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Abstract—The complexity of battery-powered autonomous de-
vices such as Internet of Things (IoT) nodes or Unmanned Aerial
Vehicles (UAV) and the necessity to ensure an acceptable quality
of service, reliability, and security, have significantly increased
their energy demand. In this paper, we discuss using a diffusion
approximation process to approximate the dynamic changes in
the energy content of a battery. We consider the case when
energy harvesting sources are constantly charging the battery.
The model assumes a probabilistic consumption and delivery of
energy, giving the time-dependent distributions of the energy at
the battery, of the time remaining until it becomes empty, the
time required to charge the battery to its total capacity, or the
time it is operational between two moments of complete depletion.
When possible, we compare the diffusion approximation results
with corresponding Markovian models.

Index Terms—Energy Harvesting, IoT, Diffusion models,
Markovian Models

I. INTRODUCTION

Numerous new IoT systems combine batteries with energy-
harvesting and take advantage of ambient energy. They use
technologies which derive power from external sources such
as solar, thermal, wind, and vibration. This way, the IoT
devices may become energy-independent and perform their
duties almost perpetually. An effort to ensure higher efficiency
of the harvesting and more economical performance of these
devices is necessary. It should lead to a balance between
consumption and power generation. Several factors are playing
a role [1]. The processes of harvesting and consumption are
not deterministic and change with time, as they depend on
external conditions and the current work of the system. Also,
the resulting stochastic process parameters representing stored
energy are not constant. The parameters of a battery change
as it ages and becomes less efficient. Wireless devices and
networks which use energy harvesting are exposed to attacks
on different protocol stack layers. They include eavesdropping,
energy depletion, flooding, beamforming vector poisoning,
side channel, spoofing/replay, and device tampering attacks,
increasing energy consumption abruptly. Also, any protection
against them is energy consuming, and a trade-off between
security and energy efficiency is needed; therefore, hybrid
security-energy metrics are introduced. These complex issues
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need modelling tools to help the performance analysis of IoT
devices. This article proposes a mathematical model that might
be useful in such studies. We believe that, as a whole, it is
more precise than the already existing ones.

A diffusion process models the changes of energy stored
in the battery; it is often used to represent more complex
stochastic processes. The diffusion process has mean and
variance that reflect the means and variances of the energy
harvesting and consumption; therefore, it is more accurate
than the one-parameter Poisson process. The model results
include time-dependent probability distribution of the energy
stored in the battery, the distribution of time to the nearest
complete depletion, and the distribution of the battery activity
time between consecutive depletions. The transient solution
to diffusion equations enables us to get results in the form
of distributions, therefore giving more precise information
than time-dependent mean values furnished by more popular
models based on the fluid-flow approach. This approach gives
us also the probability that the total depletion will never
happen, and the device will work without interruptions due to
lack of energy. The model parameters may vary with time, and
it is possible to update predictions based on new parameters
and use energy distribution at the moment of changes as initial
conditions.

Markovian stochastic models have been applied to model
the changes in the energy content of a battery, e.g. in [2]–
[4] However, the energy Poisson assumption in the arrival of
energy packets into the battery and in removing energy packets
from the battery may deviate from reality. That is why we
apply here a diffusion model where the interarrival times and
interdeparture times may follow any distribution, as already
proposed in [5], [6]. A useful but seldom used approach in
the analysis and optimization of energy, and more broadly
for the joint optimization of energy and quality of service in
computer systems and networks, named “energy packets” was
introduced in [7]. It conveniently represents energy in discrete
units, where an energy packet is a minimum energy required
to transmit a single data packet or process a single job. This
approach was initially applied to the optimization of power
flow in multiple node computer networks [8] and joint work
and energy in computer systems [9]. The model was applied
to the study of sensor nodes [10], and to battery performance,
[11].

Indeed, when the energy is quantized, Markovian stochas-



tic models can be used to model the energy storage and
consumption process. In this case, the state probabilities at
time t represent the amount of energy stored present in the
battery at time t. The authors in [12] developed a mathematical
framework for modelling the charging and discharging of the
battery of a nanosensor device. The authors used a Markovian
process to represent the dynamic changes in the battery’s
energy content. They then computed the state probabilities of
the amount of energy present in the battery (the energy state
of the battery). One of the limitations of Markovian models
is the assumption that the rate at which energy is drawn from
the battery is exponentially distributed, which is not a realistic
assumption of the IoT energy consumption patterns.

Since energy is a continuous quantity, the changes in the
amount of energy in the battery could be considered analogous
to the changes of a fluid in a reservoir and modelled using
fluid flow models. The authors in [13] proposed an analytical
model of a battery based on the fluid flow queueing model. The
authors modelled the battery as a charge or energy reservoir
where the charge gets accumulated or depleted over time. By
considering that the charge available in the battery at time t
is analogous to the fluid available in a reservoir, the authors
used fluid flow analytical methods to determine the cumulative
distribution function and the mean of the time required for the
battery to be discharged entirely. The authors in [14] proposed
a fluid queue model for the representation of the dynamic
changes in the energy content of a battery and then used it
to determine the time required to completely depletes the the
energy of the battery. The authors in [15] proposed a Markov
fluid queue model for the battery of an energy harvesting
IoT device. The authors used their model to compute the
probability that the battery’s energy level hits zero for the first
time within a given finite time horizon. Fluid flow models
capture the mean changes in the amount of energy present in
the battery but not the variance.

Here, we follow the description of the battery energy content
based on the arrivals and departures of unitary energy packets.
We also represent the energy by the number of these packets
in a queueing system. The diffusion approximation queueing
model allows us to assume general distributions of packets’
interarrival and consumption times. Its transient analysis gives
us the distribution of energy content at any time, also if the
parameters of the harvesting and consumption processes are
time-varying. In section II we present the queueing model
of the battery content, and in section III we derive the
distributions of times needed to deplete or charge the battery.
We also derive a simple formula for the probability that the
depletion will not happen. This section contains the original
contributions of the paper. The distributions are compared with
exact solutions known in the case of the Markovian model with
exponential distributions of interarrival and consumption times
of energy packets. The comparison shows high accuracy of the
approximation. Section IV concludes the article.

II. REPRESENTATION OF THE BATTERY CONTENT WITH
THE USE OF A QUEUEING MODEL

Consider a battery equipped with an energy harvesting
device. We assume that energy harvesting is represented by
the arrival of unitary energy packets and that the distribution
of interarrival times has a mean 1/λ and variance σ2

A. The
energy consumption is represented by the service of energy
packets with the mean rate µ and variance σ2

B . This way,
the battery model is equivalent to G/G/1/B station. Following
Kendal’s notation [16] it denotes the one-server service station
with first-in-first-out service, general type of interarrival and
service time distributions and queue limited to B customers
where customers represent the energy packets. The G/G/1/B
model has no effective analytical solution [17]. However, we
may use its diffusion approximation, as proposed in [18].

Following this approach, diffusion process X(t), x ∈ [0, B]
denotes the value of energy at the battery (i.e. the number of
energy packets in the queue); x = B means that the battery is
fully charged; in this case, the coming energy packets are lost.
The value x = 0 means the battery is empty and may resume
its activity after the arrival of the following energy packet.

The parameters α and β of the diffusion equation depend
on mean and variance of interarrival and service time distribu-
tions, the type of these distributions is not relevant: β = λ−µ,
α = σ2

Aλ
3 + σ2

Bµ
3 = C2

Aλ + C2
Bµ, where C2

A, C2
B are

squared coefficients of variation of interarrival and service time
distributions, [18].

The diffusion process has two limiting barriers, at x = 0
and x = B. When it comes to x = 0, it stays there for a
specific time waiting for the arrival of the next packet, jumps
to x = 1 when it arrives, and then moves until it approaches
any of the barriers again. When it comes to x = B, it stays in
the barrier waiting for the consumption of an energy packet
and then jumps to x = B − 1 and resumes the movement.
The jumps from x = 0 to x = 1 are performed with intensity
λ (intensity of energy packet arrivals) and from x = B to
x = B − 1 with intensity µ (intensity of packets departures).

The system of equations defining the density

f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) = x0]

of the diffusion process is

∂f(x, t;x0)

∂t
=

α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
+

+λp0(t)δ(x− 1) + µpB(t)δ(x−B + 1) ,

dp0(t)

dt
= lim

x→0
[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)]

−λp0(t) ,
dpB(t)

dt
= lim

x→B
[−α

2

∂f(x, t;x0)

∂x
+ βf(x, t;x0)]

−µpB(t) , (1)

δ(x) is the Dirac delta function, x0 is the initial condition,
p0(t), pB(t) are probabilities that the process is at time t at
the barriers at x = 0 or x = B. The first equation is the
diffusion equation with jumps to x = 1 and x = B − 1 the



others are probability balnce equations for the barriers. The
solution give us f(x, t;x0), p0(t), and pB(t). If the battery is
fully loaded at the beginning, x0 = B, pB(0) = 1.

The transient solution of (1) may be computationaly ob-
tained with the approach of [19], [20]. In the first step we
consider a diffusion process with two absorbing barriers at
x = 0 and x = B, started at t = 0 from x = x0. Its probability
density function ϕ(x, t;x0) has the following form [21]

ϕ(x, t;x0) =

1√
2Παt

∞∑
n=−∞

{exp[βx
′
n

α
− (x− x0 − x′n − βt)2

2αt
]

− exp[
βx′′n
α

− (x− x0 − x′′n − βt)2

2αt
]},

(2)

where x′n = 2nB, x′′n = −2x0 − x′n .

The Laplace transform of ϕ(x, t;x0) is

ϕ̄(x, s;x0) =

exp[β(x−x0)
α ]

A(s)

∞∑
n=−∞

{exp[−|x− x0 − x′n|
α

A(s)]

− exp[−|x− x0 − x′′n|
α

A(s)]},

(3)

with A(s) =
√
β2 + 2αs.

The probability density function f(x, t;B) of the diffusion
process with jumps from the boundaries is composed of
a spectrum of functions ϕ(x, t − τ ; 1), ϕ(x, t − τ ;B − 1)
representing diffusion processes with absorbing barriers at
x = 0 and x = B, started with densities g1(τ) and gB−1(τ)
at time τ < t at points x = 1 and x = B − 1 due to jumps
from the barriers:

f(x, t;B) = g1(t) ∗ ϕ(x, t; 1) + gB−1(t) ∗ ϕ(x, t;B − 1) (4)

where ∗ denotes convolution, and densities g1(t), gB−1(t), as
well as p0(t) and pB(t), are obtained from the probability
balance equations at the barriers.

The densities γ0(t), γB(t) of probability that at time t the
process enters a barrier at x = 0 or x = B are

γ0(t) = p0(0)δ(t) + g1(t) ∗ γ1,0(t) + gB−1(t) ∗ γB−1,0(t),

γB(t) = pB(0)δ(t) + g1(t) ∗ γ1,B(t)gB−1(t) ∗ γB−1,B(t),

(5)

where γ1,0(t), γ1,B(t), γB−1,0(t), γB−1,B(t) are densities of
the first passage times between the points indicated in the
index. The densities are obtained in the same way as γx0,0(t)
in the next section, Eq. (12).

The intensities of jumps in Eq. (4) depend on γ0(t), γB(t)
in the following way:

g1(t) = γ0(t) ∗ l0(t), gB−1(t) = γB(t) ∗ lB(t), (6)

where l0(t), lB(t) are the densities of sojourn times in x = 0
and x = B (they have means 1/λ and 1/µ).

With the use of (5) and (6) we obtain the densities g1(t),
gB−1(t) needed in the solution (4). We use these equations
in the Laplace domain, where the convolutions of functions
become their products. Then we invert the obtained transform
of f̄(x, s;B) numerically.

Probabilities that the proces is at barriers are

p0(t) =

∫ t

0

[γ0(τ)−g1(τ)]dτ, pB(t) =
∫ t

0

[γB(τ)−gB−1(τ)]dτ.

(7)
They are convergent to steady state values

p0 = {1 + ϱez(B−1) +
ϱ

1− ϱ
[1− ez(B−1)]}−1, (8)

pB = ϱp0e
z(B−1),

where ϱ = λ/µ, z = 2β/α, and the solution (4) converges
to to the known [18] steady-state solution. If the diffusion
parameters change, the density f(x, t;B) obtained just before
serves as the initial condition for the new one; this way,
the model adapts to the parameters changes reflecting time-
dependent harvesting and energy consumption.

III. THE FIRST PASSAGE TIMES

A. First passage times in unlimited diffusion process

The pdf of the unlimited diffusion process (no barriers) is
defined by the equation

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
(9)

and its solution

f(x, t;x0) =
1√
2Παt

exp(
(x− x0 − βt)2

2αt
). (10)

Suppose the diffusion process value represents the battery’s
energy content. In that case, the battery’s lifetime corresponds
to the time the diffusion process needs to pass from the initial
point x0 = B > 0 (initial energy of fully charged battery)
to x = 0. We may determine the distribution of this time by
considering a diffusion process with an absorbing barrier at
x = 0 i.e. the process started at x0 is ended when it comes to
zero. It corresponds to the condition limx→0 f(x, t;x0) = 0.

The problem of diffusion with absorbing barrier was studied
e.g. in [21] and the solution is given by Eq. (11). It was
obtained with the use of the method of images: the barrier is a
mirror, and the solution is a superposition of two unrestricted
processes, one of unit strength, starting at the origin, and the
other of strength − exp( 2βx0

α ) starting at x = 2x0. It yields

f(x, t;x0) =
1√
2Παt

[
exp(− (x− βt)2

2αt
)

− exp(
2βx0
α

− (x− 2x0 − βt)2

2αt
)

]
.(11)



The density of the first passage time of a diffusion process
that starts from the point x = x0 and ends at x = 0 is

γx0,0(t) =

∫ ∞

0+

∂f(x, t;x0)

∂t
dx

=

∫ ∞

0+

[
α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
]dx

=
x0√
2Παt3

e−
(x0−βt)2

2αt , (12)

with the Laplace transform

γ̄x0,0(s) = e−x0
β+

√
β2+2αs
α . (13)

Eq. (12) presents the probability density function in case of
β < 0, when probability that the process will reach the barrier∫∞
0
γx0,0(t)dt = 1. Otherwise, for β > 1,∫ ∞

0

γx0,0(t)dt = γ̄x0,0(0) = e−2βx0/α,

that means that the probability that the process ends at the
barrier is e−2βx0/α and the conditional pdf of the first passage
time is

γ′x0,0(t) = γx0,0(t)e
2βx0/α (14)

with its Laplace transform γ̄′x0,0(s) = γ̄x0,0(s)e
2βx0/α.

The same reasoning on normalisation to γ′x0,0(t) refers to
the case β < 0 with the initial point x0 left to the absorbing
barrier.

We may compute the moments of γx0,0

E[γx0,0] =
x0
|β|
, E[γ2x0,0] =

|β|x20 + αx0
|β|3

.

Note that the probability that the process with positive β
started at x0 > 0 never ends at zero is

1− e−2βx0/α, (15)

therefore probability that the fully charged battery (x0 = B)
will never become empty if harvesting intensity λ is greater
then the cunsumption intensity µ (ϱ = λ/µ > 1) is

1− e−2βB/α. (16)

Fig. 1 illustrates Eq. (16) showing how the ratio ϱ = λ/µ
as well as the coefficient of variation C2

A influence this
probability.

If the initial condition of the first passage time is not given
by a single point x0, but by a function ψ, then Eq. (12)
becomes

γψ,0(t) =

∫ B

0

ξ√
2Παt3

e−
(ξ−βt)2

2αt ψ(ξ)dξ. (17)

For example, the process starts at time t = 0 from x0 = B
with diffusion parameters α and β, and, due to changas of
the energy consumption, at time t1 diffusion parameters take
new values α1 and β1. The density of the diffusion prosess
at the moment t1 is given by Eq. (11) and presents the initial
condition ψ(x) = f(x, t1;x0) for the further evolution of the
process. With probability p(t1) =

∫ t1
0
γx0,0(t)dt the barrier
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Fig. 1. Probability that the battery will never be completely depleted if the
harvesting intensity λ is greater then the cunsumption intensity µ, presented
as a function of ϱ = λ/µ > 1), see Eq. (16); various C2

A, C2
B = 1

was already reached before t1 and with probability 1− p(t1)
is continued, and the density of the first passage time is

γ(t) =

{
γx0,0(t) for t ≤ t1
γψ,0(t− t1) for t > t1.

(18)

Not that ∫ B

0

ψ(ξ)dξ = 1−
∫ t1

0

f(x, t1;B)dt.

We may extend this approach to any time interval in which
the diffusion process has different but constant inside intervals
parameters.

B. Probability that the process never reaches a specified point

Let us introduce the function H(x0, xn) giving the proba-
bility that the diffusion process started at x = x0 and ending at
the origin will never reach x = xn. The density of probability
that the process is ended at t may be written as

γ0(t) = g(t, xn;x0) +

∫ t

0

γx0,xn
(τ)γxn,0(t− τ)dτ (19)

where
– g(t, xn;x0) density of probability that the process will

finish its motion at time t without reaching the point xn > x0
– γx0,xn

(τ) density of probability that the process will reach
xn for the first time at τ < t,

– γxn,0(t − τ) density of probability that the process will
pass from xn to x = 0 during t− τ .

We look for the distribution function H(x0, xn) giving
probability that the process will not reach xn > x0

H(x0, xn) =

∫ ∞

0

g(t, xn;x0)dt. (20)



Note that for a function f(x), and its Laplace transform f̄(s)
the following holds f̄(0) =

∫∞
0
f(x)dx, and, if f(x) is a

probability density function defined for x ≥ 0, then f̄(0) = 1.
Therefore, having in mind Eqs. (13), (19)

H(x0, xn) =

∫ ∞

0

g(t, xn;x0)dt

= lim
s→0

[γ̄0(s)− γ̄x0,xn(s)γ̄xn,0(s)]

= 1− lim
s→0

γ̄x0,xn
(s)

=
1− exp[ 2βα (xn − x0)]

1− exp[ 2βα xn]
. (21)
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Fig. 2. Distribution function H(1, xn), representing probability that a
diffusion process (µ = 1, C2

A = C2
B = 1) started at x = 1 will never

reach xn, see Eq. (21)

Fig. 2 presents H(1, xn), probability that a diffusion process
(various λ, µ = 1, C2

A = C2
B = 1) started at x = 1 and

ending at x = 0 will never attain xn. Four curves demonstrate
the impact of the energy flow intensity on the probability of
reaching the point xn. Of course, the higher intensity λ of
arrivals, the higher the probability that the diffusion process
will reach this point.

C. First passage times in case of a barrier at x = B

The densities in Eqs. (12),(17) refer to the first passage time
in case there is no barrier at x = B. In the diffusion G/G/1/B
model, representing the battery of volume B, the process at
x0, before reaching x = 0, may first come to the barrier at
x = B, stay there, then jump to x = B − 1, then go to 0
or again come back to the barrier at B, etc. The number of
visits at the barrier at B is not limited. We have to take this
into account. The pdf hi,0(t) of the duration of the G/G/1/B
busy period which starts at x = i and ends at x = 0 having
0, 1, 2, . . . visits at x = B and represents the time after which

the energy of i packets stored in the battery is completely
depleted, is given by (version for β < 0)

hi,0(t) = H(i, B)γi,0(t) + [1−H(i, B)] (22)
[1−H(i, B)]{H(B − 1, B)γ′i,B(t) ∗ lB(t) ∗ γB−1,0(t)

+[1−H(B − 1, B)]H(B − 1, B)

γ′i,B(t) ∗ lB(t)2∗γ′B−1,B(t) ∗ γ′B−1,0(t)

+[1−H(B − 1, B)]2H(B − 1, B)

γ′i,B(t) ∗ lB(t)3∗γ′B−1,B(t)
2∗ ∗ γB−1,0(t) + . . .}

The right side of the equation summarises all possible trajec-
tories of the process starting at x = i: with the probability
H(i, B) it is the direct passage from i to 0, with probability
[1−H(i, B)]H(B − 1, B) it is the passage from i to B, stay
at B, jump from B to B−1 and then passage from B−1 to 0;
with probability [1−H(i, B)][1−H(B− 1, B)]H(B− 1, B)
there are two stays at the barrier at B, etc. The symbol n∗

denotes n-fold convolution. Naturally, Hi,0(t) =
∫ t
0
hi,0(τ)dτ

gives us probability that the depletion happens until time t.
The Laplace transform of hi,0(t) is

h̄i,0(s) = H(i, B)γ̄i,0(s) + [1−H(i, B)]γ̄′i,B(s) (23)

γ̄B−1,0(s)H(B − 1, B)l̄B(s)

1− [1−H(B − 1, B)]γ̄′B−1,B(s)l̄B(s)
.

If the impact of the barrier is weak, i.e. if H(i, B) ≈ 1,
then hi,0(t) ≈ γ′i,0(t).

If i = B, Eq. (23) refers to the case of time to deplete the
fully charged battery, if i = 1, h1,0(t) refers of the battery
activity time between successive moments of its complete
discharge.

The density hi,0(t) is known for the Markovian case of
M/M/1/B station where interarrival and service times are
exponentially distributed, see e.g. [22]. However, its form in
time-domain is fairly complex, so we cite only the Laplace
transform of its density

h̄Mi,0(s) = ϱ−i
[η(s)]B−i[η(s)− 1] + [ξ(s)]B−i[ξ(s)− 1]

[η(s)]B [η(s)− 1] + [ξ(s)]B [ξ(s)− 1]
(24)

where

ξ(s) =
s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ

2λ
,

and

η(s) =
s+ λ+ µ+

√
(s+ λ+ µ)2 − 4λµ

2λ
.

In numerical examples, we use the numerical inversion of
h̄i,0(s) and h̄Mi,0(s).

A few examples illustrate the character of these functions.
In Fig. 3 we see the densities h100,0(t), Eq. (23), and hM100,0(t),
Eq. (24), given by diffusion (dotted line) and Markov (solid
line) models, presenting the density of the discharging time
for a battery of the volume B = 100 energy units. Two cases
ϱ = 0.6 and ϱ = 0.8 are considered. Evidently, for higher
system utilisation (intensity of arrivals), the time to deplete
the battery is longer. We observe a perfect match of results



given by both models. A slight distortion of the curve in the
Markov model is due to the errors of the numerical inversion
of the formula (24). The inversion is performed by a simple
Stehfest algorithm [23].

Fig. 4 presents h100,0(t) for higher than in Fig. 3 utilisations
ϱ, i.e. higher intensities of packets’ arrival; longer depletion
times are mow much more probable.

Fig. 5 presents the influence of the squared coefficient of
variation of interarrival times C2

A on the h100,0(t). The C2
A ̸= 1

cases are not available for the Markovian model. We see that
the increase of C2

A stretches the curve of the pdf, i.e. increases
the variance of the depletion time.

Fig. 6 refers to the case when the diffusion process is
initially at i = 10 and displays the pdfs h10,0(t), hM10,0(t)
of the time remaing to deplete the battery. Several harvesting
intensities are considered; as in all examples µ = 1, the
utilisation ϱ corresponds to the intensity λ. The time is, of
course, shorter than for the fully charged battery. The total
volume B of the battery stays unchanged. As we choose the
case C2

A = C2
B = 1, the Markov model is available, and the

results of both models are very close.
Fig. 7 presents the impact of the starting point x = i on

the pdf hi,0(t). The greater i, i.e. the longer distance between
the starting point and the barrier at x = 0, the longer times to
depletion.

Fig. 8 displays the pdfs h1,0(t), hM1,0(t), that means the
densities of the busy period which begins with the arrival
of a single energy packet to the G/G/1/100 or M/M/1/100
station and ends when the number of packets drops to 0. It
corresponds to the time between two consecutive moments
when the battery is depleted. We choose C2

A = C2
B = 1 to

be able to compare the diffusion and Markov results: they are
practically the same. As the utilisation factor is ϱ = 0.6, the
probability of long busy periods is weak.
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Fig. 3. Comparison of the Markovian and diffusion models of probability
densities, hB,0(t), hM

B,0(t), of the time to complete discharge an iniatially
fully charged battery, see Eqs. (23), (24). Two cases are considered: ϱ = 0.6
and ϱ = 0.8; µ = 1, C2

A = C2
B = 1, B = 100.
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Fig. 4. The influence of the utilisation ϱ on the probability density, hB,0(t),
µ = 1, C2

A = C2
B = 1, B = 100.
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Fig. 5. The influence of C2
A on the probability density, hB,0(t), see Eq. (23)

ϱ = 0.8 µ = 1, C2
B = 1, B = 100.

In the similar way as in case of hi,0(t), we may determine
the density hi,B(t) of the first passage time from x = i to
x = B with 0, 1, 2, . . . visits at the barrier at x = 0. It refers
to the time after which the battery having i units of energy
may be fully charged again (version for β < 0)

hi,B(t) = H(i, 0)γ′i,B(t) + [1−H(i, B)] (25)
[1−H(i, 0)]{H(1, 0)γi,0(t) ∗ l0(t) ∗ γ′1,B(t)
+[1−H(1, 0)]H(1, 0)

γi,0(t) ∗ l0(t)2∗γ1,0(t) ∗ γ′1,B(t)
+[1−H(B − 1, B)]2H(B − 1, B)

γi,0(t) ∗ l0(t)3∗γ1,0(t)2∗ ∗ γ′1,B(t) + . . .}
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Fig. 6. Comparison of the Markovian and diffusion models of the densities
h10,0(t). hM

10,0(t) of the first passage time from x = 10 to x = 0, see Eqs.
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Fig. 7. The impact of the starting point x = i on the first passage time pdf
hi,0(t), see Eq. (23), for λ = 0.6, µ = 1, C2

A = C2
B = 1, B = 100.

and

h̄i,B(s) = H(i, 0)γ̄′i,B(s) + [1−H(i, 0)]γ̄i,0(s) (26)

γ̄′1,B(s)H(1, 0)l̄0(s)

1− [1−H(1, 0)]γ̄1,0(s)l̄0(s)

In the case of the Markov M/M/1/B model, the correspond-
ing density is (we cite the result with a minor correction to
the original [22] p.223: ϱ is replaced by ϱB−i)

h̄M
i,B(s) = ϱ−(B−i) {[η(s)]i+1 − [ξ(s)]i+1} − {[η(s)]i − [ξ(s)]i}

{[η(s)]B+1 − [ξ(s)]B+1} − {[η(s)]B − [ξ(s)]B}

Figs. 9, 10 illustrate these results. In the first one we see
the pdfs hi,B(t), hMi,B(t), i.e. the densities of the conditional
distribution of time needed for a battery having i = 10 energy
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Fig. 8. Comparison of the Markovian and diffusion models of the probability
densities h1,0(t), hM

1,0(t), of the time of battery activity between two inactive
periods, see Eqs. (23), (24), ϱ = 0.6 µ = 1, C2

A = C2
B = 1, B = 100.

packets to complete the energy to its full capacity B (100
packets). The curves given by both models are practically the
same, even the distortions introduced by numerical inversion
coincide. The second figure visualises the impact of the
harvesting intensity on h10,100(t): the higher the harvesting
intensity, the shorter times to charge the battery.

0 200 400 600 800 1000
t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

h
i,
B
(t
)

 Markov 
 Diffusion

Fig. 9. Comparison of the Markovian and diffusion models of the conditional
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The moments of the distributions hi,0(x), hi,B(x) may be
obtained from their Laplace transforms: for any pdf fX(x)
and its Laplace transform f̄X(s) holds

dnf̄X(s)

dsn

∣∣∣∣
s=0

= − dn

dsn

∫ ∞

0

fX(x)e−sxdx =

=

∫ ∞

0

fX(x)(−1)nxne−sxdx = (−1)nE[Xn] . (27)
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Fig. 10. The influence of ϱ on the conditional probability density, hi,B(t),
for i = 10, µ = 1, C2

A = C2
B = 1, B = 100.

If the initial condition is not given by a single point x0 but
the pdf ψ(ξ), then the densitiets hψ,0(t), hψ,B(t) of the first
passage time to the barriers at 0 and B are

hψ,0(t) =

∫ B

0

ψ(x)hx,0(t)dx, (28)

hψ,B(t) =

∫ B

0

ψ(x)hx,B(t)dx.

The function ψ may also depend on time, e.g. if at time τ the
distribution of energy f(x, τ ;B) is given by the solution of
Eq. (4), giving current and time dependent distribution of the
diffusion process, then the prognostic for the further life-time
distribution is given by Eq. (28)

hψ,0(t, τ) =

∫ B

0

f(x, τ ;B)hx,0(t)dx, (29)

and

hψ,B(t, τ) =

∫ B

0

f(x, τ ;B)hx,B(t)dx.

IV. CONCLUSION

The article presents a study of times needed to empty
and recharge a battery feeding an IoT or other autonomous
device while using energy-harvesting. It may help estimate
its uninterrupted work, also giving the probability that the
complete depletion of the battery never happens. The model
uses the concept of energy packets coming, queued, and
served at a service station. It is based on the known G/G/1/B
diffusion approximation model, where we develop the first
passage time formulas. If the interarrival and service times
of energy packets are exponentially distributed, the diffusion
approximation results match the results of existing Markovian
models very well. The advantage of the diffusion approach is
that the model allows any distribution, both in the input stream
of energy packets and their service. It also includes transient

cases when the energy delivery and consumption vary in time
due to changes in work conditions, battery characteristics or
energy depletion attacks.
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