Crack detection

|
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5" convolution layer 4™ convolution layer 3" conuolution layer

[Pre-Processing-Free Gear Fault Diagnosis Using Small Datasets with Deep Convolutional Neural Network-Based Transfer Learning, Cao et a., 2017]
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lllustration of Transfer Learning for Gear Fault Diagnosis
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[Pre-Processing-Free Gear Fault Diagnosis Using Small Datasets with Deep Convolutional Neural Network-Based Transfer Learning, Cao et a., 2017]
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Transfer Learning — Wrap up

* Take away message: Most of the time, pretrained models are an excellent
starting point for many (image) classification tasks

* |If you are faced with a classification problem, you should try a transfer
learning approach first
* Look at “model zoos”

* |f you only have a small amount of data, transfer learning is often your best
chance!

import torchvision.models as models
resnetl8 = models.resnetl8(pretrained= )
alexnet = models.alexnet(pretraineds= )

. . . squeezenet = models.squeezenetl O(pretrained=
* Even extremely naive approaches work more often than you might think e = e e :
densenet = models.densenetl6l(pretrained= )
inception = models.inception_v3(pretrained= )
googlenet = models.googlenet(pretrained= )
shufflenet = models.shufflenet_v2 x1_0(pretrained= )
mobilenet = models.mobilenet_v2(pretrained= )
Tesnext50_32x4d = models.resnext50_32x4d(pretrained= )
wide_tesnet50_2 = models.wide_tresnet50_2(pretrained= )
mnasnet = models.mnasnet1l_0(pretrained= )

https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d
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