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ABSTRACT
Conducting randomized experiments in education settings
raises the question of how we can use machine learning tech-
niques to improve educational interventions. Using Multi-
Armed Bandits (MAB) algorithms like Thompson Sampling
(TS) in adaptive experiments can increase students’ chances
of obtaining better outcomes by increasing the probability
of assignment to the most optimal condition (arm), even
before an intervention completes. This is an advantage over
traditional A/B testing, which may allocate an equal num-
ber of students to both optimal and non-optimal conditions.
The problem is the exploration-exploitation trade-off. Even
though adaptive policies aim to collect enough information
to allocate more students to better arms reliably, past work
shows that this may not be enough exploration to draw
reliable conclusions about whether arms differ. Hence, it
is of interest to provide additional uniform random (UR)
exploration throughout the experiment. This paper shows
a real-world adaptive experiment on how students engage
with instructors’ weekly email reminders to build their time
management habits. Our metric of interest is open email
rates which tracks the arms represented by different subject
lines. These are delivered following different allocation al-
gorithms: UR, TS, and what we identified as TS†—which
combines both TS and UR rewards to update its priors. We
highlight problems with these adaptive algorithms—such as
possible exploitation of an arm when there is no significant
difference—and address their causes and consequences. Fu-
ture directions includes studying situations where the early
choice of the optimal arm is not ideal and how adaptive
algorithms can address them.

Keywords
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1. INTRODUCTION
Traditional A/B randomized comparisons are widely used
in different research and industry areas to determine if a
particular condition is more effective. Similarly, adaptive
experimentation is used to assign participants to the most
effective current condition while keeping the ability to test
the other conditions [12]. Using adaptive experimentation
in education can help explore various conditions but also
direct more students to more useful ones in a randomized
experiment [6, 11, 12].

In this setting, we focus on the adaptive experimentation’s
problem regarding the exploration-exploitation trade-off. It
is well studied that some adaptive policies might be exploit-
ing an arm when no significant difference exists in that di-
rection [7, 11]. This might cause a lack of exploration of all
conditions where the policy starts allocating more users to
an arm that was favoured from high values of its random re-
wards, even if the true mean is higher. We study the impact
of adding a fixed allocation of uniform exploration to the TS
algorithm—which is employed to solve the MABs problem
and has been used in A/B experiments to adaptively assign
participants to conditions [12]. TS is a Bayesian algorithm
that has shown promising results in maximizing the reward
[1, 3]. It maintains a posterior distribution for each action
based on how rewarding that action is expected to be. Ac-
tions are chosen proportional to their posterior probability,
and the outcome of the chosen action is then used to update
each posterior distribution. TS also performs well in cases
where batches of actions are chosen, and the rewards and
outcomes are updated only after each batch [5].

This work aims to build onto the study of academic inter-
ventions targeted to enhance study habits and time manage-
ment of college students, building upon [14] by studying the
variation from injecting UR data to TS priors each week.
Previous work focused on some methods that improve stu-
dent’s study habits and attitudes [2], and using A/B com-
parisons in email interventions to students [13].

We conducted a real-world adaptive experiment in an online
synchronous CS1 course at a large publicly funded research-
focused North American University. The motivation for this
intervention is to show students that simply knowing how to
program is only one part of the puzzle; building consistent
study habits and depositions such as time management are

F. J. Yanez, A. Zavaleta-Bernuy, Z. Han, M. Liut, A. Rafferty, and J. J. Williams. Increasing Students’ Engagement to Reminder Emails Through Multi-Armed Bandits. In B. Akram, T. Price, Y. Shi, P. Brusilovsky, and S. Hsiao, editors, Proceedings of the 6th Educational Data Mining in Computer Science Education (CSEDM) Workshop, pages 82–87, Durham, United Kingdom, July 2022.
© 2022 Copyright is held by the author(s). This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.



also crucial to being a good programmer. These skills aim to
impact longer-term success, in addition to capturing early
improvement from keeping up with course content.

We explore the difference between implementing a smaller
traditional experiment (i.e., allocating students to condi-
tions uniformly at random) in addition to an adaptive exper-
iment (i.e., TS) mixed on the same cohort. This approach is
motivated by creating stability in the adaptive component
and increasing the probability of assigning more students to
a better condition. Even more, it could make it easier to
draw conclusions from the experiment since we can look at
the traditional part of the experiment or the combined one.
In total, we deployed three policy learning algorithms. The
first is simple uniform random (UR) sampling, which is as-
signed to half the cohort each week. The second one is a
standard TS algorithm that was introduced after a burn-in
period of four weeks. Lastly, the third group is introduced
a week after the TS algorithm and uses a combination of
uniformly sampled and TS sampled evidence to update its
beliefs each week, which we refer to as TS†. This allows
us to evaluate adaptive methods (TS) and uniform random
side by side and evaluate how a combined version of these
algorithms behaves. A more thorough explanation can be
found in §2 and §3.

2. REAL-WORLD INTERVENTION
We conducted our reminder email intervention in a CS1
course lasting 13 weeks. Students were randomly assigned
to a subject line condition each week. The messages were
sent on the same day and time every week (i.e. Wednesday
evenings). There were initially 1119 students enrolled in the
course, with a final count of 1025 by the end of the term.

These emails are aimed at the goal of building time man-
agement skills for students, we sent weekly reminder emails
with three different versions of subject lines. The email con-
tent nudged students to start their weekly homework early.
Our end goal is to find better strategies to motivate stu-
dents to interact with the email content, which we cannot
do if they do not open these emails. Hence, we wanted to
determine whether one subject line would captivate students
more, thereby motivating them to engage with our prompts.

As it is difficult to fully observe student engagement to asyn-
chronous emails, we chose to collect data on the open rates
of the messages as our response measurement of engagement
in this intervention. To assign subject lines, we used varia-
tions of adaptive multi-armed bandit algorithms to give one
of three different versions of the email subject line each week.
Data from the previous week is then used to further allocate
email subject lines for the coming week, as described in Sec-
tion 3. This allows us to investigate which might be more
effective in leading students to open the reminder email and
pivot towards sending this subject line more under the as-
sumption its impact is identical from week to week.

To design the subject lines, we used various psychological
and marketing theories.

Subject Line 1 (SL1): Hey {name}, when are you going to
make a plan for your course code homework assignments?
This subject line was designed using implementation in-

tentions to help students transform the goal of planning
when to start their homework into an action [4]. Using
the student’s first-name shows email personalization and
can catch their attention easily [8].

Subject Line 2 (SL2): [{course code} Action Required] Hey

{name}, start planning your week now! : This subject
line adds a sense of urgency to the email, highlighting the
importance of planning their homework, and has an emoji
at the end to make it stand out in their inbox [9]. This
subject line also includes the student’s first name [8].

Subject Line 3 (SL3): Reminder: These are your course
code tasks for next week. This subject line only mentions
the content of the email and does not include any per-
sonalization or action prompt i.e. does not use any of the
theories described above.

3. METHODS: TRADITIONAL AND ADAP-
TIVE EXPERIMENTATION

To address the exploration versus exploitation problem in
MAB settings, we use a set of three algorithms which all
share data from a uniform burn-in period of 4 weeks. The
uniform algorithm allocation is continued at half of the al-
locations through all the weeks post burn-in to ensure we
are collecting enough data for all arms and to maintain
enough samples from all arms. Pure TS—which selects an
arm based on its prior Beta distribution with parameters α
and β, representing measures for successes and failures re-
spectively—accounts for another quarter of the allocations
and is used to evaluate the effectiveness and problems of
adaptive algorithms.

We introduce a new algorithm TS† for the last quarter of al-
locations. This uses the same stochastic allocation as TS but
draws half-weighted priors from both itself and the uniform
allocation to explicitly maintain exploration. We hypoth-
esize that this third allocation algorithm can balance the
rapid choice of optimal arms and better adapt in the face of
potentially non-stationary arm means.

Given that the adaptive portion of our experiment relies on
the Thompson Sampling policy, we explicitly show how the
priors

(
απ
k,t, βπ

k,t

)
change over time, both in equations and

with Algorithm 1. Note in the equations that the priors are
updated in a weekly batch. Hence the TS algorithm was cho-
sen for its stochastic nature to avoid assigning all students
to the same condition each week. This weekly update en-
sures time is not an uncontrollable factor affecting students’
willingness to open emails.

3.1 Equations
Let k ∈ {1, 2, 3} represent the arm a particular student was
assigned at any time t ∈ {1, 2, ..., 13} in weeks. rπk,t repre-
sents the binomial distributed cumulative reward from all
the students assigned to arm k for policy π at time t, and
nπ
k,t is the total number of students assigned to arm k for

policy π at time t.
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4. ANALYSIS AND RESULTS
Figure 4 represents the behaviour of each of the arms in the
experiment per allocation algorithm. Each plot represents
a different algorithm from UR, TS, TS†. Note that since
all algorithms draw from the same burn-in period, the first
4 weeks are duplicated across plots. For TS and TS†, an
additional week of duplication is shared due to initialization
of priors from TS†.

The left vertical axis represents the cumulative reward mean
per week, i.e. the proportion of students who opened the
email each week (with 95% confidence interval in shades),
whereas the right vertical axis shows the assignment propor-
tion to every arm week-wise. Furthermore, to understand
the output of the experiment in absolute values, Table 1
displays the final cumulative empirical mean, and the final
number of students allocated to each arm throughout the
experiment.

Post experiment, we checked to what degree the average re-
ward (mean open rate) differed across arms under each pol-
icy to determine whether we assigned to optimal conditions.
We used Wald z -tests to compare if the arms’ means have a
statistically significant difference, taking into account their
respective standard errors [10]. Since we have three arms
and three policies, by fixing each policy we are able to com-
pare pairs of arms under each. The results can be found in
Table 2. To avoid making type I errors in this preliminary
work, we controlled for a family-wise false positive rate of
0.05 using a conservative Bonferroni Correction for every set
of three—relevant—hypothesis test.

Table 2 also shows the p-value for such tests, where we can
see that all of them are greater than the adjusted-threshold
of 0.017, failing to reject the null hypothesis of all real means
being equal. This result indicates within this adaptive policy

Algorithm 1: Update rules per policy

π ∈ {UR,TS,TS†}
k ∈ {1, 2, 3}(
απ
k,0, βπ

k,0

)
← (1, 1) , ∀π, k ; /* Initialize

parameters */

for t = 1, 2, ..., 5 do
nUR
k,t ; /* Allocate with UR */

rUR
k,t ; /* Get total reward */(
απ
k,t, β

π
k,t

)
←
(
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)
+
(
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)
;

/* Update priors */

end
for t = 6 do

for π′ ∈ {UR,TS} do
nπ′
k,t ; /* Allocate with policy π′ */

rπ
′

k,t ; /* Get total reward per π′ */(
απ′
k,t, βπ′
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)
←
(
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)
+
(
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)
;

/* Update priors */
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;

/* Update TS† prior */

end
for t = 7, 8, ..., 13 do

nπ
k,t ; /* Allocate with policy π */

rπk,t ; /* Get total reward per policy π */

if π = TS† then(
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)
←
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/* Update TS† prior */

else(
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)
←
(
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k,t−1

)
+
(
rπk,t, nπ

k,t − rπk,t
)
;

/* Update priors */

end

end

allocation, it is unlikely that the arm means were different
across all weeks.

Finally, we conducted exploratory data analysis on the cor-
relation between email open rate and their desired effect on
student behaviour: earlier start times and higher homework
attempt rate. We have not found any significance on their
homework start times as of yet, but there is preliminary ev-
idence that students who opened the emails have a higher
attempt rate than those who did not.

5. DISCUSSION
This work outlines a deployment framework for using adapt-
able multi-armed bandits for randomized testing. The goal
was to maintain statistical power while giving students more
optimal arm assignments. In our particular setting, multi-
ple factors could have affected students’ email engagement,
such as midterm tests, coursework deadlines, etc. Moreover,



Figure 1: Cumulative sample arm means (hard lines) and weekly allocation proportions (dashed lines) for each policy (blue: UR,
red: TS, green: TS†). Error bar gradients represent 95% confidence intervals.

UR TS TS†

Arm Mean SD Observations Mean SD Observations Mean SD Observations

1 60.61 0.87 3130 60.07 0.86 3217 61.21 0.81 3618
2 57.96 0.89 3094 60.60 1.07 2086 61.99 1.13 1852
3 58.52 0.89 3036 60.36 1.15 1825 61.44 1.20 1653

Table 1: Empirical cumulative average reward (email open rate), standard deviation, and total allocation per arm, per policy,
at the end of the real-world deployment.



UR TS TS†

p-value Wald statistic p-value Wald statistic p-value Wald statistic

Arm 1 vs. Arm 2 0.033 2.129 0.701 0.384 0.573 0.564
Arm 2 vs. Arm 3 0.653 0.449 0.880 0.151 0.738 0.335
Arm 3 vs. Arm 1 0.095 1.668 0.840 0.202 0.872 0.161

Table 2: P-values and statistics from the Wald z -test by comparing the empirical cumulative arms’ rewards within policies.
Bonferroni adjusted threshold p=0.017.

student patterns may change across the semester, motivat-
ing us to explore ways of using an adaptive algorithm that
has existing information about the probability of each arm
being optimal, while getting updated current probabilities
from the uniform data. We then formed the TS† algorithm
that learns from both the traditional TS and UR algorithms.

From our results, even though Table 2 shows no statistically
significant difference between arm means under all policies,
there is an empirical mean increase of 4.6% and 3.6% from
arm 1 compared to arms 2 and 3. This empirical difference
causes TS and TS† to extremely favour assigning to one arm,
which only begins to change after multiple weeks. Their re-
spective plots in Figure 1 illustrate this behaviour. These
two points combined highlight the problem that MAB al-
gorithms encounter: choosing an arm even when neither is
more optimal than the other based only on average rewards.
In other words, in the situation arm means are not signifi-
cantly different, uniform random would be preferable as it
provides more balanced data without erroneously determin-
ing an optimal arm to exploit.

Interestingly, Figure 1 shows that TS† was able to hold on
to the higher allocation of arm 1 for much longer than TS.
However, this observation is counterintuitive, since our goal
was to maintain more uniformity of allocations when con-
ditions become equal. This further demonstrates that TS†

still suffers from the lack of this uniform guarantee, similar
to regular TS, and instead seeks to allocate an arm rapidly,
even without certainty of its optimality. Furthermore, one
point of tension for adaptive experimentation is to know
when to switch or adapt to a different allocation rather than
hold on to a previously highly allocated condition which may
no longer be optimal. In this environment, it seems that the
TS algorithm can “adapt” better than TS†, at the risk of
greater uncertainty of allocation optimality.

Furthermore, sample estimates in Figure 1 hint at a non-
stationary behaviour across weeks, meaning the optimal arm
could change each week. This is a characteristic that can
cause unexpected behaviour in adaptive algorithms to per-
form as expected, as bandit allocations such as TS assume
constant arm means.

Our results highlight a lesson for researchers interested in
deploying adaptive interventions in education: one must be
certain of their student behaviour first. In the case that con-
ditions are not significantly different, these algorithms lose
statistical power compared to uniform random (i.e. tradi-
tional A/B testing) by favouring one arm over others. This
can hinder instructors’ ability to make beneficial choices to
students based on experimental results.

In our case, we were not assigning students to a significantly
poorer condition and the experiment had a simple manipu-
lation. However, this was only able to be determined later in
the experiment, not during the early deployments. In other
settings with a higher risk for harm, for instance, most stu-
dents could be assigned to an initially optimal arm—based
on empirical reward—that turns out to be the least optimal
arm in the long run. In a field such as computer science
where topics build on top of previous lessons, it is impor-
tant we only compound positive effects for students in our
interventions.

6. LIMITATIONS AND FUTURE WORK
As discussed, the convergence for adaptive methods is still
too rapid, even for non-significant differences in a dynamic
environment. This could indicate that traditional uniform
algorithms could be useful in controlling the number of stu-
dents assigned to an optimal condition in the face of chang-
ing optimal arms each week. However, different analyses
should be made to test for other possibilities. For exam-
ple, it could be that the subject lines were too general to
cause a behavior change, or even too effective in doing so. It
could also be related to having the email itself be effective,
regardless of the subject line.

Furthermore, we recognize that unobserved factors in our
study that could influence students’ decision to open or not
open an email, beyond the subject line. For instance, the
engagement of a student with a course could vary through-
out a semester. Also, this study was made on a single CS1
course. Thus, it may not be representative across domains.

Finally, our study encounters the problem of personalization,
as the updates are made in a weekly batch to ensure time
does not affect the decision of students’ to open an email.
However, this comes at the cost of the individualization of
adaptive experimentation and does not allow for a finer-
grained feedback structure beyond the weekly subject line.

Future work will focus on different approaches to address-
ing the problem of potentially non-stationary arm means.
Even more, there is room to focus on adaptive frameworks
that consider contextual factors to better predict student
behaviour during, and not after, an experiment. Lastly, an
additional investigation could design a personalized variant
of bandits for email reminders that do not depend on a large
batch size or reward collected from peers.

7. CONCLUSION
We present and evaluate a deployment of email reminders in
a first-year computer science course which leverages Multi-
Armed Bandits adaptive algorithms. The goal was to in-



crease student engagement with our messages by manipu-
lating subject lines relative to a uniform allocation. On a
high level, these reminders are aimed at guiding computer
science students to build the time management skills neces-
sary for success in the field. Our work highlights the results
from using adaptive algorithms in a real-world setting, and
explains problems we encounter such as assigning higher al-
location probability to an arm when there is no significant
different among the arms’ means. We recognize there could
be outside factors that can affect the reward every iteration.
Additional work should be done to address these and the
evidence of non-stationarity in more depth.
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