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Introduction



Training of Neural Networks

Recap: Our model should classify (new) data correctly
We want accuracy as a metric to evaluate the performance of our model

But:

 During training, we don‘t maximize accuracy, we minimize a loss 
function!
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Loss functions

What is a loss function? 

 It quantifies how bad our model‘s predictions are
We want to minimize the loss of our model!

 Examples: 
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How can we optimize the parameters?



Loss functions

What is the relationship between model parameters and the loss value? 
Example: We can control slope 𝑤𝑤 and intercept 𝑏𝑏 of our linear decision 
function (𝑦𝑦 = 𝑤𝑤𝑤𝑤 + 𝑏𝑏)
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Negative 𝑤𝑤, positive 𝑏𝑏 High loss Slightly positive 𝑤𝑤, positive 𝑏𝑏
 smaller loss

Positive 𝑤𝑤, 𝑏𝑏 = 0
 No loss

𝑤𝑤 and 𝑏𝑏



Loss functions

If we plot the previous example, we can approximate a landscape:
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Loss

Intercept 𝑏𝑏

Slope 𝑤𝑤
Negative 𝑤𝑤, positive 𝑏𝑏
 High loss

Positive 𝑤𝑤, 𝑏𝑏 = 0
 No loss

Slightly positive 𝑤𝑤, positive 𝑏𝑏
 smaller loss



Intuition: Optimization in a Loss Landscape

We want to choose the parameters of 
our model such that the loss value is 
minimal

 Intuition: We want to roll down a 
mountain

An optimization algorithm can‘t see 
the „landscape“, it must perceive the 
slope through the gradient
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Partial Derivatives (1/2)

We want to know how much the change of a single parameter influences 
the function value
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Positive 𝑤𝑤, 𝑏𝑏 = 0 Larger 𝑤𝑤, 𝑏𝑏 = 0 Smaller 𝑤𝑤, 𝑏𝑏 = 0

𝑤𝑤
𝑏𝑏

𝑤𝑤
𝑏𝑏

𝑤𝑤
𝑏𝑏



Partial Derivatives (2/2)

We want to know how much the change of a single parameter influences 
the function value
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𝑤𝑤 fixed, 𝑏𝑏 = 0 𝑤𝑤 fixed, Larger 𝑏𝑏 𝑤𝑤 fixed, Smaller 𝑏𝑏

𝑤𝑤
𝑏𝑏

𝑤𝑤
𝑏𝑏

𝑤𝑤
𝑏𝑏



A visualization of the training process
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After many more iterations … 
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𝑤𝑤1 is finally < 0 but that took a while!
very small gradients

First, only 𝑤𝑤0 was adjusted, then
𝑤𝑤1 (very slowly)



Let‘s try it out!

Try to find an optimal solution by 
adjusting the parameters!

https://jalammar.github.io/visual-
interactive-guide-basics-neural-
networks/#train-your-dragon
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https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/#train-your-dragon


Partial Derivatives and the Gradient

Differentiate a function with multiple variables for each in turn.
Collect results in a vector („the gradient“).

𝐿𝐿 𝑤𝑤1,𝑤𝑤2 = 3𝑤𝑤12 + 𝑤𝑤1𝑤𝑤2 − 1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

= 6𝑤𝑤1 + 𝑤𝑤2

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤2

= 𝑤𝑤1

⇒ 𝛻𝛻𝒙𝒙 = 6𝑤𝑤1 + 𝑤𝑤2
𝑤𝑤1
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partial derivatives
(“Partielle Ableitungen”)

gradient
(“Gradient”)



Determine the rate of change of our loss function 𝐿𝐿 with respect to a parameter‘s change
1. „Increasing 𝑤𝑤𝑗𝑗 a little bit will increase the loss a little bit“  so decrease 𝑤𝑤𝑗𝑗!
2. „Increasing 𝑤𝑤𝑗𝑗 a little bit will decrease the loss a little bit“  so increase 𝑤𝑤𝑗𝑗!

Idea: Gradient Descent
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𝐿𝐿(𝑤𝑤𝑗𝑗)

𝑤𝑤𝑗𝑗

Formally:
find  𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗
and update  𝑤𝑤𝑗𝑗 ← 𝑤𝑤𝑗𝑗 − 𝛼𝛼 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗

𝛼𝛼 is called the 
„learning rate“



Loss functions

Why don‘t we maximize accuracy directly?

• We use gradient-based optimization techniques 
The metric that should me optimized must be differentiable

• Accuracy is not differentiable (sudden jumps) 
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Self-Study Time

Tasks:
 Play around with the different visualizations on the site

 Take screenshots of landscapes you like
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Losslandscape Explorer: 
https://losslandscape.com/explorer

Use these icons to get informations
about what you see, change the
landscape or take screenshots!

Use these icons to experiment with
the plotted landscape

https://losslandscape.com/explorer


How can we calculate the gradient of a Neural network?



More complicated data sets
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Larger 𝑤𝑤, 𝑏𝑏 = 0

We need non-linear decision functions



Deriving Neural Networks

• Essentially, Neural Networks are huge functions with thousands of parameters

• Neural Networks are a chain of simpler functions: 𝑓𝑓 𝑛𝑛 (𝑓𝑓 𝑛𝑛−1 𝑓𝑓 … 𝑓𝑓0 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 )
Neural Network with 𝑛𝑛 layers and 𝑚𝑚 variables

• Our graphical representation as network makes it easier to understand
• Can we use this simpler representation for deriving the network? 

 YES! It will be more detailed, though 
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What neural networks are capable of
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[Bishop, PRML 2006]



Computational Graphs
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Example: 𝐿𝐿 𝑤𝑤, 𝑏𝑏 = 2𝑤𝑤 + 3𝑏𝑏 + 4

10

12

22 26

Forward pass

4



Training Algorithm For A Neural Network – High-Level

Initialization: set all parameters (weights, biases) to small values

for every epoch, for every instance:
1. Forward pass: 

− Determine the current prediction 𝑦𝑦 = 𝑓𝑓(𝒙𝒙) for a training instance ⟨ ⟩𝒙𝒙, 𝑡𝑡(𝒙𝒙)
− Evaluate the loss L 𝑦𝑦, 𝑡𝑡 𝒙𝒙

2. Backward pass:
− Determine the partial derivatives 𝜕𝜕𝐿𝐿

𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗
for every weight and bias :

3. Gradient update:
− Update weights and biases (take a gradient step)
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How do we get gradients?

(1) manually working out derivatives and coding them;
– error-prone, does not scale well for large networks 

(2) numerical differentiation using finite difference approximations;
– imprecise and computationally expensive! Requires evaluating 𝑓𝑓 𝒙𝒙 + 𝜀𝜀 − 𝑓𝑓(𝒙𝒙)

for every parameter 𝒘𝒘j!

(3) symbolic differentiation using expression manipulation in computer algebra
– complex and cryptic expressions; require closed-form equations

(4) automatic differentiation (autodiff), also called algorithmic differentiation
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[Automatic Differentiation in Machine Learning: A Survey; Baydin, Pearlmutter, Radul, and Siskind; 2018]



Computational Graphs
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Forward pass

𝑜𝑜 𝑎𝑎, 𝑏𝑏 = 𝑎𝑎 ⋅ 𝑏𝑏

𝜕𝜕𝑓𝑓
𝜕𝜕𝑜𝑜

Backward pass

„Global gradient“ „Local gradient“ 
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3

2
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= 5 � 2=10
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= 5 � 3=15

e.g. 𝑓𝑓 𝑜𝑜 = 5𝑜𝑜

Multiplication ~ Gradient switcher



Computational Graphs: Addition 
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Addition ~ Gradient distributor



Computational Graphs
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Finding the gradients in the backward pass

Lecture 2 – Feedforward 
Networks Deep Learning Bootcamp 31

Solution Recipe for a „Gradient Tape“:

1. Start with the final node 𝑓𝑓 and set its 
gradient to 1 (since 𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓
= 1)

2. Traverse all the operation nodes in the 
opposite order of the forward pass

3. Perform the local gradient multiplication 
at every node 
 You can be sure to have already calculated 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔

for all the outgoing nodes
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∗
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3
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+ +
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Computational Graphs
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Computational Graph of a Single Neuron
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A modern definition of deep learning … 
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FYI: https://en.wikipedia.org/wiki/Yann_LeCun



Deep Learning – Turing Award (“Nobel prize of computer science”)
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2018 ACM Turing Award for Deep Learning



Test your understanding: Computational Graphs
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Computational Graphs
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e.g. global gradient equals 1



Computational Graphs in PyTorch
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Efficient Gradient-based optimizers



Task

Have a look at: 
https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

• What can you see? What are the differences between the trajectories?

Lecture 2 – Feedforward 
Networks Deep Learning Bootcamp 40

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87


Our test optimization landscape
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The same as https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87





Problems for local gradient-based search
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Local Minima Saddle points

− Gradient gets close to 0
− Little progress in terms of learning
− Saddle points more common (and problematic) than local

minima (esp. in high dimensions)

[Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional nonconvex optimization”, 2014]



Gradient descent with momentum
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[Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013]
[Ruder, “An overview of gradient descent optimization algorithms”, 2017]

Standard Gradient Descent Momentum: Tries to accelarte, 
similar to a ball rolling down a hill



Sidenote for stochastic gradient descent
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𝑤𝑤0 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4

𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

„Stochastic gradient descent (SGD)“

𝑤𝑤0 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4

𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

„Batch gradient descent “
[Ruder, “An overview of gradient descent optimization algorithms”, 2017]



AdaGrad
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AdaGrad Standard GD

Problem: Sometimes we have huge (>1000%) 
differences in gradients
We want to normalize gradients

Progress along “steep” directions is damped;

Progress along “flat” directions is accelerated;

But what happens over the course of training?

Step sizes keep decreasing …

[Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”, 2011]



RMSProp
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AdaGrad Standard GD

Fixes a detail of AdaGrad: AdaGrads leads to 
very small update steps with increasing training 
duration because it accumulates gradient steps

 Normalize gradients by a moving average of 
squared gradients (the root of it, hence RMS)

Can‘t we combine this idea with momentum?

RMSProp

[Tieleman and Hinton, 2012]



Adam (= „Adaptive Momentum Optimizer“) 
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AdaGrad Standard GD

Combines Ideas from multiple Optimizers: 

Building momentum (GD+Momentum)     
First moment

Normalizing by squared gradient (AdaGrad, 
RMSProp)     Second moment

RMSProp

[Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015]

Adam



Take away messages

• We use gradients to optimize our models w.r.t. to a performance measure

• Because our performance measure has to be differentiable, we cannot use 
accuracy directly. Instead, we have to use a differentiable loss function

• To calculate the gradient of a neural network, we use the backpropagation 
algorithm. It‘s based on representing our model as a computational graph

• There exist many heuristics for achieving good optimization trajectories. Some 
are based on natural counterparts, e.g. momentum 
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