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Abstract. We present a simulation of the global present-day
composition of the troposphere which includes the chemistry
of halogens (Cl, Br, I). Building on previous work within the
GEOS-Chem model we include emissions of inorganic io-
dine from the oceans, anthropogenic and biogenic sources
of halogenated gases, gas phase chemistry, and a parame-
terised approach to heterogeneous halogen chemistry. Con-
sistent with Schmidt et al. (2016) we do not include sea-salt
debromination. Observations of halogen radicals (BrO, 10)
are sparse but the model has some skill in reproducing these.
Modelled 10 shows both high and low biases when com-
pared to different datasets, but BrO concentrations appear to
be modelled low. Comparisons to the very sparse observa-
tions dataset of reactive Cl species suggest the model rep-
resents a lower limit of the impacts of these species, likely
due to underestimates in emissions and therefore burdens.

Inclusion of Cl, Br, and I results in a general improvement
in simulation of ozone (O3) concentrations, except in po-
lar regions where the model now underestimates O3 con-
centrations. Halogen chemistry reduces the global tropo-
spheric O3 burden by 18.6 %, with the O3 lifetime reduc-
ing from 26 to 22 days. Global mean OH concentrations of
1.28 x 10° molecules cm™3 are 8.2 % lower than in a simula-
tion without halogens, leading to an increase in the CHy life-
time (10.8 %) due to OH oxidation from 7.47 to 8.28 years.
Oxidation of CH4 by Cl is small (~ 2 %) but CI oxidation of
other VOCs (ethane, acetone, and propane) can be significant
(~ 15-27 %). Oxidation of VOCs by Br is smaller, represent-
ing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of
formaldehyde.
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1 Introduction

To address problems such as air-quality degradation and
climate change, we need to understand the composition
of the troposphere and its oxidative capacity. A compli-
cated relationship exists between key chemical families
and species such as ozone (O3), HO, (HO; 4+ OH), NO,
(NO; 4+ NO), and organic compounds which include carbon
monoxide (CO), methane (CHy), hydrocarbons, and oxy-
genated volatile organic compounds (VOCs) (for example,
see Monks et al., 2015). The most important tropospheric
oxidant is OH, which is itself produced indirectly through
photolysis of O3. Oxidants control the concentrations of key
climate and air-quality gases and aerosols (including Os,
methane, sulfate aerosol, and secondary organic aerosols)
(Monks et al., 2009; Prather et al., 2012; Unger et al., 2006).
O3 itself is not directly emitted, and its tropospheric bur-
den is controlled by its sources through chemical produc-
tion from NO, and organic compounds, transport from the
stratosphere, and loss via deposition and chemical reactions
(Monks et al., 2015).

Halogens (Cl, Br, I) are known to destroy O3 through cat-
alytic cycles, such as that shown in Reactions (R1)—(R3)
(Chameides and Davis, 1980). Tropospheric halogens have
also been shown to change OH concentrations (Bloss et al.,
2005) and perturb OH to HO; ratios towards OH (Chamei-
des and Davis, 1980). Halogens perturb the NO to NO; ra-
tio and reduce NO, concentrations by hydrolysis of XNO3.
These perturbations also indirectly decrease O3 formation
(von Glasow et al., 2004). Halogens directly oxidise organ-
ics species, with Cl radical reactions proceeding the fastest
(Atkinson et al., 2006; Sander et al., 2011). This can cause
significant O3 formation through increased RO, concentra-
tions (Knipping and Dabdub, 2003), notably in regions with
elevated CINO; (Sarwar et al., 2014). Halogens also play
an important role in determining the chemistry of mercury
(Holmes et al., 2009; Parrella et al., 2012; Wang et al., 2015;
Coburn et al., 2016). The literature on tropospheric halogens
has been the topic of several recent reviews, which cover the
background in more detail (Simpson et al., 2015; Saiz-Lopez
et al., 2012b). However, many uncertainties still exist, no-
tably with heterogeneous halogen chemistry (Abbatt et al.,
2012; Simpson et al., 2015) and gas phase iodine chemistry
(Saiz-Lopez et al., 2014; Sommariva and von Glasow, 2012).

03+ X > X040, R1)
HO, + XO — HOX + 0, (R2)
HOX +hv — OH + X (R3)
Net: HO; + O3 — 20, + OH (R4)

Tropospheric halogen chemistry has been studied in box
model studies (see Simpson et al., 2015, and citations within)
and more recently in global models (e.g. Parrella et al., 2012;
Saiz-Lopez et al., 2012a, 2014; Schmidt et al., 2016; Sher-
wen et al., 2016a). Modelling has sought to quantify emis-
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sions budgets and evaluate these on a global scale (Bell et al.,
2002; Ziska et al., 2013; Hossaini et al., 2013; Ordoiiez et al.,
2012). Global studies have considered impacts of halogens
in the troposphere (Parrella et al., 2012; Saiz-Lopez et al.,
2012a, 2014; Schmidt et al., 2016; Sherwen et al., 2016a)
and reported reductions in the tropospheric O3 burden by up
to ~ 15 %. However, this field of research is quickly evolv-
ing, with new halogen sources such as inorganic ocean iodine
(Carpenter et al., 2013; MacDonald et al., 2014) and CINO;
produced from N>Os hydrolysis on sea salt (Roberts et al.,
2009; Bertram and Thornton, 2009; Sarwar et al., 2014) now
appearing to be globally important.

Previous studies of halogen chemistry within the GEOS-
Chem (http://www.geos-chem.org) model have focussed on
either bromine or iodine chemistry. Parrella et al. (2012) pre-
sented a bromine scheme and its effects on oxidants in the
past and present atmosphere. Eastham et al. (2014) presented
the Unified tropospheric—stratospheric Chemistry eXtension
(UCX), which added a stratospheric bromine and chlorine
scheme. This chlorine scheme was then employed in the tro-
posphere with an updated heterogeneous bromine and chlo-
rine scheme by Schmidt et al. (2016). An iodine scheme was
employed in the troposphere to consider present-day impacts
of iodine on oxidants (Sherwen et al., 2016a), which used
the representation of bromine chemistry from Parrella et al.
(2012). Up to this point, the coupling of chlorine, bromine,
and iodine in the GEOS-Chem model and its subsequent im-
pact on the simulated present-day composition of the atmo-
sphere have not been described.

Here we present such a coupled halogen model built
within the GEOS-Chem framework and consider the present-
day tropospheric impacts of halogens. The model presented
here includes recent updates to chlorine (Eastham et al.,
2014; Schmidt et al., 2016), bromine (Parrella et al., 2012;
Schmidt et al., 2016), and iodine (Sherwen et al., 2016a)
chemistry with further updates and additions described in
Sect. 2. In Sect. 3 we describe the modelled distribution of
inorganic halogens (Sects. 3.1-3.3) and compare with obser-
vations (Sect. 3.4). We then outline the impact on oxidants
(Sects. 4.1-4.2), organic compounds (Sect. 4.3), and other
species (Sect. 4.4).

2 Model description

This work uses the GEOS-Chem chemical transport model
(http://www.geos-chem.org, version 10) run at 4° x 5° spa-
tial resolution. The model is forced by assimilated meteo-
rological and surface fields from NASA’s Global Modelling
and Assimilation Office (GEOS-5). The model chemistry
scheme includes Oy, HO,, NO,, and VOC chemistry as de-
scribed in Mao et al. (2013). Dynamic and chemical time
steps are 30 and 60 min, respectively. Stratospheric chem-
istry is modelled using a linearised mechanism as described
by Murray et al. (2012).

www.atmos-chem-phys.net/16/12239/2016/
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Table 1. Additional halogen reactions included in this simulation that are not described in previous work (Eastham et al., 2014; Schmidt
et al., 2016; Sherwen et al., 2016a). The full reaction scheme is given in Appendix B (Tables B2-B5). The rate constant is calculated using a

standard Arrhenius expression A - exp(%b;“).

RxnID Reaction A —FEa/R Citation
cm3 molecules ™! s~ ! K

M29 IO + CIO — I+ OCIO 2.59 x 10~12 280  Atkinson et al. (2007)
M30 I0+CIO—I1+Cl+0, 1.18 x 10712 280  Atkinson et al. (2007)
M31 10 + CIO — IC1 + Oy 9.40 x 10713 280  Atkinson et al. (2007)
M32 Cl+HCOOH — HCl 4+ CO2 4+ H,0 2.00x 10713 - Sander et al. (2011)
M33 Cl+ CH30, — CIO + CH,0 + HO,? 1.60 x 10~10 - Sanderetal. (2011)
M34 Cl+ CH300H — HCIl 4+ CH30, 5.70 x 10711 —  Sander et al. (2011)
M35 Cl+ CyHg — HCI + CoHs0, 7.20 x 1011 —70  Sander et al. (2011)
M36 Cl+ CyH505 — CIO + HO»+ ALD2P 7.40 x 1011 —  Sander et al. (2011)
M37 Cl + EOH — HCl + ALD2¢ 9.60 x 10! —  Sander et al. (2011)
M38 Cl+ CH3C(O)OH — HCl 4+ CH30,, + CO2 2.80 x 1014 —  Sanderetal. (2011)
M39 Cl+ C3Hg — HCl + A302 7.85x 10711 —80  Sander et al. (2011)
M40 Cl+ C3Hg — HCI + B302 6.54 x 1011 —  Sander et al. (2011)
M41 Cl+ ACET — HCl + ATO2 770 x 10~ —1000  Sander et al. (2011)
M42 Cl +ISOP — HCl + RIO2 7.70 x 10711 500 Sander et al. (2011)
M43 Cl+MOH — HCl + CH,0 + HO» 5.50 x 10~ - Sander et al. (2011)
M61 Cl+ ALK4 — HCI + R402 2.05x 10710 - Atkinson et al. (2006)
M62 Br+ PRPE — HBr + PO2 3.60 x 10712 - Atkinson et al. (2006)
M63 1+ PRPE X HCl + PO2d 2.80 x 10710 —  Atkinson et al. (2006)
H1 N,O5 X HNOj3 + CINO,® - —  (see table footnote)
H2 HOI % 0.85ICI + 0.151Brf - —  (see table footnote)
H3 INO, X 0.85IC1 +.0151Brf - —  (see table footnote)
H4 INO; 5 0.85IC1 + 0.15IBr" - — (see table footnote)
P1 IC1 h—g 1+ Cl - — Sander et al. (2011)
P2 Br 1+ Br - —  Sander et al. (2011)
P3 BrC1 €1+ Br - —  Sander et al. (2011)

@ Reaction from JPL, only considering the major channel (Daele and Poulet, 1996); product of CH30 reacts to form CH,O + HO,

(CH30 + 07 — CH,0 + HOp). b Only the first channel from JPL was considered. The second channel forms a criegee (HCI + C,H40;) and therefore
cannot be represented by reduced GEOS-Chem chemistry scheme. ¢ Reaction defined by JPL and interpreted as proceeding via hydrogen abstraction;
therefore the acetaldehyde product is assumed. dg (infinity) rate given in table, K (0) rate =4.00 x 10~28 with Fc = 0.6 as shown in Table B3. © Reaction
only proceeds on sea-salt aerosol, with y value as described in Evans and Jacob (2005). f Reactions which were included in previous work (Sherwen et al.,
2016a), but dihalogen products have been updated, split between IC1 and IBr (see Sect 2), and these reactions only proceed on acidic sea-salt aerosol
following McFiggans et al. (2000). Acidity of aerosol is calculated as described in Alexander (2005). y values for uptake of halogen species are given in

Table B4. Abbreviations for tracers are expanded in Appendix C.

We update the standard model chemistry to give a repre-
sentation of chlorine, bromine, and iodine chemistry. We de-
scribe this version of the model as “Cl+Br+I" in this paper.
It is based on the iodine chemistry described in Sherwen et al.
(2016a) with updates to the bromine and chlorine scheme de-
scribed by Schmidt et al. (2016) and Eastham et al. (2014).
We have made a range of updates beyond these. Updated
or new reactions not included in Sherwen et al. (2016a),
Schmidt et al. (2016), or Eastham et al. (2014) are given
in Table 1 with a full description of the halogen chemistry
scheme used given in Appendix B Tables B2-BS5.

For the photolysis of O, (x =2, 3, 4) we have adopted
the absorption cross sections reported by Gémez Martin et al.
(2005) and Spietz et al. (2005) and used the 1,0, cross sec-

www.atmos-chem-phys.net/16/12239/2016/

tion for [04. A quantum yield of unity was assumed for all
I,O, species. It is noted that recent work has used an unpub-
lished spectrum for 1,04 that is much lower than that of 1,03
(Saiz-Lopez et al., 2014), but this is not expected to have a
large effect on conclusions presented here.

The parameterisation for oceanic iodide concentration was
changed from Chance et al. (2014), as used in Sherwen et al.
(2016a), to MacDonald et al. (2014) because the latter re-
sulted in an improved comparison with observations (see
Sect. 7.5 of Sherwen et al., 2016a).

The product of acid-catalysed dihalogen release follow-
ing I'T (HOI, INO,, INO3) uptake was updated from I, as in
Sherwen et al. (2016a) to yield IBr and ICl following McFig-
gans et al. (2002). Acidity is calculated online through titra-

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Table 2. Global sources of reactive tropospheric inorganic halogens. Sources with fixed concentration in the model for Cly, (CH3Cl, CH3Cly,
CHCl3) and Bry (CHBr3) are shown in terms of chemical release (e.g. +Cl, +OH, +hv) and are in bold. Inclusion of chlorine and bromine
organic species has been reported before in GEOS-Chem (Eastham et al., 2014; Parrella et al., 2012; Schmidt et al., 2016). X, (Iy) and HOX
(HOI) are the inorganic ocean source from Carpenter et al. (2013); XNO, is the source from the uptake of N»O5 on sea salt (CINO,).

Sources Iy (Tglyear™ l) Bry (TgBryear™ 1) Cly (TgClyear™ 1)
CH3 X 0.26 0.06 2.10
CH, X, 0.33 0.09 0.57
CHX3 - 0.41 0.25
HOX 1.97 - -
Xo 0.14 - -
19.¢ - 0.30* 0.73*
XNO, - - 0.65
Stratosphere 0.00 0.06 0.43
Total source™ 2.70 0.91 4.72

* Acid-catalysed sea-salt dihalogen IX (X = Cl, Br) flux is only stated for Cl, and Bry as it does not

represent anet I)v source.

tion of sea-salt aerosol by uptake of sulfur dioxide (SO3), ni-
tric acid (HNO3), and sulfuric acid (H>SO4) as described by
Alexander (2005). Re-release of IX (X = Cl, Br) is only per-
mitted to proceed if the sea salt is acidic (Alexander, 2005).
Thus aerosol cycling of IX in the model is not a net source
of I, (and may be a net sink on non-acid aerosol) but alters
the speciation (Sherwen et al., 2016a). The ratio between IBr
and ICI was set to be 0.15:0.85 (IBr:ICl), instead of the
0.5:0.5 used previously (Saiz-Lopez et al., 2014; McFig-
gans et al., 2000). A ratio of 0.5:0.5 gives a large overes-
timate of bromine monoxide (BrO) with respect to the ob-
servations used in Sect. 3.4.2 (Read et al., 2008; Volkamer
et al., 2015). We attributed this reduction to the debromina-
tion of sea salt, which we do not consider here, and the po-
tential for the model to overestimate the BrO, lifetime. This
is discussed further in the next section but future laboratory
and field studies of these heterogenous process are needed to
help constrain these parameters.

Iodine on aerosol is represented in the model with separate
tracers based on the aerosol on which irreversible uptake oc-
curs (see Table B4). We include three iodine aerosol tracers
to represent iodine on accumulation and coarse-mode sea salt
and on sulfate aerosol. The physical properties of the iodine
aerosol tracers are assumed to be the same as their parent
aerosol, as previously described for sulfate (Alexander et al.,
2012) and sea-salt aerosol (Jaeglé et al., 2011). As in Sher-
wen et al. (2016a), no nucleation of iodine species is con-
sidered in this work, with only photolytic and heterogeneous
loss being treated.

‘We have added to the chlorine chemistry scheme described
by Eastham et al. (2014) to include more tropospheric rele-
vant reactions based on the JPL 10-6 compilation (Sander
et al., 2011) and IUPAC (Atkinson et al., 2006). The het-
erogenous reaction of N»Os5 on aerosols was updated to yield
products of CINO; and HNO3 (Bertram and Thornton, 2009;
Roberts et al., 2009) on sea salt and 2HNO3 on other aerosol

Atmos. Chem. Phys., 16, 12239-12271, 2016

types. Reaction probabilities are unchanged (Evans and Ja-
cob, 2005).

Deposition and photolysis of dihalogen species (IC1, BrCl,
IBr) and the reaction between ClO and iodine monoxide (IO)
were also included (Sander et al., 2011).

3 Model results

We run the model for 2 years (1 January 2004 to 1 Jan-
uary 2006), discarding the first year as a “spin-up” period
and using the second year (2005) for analysis. Non-halogen
emissions are described in Sherwen et al. (2016a). A refer-
ence simulation without any halogens (“NOHAL”) was also
performed. Where comparisons with observations are shown,
the model is run for the appropriate year with a 3-month
“spin-up” before the observational dates, unless explicitly
stated otherwise. The appropriate month from the 2005 simu-
lation is used as the initialisation for these observational com-
parisons to account for interannual variations. The model is
sampled at the nearest timestamp and grid box. The model
only calculates chemistry in the troposphere. To avoid con-
fusion we do not show results above the tropopause (lapse
rate of temperature falls below 2 Kkm™!).

3.1 Emissions

The emissions fluxes of chlorine, bromine, and iodine species
are shown in Fig. 1 with global totals in Table 2. We do not
consider the CI and Br contained within sea salt as emitted
in our simulation, following Schmidt et al. (2016), until a
chemical process liberates them into the gas phase. These
liberation processes are the uptake of N,Os on sea salt and
uptake of I species on sea salt. We do not include explicit
sea-salt debromination for reasons described in Schmidt et al.
(2016).

www.atmos-chem-phys.net/16/12239/2016/



T. Sherwen et al.: Global impacts of tropospheric halogens on oxidants and composition in GEOS-Chem

L]

ol

oo

Lo

eX: ]

L]

o2

<0,

15

Q.10

[=Ni o]

T k]

Figure 1.

The organic iodine (CH3I, CH,1,, CH,ICl, CH,IBr) emis-
sions are from Ordoiiez et al. (2012) as described in Sherwen
et al. (2016a). Inorganic iodine emissions (HOI, I;) (Car-
penter et al., 2013; MacDonald et al., 2014) are 30 % lower
here than reported by Sherwen et al. (2016a) due to use of
the MacDonald et al. (2014) parameterisation for ocean sur-
face iodide rather than that of Chance et al. (2014). Hetero-
geneous iodine aerosol chemistry (Sects. 2 and Bl in Ap-
pendix B4) does not lead to a net release of iodine, instead
just recycling it from less active forms (INO,, INO3, HOI)
into more active forms (IC1 / IBr).

The organic bromine (CH3Br, CHBr3, CH,Br;) emissions
have been reported previously (Parrella et al., 2012; Schmidt
et al., 2016) and our simulation is consistent with this work.
A further source of 0.031 TgBryear~! (3.5% of total) is
included here from CH,IBr photolysis. The heterogeneous
cycling for Bry (family defined in Appendix C) has been
updated here from Schmidt et al. (2016), as described in
Sect. 2/Appendix B1. An additional Br, source not consid-
ered by Schmidt et al. (2016) is iodine-activated IBr release
from sea salt, which amounts to 0.30 TgBryear~! and the
majority (67 %) of this is tropical (22° N-22° S).

The organic chlorine emission (CH3Cl, CHCI3, CH,Cl,)
for this simulation (Table 2) has been described previously

www.atmos-chem-phys.net/16/12239/2016/
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Schmidt et al. (2016) and set using fixed surface concen-
trations. An additional source of 0.046 Tg Clyear—!(0.96 %
of total) is present from CH3ICI photolysis (Sherwen et al.,
2016a). CINO, production from the heterogeneous uptake
of N»Os provides a source of 0.66TgClyear—! (14% of
total) with the vast majority (95 %) being in the North-
ern Hemisphere, with strongest sources in coastal regions
north of 20°N. For June we calculate a global source
of 21 GgClmonth™!, which is substantially less than the
62 Gg Cl month~! (Sarwar Golam, personal communication,
2016) calculated in a previous study (Sarwar et al., 2014).
The difference in N2Os concentrations due to differences in
model resolution may contributes to this. Uptake of HOI,
INO; and INO3 to sea-salt aerosol leads to the emission of
ICI, giving an additional source of 0.76 Tg Clyear—! (15.7 %
of total) mostly (67 %) in tropical (22° N-22° S) locations.

Most of the emissions of Br and I species in our simulation
occur in the tropics. It is notable that the chlorine emissions
are more widely distributed (Fig. 1). This is a result of longer
lifetimes of chlorine precursor gases, which moves their de-
struction further from their emissions, and the CINO, source
being primarily in the northern extratropics.

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Figure 1. Average annual halogen surface emission of species and column-integrated fluxes for species that have fixed surface concentrations
in the model (CH3Cl, CH3Cl,, CHCl3, CHBr3) or those with vertically variable sources (CINO, from N,>Os uptake on sea-salt and IX
(X =Cl, Br) production from HOI, INO,, and INO3 uptake). Values are given in kg X m~2s~1 (x=Cl, Br, I).
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Figure 2. Annual global Xy (X =ClI, Br, I) deposition (X defined in Appendix C). Values are given in terms of mass of halogen deposited

(kg Xm—2s~1, X =CLBr, I).

3.2 Deposition of halogens

Figure 2 shows the global annual integrated wet and dry de-
position of inorganic X, (X = Cl, Br, I). Much of the deposi-
tion of the halogens occurs over the oceans (70, 73, and 90 %
for Cly, Bry, and I, respectively). It is high over regions of
significant tropical precipitation (Intertropical Convergence

Atmos. Chem. Phys., 16, 12239-12271, 2016

Zone, Maritime continents, Indian Ocean) and much lower
at the poles, reflecting lower precipitation and emissions.
We find that the major Cl, depositional sink is HCI (94 %),
with HOCI contributing 5.1 % and CINOj3 1.1 %. The Br,
sink is split between HBr, HOBr, and BrNO3 with fractional
contributions of 33, 30, and 28 % respectively. The major I,
sink is HOI deposition, which represents 59 % of the deposi-

www.atmos-chem-phys.net/16/12239/2016/
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Figure 3. Tropospheric distribution of Cly, Bry, and I, (defined in Appendix C) concentrations. Upper plots show surface and lower plots
show zonal values. Only boxes that are entirely tropospheric are included in this plot. The Cly colour bar is capped at 20 pmol mol~!, with a
maximum plotted value of 116 pmol mol ! at the surface over the North Sea. The Iy colour bar is capped at 10 pmol mol !, with a maximum

plotted value of 16.4 pmol mol~! at the surface over the Red Sea.
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Figure 4. Tropospheric distribution of 10, BrO, and CI concentrations. Upper plots show surface and lower plots show zonal values. Only

boxes that are entirely tropospheric are included in this plot.

tional flux. The two next largest sinks are deposition of INO3
and iodine aerosol (22 and 15 %).

3.3 Halogen species concentrations

Figure 3 shows the surface and zonal concentration of an-
nual mean I, Bry, and Cl,, with Fig. 4 showing the same for

www.atmos-chem-phys.net/16/12239/2016/

10, BrO, and Cl, key halogen compounds in the atmosphere.
Figure 5 shows the global molecule weighted mean vertical
profile of the halogen speciation.

Inorganic iodine concentrations are highest in the tropical
marine boundary layer, consistent with their dominant emis-
sion regions. The highest concentrations are calculated in the
coastal tropical regions, where enhanced O3 concentrations

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Figure 5. Modelled global average vertical Xy (X =Cl, Br, I) (Xy defined in Appendix C). Units are pmol mol~! of X (where X =Cl, Br,
D). For Cly the y axis is capped at 20 pmol mol~! to show speciation. A Cl, maximum of 1062 pmol mol~! is found within the altitudes

shown due to additional HCI contributions increasing with altitude.
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Figure 6. Annual mean integrated model tropospheric column for BrO and IO in molecules cm™~.

from industrial areas flow over high predicted oceanic iodide
concentrations and lead to increased oceanic inorganic iodine
emissions. Within the vertical there is an average of ~ 0.5—
1 pmol mol~! of I, consistent with previous model studies
(Saiz-Lopez et al., 2014; Sherwen et al., 2016a). The lowest
concentrations of I, are seen just above the marine bound-
ary layer, where I loss via wet deposition is most favourable
due to partitioning towards water-soluble HOI. At higher al-
titudes, lower temperature and high photolysis rates push the
I, speciation to less-water-soluble compounds (IO, INO3)
and hence the I, lifetime is longer. IO concentrations (Fig. 4)
follow those of 1y, with high values in the tropical marine
boundary layer. 10 increases into the upper troposphere, re-
flecting a partitioning of I, in this region towards 10 (and
INO3) and away from HOI. The global mean tropospheric
lifetimes of I, and IO, (IO +1) are 2.2 days and 1.3 min,
respectively. 10, loss proceeds predominately via reaction
of 10 with HO, (78 %), with smaller losses via 10 4+ BrO
(7.9 %) and 10 + NO» (7.4 %).

Total reactive bromine is more equally spread through
the atmosphere than iodine. This reflects the longer life-

Atmos. Chem. Phys., 16, 12239-12271, 2016
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time of source species with respect to photolysis, which
gives a more significant source higher in the atmosphere.
The highest concentrations are still found in the tropics.
Unlike Iy, Bry, increases significantly with altitude, with
BrNO3 and HOBTr being the two most dominant species. BrO
concentrations (Fig. 4) follow those of inorganic bromine.
In the boundary layer the highest concentrations are found
in the tropics. BrO and IO do not strongly correlate in
the tropical marine boundary layer reflecting their differ-
ing sources. BrO concentrations increase towards the up-
per troposphere associated with the increase in total Br,.
The global annual-average (molecule weighted) tropospheric
BrO mixing ratio in our simulation is 0.49 pmol mol~!
(Bry, =3.25 pmol mol~!). When previous implementations
(Parrella et al., 2012; Schmidt et al., 2016) are run for the
same year and model version as this work (GEOS-Chem
v10), the modelled BrO concentrations are found to be 11 %
higher than Schmidt et al. (2016) and 33 % higher than Par-
rella et al. (2012). We calculate tropospheric lifetimes of
18 days for Bry and 8.1 min for BrO, (BrO + Br). Similarly

www.atmos-chem-phys.net/16/12239/2016/
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Figure 7. lodine oxide (IO) surface observations (black) by campaign compared against the simulation with halogen chemistry (“Cl+Br+1",
red). Cape Verde measurements are shown against hour of day and others are shown as a function of latitude. Values are considered in 20°
bins, with observations and modelled values at the same location and time (as described in Sect. 2) shown side-by-side around the midpoint
of each bin. The extent of the bins is highlighted with grey dashed lines. Observations are from Cape Verde (tropical Atlantic; Mahajan
etal., 2010; Read et al., 2008), TransBrom (western Pacific; Gromann et al., 2013), the Malaspina circumnavigation (Prados-Roman et al.,
2015b), HaloCAST-P (eastern Pacific; Mahajan et al., 2012), and TORERO ship (eastern Pacific; Volkamer et al., 2015). The number of data
points within latitudinal bin is shown as “n”. The box plot extents give the interquartile range, with the median shown within the box. The
whiskers give the most extreme point within 1.5 times the interquartile range. Locations of observations are shown in Fig. 20.

to 10y, BrO, loss proceeds predominately via reaction of
BrO with HO; (71 %) and NO; (18 %).

Total inorganic chlorine has a highly non-uniform dis-
tribution at the surface, reflecting the CINO; source from
N>Os uptake on sea salt. At the surface CINO,, HCI, BrCl,
and HOCI represent around 25 % of the total Cl, each.
Away from the surface the CINO, concentrations drop off
rapidly due to the short lifetime of sea salt. HCI concentra-
tions increase significantly into the middle and upper tro-
posphere and dominates the Cl,, distribution. This suggests
that stratospheric chlorine freed from CFCs and organic chlo-
rine strongly contributes to free tropospheric concentrations
of Cly. Cl mixing ratios are very low (~0.075fmol mol~!
or ~2000cm~3) in the marine boundary layer. Reactive Cl
(i.e. Cly excluding HCI) drops from the surface to around
10km, where it then increases again towards the strato-
sphere. Cl shows a wider distribution than IO and BrO, re-
flecting the source wider distribution of Cl,. We calculate

www.atmos-chem-phys.net/16/12239/2016/

tropospheric lifetimes of 5 days for Cly and 3.8 h for ClO,
(Cl1+4 ClO + C100 + 2Cl1,07). A global tropospheric mean
inorganic chlorine (Cly) concentration of 71 pmol mol~! in
seen in our simulation. ClO, loss proceeds through reaction
of Cl with CHy (27 %), ClO reaction with HO; (21 %), and
ClO reaction with NO; (10 %). The longer X O, lifetime of
ClO,, compared to BrO,. and IO, can be explained through
the importance of the relatively slow dominant loss route
through reaction with CHy.

The chemistry of halogens and sea salt is highly uncer-
tain (Simpson et al., 2015; Saiz-Lopez et al., 2012b; Abbatt
etal., 2012). Estimates for sea-salt debromination range from
0.51 Tgyear—! (Parrella et al., 2012, implemented in GEOS-
Chem v10 and v9-2) to 2.9 Tgyear~! (Fernandez et al.,
2014). Other studies have not included sea-salt debromina-
tion (von Glasow et al., 2004; Schmidt et al., 2016) as we
do not in this work. Schmidt et al. (2016) found that includ-
ing debromination of sea-salt aerosol improved the simula-

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Figure 8. Vertical comparison of the model (“Cl+Br+1”) and measured iodine oxide (I0) during TORERO aircraft campaign (Volkamer
et al., 2015; Wang et al., 2015). Model and observations are in red and black respectively. Values are considered in 0.5 km bins, with
observations and modelled values at the same location and time (as described in Sect. 2) shown side-by-side around the midpoint of each bin.
Measurements were taken aboard the NSF/NCAR GV research aircraft by the University of Colorado airborne multi-axis DOAS instrument
(CU AMAX-DOAS) in the eastern Pacific in January and February 2012 (Volkamer et al., 2015; Wang et al., 2015). The box plot extents give
the interquartile range, with the median shown within the box. The whiskers give the most extreme point within 1.5 times the interquartile

range. Locations of observations are shown in Fig. 20.

tion of the BrO and HOBr observations reported during the
“Combined Airborne Studies in the Tropics” (CAST; Harris
et al., 2016) campaign but resulted in overprediction of the
“Tropical Ocean tRoposphere Exchange of Reactive halo-
gen and Oxygenated VOC” campaign (TORERO; Volkamer
et al., 2015; Wang et al., 2015) BrO observations. Arguably
this work provides a lower estimate of bromine and chlorine
sources in the troposphere, with further work needed to un-
derstand the Bry budget.

The difference in lifetimes of inorganic halogen families
(Xy) can be understood from the change in loss routes, which
shifts HX to HOX following the order of group 17 in the
periodic table (Cl - Br — I).

Figure 6 shows column-integrated BrO and IO, which are
the major halogen species for which we have observations
(see Sect. 3.4). Tropospheric CIO concentrations are small
(see Fig. 5) and are therefore not shown in Fig. 6. Tropical
maxima are seen for both BrO and 10, with BrO concen-
trations decreasing towards the equator. For 10 a localised
maximum is seen in the Arabian Sea. The IO maximum
in Antarctica reported from satellite retrievals (Schonhardt
et al., 2008) is not reproduced in our model, potentially re-
flecting the lack of polar-specific processes in the model.

Atmos. Chem. Phys., 16, 12239-12271, 2016

3.4 Comparison with halogen observations

The observational dataset of tropospheric halogen com-
pounds is sparse. Previous studies that this work is based on
have shown comparisons for the oceanic precursors for chlo-
rine (Eastham et al., 2014; Schmidt et al., 2016), bromine
(Parrella et al., 2012; Schmidt et al., 2016), and iodine (Bell
et al., 2002; Sherwen et al., 2016a; Ordéiiez et al., 2012).
The model performance in simulating these compounds has
not changed since these previous publications so we focus
here on the available observations of concentrations of 10,
BrO, and some inorganic chlorine species (CINO3, HCI, and
Clp).

3.4.1 Iodine monoxide

A comparison of IO to a suite of recent remote surface ob-
servations is shown in Fig. 7. The model shows an overall
negative bias of 23 %. This compares with the 90 % positive
bias previously reported in Sherwen et al. (2016a). This re-
duction in bias to IO observations is due to the use of the
MacDonald et al. (2014) iodide parameterisation over that of
Chance et al. (2014) which has reduced the inorganic emis-
sion of iodine, along with the restriction of iodine recycling
to acidic aerosol.

Figure 8 shows a comparison between modelled IO
with altitude against observations in the eastern Pacific

www.atmos-chem-phys.net/16/12239/2016/
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Tropospheric BrO Column: Seasonal Variation
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Figure 9. Seasonal variation of zonal mean tropospheric BrO
columns in different latitudinal bands. Observations from the
GOME-2 satellite instrument in 2007 (Theys et al., 2011) are com-
pared to GEOS-Chem values at the GOME- 2 local overpass time
(09:00-11:00).

(Volkamer et al., 2015; Wang et al., 2015). In general,
the model agreement with observations is good. There
is an average bias of +37% in the free troposphere
(350hPa < p <900 hPa), which increases to +54 % in the
upper troposphere (350 hPa > p > tropopause). As with the
surface measurements, the model bias when comparing to IO
observations (Volkamer et al., 2015; Wang et al., 2015) in the
free and upper troposphere is decreased from previously re-
ported positive biases of 73 and 96 %, respectively (Sherwen
et al., 2016a).

3.4.2 Bromine monoxide

Comparisons of BrO against seasonal satellite tropospheric
BrO observations from GOME-2 (Theys et al., 2011) are
shown in Fig. 9. As shown previously (Parrella et al., 2012;
Schmidt et al., 2016) the model has some skill in capturing
both the latitudinal and monthly variations in tropospheric
BrO columns. However, it underestimates the column BrO
in the lower southern latitudes (60-90° S) and to a smaller
degree also in lower northern latitudes (60-90° N), which
may reflect the lack of bromine from polar (blown snow, frost
flowers, etc.) sources and sea-salt debromination processes.
As shown in Fig. 10, comparisons between the model and
observations of BrO made at Cape Verde (Read et al., 2008;
Mahajan et al., 2010) show a negative bias of 22 %. We at-
tribute this to the high local sea-salt loadings at this site

www.atmos-chem-phys.net/16/12239/2016/
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Figure 10. Bromine oxide (BrO) surface observations (black) at
Cape Verde (Read et al., 2008; Mahajan et al., 2010) compared
against the simulation with halogen chemistry (“Cl4+Br+I", red).
Values are binned by hour of day. Locations of observations are
shown in Fig. 20.
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Figure 11. Vertical comparison of the model (“Cl4+Br+I”) and
measured bromine oxide (BrO) during TORERO aircraft campaign
(Volkamer et al., 2015; Wang et al., 2015) in the subtropics (left)
and tropics (right). Model and observations are in red and black, re-
spectively. Observations and modelled values at the same location
and time (as described in Sect. 2) are shown side-by-side around
the midpoint of each bin. Measurements were taken aboard the
NSF/NCAR GV research aircraft by the University of Colorado
airborne multi-axis DOAS instrument (CU AMAX-DOAS) in the
eastern Pacific in January and February 2012 (Volkamer et al., 2015;
Wang et al., 2015). Locations of observations are shown in Fig. 20.

(Carpenter et al., 2010), which is situated in the surf zone.
This may locally increase the BrO concentrations. The model
concentrations of ~ 1 pmol mol~! are, however, consistent
with other ship-borne observations made in the region (Leser
et al., 2003).

Figure 11 shows modelled vertical BrO concentrations
against observations in the eastern Pacific (Volkamer et al.,

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Table 3. Comparison between modelled and observed CINO,. Concentrations are shown as the maximum and average of the daily maximum
value for the observational and equivalent model time period. The model values are taken for the nearest time step and location within the

analysis year (2005).
Obs. “Cl4+Br+I”

Location Lat. Long. Max Mean Max Mean Reference
Coastal
Pasadena, CA, US (2010) 342 —118.2 3.46 148 043 0.20 Mielke et al. (2013)
Southern China, CN (2012) 22.2 1143 2.00 031 0.60 0.18 Tham et al. (2014)
Los Angeles, CA, US (2010) 34.1 —1182 1.83 050 043 0.20 Riedel et al. (2012)
Houston, TX, US (2006) 30.4 —-954 1.15 0.80 0.19 0.04  Osthoff et al. (2008)
London, GB (2012) 51.5 -02 0.73 0.23 0.50 0.17 Bannan et al. (2015)
TX, US (2013) 30.4 -954 0.14 0.08 0.19 0.04 Faxon et al. (2015)
Continental
Hessen, DE (2011) 50.2 85 0.85 0.20 0.16 0.02  Phillips et al. (2012)
Boulder, CO, US (2009) 40.0 —1053 044 0.14  0.00 0.00 Thornton et al. (2010); Riedel et al. (2013)
Calgary, CA, US (2010) 51.1  —114.1 0.24 022 0.02 0.01 Mielke et al. (2011)

2015; Wang et al., 2015). We find a reasonable agreement
within the free troposphere (350 hPa < p <900 hPa) in both
the tropics and subtropics, with an average bias of —3.5 and
+4.2 %, respectively. A similar comparison is seen in the
upper troposphere (350 hPa > p > tropopause) with negative
biases for the tropics and subtropics, of 6.3 and 9.7 %, re-
spectively. The decrease in agreement seen in the TORERO
comparison (Fig. 11) relative to that previously presented in
Schmidt et al. (2016) is due to reduced BrCl and BrO produc-
tion from slower cloud multiphase chemistry (see Sects. B1—
B3 in Appendix B). We model higher BrO concentrations in
the tropical marine boundary layer which are above those ob-
served (Volkamer et al., 2015). Our modelled concentrations
are lower than those reported previously (Miyazaki et al.,
2016; Long et al., 2014; Pszenny et al., 2004; Keene et al.,
2009).

Our model does not include sea-salt debromination and
yet calculated roughly the reported concentrations of BrO.
Inclusion of sea-salt debromination leads to excessively high
BrO concentration in the model (Schmidt et al., 2016). Sea-
salt debromination is well established; thus the success of the
model despite the lack of inclusion of this process suggests
model failure in other areas. The BrO, lifetime may be too
long. The conversion of BrO, to HBr is dominated by the
reaction between Br and organics to produce HBr. Oceanic
sources of VOCs such as acetaldehyde have been proposed
(Millet et al., 2010; Volkamer et al., 2015) and a significant
increase in the concentration of these species would lead to
lower BrO, concentrations. Alternatively, a reduction in the
efficiency of cycling of Br, through aerosol would also have
a similar effect. The aerosol phase chemistry is complex and
the parameterisations used here may be too simple or fail
to capture key processes (e.g. pH, organics). These all re-
quire further study in order to help reconcile models with the

Atmos. Chem. Phys., 16, 12239-12271, 2016

rapidly growing body of observation of both gas and aerosol
phase bromine in the atmosphere.

3.4.3 Nitryl chloride (CINO;), hydrochloric acid (HCI),
hypochlorous acid (HOCI), and molecular
chlorine (Cly)

Very few constraints on the concentration of tropospheric
chlorine species are available, but an increasing number of
CINO; observations are becoming available. Table 3 shows
a comparison between the model an available observations.
We find that the model does reasonably well in coastal re-
gions but does not reproduce observations in continental re-
gions or regions with very high NO,.

Lawler et al. (2011) reports measurements of HOCI and
Cl, at Cape Verde for a week in June 2009. For the first
4 days of the campaign, HOCI concentrations were higher
and peaked at ~ 100 pmolmol~! with Cl, concentrations
peaking at ~ 30 pmol mol~!. For the later days, HOCI con-
centrations dropped to around 20 pmol mol~! and Cl, con-
centrations to ~ 0—10 pmol mol~!. We calculate much lower
concentrations of Cl, (~ 1 x 1072 pmol mol~!) and slightly
lower HOCI (~ 10 pmol mol~!). This is similar to findings of
Long et al. (2014), who also found better comparisons with
the later period of observations. Similar to the comparison
with observed CINO;, our simulation underestimates HOCI
and Cl».

The model does not include many sources of reactive chlo-
rine. The failure to reproduce continental CINO; is likely due
to a lack of representation of sources such as salt plains, di-
rect emission from power station and swimming pools, and
HCI acid displacement. The inability to reproduce the very
high CINO, found in some cities (Pasadena) and industri-
alised regions (Texas) may be due to the coarse resolution
of the model compared to the spatial inhomogeneity of these

www.atmos-chem-phys.net/16/12239/2016/
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Table 4. Comparison between global tropospheric Oy budgets of simulations “Cl4-Br+I” (with halogen chemistry) and “NOHAL” (without
halogen chemistry). Recent average model values from ACCENT (Young et al., 2013) are also shown for comparison. For the X0 + X,0
halogen crossover reactions where X0 # X,0, we split the O3 loss equally between the two routes. Values are rounded to the nearest

integer value.

“Cl4+-Br+I” “NOHAL” ACCENT
O3 burden (Tg) 339 416 340 +40
Oy chemical sources (Tg yr)
NO + HO, 3436 3607 -
NO + CH30, 1288 1316 -
NO + RO, 525 508 -
Total chemical O, sources (POy) 5249 5431 51104606
Oy chemical sinks (Tg yearf1 )
03 +H,0 ™ 20H + 0, 1997 2489 -
O3 +HO, - OH+ 0O, 1061 1432 -
O3 + OH — HO;, + Oy 562 737 -
HOBr ™Y Br + OH 285 - -
HOBr+ HCl — BrCl 54 - -
HOBr + HBr — Brp + H» O (aq. aerosol) 22 - -
BrO + BrO — 2Br+ O 13 - -
BrO 4+ BrO — Bry + O, 4 - -
BrO + OH — Br+HO, 12 - -
I0+BrO— Br+1+ 0, 11 - -
ClO + BrO — Br+ CIO0/0CIO 4 - -
Other bromine Oy sinks 0 - -
Total bromine O, sinks 405 - -

hv
HOI — 1+ OH 438 - _
o0 1+0, 140 - -
I0+BrO— Br+1+ 0, 11 - -
I0 4+ CIO — I+ Cl + Oy/IC1 4+ O 1 - -
Other iodine Oy sinks 2 - -
Total iodine Oy sinks 591 - -
hv

HOC1 — Cl+ OH 27 - -
CH30, 4+ ClIO — CIO0 6 - -
ClO + BrO — Br+ CIO0/0CIO 4 - -
CINOj + HBr — BrCl 2 - -
10+ ClO — I+ Cl+ Oy/IC1 4+ Oy 1 - -
Other chlorine O, sinks 1 - -
Total chlorine O sinks 40 - -
Other Oy sinks 184 172 -
Total chem. Oy sinks (LO,) 4841 4829 4668 +727
O3 PO, —LOy (Tg year_l) 408 602 618 251
O3 dry deposition (Tg year_l) 799 980 1003 4,200
O3 lifetime (days) 22 26 2242
O3 STE (POx — LOx-Dry dep.) (Tg year_l) 391 378 552+ 168

www.atmos-chem-phys.net/16/12239/2016/
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Figure 12. Change in tropospheric O3 on inclusion of halogen chemistry. Column (left), surface (middle), and zonal (right) changes are

shown. Upper plots show absolute change and lower plots below give change in % terms ((“Cl4+-Br+I" —

“NOHAL”)/“NOHAL” - 100).
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Figure 13. Seasonal cycle of near-surface O3 at a range of Global Atmospheric Watch (GAW) sites. Observational data shown are 6-year
monthly averages (2006-2012). Model data are for 2005. Data are from GAW, compiled and processed as described in Sofen et al. (2016).
Blue and red lines represent simulations without halogens (“NOHAL”) with halogens (“Cl4Br+1”), respectively. Grey shaded area gives Sth
and 95th percentiles of the observations. Locations of observations are shown in Fig. 21.

observations. The failure to reproduce the Cape Verde obser-
vations may be due to the very simple aerosol phase chlorine
chemistry included in the model. Overall we suggest that the
model provides a lower limit estimate of the chlorine emis-
sions and therefore burdens within the troposphere, but con-
straints of surface concentrations are limited and vertical pro-
files are not available. Further laboratory work to better de-
fine aerosol processes and observations will be necessary to
investigate the role of chlorine on tropospheric chemistry.

Atmos. Chem. Phys., 16, 12239-12271, 2016

4 TImpact of halogens

We now investigate the impact of the halogen chemistry on
the composition of the troposphere. We start with O3 and OH
and then move onto other components of the troposphere.

4.1 Ozone
Figure 12 shows changes in column, surface, and zonal
O3 both in absolute and fractional terms between simu-

lations with and without halogen emissions (“Cl4+Br+I”
vs. “NOHAL”). Globally the mass-weighted, annual-average

www.atmos-chem-phys.net/16/12239/2016/
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Figure 15. Global annual-average tropospheric vertical odd oxygen
loss (Oy) through different reaction routes (Photolysis, HO,, IOy,
BrOy, and ClO,).
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mixing ratio is reduced by 9.4nmolmol~! with the in-
clusion of halogens and tropospheric burden decreases by
18.6% (“Cl4+Br+1” —“NOHAL”)/ (“NOHAL”-100). A
much larger percentage decrease of 30.0 % (8.5 nmol mol~")
is seen over the ocean surface. Large percentage losses are
seen in the oceanic Southern Hemisphere as reported pre-
viously (Long et al., 2014; Schmidt et al., 2016; Sherwen
etal., 2016a), reflecting the significant ocean—atmosphere ex-
change in this regions. The majority (65 %) of the change
in O3 mass due to halogens occurs in the free troposphere
(350 hPa < p <900 hPa). The location of O3 concentration
decreases is noteworthy as the climate effect of O3 is highly
spatial and vertically variable (Myhre et al., 2013). Effects
of halogens on tropospheric O3 from preindustrial to present
day are explored elsewhere (Sherwen et al., 2016b).
Comparisons of the model and observed surface and sonde
O3 concentrations are given in Figs. 13 and 14. In the trop-
ics the fidelity of the simulation improves with the inclusion
of halogens, as shown previously by Schmidt et al. (2016)
and Sherwen et al. (2016a). Sonde and surface comparisons
north of ~50°N and south of ~60° S, however, show that

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Figure 16. Global loss routes (+kv, +Br, +NO3, 4+Cl, +03, +OH) of organic compounds shown as % of total tropospheric losses.
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Figure 17. Changes in tropospheric burden of species and families on inclusion of halogens (“Cl4+Br+41") compared to no halogens (“NO-
HAL”). Burdens are considered in elemental terms (e.g Tg S/N/C) and species masses for OH, HO,, HyO», and O3. The family denoted by
“VOCs” in this plot is defined as the sum of carbon masses of CO, formaldehyde, acetaldehyde, ethane, acetone, isoprene, propane, > C4
alkanes, > C3 alkenes, and > C3 ketones. Abbreviations for tracers are expanded in Appendix C.

the model now underestimates Os. This is clearly the case
for Neumayer and the South Pole (Fig. 13).

The global odd oxygen budget O, in the troposphere with
(“Cl4Br+1”) and without (“NOHAL”) halogens is shown in
Table 4. The O, loss through chlorine, bromine, and iodine
represents 0.8, 8.4, and 12.2 % of the total O, loss respec-
tively; thus halogens constitute 21.4 % of the overall O3 loss.
The sum of halogen-driven O, loss is 1036 TgO, year™!,
which is similar to the magnitude of loss via reaction of O3
with HO, of ~ 1100 TgO, year~! (21.9% of total). Halo-
gen cross-over reactions (BrO + 10, BrO + Cl10O, 10 + ClO)
contribute little to the overall O3 loss. This number com-
pares with ~ 930 Tg O, year™! reported in GEOS-Chem pre-
viously by Sherwen et al. (2016a). Saiz-Lopez et al. (2014)
found that, between 50° S and 50° N and over the ocean only,
halogens are responsible for the loss of 640 Tg O, year™!
We find a higher value of 827 O, year~! with our model.

Halogens represent 39.6 and 33.0 % of O, loss in the upper
troposphere (350 hPa > p > tropopause) and marine bound-
ary layer (900 hPa < p), respectively, as shown in Fig. 15.
The marine boundary layer O, loss attributable to halogens
is comparable to the 31 % reported by Prados-Roman et al.
(2015a) previously, and it is higher than the 26 % reported

Atmos. Chem. Phys., 16, 12239-12271, 2016

solely for iodine (Sherwen et al., 2016a). The inter-reaction
of halogen monoxide species is found to less important here
than previous studies (e.g. Read et al., 2008), which has been
basis in locations of higher halogen monoxide concentra-
tions. Inclusion of sea salt, which would increase BrO in the
marine boundary layer, would increase the magnitude of con-
tribution of theses routes to total halogen-driven O, loss.
Although the partitioning of the O, loss processes is
significantly different between the simulations with and
without halogens (Table 4), the overall annual O, loss
only increases by ~0.25% (4841 vs. 4829 Tgyear ).
The O, production term decreases by 3.4 %. This de-
crease is due to a reduction in NO, concentrations via
hydrolysis of XNOj3 (X =Cl, Br, I). Our tropospheric
NO, burden decreases by 3.1% to 167 GgN (see Ta-
ble Al) on inclusion of halogens consistent with previous
model studies (Long et al., 2014; von Glasow et al., 2004;
Parrella et al., 2012; Schmidt et al., 2016). Globally NO,
losses through CINO3 and BrNOs3 hydrolysis are approxi-
mately equal (1 : 0.88) and overall proceed at a rate of ~ 10 %
of the NO, loss through the NO; + OH pathway. lodine ni-
trite and nitrate (INO2, INO3) hydrolysis is much less signifi-
cant (~ 0.2 % of rate of NO, + OH). Net O, is the difference

www.atmos-chem-phys.net/16/12239/2016/
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Figure 18. Global annual-average surface and zonal change (%) in HO,, NOy, and SO, families (as defined in Appendix C) on inclusion of

halogens.
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Figure 19. Global annual-average surface and zonal change (%) in ethane (CHg), propane (C3Hg), > C4 alkanes, and acetone
(CH3C(O)CH3) on inclusion of halogens. For species where all average changes are negative a continuous colour bar is used (C3Hg and
C,Hpg) and for species where both negative and positive changes are present a divergent colour bar is used (> C4 alkanes and CH3C(O)CH3).

between the production and loss terms and the change here is
much greater, leading to an overall decrease in net production
of tropospheric O3 (PO, —LO,) of 32% (194 Tgyear—!)
and a resultant decrease in O3 lifetime of 16 %.

4.2 HO; (OH+HO;)

We find that global molecule weighted average HO,
(OH + HO3) concentrations are reduced by 10.2 % with the
inclusion of halogens, with OH decreasing by 8.2 % from
1.40 x 10° to 1.28 x 10° molecules cm—3. Lower O3 concen-

www.atmos-chem-phys.net/16/12239/2016/

trations decreases the primary OH source (O3 L 20H) by
17.4 % and the secondary OH source (HO; + NO) by 4.7 %.

The reduction in the sources of OH is buffered by an ad-
ditional OH source from the photolysis of HOX (X =Cl, Br,
I) which acts to increase the conversion of HO, to OH. Pre-
viously, Sherwen et al. (2016a) showed an increase of 1.8 %
in global OH concentrations on inclusion of iodine. How-
ever, increased Bry and reduced I, concentrations in the sim-
ulations described here mean that the increased OH source
from HOX photolysis does not compensate fully for the re-

Atmos. Chem. Phys., 16, 12239-12271, 2016
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Figure 20. Locations of halogen observations against which the model is compared. IO observations are shown in different colours. CINO,
observations are shown in gold. BrO observations presented here were made at the same locations as IO observations. 1 indicates Cape
Verde, CV (Read et al., 2008; Mahajan et al., 2010); 2 is TORERO (aircraft-based; Volkamer et al., 2015; Wang et al., 2015); 3 is Malaspina
(Prados-Roman et al., 2015b); 4 is TransBrom (Prados-Roman et al., 2015b); 5 = HaloCAST-P (Mahajan et al., 2012); 6 is TORERO (ship-
based; Volkamer et al., 2015; Wang et al., 2015); 7 is Texas, US (Faxon et al., 2015; Osthoff et al., 2008); 8 is California, US (Riedel et al.,
2012; Mielke et al., 2013); 9 is Southern China, CN (Tham et al., 2014); 10 is London, GB (Bannan et al., 2015); 11 is Hessen, Germany
(Phillips et al., 2012); 12 = Colorado, USA (Thornton et al., 2010; Riedel et al., 2013); 13 is Calgary, CA (Mielke et al., 2011).

duced primary source, resulting in an overall 8.2 % reduction
in global mean OH. This buffering contributes to a change in
OH smaller than the 11 % reported previously (Schmidt et al.,
2016). As reported previously (Long et al., 2014; Schmidt
et al., 2016), we also find the net effect of halogens on the
OH : HOj, ratio is a small increase (2.3 %).

4.3 Organic compounds

The oxidation of VOCs by halogens is included in this simu-
lation (see Table B2 for reactions). The global fractional loss
due to OH, Cl, Br, O3, NO3, and photolysis (hv) for a range
of organics is shown in Fig. 16.

Globally, Br oxidation is small in our simulation and con-
tributes 3.9 % to the loss of acetaldehyde (CH3CHO), 0.8 %
of the loss of formaldehyde (CH,0O), 0.63 % of the loss
of > C4 alkenes, and <0.001 % of the loss of other com-
pounds. Recent work has suggested a significant source of
oceanic oxygenated VOCs (oVOCs) (Coburn et al., 2014;
Lawson et al., 2015; Mahajan et al., 2014; Millet et al., 2010;
Myriokefalitakis et al., 2008; Sinreich et al., 2010; Volkamer
et al., 2015), which we do not include in this simulation. Fur-
thermore, although our modelled Br, is broadly comparable
to some previous work (Parrella et al., 2012; Schmidt et al.,
2016), it is lower in the marine boundary layer than in other
recent work (Long et al., 2014). The combination of these
two factors suggests that our model provides a lower bounds
of impacts of bromine on VOC:s. Significantly higher concen-
trations of oVOC would decrease the BrO, concentrations in
the model and might then allow an increased sea-salt source
of reactive bromine.

Atmos. Chem. Phys., 16, 12239-12271, 2016

The oxidation of VOCs by chlorine is more significant. In
our simulation chlorine accounts for 27, 15, and 14 % of the
global loss of ethane (C,Hg), propane (C3zHg), and acetone
(CH3C(O)CH3), respectively. Loss of other VOCs is globally
small. This increased loss due to Cl is to some extent com-
pensated for by the reduction in the OH concentrations that
we calculate. Thus the overall lifetime of ethane, propane,
and acetone changes from 131, 38, and 85 days in the simu-
lation without halogens to 113, 37, and 80 in the simulation
with halogens. Notably the ethane lifetime without halogens
is 16 % longer. Given that we consider the chlorine in the
model to be a lower limit, ethane oxidation by chlorine may
in reality be more significant than found here.

Methane is a significant climate gas, as it has the second-
highest forcing amongst well-mixed greenhouse gases from
preindustrial to present day (Myhre et al., 2013). In our sim-
ulation without halogens we calculate a tropospheric chem-
ical lifetime due to OH of 7.47 years. With the inclusion of
halogen chemistry the OH concentration drops, extending the
methane lifetime due to OH to 8.28 years (an increase of
10.8 %). However, in our halogen simulations, chlorine rad-
icals also oxidise methane (2.0 % of the total loss), shorten-
ing the lifetime to 8.16 years (1.52 %). As noted previously,
the model’s chlorine concentrations appear to be underesti-
mated. Allan et al. (2007) estimate a 25 Tg year~! sink for
methane from Cl (~ 4 %), significantly higher than our esti-
mate (4 Tg). Overall the model’s CHy lifetime still appears
to be short compared to the observationally based estimation
of 9.1 + 0.9 from Prather et al. (2012), but halogens decrease
this bias.

www.atmos-chem-phys.net/16/12239/2016/
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Figure 21. Locations of O3 observations the model is compared against. Observations made by O3 sonde are shown in brown; surface
observations at GAW sites are shown in gold. Where a site is a location of both sonde release and surface O3 observation it is shown in

brown (Samoa, Neumayer, Lauder, and Milo).

In our simulations, halogens (essentially chlorine) have a
significant but not overwhelming role in the concentrations
of hydrocarbons (from ~ 1 % of methanol loss to ~ 27 % of
ethane loss). However, as discussed earlier, the low biases
seen with the very limited observational dataset of chlorine
compounds would suggest that the impacts calculated here
are probably lower limits.

4.4 Other species

With the inclusion of halogens in the troposphere there are
a large number of changes in the composition of the tropo-
sphere. Figure 17 illustrates the fractional global change in
burden by species (for abbreviation see Appendix C). The
spatial and zonal distribution of these changes by species
family (HO,, NO,, SO, as defined in Appendix C) are
shown in Fig. 18 and for a few VOCs (C3Hg, C>Hg, ace-
tone, and > C4 alkanes) in Fig. 19. A tabulated form of these
changes is given within Appendix A (Table A1)

As discussed in Sects. 4.1 and 4.2, a clear decrease in ox-
idants (O3, OH, HO», H>O») is seen. This drives an increase
in the concentrations of some VOCs (4.5 % on a per carbon
basis), including CO (6.1 %) and isoprene (6.2 %). However,
as discussed, it also adds an additional Cl sink term which
leads to an overall decrease in some species (e.g. CoHg,
(CH3),CO, C3Hg) particularly in the northern hemispheric
oceanic regions. The SO, burden increases slightly (0.5 %),
which can be attributed to decreases in oxidants.

5 Summary and conclusions

We have presented a model of tropospheric composition
which has attempted to include the major routes of halogen
chemistry impacts. Assessment of the model performance

www.atmos-chem-phys.net/16/12239/2016/

is limited as observations of halogen species are extremely
sparse. However, given the available observations we con-
clude that the model has some useful skill in predicting the
concentration of iodine and bromine species and appears to
underestimate the concentrations of chlorine species.

Consistent with previous studies, our model shows signif-
icant halogen-driven changes in the concentrations of oxi-
dants. The tropospheric O3 burden and global mean OH de-
creases by 18.6 and 8.2 %, respectively, on inclusion of halo-
gens. The methane lifetime increases by 10.8 %, improving
agreement with observations.

There are a range of changes in the concentrations of other
species. Direct reaction with Cl atoms leads to enhanced oxi-
dation of hydrocarbons with ethane showing a significant re-
sponse. Given that the model appears to provide a lower limit
for atomic Cl concentrations, this suggests a major missing
oxidation pathway for ethane which is currently not consid-
ered. NO, concentrations are reduced by aerosol hydroly-
sis of the halogen nitrates, which leads to reduced global O3
production. Our simulation of BrO appears to be relatively
consistent with observations, but we do not include a sea-
salt debromination mechanism. This would suggest that ei-
ther the cycling of bromine in our model is generally too fast
or that we do not have sufficiently large BrO, sinks (poten-
tially oVOCs). Both hypotheses warrant further research.

Significant uncertainties, however, remain in our under-
standing of halogens in the troposphere. The gas phase chem-
istry and photolysis parameters of iodine compounds are
uncertain, together with the emissions of their organic and
inorganic precursors (Sherwen et al., 2016a). For chlorine,
bromine, and iodine heterogeneous chemistry, little experi-
mental data exist and suitable parameterisations for the com-
plex aerosols found in the atmosphere are unavailable (Ab-
batt et al., 2012). The uncertainties of this have been dis-

Atmos. Chem. Phys., 16, 12239-12271, 2016
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cussed in recent reviews (Saiz-Lopez et al., 2012b; Simp-
son et al., 2015) and considered in previous model studies
(Schmidt et al., 2016; Sherwen et al., 2016a), and they still
warrant further exploration.

Understanding fully the impact of halogens on tropo-
spheric composition will require significant development of
new experimental techniques and more field observations,
new laboratory studies, and models which are able to exploit
these developments.

Atmos. Chem. Phys., 16, 12239-12271, 2016
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6 Data availability

The model code used here will be made available to the com-
munity through the standard GEOS-Chem repository (http:
/Iwww.geos-chem.org). Requests for materials should be ad-
dressed to Mat Evans (mat.evans @york.ac.uk).

www.atmos-chem-phys.net/16/12239/2016/
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Appendix A: Tabulated burden changes on inclusion of

halogens

Table Al gives the burdens with and without halogens and

the fractional change.

12259

Table A1l. Tropospheric burden of species and families with (“Cl4Br+I") and without halogens (“NOHAL”), and % change. Burdens are

considered in elemental terms (e.g Gg S/N/C) and species masses for OH, HO,, H,O», and O3. Families are defined in Appendix C.

“NOHAL” “Cl+Br+I” % A
NO3 1.49 1.14  -23.57
N;,O5 9.38 7.48 —20.22
CyHg 3258.84 2628.05 —19.36
03 415843.25 33870823 —18.55
HNO4 19.84 16.84 —15.14
H,0, 3229.09 2764.27 —14.39
C3Hg 609.76 52431 —14.01
>C4 alkanes 488.35 429.02 —12.15
PPN 15.82 14.31 -9.55
HO, 27.55 24.95 —9.44
OH 0.28 0.26 —6.31
CH3C(O)CH;3 7533.51 7085.23 —5.95
PAN 202.89 191.57 —5.58
NO; 123.53 118.52 —4.06
CH,;0 389.55 375.42 —3.63
NOy 171.01 165.75 -3.07
SO4 on SSA 1.97 1.94 —1.74
PMN 0.68 0.67 -1.27
NOy 1374.56 1367.26 —0.53
NO 47.48 47.24 —0.50
NH3 126.61 126.42 —0.15
NH4 270.93 270.88 —0.02
SOy 398.98 400.80 0.46
SO4 397.01 398.86 0.47
PROPNN 7.46 7.55 1.22
Acetaldehyde 184.93 187.23 1.25
CH30,NO, 13.80 14.03 1.63
HNO;3 463.49 471.53 1.74
> C3 ketones 186.99 190.49 1.87
>(C3 alkenes 97.93 100.28 2.40
SO, 286.11 298.96 4.49
VOCs 14819329  155234.49 4.75
MMN 3.15 3.32 5.17
> C4 alkyl nitrates 64.60 68.00 5.26
HNO, 2.76 292 5.84
CO 134654.88  142877.06 6.11
Isoprene 788.55 837.40 6.19
ISOPN 0.65 0.71 9.40
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Appendix B: Gas phase chemistry scheme

Here is described the full halogen chemistry scheme as pre-
sented in previous works (Bell et al., 2002; Eastham et al.,
2014; Parrella et al., 2012; Schmidt et al., 2016; Sherwen
et al., 2016a) and with updates as detailed in Sect. 2 and Ta-
ble 1. The complete gas phase photolysis, bimolecular, and
termolecular reactions are described in Tables B1, B2, and
B3.

B1 Heterogenous reactions

The halogen multiphase chemistry mechanism is based on
the iodine mechanism (“Br + I"’) described in Sherwen et al.
(2016a) and the coupled (Cl, Br) mechanism of Schmidt et al.
(2016). The heterogenous reactions in the scheme are shown
in Table B4 and with further detail individual detail on cer-
tain reactions below. The loss rate of a molecule X due to
multiphase processing on aerosol is calculated following Ja-
cob (2000).

dny r n 4 _IA ®B1)
ke SR T ny,
dr Dy ¢y X

where r is the aerosol effective radius, Dy is the gas phase
diffusion coefficient of X, c is the average thermal velocity
of X, y is the reactive uptake coefficient, A is the aerosol
surface area concentration, and ny is the gas phase concen-
tration of X.

B2 Aerosols

We consider halogen reactions on sulfate aerosols, sea-salt
aerosols, and liquid and ice cloud droplets. The implementa-
tion of sulfate type aerosols in GEOS-Chem is described by
Park et al. (2004) and Pye et al. (2009). Sulfate aerosols are
assumed to be acidic with pH=0.

The GEOS-Chem sea-salt aerosol simulation is as de-
scribed by Jaeglé et al. (2011). The transport and deposi-
tion of sea-salt bromide follows that of the parent aerosol.
Oxidation of bromide on sea salt produces volatile forms of
bromine that are released to the gas phase. Sea-salt aerosol is
emitted alkaline, but the alkalinity can be titrated in GEOS-
Chem by uptake of HNO3, SO;, and H,SO4 (Alexander,
2005). Sea-salt aerosol with no remaining alkalinity is as-
sumed to have pH=5. We assume no halide oxidation on
alkaline sea-salt aerosol.

The liquid cloud droplet surface area is modelled using
cloud liquid water content from GEOS-FP (Lucchesi, 2013)
and assuming effective cloud droplet radii of 10 and 6 um for
marine and continental clouds, respectively. The ice cloud
droplet surface area is modelled in a similar manner assum-
ing effective ice droplet radii of 75 um. We assume that ice
cloud chemistry is confined to an unfrozen overlayer sur-
rounding the ice crystal (see Schmidt et al. (2016) for de-
tails). Cloud water pH (typically between 4 and 6) is cal-
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culated locally in GEOS-Chem following Alexander et al.
(2012).

The reactive uptake coefficients depend on the aerosol
halide concentration. For sea-salt aerosol, the bromide con-
centration is calculated directly from the bromide content and
the aerosol mass. Sea-salt aerosol chloride is assumed to be
in excess (see below). For clouds and sulfate aerosol, the bro-
mide and chloride concentration is estimated by assuming
equilibrium between gas phase HX and aerosol phase X ™.

B3 Reactive uptake coefficients
B3.1 HOBr+Cl~ /Br~
The reactive uptake coefficient is calculated as
1 17!
y = (F_ +o ) ) (B2)

where the mass accommodation coefficient for HOBr is a =
0.6, and

r— 4Huor RT kpopr+x- [ X 1HY L, £ (r, 1)
c 9

(B3)

with kyoprc- = 5.9 % 10° M2 and kyop, - = 1.6 x
10'°M~25~!. In the equation above c is the average thermal
velocity of HOBr, and f (I, r) is a reacto-diffusive correction
factor,

r I

f,,r)=coth (1—) - —, (B4)
r

with r being the radius of the aerosol. For sea-salt aerosol,

HOBr+Cl™ is assumed to be limited by mass accommoda-

tion, i.e. I' > «, due to high concentration of CI™ in sea-salt

aerosol. The reacto-diffusive length scale is

= \/ Dy (BS)
"\ knoprrx-[XTIHY

where D; = 1.4 x 107> cm?s~! is the aqueous phase diffu-
sion coefficient for HOBr. The listed parameters are taken
from Ammann et al. (2013), and kygp,, g~ is from Beck-
with et al. (1996).

B3.2 CINOs;+Br~
The reactive uptake coefficient is calculated as
1 17!
y = (F_ +a ) s (B6)

where the mass accommodation coefficient for CINO3 is a =
0.108, and

- AW RT/[Br-1D;
C 9

(B7)

where c is the average thermal velocity of CINO3, D; = 5.0x
107%cm?s~! is the aqueous phase diffusion coefficient for
CINO3, and W = 10° /Msbar ™.

www.atmos-chem-phys.net/16/12239/2016/
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Table B1. Photolysis reactions of halogens included in scheme. Photolysis is described in Eastham et al. (2014) (CINO,, CINO3, and C100),
Sherwen et al. (2016a) (I,, HOI, 10, OIO, INO, INO,, INO3, 1,07, 1,03, I,04, CH31, CH,I,, CH,ICI, and CH,IBr), and Schmidt et al.
(2016) (BrCl, Cl,, Cl0O, HOCI, CINO,, CINO3, CIOO, Cl,0,, CH3Cl, CH3Cl,, and CHCl3). As stated in Sect. 2, we have used the 1,0,

cross section for I5O4.

ID Reaction Cross-section reference
n LMo Sander et al. (2011)
2 HOI™1+o0H Sander et al. (2011)
1310 (+0y) M1 (405) Sander et al. (2011)
J4 (0)(0) g I+0, Sander et al. (2011)
15 NoMi14+No Sander et al. (2011)
J6 INO, h—l; I+NOy Sander et al. (2011)
J7 INO3 h—I; I+NO3 Sander et al. (2011)
J8 1,0y h—li I+ OIO Go6mez Martin et al. (2005); Spietz et al. (2005)
19 CHIM1 Sander et al. (2011)
J10  CHD h—‘i 21 Sander et al. (2011)
J11  CH,ICI h—g 1+ Cl Sander et al. (2011)
712 CHoIBr™14Br Sander et al. (2011)
J13 1,04 ]2; 2010 see caption

J14 1,03 h—li OIO+10 Go6mez Martin et al. (2005); Spietz et al. (2005)
J15 CHBrs ™Y 3Br Sander et al. (2011)
J16  Bry 2 2Br Sander et al. (2011)
J17  BrO (+0y) @; Br (+03) Sander et al. (2011)
J18 HOBr’Y Br+OH Sander et al. (2011)
719 BiNO, ™2 Br4NO, Sander et al. (2011)
120 BrNO3 ™ Br+NOj; Sander et al. (2011)
121 BNO; ™ BrO 4 NO, Sander et al. (2011)
122 CHyBry ™ 2Br Sander et al. (2011)
123 BrelBr4al Sander et al. (2011)
4 cLMoc Sander et al. (2011)
J25 CIO (4+0y) h—]; Cl (+03) Sander et al. (2011)
J26  OCIO (4+07) h—]; CIO (+O3)  Sander et al. (2011)
127 Cho,™citcioo Sander et al. (2011)
J28 CINO, h—I; Cl+NOy Sander et al. (2011)
129 CINO; ™ c14NoO; Sander et al. (2011)
130 CINOs ™ clo+NO, Sander et al. (2011)
131 Hocl™ c1+0H Sander et al. (2011)
J32  CIOO ]2; Cl Sander et al. (2011)
J33  CH3Cl h—‘i Cl+ CH30,, Sander et al. (2011)
J34  CH3Clyp h—‘; 2Cl1 Sander et al. (2011)
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Table B2. Bimolecular halogen reactions included in scheme. This includes reactions from previous updates to descriptions of halogen
chemistry in GEOS-Chem (Eastham et al., 2014; Parrella et al., 2012; Schmidt et al., 2016; Sherwen et al., 2016a) and those described in
Sect. 2. These are given in the Arrhenius form with the rate equal to A - exp( }ET“ ). Unknown values are represented by a dash and these set
to 0 in the model, reducing the exponent to 1. The bi-molecular reactions with an M above the arrow represent termolecular reactions where

the pressure dependence is not known or are uni-molecular decomposition reactions. Abbreviations for tracers are expanded in Appendix C.

RxnID Reaction A —Ea/R Citation
cm3 molecules ! s~! K
Ml I+03—10+0; 2.10 x 10~ —830  Atkinson et al. (2007)
M2 1+HO, — HI+ 0, 150 x 10711 —1090  Sander et al. (2011)
M3 I + OH— HOI +1 2.10 x 10710 —  Atkinson et al. (2007)
M4 HI+ OH — I+ H,0 1.60 x 10~ 11 440  Atkinson et al. (2007)
M5 HOI + OH — 10 + H,0 5.00 x 10712 - Riffault et al. (2005)
M6 10 + HOp — HOI + O, 1.40 x 10~ 11 540  Atkinson et al. (2007)
M7 10 +NO — I+ NO, 7.15 x 10712 300  Atkinson et al. (2007)
M8 HO + CH31 — HyO +1 430%x 10712 —1120  Atkinson et al. (2008)
M9 INO + INO — I, + 2NO 8.40 x 10~ —2620  Atkinson et al. (2007)
M10 INO; + INOy — I 4+ 2NO, 470x 10712 _1670  Atkinson et al. (2007)
Mil1 I, + NO3 — [ + INO; 1.50 x 10~12 - Atkinson et al. (2007)
M12 INO3 +1— I + NO;3 9.10 x 10~ 11 —146  Kaltsoyannis and Plane (2008)
M13 1+ BrO — 10+ Br 120 x 10~ —  Sander et al. (2011)
M14 10 4+ Br— [+ BrO 2.70 x 10711 - Bedjanian et al. (1997)
M15 I0+BrO— Br+1+0, 3.00 x 10~12 510  Atkinson et al. (2007)
M16 10 + BrO — Br +0I0 120x 1071 510  Atkinson et al. (2007)
M17 0I0 + 010 — 1,04 1.50 x 10~10 - Gémez Martin et al. (2007)
M18 0I0 +NO — NO, + 10 1.10 x 10~12 542 Atkinson et al. (2007)
M19 10 +10 — 1+ 0I0 2.16 x 10711 180  Atkinson et al. (2007)
M20 I0+10— L0, 324 x 1071 180  Atkinson et al. (2007)
M21 10+o10X 1,03 1.50 x 10710 —  Go6mez Martin et al. (2007)
M22 1,05 Mio0+10 1.00x 1012 —9770  Ordéfiez et al. (2012)
M23 1,0, 2 010 +1 250 1014 —9770  Ordéiiez et al. (2012)
M24 1,04 M) 2010 3.80 x 1072 — Kaltsoyannis and Plane (2008)
M25 N0, X 14+N0, 9.94 x 1017 —11859 McFiggans et al. (2000)
M26 No; % 10+ NO, 2.10x 10 —13670 Kaltsoyannis and Plane (2008)
M27 10 + ClO — 1+ 0CIO 2.59 x 10712 280  Atkinson et al. (2007)
M28 10+ CIO —> 14 Cl+0, 1.18 x 10712 280  Atkinson et al. (2007)
M29 10 + CIO — IC1 + O, 9.40 x 10713 280  Atkinson et al. (2007)
M30 Cl+HCOOH — HCl 4+ CO2 4+ H,0 2.00 x 10713 - Sander et al. (2011)
M31 Cl+ CH30, — CIO 4+ CH,0 + HO,2 1.60 x 10~10 - Sander et al. (2011)
M32 Cl+ CH300H — HCl + CH30, 5.70 x 10711 —  Sander et al. (2011)
M33 Cl + C,Hg — HCl + CyHs0, 7.20 x 10~ —70 Sander etal. (2011)
M34 Cl+ CyH50, — ClO + HO, + ALD22 7.40 x 1011 —  Sander et al. (2011)
M35 Cl+EOH — HCl + ALD2b 9.60 x 1011 —  Sander et al. (2011)
M36 Cl + CH3C(O)OH — HCl 4 CH3 05, + CO2 2.80 x 10714 —  Sanderetal. (2011)
M37 Cl+ C3Hg — HCI + A302 7.85x 1011 —80  Sander et al. (2011)
M38 Cl+ C3Hg — HCI +B302 6.54 x 1011 —  Sander et al. (2011)
M39 Cl+ ACET — HCl + ATO2 770x 10~ —1000 Sander et al. (2011)
M40 Cl+ISOP — HCl + RIO2 7.70 x 1011 500 Sander et al. (2011)
M41 Cl+MOH — HCI + CH,0 + HO, 5.50 x 107! —  Sander et al. (2011)

@ Only first channel from JPL considered. The second channel forms a Criegee (HC1+ CyH,405) and therefore cannot be represented by the reduced GEOS-Chem
chemistry scheme. b Reaction defined by JPL and interpreted as proceeding via hydrogen abstraction; therefore, the acetaldehyde product is assumed.
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Table B2. Continued.

RxnID Reaction A —Ea/R Citation

cm? molecules™!s! K
M42 CHBr13 + OH — 3Br + CO 135 x 10712 —600  Sander et al. (2011)
M43 CHj,Brp + OH — 2Br+4 CO 2.00 x 10712 —840  Sander et al. (2011)
M44 CH;3Br+ OH — 3Br + CO 235x 10712 1300 Sanderetal. (2011)
M45 Br+ O3z — BrO+ 0, 1.60 x 1011 —780  Sander et al. (2011)
M46 Br+ CH,0 — HO, +CO 1.70 x 10~ 11 —800  Sander et al. (2011)
M47 Br+HO; — HBr+ 0, 4.80 x 10712 —310  Sander et al. (2011)
M48 Br -+ CH3CHO — CH3CO3 1.30 x 10711 —360  Atkinson et al. (2007)
M49 Br + (CH3),CO — CH3C(O)CH,00 1.66 x 10710 —7000 King et al. (1970)
M50 Br + CoHg — C2H500 236x 10710 6411  Seakins et al. (1992)
M51 Br+ C3Hg — C3H700 877x 1071 —4330  Seakins et al. (1992)
M52 Br + BrNO3 — Brp +NO3 4.90 x 10711 0 Orlando and Tyndall (1996)
MS53 Br+NO3 — BrO 4+ NO, 1.60 x 10~ 1 0 Sander et al. (2011)
M54 HBr + OH — Br+ H,0 5.50 x 10~12 200 Sander et al. (2011)
M55 BrO + NO — Br+NO, 8.80 x 10~12 260 Sander et al. (2011)
M56 BrO + OH — Br + HO, 1.70 x 10~ 250  Sander etal. (2011)
M57 BrO + BrO — 2Br+ 0, 2.40 x 10~12 40 Sander et al. (2011)
M58 BrO + BrO — Bry + 0, 2.80 x 10714 860  Sander et al. (2011)
M59 BrO + HO, — HOBr + O, 450 x 10~12 460  Sander et al. (2011)
M60 Br; + OH — HOBr + Br 2.10 x 10~ 240  Sander et al. (2011)
M61 Cl + ALK4 — HCI + R402 2.05x 10710 —  Atkinson et al. (2006)
M62 Cl + PRPE — HCl + PO2 3.60 x 10712 - Atkinson et al. (2006)
M63 CH3Cl + Cl— CO + 2HCl + HO, 217x 10711 —1130  Sanderetal. (2011)
M64 Cl+ H,0, — HO, + HCl 1.10 x 1011 -980  Sander et al. (2011)
M65 Cl+HO, — Oy + HCl 1.40 x 1011 270  Sander et al. (2011)
M66 Cl+HO, — OH + CIO 3.60 x 10711 —375  Sander et al. (2011)
M67 Cl+ 03— ClO+ 0, 230 x 1071 —200 Sander et al. (2011)
M68 CINO3 4 Cl— Cly + NO3 6.50 x 10~12 135  Sander et al. (2011)
M69 ClO +CIO — Cly + O, 1.00x 10712 —1590 Sander et al. (2011)
M70 ClO + CI0 — OCIO +Cl 3.50x 10713 —1370  Sanderetal. (2011)
M71 ClO + ClO — Cl+ CIOO 3.00x 10~11 —2450  Sander et al. (2011)
M72 Cl0 + HO, — 05 + HOCl1 2.60 x 10712 290  Sander et al. (2011)
M73 ClO +NO — C1+NO, 6.40 x 10712 290  Sander et al. (2011)
M74 ClOO + Cl— 2CIO 120 x 1011 - Sander et al. (2011)
M75 CI00 + Cl— Cl, + 0, 2.30 x 10710 —  Sander et al. (2011)
M76 MO2 + CIO — C100 + HO, + CH20 3.30 x 10712 —115  Sander et al. (2011)
M77 OH + CH3Cl — Cl + HO, +H,0 3.90x 10712 —1411 Sanderetal. (2011)
M78 OH + Cl, — HOCI + Cl 260x 10712 —1100 Sanderetal. (2011)
M79 OH + C1,0, — HOCI + C100 6.00 x 10~13 670  Sander et al. (2011)
MS0 OH + CINO, — HOCl + NO, 240x 10712 —1250 Sanderetal. (2011)
M81 OH + CINO3 — HOCI 4+ NO3 1.20 x 10712 —330  Sander et al. (2011)
M82 OH + ClO — HCl + O, 6.00 x 10~13 230  Sander etal. (2011)
M83 OH + CIO — HO, +Cl 7.40 x 10712 270  Sander et al. (2011)
M84 OH + HCl — H,0 +Cl 1.80 x 10712 —250  Sander et al. (2011)
M85 OH + HOCl — H,0 + CIO 3.00 x 10712 —500  Sander et al. (2011)
M86 OH + OCIO — HOCl 4 O, 1.50 x 10712 600 Sander et al. (2011)
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Table B3. Termolecular halogen reactions included in the scheme. This includes reactions from previous updates to halogen chemistry in
GEOS-Chem (Eastham et al., 2014; Parrella et al., 2012; Schmidt et al., 2016; Sherwen et al., 2016a) and those detailed in Sect. 2. The lower
pressure limit rate (kq) is given by Ag - (@)x . The high pressure limit is given by k. Fc characterises the fall off curve of the reaction as

described by Atkinson et al. (2007).

X koo Fc  Citation

cm? molecules ™! s~!

1 1.70x 10~ 0.6  Atkinson et al. (2007)

1 6.60 x 1011 0.63  Atkinson et al. (2007)

5 1.60x 10~ 04  Atkinson et al. (2007)
2.4 270x 10711 0.6 Sanderetal. (2011)
32 6.90x 10712 0.6 Sanderetal. (2011)
3.2 6.90x 10712 0.6 Sanderetal. (2011)

0 280x 10710 0.6  Atkinson et al. (2006)

0 1.80 x 10719%* 0.6  Sander et al. (2011)

2 1.74 x 1015* 0.6  Sander et al. (2011)

2 3.00x 10712* 0.6  Sander et al. (2011)
1.9 1.50x 10711* 0.6 Sanderetal. (2011)

0 273x 1014* 0.6 Sanderetal. (2011)

* koo (T) for Reactions (T7)—~(T11) have a form of koo (T) = koo(%)*m, where m =3.1, 4.5, 4.5, 3.4, and 3.1 respectively. Abbreviations for tracers are expanded in

RxnID Reaction Ap

cm® molecules™2s~!
T1 1+No X No 1.80 x 1032
™ 1+N0, X Nvo, 3.00 x 103!
T3 10 + N0, % INo; 770 x 1031
T4 Br+NO, X BiNO, 420 x 10731
TS BrO 4+ NO, 4 BrNO; 520 x 103!
TS BrO 4+ NO, 4 BrNO; 520 x 103!
T6 c1+ PRPE 2 HCl + R4O2 4.00 x 10728
T7 cl+0, X cloo 220 x 1033
T8 cl,0, X 2c10 9.30 x 106
T9 clo+c10 c1,0, 1.60 x 102!
T10 10 + N0, X ciNo, 1.80 x 10731
TI clooX c1+o0, 3.30 x 1079

Appendix C.
B3.3 O3+Br~

The reactive uptake coefficient is calculated as

y=Ip+T%s, (B8)
where I'y, is the bulk reaction coefficient,

4Ho,RTk -[Br7 L, f(r,1
Fb _ 03 O3+4Br [ ] rf( r)’ (B9)

C

with ko, g~ = 6.8 x 10% exp(—4450K/T)M~"s~!. In the
equation above c is the average thermal velocity of O3, and
f (-, r) is a reacto-diffusive correction factor,

£y, r) = coth (lﬁ) _b

r

(B10)

with r being the radius of the aerosol. The reacto-diffusive
length scale is

I = Di
"\ oy [BrT

(B11)

Atmos. Chem. Phys., 16, 12239-12271, 2016

where D; = 8.9 x 107%cm?s~! is the aqueous phase diffu-
sion coefficient for O3.
The surface reaction coefficient is calculated as

_ 4ks[Br~ (Surf)]KLangCNmax
T c(l+ KrangclO3(2)D)

: (B12)

where the surface reaction rate constant is k3=
10716 cm? s~ the equilibrium constant for O3 is
Klangc = 10~13 ¢cm3, and the maximum number of available
sites is taken as Npax = 3 x 10'* cm™2. The surface bromide
concentration is estimated as

[Br~ (surf)] =

min(3.41 x 10" cm™2 M~ [Br™], Nmax)- (B13)
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Table B4. Halogen multiphase reactions and reactive uptake coefficients (y).

ID Reaction Reactive uptake coefficient (y) Note Reference

1 HCl — C1~ (SSA) 44 %10 exp(2989 K/ T) Seasaltonly Ammann et al. (2013)
2 HBr — Br™ (SSA) 1.3x 1078 exp(4290 K/ T) Seasaltonly Ammann et al. (2013)
3 HI — I(aerosol) 0.1

4 CINO3 — HOCI1+ HNO3 0.024 Hydrolysis Deiber et al. (2004)

5 BrNO3 — HOBr + HNO3 0.02 Hydrolysis Deiber et al. (2004)

6 INO3 — 0.85IC1 4 0.151Br+HNO3  0.01 Sea salt only

7 INO; — 0.85IC1+40.15IBr+HNO3  0.02 Sea salt only

8 HOBr + CI™ (aq) — BrCl See Sect. B3 in Appendix B Ammann et al. (2013)

HOBr+Br™ (aq) - Brp

HOI — 0.85IC14-0.151IBr

CINO3 + Br™ (aq) — BrCl+ HNO3
03 + Br~ (aq) - HOBr

1,0, — I(aerosol)

1,03 — I(aerosol)

1,04 — I(aerosol)

See Sect. B3 in Appendix B
0.01
See Sect. B3 in Appendix B
See Sect. B3 in Appendix B
0.02
0.02
0.02

Ammann et al. (2013)

Sea salt only

Ammann et al. (2013)
Ammann et al. (2013)
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Table BS. Henry’s law coefficients and molar heats of formation of iodine species. Where Henry’s law constant equals infinity a very large
values is used within the model (1 x 1020 M atm_l). The INO, Henry’s law constant is assumed equal to that of BrNO3, from Sander (2015),
by analogy. For [,Ox (X =2, 3, 4) a Henry’s law constant of infinity is assumed by analogy with INO3.

No. Species Henry’slaw Reference d(InH)/ Reference
constant (H) d(1/T)

at 298 K K

Matm™!
DX HOBr 6.1 x 103 Frenzel et al. (1998) 6.01 x 103 McGrath and Rowland (1994)
DX HBr* 7.1 x 1013 Frenzel etal. (1998) 1.02 x 10*  Schweitzer et al. (2000)
DX BrNO, 0.3  Frenzel et al. (1998) - -
DX BrNOj oo Sander (2015) - -
DX Brp 0.76  Dean (1992) 372 x 103 Dean (1992)
DX HOCI 6.5x 103 Sander (2015) 59x10%  Sander (2015)
DX HCI* 7.1x 105 Sander (2015) 59x 103  Sander (2015)
DX CINO3 oo Sander (2015) - -
DX BrCl 0.97  Sander (2015) - -
DX ICl 1.11 x 102 Sander (2015) 2.11x 10°  Sander et al. (2006)
DX IBr 243 x 10! Sander (2015) 4.92 x 10> Sander et al. (2006)
Dl HOI 1.53x 10*  Sander (2015) 8.37x 103 Sander et al. (2006)
D2  HI* 7.43 x 1013 Sander (2015) 3.19x 10> Sander et al. (2006)
D3 INOj3 oo Vogtetal. (1999) 3.98 x 10% Kaltsoyannis and Plane (2008)
D4 1,0, oo see caption text 1.89 x 10% Kaltsoyannis and Plane (2008)
D5 I 2.63  Sander (2015) 751 x 103  Sander et al. (2006)
D6 INOp 0.3  see caption text 724 x 103 Sander et al. (2006)
D7 1,03 oo see caption text 7.70 x 103 Kaltsoyannis and Plane (2008)
D8 1,04 oo see caption text 1.34 x 10* Kaltsoyannis and Plane (2008)

* Effective Henry’s law of HX is calculated for acid conditions through Kl’f[(T) =Ky(T) x (1+

typical cloud droplet.

www.atmos-chem-phys.net/16/12239/2016/
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Appendix C

Table C1. Abbreviations used in the document. Abbreviated species names used here are defined in the GEOS-Chem manual (http://acmg.
seas.harvard.edu/geos/doc/man/appendix_6.html).

Abbreivation  Expansion

PAN peroxyacetyl nitrate

PPN peroxypropionyl nitrate

MPN methyl peroxy nitrate

PMN peroxymethacryloyl nitrate

MOH methanol

EOH ethanol

ALD2 acetaldehyde

ISOP isoprene

ALK4 > C4 alkanes

CH30, methylperoxy radical

A302 primary RO, from C3Hg

B302 secondary RO, from C3Hg

ATO2 RO, from acetone

R402 RO, from > C4 alkanes

RIO2 RO; from acetone

HO, OH +HO,

NO, NO +NO,

SOy SO3 + S04 4 SO4 on sea salt

Iy I+ 2I + HOI 410 + OIO + HI 4+ INO + INO7 + INO3 + 21,05 + 21,03 + 21,04

Bry Br+2Brp + HOBr + BrO + HBr + BrNO» + BrNO3 + IBr + BrCl

Cly Cl+2Cl; + HOCl1 + CIO 4+ HCI 4- CINO; + CINO3 + IC1 4 BrCl 4 C100 + OCIO + 2Cl1, 0,

Oy 03 +NO; 4+ 2NO3 + PAN + PMN + PPN + HNO4 + 3N7O5 + HNO3 + MPN + XO + HOX + XNO; +2XNO3
42010 + 21,07 + 31,03 + 41,04 4 2Cl, 05 + 20CI0 (where X =Cl, Br, I)

PRPE > C3 alkenes

Atmos. Chem. Phys., 16, 12239-12271, 2016 www.atmos-chem-phys.net/16/12239/2016/
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