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Abstract. The accurate and consistent border segmentation plays an
important role in the tumor volume estimation and its treatment in the
field of Medical Image Segmentation. Globally, Lung cancer is one of
the leading causes of death and the early detection of lung nodules is
essential for the early cancer diagnosis and survival rate of patients. The
goal of this study was to demonstrate the feasibility of Deephealth toolkit
including PyECVL and PyEDDL libraries to precisely segment lung nod-
ules. Experiments for lung nodules segmentation has been carried out on
UniToChest using PyECVL and PyEDDL, for data pre-processing as
well as neural network training. The results depict accurate segmenta-
tion of lung nodules across a wide diameter range and better accuracy
over a traditional detection approach. The datasets and the code used
in this paper are publicly available as a baseline reference.
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1 Introduction and Background

Lung cancer has surpassed breast and prostate cancer, and has become the lead-
ing cause of death for men and women in 2021 [22]. Medical Imaging plays a
crucial part in the early detection and proper monitoring of cancer patients [11].
Traditionally, a thoracic Computed Tomography (CT) scan of the lungs is per-
formed first, which produces high resolution images of the chest structures [18].
Due to the level of detail, great image quality and clear resolution CT scans have
become the most popular choice to visualize lung nodules [24]. National Lung
Screening Trial (NLST) has also conducted a study that shows the decrease
in mortality rate of the lung cancer patients by screening with low-dose CT
(LDCT), hence emphasising the role of medical imaging in the recovery process
[1][23].
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Automated Lung Nodule segmentation done using CT scans could pass es-
sential information to the Computer-Aided Diagnosis (CAD) employed for lung
cancer diagnosis. A robust lung segmentation method could save the time taken
by manual nodule analysis and also remove the inter-observer variability found
in many studies [15]. Several CAD systems based on traditional or deep learning
image processing techniques have been proposed over the last decade for the de-
tection and segmentation of lung nodules [12, 25, 13]. The variations in size and
shape of the nodules, the patients’ gender and age, the imaging device model
and brand, and the resemblance between the nodules and their surroundings
make this a challenging problem.

After the detection of lung nodules using medical imaging, the protocol is to
have regular follow-up scans from 3 to 12 months, to monitor the growth rate of
nodules [14]. To avoid the over diagnosing and to deal with slow growing cancer,
the protocols have set the tumor doubling time as an indicator for malignant
nodules [10] [20]. To access the tumor response, Response Evaluation Criteria
in Solid Tumors (RECIST) is used as a standard, that focuses on the diameter
measurement of tumor in uni-direction and linearly [8]. There is a lot of work
being done in developing accurate and consistent segmentations of lung tumors
for the purpose of response assessment, tumor diagnosis, and staging, which can
result in giving linear and volumetric assessments of the tumor size, shape and
the tumor change rates.

The largest European lung cancer trail, Nederlands Leuvens Longkanker
Screenings Onderzoek (NELSON) trial, focuses on predicting the risk of ma-
lignancy in lung nodules. Currently, there are various segmentation algorithms
that are automated or semi-automated working on segmentation, detection and
classification of lung nodules, but it’s difficult to analyse and inter-compare the
robustness of them all. A study was conducted using NELSON’s data and three
different software systems for the malignancy risk assessment task. These sys-
tems calculated different tumor doubling time and the results conclude that due
to this variation the classification of lung nodules is affected [26].

New lung segmentation algorithms based on learning methods are introduced
periodically. Hence there is a dire need of a platform where the user can access
different deep learning and computer vision algorithms, analyse them and use
them off-the-shelf. This is where our contribution comes in: here we introduce
Deephealth toolkit, a complete deep learning and computer vision solution that
can be easily used by all developers, includes most commonly available deep
learning and computer vision algorithms and provides easy integration of data
between them. It also has its own visualisation and image editing tools, therefore
providing support from data pre-processing to network fine-tuning.

2 DeepHealth toolkit (DHt)

Owing to the success of Artificial Intelligence (AI) and learning-based methods
in the health sector, The European Union is funding AI based projects to cater
to this challenging field. Deephealth [5, 16] is a health-centered project, part of
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this effort, that aims to do large-scale experimental research using AI. For this
purpose multiple large-scale open access datasets are gathered, UniToChest [17]
is one them [2, 17, 9].

The DeepHealth toolkit (DHt) is the framework of Deephealth that is devel-
oped to provide one platform for easy deployment of Deep Learning and Com-
puter Vision applications [3]. It uses High Performance Computing, Big Data
and Cloud Computing for providing off the shelf services for all Image Process-
ing related tasks. The Deephealth toolkit consists of European Computer Vision
Library (ECVL), European Distributed Deep Learning Library (EDDL), and a
front-end interface. In this paper we have used EDDL and ECVL to train deep
learning network on UniToChest dataset.

2.1 ECVL

The European Computer Vision Library (ECVL) is a general purpose library
that is Image centered. It supports basic functionalities like Image read/write,
Image manipulation, integration, parallel image augmentation to advance fea-
tures like dataset parsing and batch creation. The main objective of ECVL is to
provide integration and data exchange between existing Computer Vision (CV),
Image processing libraries, and EDDL. Different operating systems including
Windows, Mac, and Linux are supported on ECVL. The ECVL contains generic
algorithms employed with the Deep Learning library. The Image class in ECVL
has a generic tensor model and provides an Hardware Abstraction Layer (HAL)
allowing it to run on GPU and FGPU. It also has Memory Management flexi-
bility support for different devices. Moreover, there is also a Visualiser for 3D
volumes like CT scan slices in ECVL. The user can observe different slices from
various views using this visualizer. A basic Image Editor also comes with ECVL,
including functionalities like brightness and contrast adjustment, rotation, flip-
ping, etc. The programming language of ECVL is C++ but a Python version
is also developed using a wrapper class, called the PyECVL, to support Python
Ecosystem. The latest versions of ECVL and PyECVL along with documenta-
tion are publicly available on GitHub [6] [19].

2.2 EDDL

The European Distributed Deep Learning Library (EDDL) is a general purpose
library that includes most of the commonly available Deep Learning functional-
ities. In addition, EDDL also contains the functionalities that are needed within
the Deep Health project, which covers 15 DeepHealth use cases. The main objec-
tive of building EDDL is to provide a general-purpose library that covers most
of the functionalities needed by Deep Learning in the Health sector, is easy to
use and integrate by developers, and becomes the most widely used Deep Learn-
ing library for Health. EDDL uses High-Performance Computing (HPC) and a
Cloud infrastructure transparently. It provides Neural Network topology compo-
nents and hardware-independent tensor operations. Using the Neural Network
library both the training and inference of a model can be performed, along with
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a finer control on deeper levels like gradient manipulation or individual batches.
The development language of EDDL is also C++ and a Python wrapper class
PyEDDL is provided. The latest versions of EDDL and PyEDDL along with
documentation are published publicly on GitHub [7] [19].

3 The UniToChest Dataset

The UniToChest dataset has been collected within the EU-H2020 DeepHealth [5,
16] project and consists of more than 300k lung CT scans of pulmonary lungs
from 623 different patients. The scans are in DICOM format and each scan comes
with a manually annotated segmentation mask in black and white PNG format,
both being 512× 512 in size.

A comparison with similar datasets in Table 1 shows that UniToChest has
more nodules with a wider diameter range especially at the top end. The Uni-
ToChest contains data collected from a gender-balanced population and span-
ning across a wide range of ages. Moreover, it includes images acquired using 10
different devices. The demographic details of patients and insights of the data
collection process can be found in the original dataset paper (accepted to ICIAP
2022)[4]. For all the CT scan slices in UniToChest, the radiologist has manually
segmented the present lung nodules to provide a segmentation mask. To ensure
UE regulation on privacy all the patient identifiers are removed from the CT
scan slices and the segmented masks.

Dataset
Number of
Patients

Number of
Scans

Total Nodules
count

Nodule Diameter
range(mm)

LIDC − IDRI

LUNA16

UniToChest

1010

1010

623

244527

888

306440

7371

1836

10071

2− 69

3− 33

1− 136

Table 1: Comparison with similar public dataset shows that our dataset has
more clinical lung cancer CT scan slices and annotated lung nodule count with
a diverse diameter range.

For the purpose of training a neural network, we split the dataset into train-
ing, validation and test set randomly as 80-10-10 of patients. We maintain data
consistency across multiple splits by assigning a single split to each patient. The
data population with respect to the splits is summarized in Table 2. All the three
sets (training, validation and test) have a 60 to 40 ratio between the number of
male and female patients. Furthermore, the Table 3 presents an in-depth distri-
bution of different nodule diameters within the three splits done for training of
the neural network.
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Splits Number of Patients Number of Dicoms Number of Masks

Training

V alidation

Test

498

62

63

250893

26996

28551

18534

1712

2467

Total 623 306440 22713

Table 2: Dataset population for the three splits we provide.

< 3mm < 10mm < 30mm > 30mm Total

Training 149 6527 1861 249 8786
Validation 7 315 116 23 461

Test 21 575 195 33 824

Total 177 7417 2172 305 10071

Table 3: Nodule diameter distribution across three splits.

4 Methodology

This section describes the proposed method for pulmonary nodules segmenta-
tion, including the preprocessing stage, the architecture of the deep neural con-
volutional architecture we rely upon and the relative training procedures. The
data preprocessing stage has been accomplished using PyECVL 1.2.0 and for
network training PyEDDL 1.3.0 is used.

4.1 Data Preprocessing

DICOM files produced by CT machines typically contain pixel intensity values in
Hounsfield Units (HU), i.e. they indicate radiometric density per pixel (low val-
ues indicating air, higher values indicating bones). Following a standard medical
practice, a clipped windowing transformation function is applied to such den-
sity values. The window width and center indicate the range of the Hounsfield
Units covered inside the converted pixel values, everything outside this range
will be equivalent to either zero or one. According to standard practice, we have
used a window width of 1600 and a window center of −500 to account for the
radiometric density of body structures actually useful for nodule detection.

4.2 Network Architecture

Our approach relies on the U-Net implementation [21]. The U-Net consists of
Encoder and Decoder part. The encoder consists of 5 convolutional layers with
max-pooling for featuremap downsampling. As in other convolutional architec-
tures, as the size of the featuremaps shrinks the number of featuremaps increases
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by a two factor. The decoder includes 5 convolutional layers followed by an up-
convolutions, where the size of the featuremaps increases while their number
decreases at each layer. A number of encoder and decoder layers are matched
with skip connections, where the feature maps generated by the respective en-
coder layer is concatenated with the output of decoder layer, enabling the precise
learning and localization of image object by allowing different tradeoffs between
semantic level and spatial accuracy of the featuremaps. The full architecture of
U-Net can be observed in Figure 1.

Figure 1: U-Net Architecture[21]

4.3 Training Procedure

The training method is fully supervised and consists in randomly initializing the
network weights (from scratch) and then training the network for nodule seg-
mentation minimizing the loss between the network output and the segmentation
mask relative to the input image. As for similar segmentation tasks, we minimize
the Dice loss since it has a derivative allowing for error gradient backpropagation
and minimizing the Dice loss amounts to maximizing the IoU (Intersection over
Union) between predicted and ground truth mask. Next, the network is trained
over UniToChest training set for 200 epochs. For this training, only scans with
one or more nodules have been considered, since we experimentally verified that
other scans do not bring any useful information for segmentation. The CT slices
are provided as input to the neural network in batches of 12, as that enabled
a reasonable tradeoff between memory footprint and performance. We found
beneficial resorting to on-the-fly data augmentation during the training to avoid
overfitting to the training data. The augmentation technique we used consists
in random flips and rotations (the very same transformations are also applied
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to the corresponding segmentation mask). The optimizer used in our experi-
ment is Adam with a learning rate of 0.0001. The whole architecture has been
implemented in PyEDDL and is available on github.4

5 Results and Discussion

In this section, we experiment over the UniToChest dataset with the neural
network based method described in the previous section for nodule segmentation.
All results are relative to UniToChest test set, i.e. images that have not been used
at training time. For the experiments Docker image dhealth/pylibs-toolkit:1.2.0-
1-cudnn with PyECVL 1.2.0 and PyEDDL 1.3.0 are used.

5.1 Experimental Setup

We used Weights & Biases for experiment tracking and visualizations to develop
insights for this paper. To automate hyperparameter optimization of the number
of workers and the queue ratio size of the ECVL dataloader, we run a sweep
with 2 GPUs. In Figure 2 we can see that with the aim of speed up the training
process, assigning two workers (one per GPU) and a queue ratio size of eight
(four per GPU) lead to better training times. Therefore, when using 4 GPUs we
set the number of workers to 4 and the queue ratio size to 16.
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Figure 2: Parallel hyperparameter sweep (grid search) for tuning the number of
workers and the queue ratio size of the ECVL dataloader.

4 https://github.com/deephealthproject/UC4_pipeline
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5.2 Nodules Segmentation

Firstly, for the lung nodule segmentation the neural network was trained using
only the images from training split of UniToChest shown in Table 2 that had
lung nodules in them i.e. having a respective nodule segmentation mask. The
model that performed the best on validation set was picked. This model was
then further trained and fine-tuned with 2% of images with black masks, i.e.
2% images that had no nodule segmentation mask, for a few epochs. Lastly, we
compute the Dice and IoU scores on all the images of the test set (including
images both with and without lung nodules). Figure 3 shows the Dice losses for
training, validation and test set when training only on images with nodules. The
Dice and IoU scores achieved on the full test set with a model finetuned using
2% of black masks are 0.75 and 0.73 respectively.
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Figure 3: Dice loss when training only on images with nodules.

Finally, Figure 4 shows some samples of the segmentation mask predicted by
the network (bottom row) for some sample test images (top row). Red pixels
represent false negatives, green pixel false positives and yellow pixels correctly
segmented pixels: most of the pixels are correctly segmented, a few errors re-
maining only at the borders of the nodule.

5.3 Computational speed

DeepHealth libraries provide support for multiple GPUs. We performed experi-
ments using 1, 2 and 4 GPUs with different batch sizes. We can see in Table 4
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Diam.=2-5mm
IoU=0.53

Diam.=7.8mm
IoU=0.87

Diam.=37mm
IoU=0.93

Diam.=161mm
IoU=0.80

Figure 4: Segmentation results on UnitoChest. Overlap (yellow) between pre-
dicted (red) and ground truth (green) masks is shown (top). Results over differ-
ent nodule diameters and corresponding ground truth are also shown (bottom).

that running our experiments on bigger batch sizes and using more GPUs we
can further speed up training and inference processes.

Number of GPUs Batch size Training time (s) Inference time (s)

1 1 - 0.16
1 3 6723 0.14
2 6 4233 0.08
4 12 3303 0.04

Table 4: Average training time (seconds, per epoch) and inference time (seconds,
per image) with different numbers of GPUs.

6 Conclusion and Future Works

This paper proves the feasibility of the Deephealth toolkit and its libraries. In
particular, PyECVL and PyEDDL in providing Deep Learning and Computer
Vision off-the-shelf services. In this study we proposed a U-Net based architec-
ture using PyEDDL that yields promising results at the segmentation of lung
nodules from UniToChest. Future research directions of this work include ex-
ploiting similar datasets and perform an efficiency comparison with PyTorch.
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Bertolino, F., Ficiarà, E., Cicerale, A., Pizzagalli, F., Guiot, C., Grangetto,
M., Bergui, M.: Unitobrain (2021). https://doi.org/10.21227/x8ea-vh16, https:
//dx.doi.org/10.21227/x8ea-vh16

10. Infante, M., Berghmans, T., Heuvelmans, M.A., Hillerdal, G., Oudkerk, M.: Slow-
growing lung cancer as an emerging entity: from screening to clinical management.
European Respiratory Journal 42(6), 1706–1722 (2013)

11. Knight, S.B., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T., Dive, C.: Progress
and prospects of early detection in lung cancer. Open Biology 7(9), 170070 (Sep
2017). https://doi.org/10.1098/rsob.170070

12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

13. Liu, H., Cao, H., Song, E., Ma, G., Xu, X., Jin, R., Jin, Y., Hung, C.C.: A cascaded
dual-pathway residual network for lung nodule segmentation in ct images. Physica
Medica 63, 112–121 (2019)

14. MacMahon, H., Austin, J.H., Gamsu, G., Herold, C.J., Jett, J.R., Naidich, D.P.,
Patz Jr, E.F., Swensen, S.J.: Guidelines for management of small pulmonary nod-
ules detected on ct scans: a statement from the fleischner society. Radiology 237(2),
395–400 (2005)

15. Marten, K., Auer, F., Schmidt, S., Kohl, G., Rummeny, E.J., Engelke, C.: Inade-
quacy of manual measurements compared to automated ct volumetry in assessment
of treatment response of pulmonary metastases using recist criteria. European ra-
diology 16(4), 781–790 (2006)



12 Chaudhry et al.

16. Oniga, D., Cantalupo, B., Tartaglione, E., Perlo, D., Grangetto, M., Aldinucci, M.,
Bolelli, F., Pollastri, F., Cancilla, M., Canalini, L., Canalini, C., Grana, C., Muñoz,
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